
Cardoso. Microbiome Res Rep 2024;3:22
DOI: 10.20517/mrr.2023.73

Microbiome Research 
Reports

© The Author(s) 2024. Open Access This article is licensed under a Creative Commons Attribution 4.0 
International License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, sharing, 
adaptation, distribution and reproduction in any medium or format, for any purpose, even commercially, as 

long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and 
indicate if changes were made.

www.oaepublish.com/mrr

Open AccessPerspective

Microbial influence on blood pressure: unraveling 
the complex relationship for health insights
Alexander Machado Cardoso

Department of Biology, Rio de Janeiro State University, Rio de Janeiro 23070200, Brazil.

Correspondence to: Prof. Alexander Machado Cardoso, Department of Biology, Rio de Janeiro State University, Avenida Manuel 
Caldeira de Alvarenga - 1203, Rio de Janeiro 23070200, Brazil. E-mail: amcardosopf@yahoo.com.br

How to cite this article: Cardoso AM. Microbial influence on blood pressure: unraveling the complex relationship for health 
insights. Microbiome Res Rep 2024;3:22. https://dx.doi.org/10.20517/mrr.2023.73

Received: 9 Dec 2023  First Decision: 5 Feb 2024  Revised: 29 Feb 2024  Accepted: 13 Mar 2024  Published: 18 Mar 2024

Academic Editor: Colin Buttimer  Copy Editor: Dong-Li Li  Production Editor: Dong-Li Li

Abstract
Hypertension, a critical global health concern, is characterized by persistent high blood pressure and is a major 
cause of cardiovascular events. This perspective explores the multifaceted implications of hypertension, its 
association with cardiovascular diseases, and the emerging role of the gut microbiota. The gut microbiota, a 
dynamic community in the gastrointestinal tract, plays a pivotal role in hypertension by influencing blood pressure 
through the generation of antioxidant, anti-inflammatory, and short-chain fatty acids metabolites, and the 
conversion of nitrates into nitric oxide. Antihypertensive medications interact with the gut microbiota, impacting 
drug pharmacokinetics and efficacy. Prebiotics and probiotics present promising avenues for hypertension 
management, with prebiotics modulating blood pressure through lipid and cholesterol modulation, and probiotics 
exhibiting a general beneficial effect. Personalized choices based on individual factors are crucial for optimizing 
prebiotic and probiotic interventions. In conclusion, the gut microbiota’s intricate influence on blood pressure 
regulation offers innovative perspectives in hypertension therapeutics, with targeted strategies proving valuable for 
holistic blood pressure management and health promotion.
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INTRODUCTION
Hypertension is a multifactorial disease with genetic and environmental factors contributing to its 
development. The pathophysiology of hypertension is complex and involves a variety of physiological 
mechanisms, including salt intake, obesity and insulin resistance, the renin-angiotensin system, and the 
sympathetic nervous system[1]. Other factors that have been evaluated include genetics, endothelial 
dysfunction, low birth weight and intrauterine nutrition, and neurovascular anomalies[2]. Environmental 
factors such as cold temperature, high altitude, loud noises, stress, and ambient air pollutants can also 
significantly increase arterial blood pressure (BP), and chronic exposures may be capable of promoting the 
development of sustained hypertension[3].

Being a major risk factor for cardiovascular events and the primary cause of adult mortality, hypertension is 
a serious global public health concern that is characterized by persistently high BP. It has been 
acknowledged as the primary risk factor, or as one of the most powerful risk factors, for the development of 
a variety of diseases that are acquired over the course of a person’s lifetime. These include a range of 
illnesses such as heart disease, heart arrhythmias, valvular heart diseases, cerebral stroke, and kidney 
failure[4]. Due to the widespread impact of hypertension, multifaceted approaches to its prevention and 
treatment are imperative as it plays a critical role in the development of numerous diseases[4,5].

Extensive cohort studies have conclusively demonstrated that high BP is a significant risk factor for chronic 
kidney disease, atrial fibrillation, and heart failure[6]. The most important modifiable risk factor associated 
with early cardiovascular disease, when considering population attributable risk, is hypertension. A 
thorough systematic review and meta-analysis showed a progressive and graded relationship between 
various BP categories and young adults’ risk of cardiovascular events. Interestingly, this risk showed a 
progressive increase over different BP increments. In the context of public health, these findings highlight 
the critical role that BP management plays in reducing the risk of cardiovascular morbidity and the 
significance of focused interventions[3].

