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Abstract
The atomic structures of solid-solid interfaces in materials are of fundamental importance for understanding the 
physical properties of interfacial materials, which is, however, difficult to determine both in experimental and 
theoretical approaches. New theoretical methodologies utilizing various global optimization algorithms and 
machine learning (ML) potentials have emerged in recent years, offering a promising approach to unraveling 
interfacial structures. In this review, we give a concise overview of state-of-the-art techniques employed in the 
studies of interfacial structures, e.g., ML-assisted phenomenological theory for the global search of interface 
structure (ML-interface). We also present a few applications of these methodologies.
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INTRODUCTION
Solid-solid interfaces are widely present in materials and have a significant impact on their physical and 
chemical properties[1-3]. They are crucial scientific questions in multiple important fields. For example, in 
field-effect transistors (FET)[4], the semiconductor/dielectric interface is a key structural element for 
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functionality, and the quality of the interface directly affects the transistor performance[5-7]. Similarly, in all-
solid-state batteries, the electrode and solid electrolyte interface significantly affect the migration of Li+/Na+ 
ions and determine the overall battery performance[8-11]. In photocatalysis or photovoltaic devices, interfaces 
control the molecular and diffusion processes of charge carriers, thus influencing the efficiency of 
photocatalysis and photoelectric conversion[12].

However, the determination of interface structures poses challenges both in experimental and theoretical 
aspects[13]. Experimental techniques, such as high-resolution transmission electron microscopy (HRTEM), 
face difficulties in characterizing interface structures and compositions because they are hidden within the 
bulk of the material[14,15]. Moreover, interfaces can exhibit complex structures due to the presence of 
unknown defects resulting from the atomic arrangement at the junction of two chemically distinct 
environments. On the other hand, theoretical predictions of interface structures lack comprehensive and 
rapid methods to consider various possible interface orientations and accurately describe the bonding 
interactions at the interface[13,16-20]. Therefore, the development of effective methods for predicting interface 
structures can significantly advance progress in multiple fields.

Global optimization, which aims to find the global minimum in a predefined multidimensional space, is a 
powerful approach to identifying the most stable structure from a given chemical composition[21]. (This 
process contrasts sharply with local optimization, which focuses on finding the local minimum within a 
nearby region of a given starting point, potentially missing the global optimum that lies in a different region 
of the solution space.) The challenge in global optimization is to design algorithms capable of efficiently 
navigating the expansive solution space and steering toward the metastable interface structure. Various 
sophisticated algorithms, such as basin-hopping[22], genetic algorithms[13,23], simulated annealing[24,25], particle 
swarm optimization[26,27], differential evolution[28], basin-hopping[22], random sampling[29], evolutionary 
algorithms[30], and stochastic surface walking (SSW)[31-33], have been developed to tackle these challenges, 
offering a robust approach to finding solutions that satisfy the global criteria. However, the direct 
application of global optimization to search the interface structure is questionable. This is because the most 
stable interface may not be the global minimum but a metastable structure with additional constraints such 
as lattice matching and inherent restrictions imposed by the neighboring bulks on either side of the 
interface. Modifications for global optimization need to be applied when the purpose is to find the interface 
structure.

The theoretical prediction of interface structures can be achieved by the following two common steps: (i) 
determining the orientation relationship (OR) for lattice matching and (ii) characterizing the atomic 
structure at the interface. In recent years, there have been notable advances in the theoretical prediction of 
interface structures. A series of interface structure prediction methods based on global optimization have 
been proposed[4,12,23,34-37] using different global optimization algorithms. A few structures predicted by these 
interface structure prediction methods have been validated atom-by-atom using in-situ microscopy 
experiments[4,37]. This review mainly focuses on selected global optimization methods, namely genetic 
algorithms[35,37], particle swarm optimization[27,34,38] [implemented in CALYPSO (Crystal Structural Analysis 
by Particle Swarm Optimization)], and SSW[4,12,39-42], while many other global optimization algorithms[22,30] 
can also be applied in the interface structure search.

On the other hand, machine learning (ML) emerges as a promising technology that can be employed to 
speed up the prediction of interface structures. There are two ways to accelerate interface structural searches 
using ML. One is to adopt ML potentials (a discriminative ML model) to accelerate DFT (density functional 
theory) calculations, as in our proposed ML-interface method[33,43-45]. The other is to employ generative ML 



Page 3 of Li et al. J Mater Inf 2023;3:22 https://dx.doi.org/10.20517/jmi.2023.24 21

models (e.g., GAN[46-48] and VAE[46]) to directly generate structures. At present, generative ML models are 
primarily utilized to generate molecular and bulk structures[49-52], and to our knowledge, there has been no 
report on their application in generating interface structures.

In this review, we first briefly introduce the advances of other groups in this area. Then, we present our 
recently developed ML-interface method, which is based on phenomenological theory and ML potentials. 
Finally, we discuss the challenges and open questions in this field and the possible applications of generative 
ML models in future works.

MODELS AND STABILITIES FOR INTERFACE
There are two types of models for interface structure simulations [Figure 1]. The first one is the “...|vacuum|
A|B|vacuum|A|B|vacuum|...” model [Figure 1A], and the second one is the “...|A|B|A|B|A|...” model, where “|” 
represents the interface or surface, and “...” denotes the periodic boundary condition [Figure 1B]. The first 
type of model includes the A|B interface and the A|vacuum and B|vacuum surfaces. In this configuration, 
the c-axis orientation of the unit cell does not affect the matching of interface atoms; it only needs to be 
perpendicular to the interface. The properties of this model are influenced not only by the A|B interface but 
also by the A|vacuum and B|vacuum surfaces, so it is necessary to distinguish the effects of the interface and 
surfaces during the research. The second type of model includes only the A|B interface. In this case, the 
orientation of the c-axis affects the atomic matching at the interface, making the model construction more 
complex compared to the first type, as it needs to simultaneously match both the upper and lower 
interfaces.

To estimate the stability of interfaces, we need to calculate the interface energy. For the first type of model, 
the formula to calculate the interface energy is:

where γA|B is the interface energy; EA|B, EA, EB are the DFT total energy for the interface, reference bulk A, and 
reference bulk B, respectively; S is the interfacial area; γA and γB are the surface energy of A|vacuum and B|
vacuum, respectively.

If the A|B interface and the B|A interface are equivalent, meaning that the two bulk phase regions exhibit a 
mirror or inversion symmetry, then formula 1 directly calculates the interface energy. Otherwise, formula 1 
gives the average of γA|B and γB|A, and there is no simple way to calculate the individual γA|B and γB|A.

For the second model, the interface energy is calculated as follows:

Similarly, individual γA|B can only be obtained when the A|B interface and the B|A interfaces are equivalent.

METHODS FOR INTERFACE STRUCTURE PREDICTION
Directly gluing two phases with manually selected orientation relationships
A simple approach for constructing interface models is to glue two phases with selected ORs by manually 
comparing the crystal structures to identify the lattice-matched interface. For instance, Moreno et al. 
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Figure 1. (A) Slab model with an interface region, two bulk phase regions, and vacuum in the unit cell; (B) The model with two 
equivalent interface regions and two bulk phase regions in the simulated cell. Reproduced with permission[35]. Copyright 2020, Elsevier.

construct the rutile-TiO2(110)//rocksalt-TiN(100) interface [Figure 2A] in this way[53]. They found that the 
 and θa^b = 90°, while TiN(100) has 

a[001] = 4.26 Å, b[010] = 4.26 Å, and θa^b = 90°. According to the surface lattice parameters, they determined that 
a 3 × 2 supercell of TiO2(110) can match with a 2 × 3 supercell of TiN(100), with a low strain of 4%, so these 
surface supercells were glued in a single unit cell to build the TiO2//TiN interface [Figure 2B]. The atoms at 
the interface are then relaxed using geometry optimization, which produces the final TiO2//TiN interface 
structure.

It should be noted that the above interface structure prediction method did not fully consider the 
complexities of real interfaces. For example, when finding the lattice-matched interfaces, it only expands the 
unit cell along the axis but without considering the possibility of non-axisymmetric changes in the unit cell 
[e.g., the case of      ×     TiN(100)]. As a result, many ORs have been missed. On the other hand, during
atomic relaxation, only geometry optimization is performed. This method is susceptible to the initial 
structure and can easily be trapped in a local minimum.

A more sophisticated approach to finding the lattice-matched interface is proposed by Zur and McGill[34]. 
They first select a few Miller indices for each phase to generate corresponding two-dimensional (2D) 
lattices. Then, the 2D lattices are reduced to canonical ones using a Niggli reduction approach[54-56]. 
Subsequently, potential superlattices that meet the given criteria are enumerated, enabling a comparison to 
ascertain whether two 2D lattices share a common superlattice.

On the other hand, the subsequent geometry optimization used here can only find the stable structure 
within a nearby region of a given starting structure, potentially missing the global minimum that lies in a 
different region of the structure space. To overcome these issues, it is desirable to employ more 
sophisticated optimization methods, e.g., molecular dynamics (MDs) or global optimization.

TiO2(110) has surface lattice parameters of a[001] = 2.96 Å, b[110] = 6.50 Å,
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Figure 2. (A) Surface structures of rutile TiO2(110) and rock-salt TiN(100); (B) The relaxed interface structure of TiO2(110)//TiN(100). 
Colors in the figures: Grey balls are Ti; red balls are O; blue balls are N. Reproduced with permission[53]. Copyright 2017, American 
Chemical Society.

Automated lattice-match method combined with ab into molecular dynamics
Gao et al. developed an automated lattice-matched method that takes the structures of two arbitrary 
surfaces described by surface unit cells with primitive vectors as input[35]. In the first step, supercells are 
constructed for the two non-interacting surfaces starting from the corresponding surface unit cells. In the 
second step, the supercells are aligned and matched to create a supercell representation of the interface. The 
interface supercell is then accepted and added to the pool of interface structures if the strain between the 
two surfaces is below the given thresholds. The procedure is reiterated for all the possible supercells that can 
be constructed starting from the two surface unit cells.

Using the automated lattice-matched method, Tang et al. screened a few low-strain ORs for interfaces in the 
all-solid-state Na-ion battery, which comprises a layered NaCoO2 (O3 phase) cathode, Na3PS4 (cubic phase) 
solid electrolyte, Na metal anode, and optionally an α-Al2O3 buffer layer. So, there are NaCoO2//Na3PS4, 
Na3PS4//Na, NaCoO2//Al2O3, Na3PS4//Al2O3, and Al2O3//Al interfaces in the battery[8]. Ab initio MDs[8] were 
carried out to simulate the evolution of these interfaces. Changes in bonding were tracked over the MD 
trajectory by comparing the radial distribution functions (RDF) at the interface with those of known 
reference crystals. The results show that the formation of compounds containing SO4

2- and Na3P is preferred 
at the interface. This finding offers valuable insight for designing stable interfaces between electrodes/solid 
electrolytes and buffer layer/solid electrolytes, addressing a critical bottleneck in the advancement of all-
solid-state sodium-ion batteries.

CALYPSO method
The scheme for interface structure prediction, as implemented in the CALYPSO method, is shown in 
Figure 3A. The first step is to search the lattice-matched superlattice. This step first generates a series of 
Miller indices below a threshold. For each Miller index, this method enumerates all possible superlattices 
defined by 2D surface vectors below another threshold (similar to the Zur-McGill approach described in 
Section “Directly gluing two phases with manually selected orientation relationships”). The surfaces created 
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Figure 3. (A) Flow chart of an interface structure prediction method using the CALYPSO method; (B) Stable structures of s-GB, r-GB, 
and p-GB of rutile TiO2. The light and dark blue balls represent six- and five-coordinated Ti, respectively. The red, orange, and pink balls 
represent three-, four-, and five-coordinated O atoms, respectively. Reproduced with permission[35]. Copyright 2020, Elsevier. 
CALYPSO: Crystal Structural Analysis by Particle Swarm Optimization.

are then subjected to symmetry operations corresponding to the space group of the crystal structure, which 
effectively eliminates symmetrically equivalent surfaces. Subsequently, the lattice-mismatch strain between 
the superlattices of materials A and B is assessed, and the pairs with small strains are preserved as a well-
matched interface.

Based on the lattice-matched superlattice, an initial interface structure is generated according to the 
bonding constraints at the interface region. Then, particle swarm optimization is applied to predict the 
stable interface structure. The particle swarm optimization method is a global optimization method that has 
been successfully applied in predicting structures of a wide range of systems, including periodic crystals[57,58], 
clusters[59], and reconstructed surfaces[60,61].

The CALYPSO method is used to investigate the structures of three rutile TiO2 grain boundaries (GB), i.e., 
the stoichiometric GB structure (s-GB) and two novel nonstoichiometric GB structures (r-GB and p-GB). 
Their structures are depicted in Figure 3B. Each of the three stable GB structures exhibits asymmetry due to 
a displacement of the two grains. The local coordination environments in s-GB are consistent with those 
observed in the bulk phase, where Ti and O atoms have coordination numbers (CN) of six and three, 
respectively. In the case of r-GB, all the O atoms at the GB are coordinated with four neighboring Ti atoms, 
resembling the local coordination environment of the defective rutile bulk structure with Ti interstitials. In 
p-GB, apart from the four-coordinated O atoms, there are also five-coordinated O atoms and Ti atoms 
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present at the GB due to the pronounced O deficiency within the GB. Altogether, the predicted GBs of r-GB 
and p-GB display O-deficient characteristics, suggesting a significant accumulation of oxygen defects within 
these two GBs.

Adaptive genetic algorithm
The adaptive genetic algorithm (AGA)[23] combines rapid structure exploration employing auxiliary classical 
potentials with accurate energy evaluation through iterative first-principles calculations. This approach 
assumes that the superlattices of two phases have been matched and can provide a significant acceleration of 
the interface structural search, surpassing 103 times faster while preserving the precision of first-principles 
calculations. In the AGA approach, the interface is represented by the type one model (see Section 
“MODELS AND STABILITIES FOR INTERFACE”) and is divided into four distinct regions from bottom 
to top, i.e., fixed bulk, interface, rigid bulk, and vacuum [Figure 4A]. The atoms of the fixed-bulk region are 
fixed during structure exploration, while the atoms within the interface region are fully relaxed. The atoms 
in the rigid-bulk region move collectively through rigid-body translations relative to the fixed-bulk region. 
At last, the vacuum region is introduced to prevent interactions between the top and bottom surfaces of the 
model when applying periodic boundary conditions.

During the mating process, a pair of parent structures are chosen from the population pool, and the 
offspring is generated by applying the cut-and-paste operation to the interface regions. The probability of 
selecting a structure as a parent depends on its energy ranking within the pool and follows a Gaussian 
distribution centered around the lowest-energy structure with a standard deviation of one-quarter of the 
pool size. The offspring structures maintain the same chemical composition as their parent structures. This 
method is applied to the investigation of both stoichiometric and nonstoichiometric 
GBs with a unit cell containing up to 200 atoms [Figure 4B]. Several novel low-energy structures have been 
discovered, offering novel insights into the composition and stability of the GB.

ML-INTERFACE METHOD
The ML-interface method involves three steps for interface structure prediction[4,41,42]: (i) lattice-matched OR 
screening; (ii) interface structure generation; (iii) global optimization. Herein, we will elaborate on the 
details of each step.

Generate lattice correspondences
The OR screening step aims to identify the optimal OR of lattice-matched interfaces using a slightly 
modified phenomenological theory of Martensitic crystallography (PTMC) method[62,63]. PTMC utilizes the 
presence of an invariant plane as the fundamental geometric constraint, where the lattice remains unaltered 
during the phase transition. The key aspect of PTMC involves determining the orientation of the invariant 
plane through lattice correspondence. Although initially developed for predicting ORs in martensitic 
transformations, the basic principles and mathematical methods of PTMC can be adapted to predict ORs in 
solid-solid interfaces. The main difference between these two application scenarios is that in martensitic 
transformations, the lattice correspondence is explicitly defined by the phase transition channel with the 
lowest energy barrier. In contrast, in the solid-solid interface, any lattice correspondence is permissible since 
they are not tied to a specific phase transition. Consequently, the fundamental approach to predicting ORs 
in lattice-matched interfaces involves sampling numerous lattice correspondences by modifying the unit cell 
definition and subsequently applying PTMC to calculate the OR of the invariant plane.

In the PTMC, the lattice correspondence is given by the deformation gradient F in Eq. (3).

SrTiO3∑3(112)[110] 
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where T and M are the superlattice parameters of two crystals that compose an interface. Both T and M are 
(3 × 3) matrices, where each row represents a basis vector of the unit cell. Mathematically, any superlattice 
parameters can be represented by the product of the lattice parameters of a primitive cell and a 
transformation matrix, as shown in Eqs. (4) and (5).

T’ and M’ are the lattice parameters of the primitive cell for two crystals. A and B are the transformation 
matrices. We can generate numerous lattice correspondences by exhausting matrices A and B.

Calculate the orientation of the lattice-matched interface
The Cauchy-Green deformation tensor C is then constructed to eliminate the rotation in F.

Then, we perform an eigendecomposition of C:

Ii and ei are the eigenvalues and eigenvectors, which represent the magnitude and direction of strain during 
phase transition, respectively. For clarity, we sort the eigenvalues as I1 < I2 < I3. According to PTMC, the 
existence of an invariant plane requires I2 = 1, I1 < 1, and I3 > 1[62-64]. Otherwise, no invariant plane exists for 
this lattice correspondence. In our code, we screen out the lattice correspondences that satisfy 
0.95 < I2 < 1.05.

Then, we determine the orientation of the lattice-matched interface. The vector e2 represents one strain 
invariant line (sil) within the lattice-matched interface. Along sil, the lattice is neither stretched nor 
compressed during lattice transformation. The vector of another strain invariant line (sil2) is calculated by 
the linear combination of e1 and e3 through formulas (8)-(10):

where a and c are the coefficients of linear combination. The normal vector of the lattice-matched interface 
(also denoted as strain invariant plane), sip is given by:
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Calculate miller indices and interface basis vectors
The Miller indices of lattice-matched interfaces are calculated by:

where TT is the transpose of superlattice parameters T; (hkl) the Miller indices; dhkl the d-spacing. 
However, this approach will easily produce high Miller indices. Instead, we adopt the following approach to 
get the low Miller indices: (i) enumerate a series of low Miller indices {(h’k’l’)} by setting h’, k’, l’ ≤ 5; (ii) 
Calculate the normal vectors n for the trial Miller indices by using Eq. (13); (iii) determine the optimal low 
Miller indices that has the smallest angle between n and sip.

The calculated Miller indices for the superlattice M are the same as that of T. With the Miller indices, we 
can finally produce the lattice-matched basis vectors using the Niggli reduction[65-68].

The above strategies in seeking the lattice-matched interface orientations as implemented in the 
ML-interface method are different from the previous Zur-McGill approaches. Notably, the ML-interface 
defines the range of matrix elements in the transformation matrix, whereas Zur-McGill directly defines the 
range of Miller indices. In most systems, both methods could yield the same results. However, for interfaces 
with high Miler indices that fall outside the range defined by the Zur-McGill approach, such orientations 
may be missed. The ML-interface method, on the other hand, does not impose direct restrictions on Miller 
indices and, therefore, can resolve this issue.

Generate the interface structure
A graph-based approach is used to generate interface structures, as shown in Figure 5A. First, the supercell 
is reshaped by the way that edges a and b are along with the lattice-matched basis vectors, while edge c is 
chosen so that it is shortest in periodicity. In this reshaped supercell, (001) of both phases build the lattice-
matched interface. Then, we recognize the bonds in the crystals by combining the criteria of covalent radii 
of elements[69] and the Voronoi partition[70,71]. The covalent radii of elements are used to check whether two 
atoms bond together and the Voronoi partition is adopted to delete unreasonable bonds in geometry.

Second, we convert the crystal to a special direct graph, the so-called “network flow”. Specifically, we 
remove the bonds that cut through the (001) plane and convert the remaining structure to a graph, where 
the atoms correspond to the nodes and the bonds correspond to the edges. We then add a new edge for 
each terminal node (see red cycles in Figure 5B) to a virtual source or sink node (see purple cycles in 
Figure 5B). Then, we set the capacity to infinity for the edges connected to the source or sink nodes and the 
capacity to 1 for other edges.
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Figure 5. Flowchart for generating the atomic structures of interfaces. The red lines in (A) represent the lattice-matched interface 
determined by PTMC; The purple cycles in (B) the source and sink nodes; The red cycles in (B) the terminal nodes; The blue dashed line 
in (D) the interface. Reproduced with permission[4]. Copyright 2022, American Physical Society. PTMC: Phenomenological theory of 
Martensitic crystallography.

Third, we use the max-flow min-cut theorem to generate two stable slab models from bulk crystals by 
minimizing the edges that need to be cut to separate a network flow in half[72,73] [Figure 5C]. The 
orientations of the c-axis for two slabs are perpendicular to the a-b plane.

Finally, we glue two slab models in a single unit cell [Figure 5D]. At this point, the interface already fulfills 
the lattice-matching requirements. In this configuration, only the translational degrees of freedom of the 
model are required to be considered. To improve the quality of the interface, a series of rigid translations are 
performed on the top phases to optimize the alignment between two phases by maximizing the number of 

Figure 4. (A) Schematic representation of the interface model and mating operation in the adaptive genetic algorithm; (B) New grain 
boundary structures for SrTiO3∑3(112) [110]. Reproduced with permission[23]. Copyright 2014, American Chemical Society.
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bonds at one interface. The generation procedure of interface structure stops here if the type II model is 
used. If the type II model is used, the orientation of the c-axis needs to be further modified to optimize the 
alignment between two phases at another interface.

Variable-composition global optimization
To identify the interfacial structure, a variable-composition grand canonical Monte Carlo (GCMC)/SSW-
neural network (SSW-NN) global optimization is performed. GCMC/SSW-NN method combines the SSW 
method, GCMC, and NN potential energy surface (PES). SSW is a global optimization method for 
molecules, clusters, and periodic crystals[4,12,39,74]. This method utilizes an automated climbing mechanism 
that smoothly manipulates the structural configuration from the local minima to a high-energy 
configuration along a random mode direction [Figure 6A]. Each step of the SSW method consists of three 
distinct components, namely hill climbing along the PES, optimization, and Metropolis Monte Carlo 
selection to determine whether to accept or reject the configuration. The key of the SSW method for global 
PES search is the modification of PES Vmod by continuously adding Gaussian-type bias potential nn along the 
softening mode direction Nt, which helps to overcome the barrier between minima, as shown in Eq. (14):

where the subscript of superscript n is the index of the sequentially added bias potential, and Rt is the 

vn is added.

The composition at the interface may be different from the bulk phase. To reveal the composition at the 
interface, SSW is combined with GCMC[4,75]. The GCMC involves randomly adding or removing the specific 
atoms at the interface to accommodate the variable number of atoms. During the GCMC move, atoms in 
the simulation supercell are exchanged with the environment, which is constrained by the chemical 
potential of the exchangeable species. The free energy of the surface system is defined as G(N1, N2, …Nk), 
where G is the Gibbs free energy of the system, and k represents the index of species. The chemical potential 
of species i (mi) is determined by Eq. (15):

In the grand canonical ensemble, the equilibrium is reached between the chemical potential of each species 
(mi) and the chemical potential of the environment (mext), where the average difference {mext - mi,ext} 
approaches zero. The Metropolis Monte Carlo algorithm is employed to minimize the difference in 
chemical potential. The algorithm selects the state based on the associated probability (P), ensuring the 
system achieves the most probable state concerning the chemical potential.

coordination of the current structure; Vreal is the unmodified PES; Rn
t is the coordination of references when
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Figure 6. (A) Scheme of the SSW-NN method; (B) Scheme for the Behler-Parrinello NN architecture. Reproduced with permission[43]. 
Copyright 2017, Royal Society of Chemistry; (C) Procedure for generating the training dataset using SSW global optimization. NN: 
Neural network; SSW: stochastic surface walking.

Finally, to speed up the GCMC/SSW global optimization, a NN PES[43,76] is constructed. The overall 
computational cost for NN PES is roughly 103 to 104 times lower than that using DFT[43,76]. The details of 
building the NN PES are given in the next section, “Neural Network Potential Energy Surface”, and also in 
the previous literature[31,32,43,75-81].

NEURAL NETWORK POTENTIAL ENERGY SURFACE
NN PES represents the atomic interaction energy as a function of the locally constructed structure 
descriptor by parameterizing it into a NN. Various ML potentials, such as NN potentials [e.g., Behler-
Parrinello NN[82,83], Schnet[84], and crystal graph convolutional NN (CGCNN)[85]] and Gaussian 
approximation potential (GAP)[86], have been formulated and rigorously tested for atomistic system 
modeling. Among them, the Behler-Parrinello NN potential[82,83] using atom-centered symmetry function 
descriptors may be the most popular one. So, here we focus on the Behler-Parrinello NN potential, while 
other ML potentials can be found in the literature[38,87,88].

Behler-Parrinello NN potential[82,83] involves a high-dimensional NN potential (depicted in Figure 6B) that 
decomposes the total energy into the sum of individual atomic energy, as shown in Eq. (17).

where Ei for each atom is the output of a standard feed-forward NN. The atomic bonding environment is 
described using a set of structural descriptors, which serve as the input for the high-dimensional NN 
potential. The NN parameters are trained by a data set using first-principles calculations. The SSW 
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trajectory is smooth, allowing the structure to be used for constructing the NN PES[31,32,43,44]. The input layer 
of the NN employs power-type structure descriptors (PTSD), which can well describe the geometrical 
environment of atoms. There are six types of PTSDs, namely S1-S6:

Each PTSD can be considered as a sum of the n-body functions, named the group unit (GU). The power 
function Rn(rij) represents the radial function in the GU. In the equations, rij is the distance of atomic pairs, 
rc is the cutoff, beyond which the value of Eq. 16 is equal to zero, YLm(rik) is the spherical harmonic function, 
and n, m, p, λ, and ζ are power parameters. Depending on the functional form of GU, the PTSDs, Si

1, Si
2, Si

3, 
Si

4, Si
5, Si

1, and Si
6, can be considered as 2-body, 3-body, and 4-body functions, respectively, where the Si

2 and 
Si

5 also involve spherical function.

The training of NN PES involves the following six steps [Figure 6C]: 
(a) Generating the global dataset by computing the selected structures from the SSW trajectories using DFT. 
(b) Pretraining the NN PES with the global dataset. 
(c) Benchmarking the accuracy between the current NN PES and DFT PES for a few randomly selected 
structures from a trial SSW calculation. The structures with large errors are added to the dataset of NN PES. 
(d) Iteratively performing (i)-(iii) steps until the NN PES deviation is low enough. The RMSE for NN 
potential is typically 5~10 meV/atom for energy and 0.1~0.2 eV/Å for force. 
(e) Performing the SSW global optimization on the NN PES for the target problem. 
(f) Recomputing the energy of key structures with DFT calculations.

The NN PES trained using the above approach are given in the LASP[44,45] (Large-scale Atomic Simulation 
with Neural Network Potential) website: www.lasphub.com.

http://www.lasphub.com/#/lasp/laspHome
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APPLICATIONS OF ML-INTERFACE METHOD
Field-effect transistor
The FET is a core component of semiconductor chips, and its size determines the density of chips. The 
ultimate physical size of FET transistors largely depends on the structure and performance of the Si/SiO2 
interface at the gate. Currently, the gate length of FET has reached a few nanometers and is approaching the 
physical limits of silicon materials. The leakage current caused by quantum tunneling has become a key 
technological challenge. Therefore, it is crucial to fully consider the influence of quantum effects in the 
design of modern transistors, which requires a high level of understanding of the Si/SiO2 interface structure 
and quantum tunneling performance.

We first train a Si-Hf-O-H NN PES using the method in Section “NEURAL NETWORK POTENTIAL 
ENERGY SURFACE”. A large set of PTSD was adopted for each element, including 218 two-body ones, 200 
three-body ones, and 57 four-body ones. The RMSE for energy, force, and stress are 3.992 meV/atom, 0.139 
eV/Å, and 1.601 GPa, respectively.

Then, using the ML-interface method, we can now reveal the atomic structures for Si/SiO2 interfaces. Ten 
Si/SiO2 interfaces with short periodicity were identified[4] [Figure 7]. Among the ten interfaces, the Si(100) 
interface has the lowest interfacial energy of 0.93 J/m2, and the high Miller index Si(331) interface has the 
highest interfacial energy of 1.40 Jm2. Notably, our identified Si/SiO2 interface is more stable than interfacial 
structures proposed previously, including crystalline and amorphous ones [Table 1]. By examining the 
interface structures, we find no interfacial dangling bonds are present on the Si(100), (111), (511), and (531) 
faces, but Si(110), (559), (210), (211), (311), and (331) interfaces do have a number of dangling bonds. This 
result is consistent with the interface state densities that can be directly measured by H2 passivation in the 
experiment. To be specific, Ogata et al. reported that the interface state densities on Si(100) and (111) have 
no change after H2 passivation, indicating no dangling bonds are present on these two interfaces[91]. In 
contrast, the interface state densities on Si(110), (210), (311), and (331) remarkably decrease by up to 1 
order after the same treatment[91]. The experimental observations confirm the reliability of the ML-interface 
method.

For the carrier effective mass, the low-index Si facet Si(100) has the lowest electron effective mass 
(me

* = 0.23me), while Si(110) has the lowest hole effective mass (mh
* = 0.32me). Both agree with the 

established knowledge from the experiment[92]. In fact, both interfaces have been used in the semiconductor 
industry. Besides, two new high Miller index interfaces, i.e., Si(210)//SiO2 and Si(211)//SiO2, were proposed 
for the first time. These high-index interfaces exhibit perfect atomic matching, excellent thermal stability, 
and superior electronic properties. Theoretical calculations suggest a significant reduction in carrier 
quantum tunneling by four orders of magnitude compared to conventional Si(100)//SiO2 and Si(110)//SiO2 
interfaces. Additionally, the interface size can be reduced to as small as 1 nanometer, which holds promise 
for achieving shorter gate lengths. Furthermore, the predicted interface models in the paper can be used to 
generate a series of crucial physical parameters, such as effective mass, conductivity, and thermal 
conductivity. These parameters can accelerate the macroscopic device simulation (TCAD) for chip design. 
Therefore, the theoretical prediction indicates that the new high Miller index Si(210)//SiO2 and 
Si(211)//SiO2 interfaces could be the key to overcoming the performance bottleneck of Si-based 
semiconductors.

Photocatalysis and photovoltaics
In photocatalysis and photovoltaics, semiconductor interfaces play a crucial role in carrier separation, 
photocatalytic activity, and photovoltaic conversion efficiency. The ML-interface method can effectively 
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Table 1. Interface energies of Si/SiO2 in our and previous worke

Our work Previous work

Orientation γ (J/m2) Orientation γ (J/m2)

Low-index Si/SiO2 interface

(100)Si//(111)α-crist 0.93 Si(100)/α-quartz 0.99a

(111)Si//(111)α-crist 1.13 Si(100)/α-SiO2
d 1.15b

(110)Si//(100)α-quartz 1.27 Si(110)/α-quartz 1.83c

High-index Si/SiO2 interface

(531)Si//(010)β-tridymite 1.01 α-SiO2/Si(331) 1.50b

(210)Si//(102)β-tridymite 1.16 α-SiO2/Si(310) 1.66b

1.17 α-SiO2/Si(410) 1.72b

1.20 - -

1.23 - -

(559)Si//(121)α-quartz 1.27 - -

(331)Si//(010)α-crist 1.40 - -

aRecalculated using PBE with the interface proposed in Phys Rev Lett, 84 (2000), 943[6]; bdata from J Appl Phys, 119, (2016), 054103 using PBE[89]; 
cdata from Phys Rev B, 73, (2006), 165312 using PW91[90]; dα-SiO2 represents the amorphous-SiO2; eReproduced with permission[4]. Copyright 
2022, American Physical Society.

Figure 7. Atomic structures of ten Si/SiO2 interfaces with an interfacial area less than 1 nm2 in periodicity. The dashed cycles in the 
figure highlight the unsatisfied Si atoms with dangling bonds. Colors in the figure: yellow balls are Si; red balls are O. This figure is 
quoted with permission from Li et al.[4].

address these issues. For example, Li conducted a study on the interface structure between ZnO and 
MAPbI3. Figure 8A illustrates the atomic structures of four interfaces with relatively low interfacial energies. 
By analyzing the interface energy, Li predicted the equilibrium morphology of ZnO nanoparticles on the 
MAPbI3 substrate[93]. The results revealed that under equilibrium conditions, the ZnO nanoparticles exhibit 
loose assembly over the MAPbI3 substrate. This finding has implications for the design of photovoltaic solar 
cells using MAPbI3 and ZnO, suggesting that the issue of loose assembly needs to be addressed.

(211)Si//(112)α-crist

(511)Si//(211)α-quartz

(311)Si//(120)β-tridymite
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Figure 8. (A) Atomic structures of four ZnO/MAPbI3 interfaces. Colors in (A): red balls are O; silver balls are Zn; cyan balls are N; 
brown balls are C; purple balls are H; white balls are I, and gray balls are Pb. Reproduced with permission[93]. Copyright 2019, American 
Chemical Society; (B) Structures for three TiO2/GaP heterojunctions that can achieve the atomic-matched interface. Colors in (B): grey 
balls are Ti; red balls are O; brown balls are Ga; purple balls are P. The green dashed lines represent the interfacial planes. Reproduced 
with permission[12]. Copyright 2019, American Chemical Society.

 interface, with lattice parameters of 3.78 × 3.78 Å for TiO2 (001) and 
3.86 × 3.86 Å for GaP(100), resulting in a strain of 2%. The interface structure shows that each interfacial Ti 
ion forms bonds with two P ions from the GaP phase, while each interfacial Ga ion forms bonds with three 
O ions from the TiO2 phase. The CN for the interfacial Ti and Ga ions is five, which differs from their 
respective bulk counterparts. In the bulk TiO2, Ti ions have a CN of six, while in the bulk GaP, Ga ions have 
a CN of four. Despite this difference, the structural parameters, such as bond length and angle of the 
interfacial Ti and Ga ions closely, resemble those in the bulk, facilitating a perfectly matched interface 
between TiO2 and GaP phases. The second stable interface is the (001)
interfacial energy of 0.76 J/m2. The lattice parameters for TiO2 (101) and GaP (110) are 3.78 × 10.21 Å and 
3.85 × 10.90 Å, resulting in a strain of 7%. In this interface, one Ti ion forms a bond with one P ion from the 
GaP matrix, while one Ga ion forms a bond with one O ion from the TiO2 phase. The third stable interface 

 interface, with an interfacial energy of 0.83 J/m2. The lattice parameters for TiO2 and 
GaP are 5.44 × 5.34 Å and 5.45 × 5.45 Å, respectively, resulting in a strain of 2%. The local view reveals that 
each interfacial Ti ion bonds with two P ions from the GaP phase, while each interfacial Ga ion bonds with 
two anions from the TiO2 phase.

As another example, Li et al. screened out three highly matched GaP/TiO2 interfaces with a strain of less
than 7%, i.e., (001)TiO //(100)GaP, (101)TiO //(110)GaP, and (112)TiO //(100)GaP [Figure 8B][12]. The most stable
interface is the (001)TiO //(100)GaP

TiO //(110)GaP interface, with an

is the (112)TiO //(100)GaP
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Furthermore, using the transfer-matrix method (an approach to estimate the probability of carrier 
tunneling), we demonstrate that a photoelectron generated from GaP bulk can readily tunnel through the 
thin TiO2 layer (0.5-3 nm) without significant decay, which can decrease the CO2 reduction barrier 
significantly by 1.02 eV as compared to that without electron tunneling. Our results rationalize the recent 
finding of the high CO2 reduction ability of TiO2-coated GaP at a critical thickness (< 10 nm)[12].

CONCLUSION AND OUTLOOK
This review outlines recent advances in the interface structure prediction method, which shed light on 
resolving the long-standing challenges in material science. Most interface structure prediction methods 
share a common idea, that is, first, find the lattice-matched OR and, second, perform global optimization to 
relax the interface atoms. The specific research process can be flexible in choosing which method to use 
according to the characteristics of the interface system. Due to the complexity and diversity of interface 
structure prediction, most methods have not been integrated into common codes, such as VASP[94], 
CP2K[95], and CRYTSAL[96].

Although some progress has been made, there are some common problems in this field. First, during the 
search for lattice-matched ORs, a large number of lattice correspondences need to be exhausted. The 
current approach will generate numerous lattice correspondences that generate the duplicate deformation 
gradient matrix and thereby lead to the same ORs. In the future, a more efficient sampling method for 
lattice correspondences is required. Second, many interface prediction methods require global optimization 
to determine the most stable structure for interface atoms; this, however, is computationally expensive, 
especially using first-principles calculations. We expect ML potentials will be widely used in future studies 
to notably reduce computational costs.

Notably, the training of ML potential is difficult and requires a lot of computational costs. Furthermore, the 
complexity of the PESs increases exponentially with the number of elements, as ML potentials are element-
dependent. As a result, a single ML potential contains at most seven elements in the current 
implementation, while no global potential covers all the elements in the periodic table available. As a result, 
many ML potentials containing different subsets of elements have to be trained, which is inconvenient in 
practical applications. A few ML techniques, such as a pre-trained ML model[97] or coarse-k-grid DFT 
calculations to generate training sets, emerge as possible approaches to resolve the challenges in current ML 
potentials[98]. Next, it may be useful to build a generative ML model using the available interface structure 
data from the interface structure prediction methods. Overall, the coming years might witness a boom in 
theoretical simulations of solid-solid interface structures due to the advances in the methodology.
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