Recent studies have highlighted the revolutionary potential of high-throughput sequencing and integrative 
multi-omics approaches in deciphering the complex mechanisms underlying hypertension. Thanks to the 
power of bioinformatics and high-throughput technologies, an extensive global genome exploration has 
been made possible, revealing dysregulated genes that are closely associated with hypertension[7]. Beyond 
genomics, novel insights into the molecular basis of hypertension have been provided by postgenomic 
biomarkers derived from metagenomics, transcriptomics, proteomics, glycomics, and lipidomics[8].

In order to comprehend the intricate interplay between internal and external risk variables that underpin 
the pathogenesis of hypertension, multi-omics analyses across the spectrum of continuous variations in BP 
values have to be incorporated[9]. These studies have the potential to identify risk factors, clarify the complex 
molecular landscape of hypertension, and track treatment outcomes. It is crucial to recognize that there are 
inherent computational and practical challenges with performing an integrative analysis of omics data. As of 
right now, this method is still not widely used in hypertension research[10]. The combination of high-
throughput sequencing and multi-omics approaches is expected to make a substantial contribution to our 
understanding of hypertension at the molecular level as these challenges are rigorously addressed and 
methodologies progress. This development could lead to the implementation of precision medicine in the 
treatment of hypertension and more focused therapeutic approaches[11].

The objective of this perspective is to provide insight into whether beneficial microbes, which are 
microorganisms that have positive effects on host health, could effectively contribute to enhancing the 
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management of high BP. These microorganisms are typically found in the gastrointestinal tract, particularly 
in the colon, where they contribute to various physiological processes and help maintain homeostasis[12]. 
The microbiome refers to the diverse community of microorganisms that interact with their hosts in a range 
of relationships, including symbiotic, commensal, and pathogenic. Symbiosis, specifically, involves mutually 
beneficial exchanges between the host and microbiota, contributing to the maintenance of homeostasis and 
overall health[13]. The examination of microbial communities, their interactions, evolution, and the 
identification of novel molecular pathways in hypertension can be tackled through the application of 
computational predictive methods and functional genomics[14]. In an effort to understand the mechanistic 
relationships between the microbiome (the complete collection of genetic materials derived from all the 
microorganisms inhabiting a given environment) and the host, computational biology and machine 
learning techniques have been developed. The methodologies encompass the identification of novel 
molecular mechanisms and the profiling of heterogeneous datasets that document changes in the 
microbiome and host responses at the community level[15].

These methods have been used to examine and deduce the interactions between host molecular 
components and the microbiota in a variety of disease contexts. Evidence of possible connections between 
the gut microbiota (GM) and BP in the setting of hypertension has been found, and the magnitude of these 
interactions has been studied[16]. Additionally, despite having similar GM profiles, a study that integrated 
microbiome pathway analysis and machine learning found differences in microbial gene pathways between 
participants with hypertension and those with normotension[17,18]. The downregulation of the nitrite 
transporter and salt transport system genes in hypertension individuals was especially noteworthy. 
Moreover, a significant increase in acetate-CoA ligase, an enzyme involved in the production of butyrate 
that can lower BP in experimental hypertension, was observed[18]. Consequently, functional genomics and 
computational predictive approaches can offer important new perspectives on the investigation into 
microbial communities and their connection to hypertension[17].

In addition to its pivotal role in BP regulation, the GM exerts multifaceted effects on host health and 
disease, such as intestinal vascularization and gut barrier regulation[19]. These effects span diverse 
physiological processes, including immune homeostasis, physiological remodeling, and the maintenance of 
gut barrier integrity. The intricate interplay between the microbiota and the host extends beyond mere 
symbiosis, encompassing mechanisms that discriminate between homeostasis and dysbiosis. This 
continuous interaction exerts profound impacts on the host’s physiology and pathology. To provide a 
comprehensive overview of gut microbial effects on host health and disease, it is important to elucidate not 
only the specific relationship between the microbiota and BP regulation but also its broader implications for 
overall health.

GUT MICROBIOTA CONTROLS BLOOD PRESSURE
The gastrointestinal tract is colonized by a complex and constantly evolving population of microorganisms 
known as the GM. It has co-evolved with the host and is composed of bacteria, archaea, and eukaryotes, 
including viruses that infect prokaryotes (bacteriophages) and eukaryotic viruses that infect human cells[20]. 
This dynamic community significantly influences host physiology during both normal physiological states 
(homeostasis) and pathological conditions (illness)[21]. For example, it has been demonstrated that the 
proportion of the bacterial species Firmicutes to Bacteroidetes affects both health and disease[22]. The 
microbiota in the gut plays an essential role in the immune system and metabolism, as well as in the 
fermentation of substrates that are not digestible, such as dietary fibers[23]. Several variables, including host 
genetics, environment, drugs, and diet, affect the GM’s composition. Studies have indicated that some 
chronic gastrointestinal diseases may be influenced by the GM, and that modifying it may be a useful 
therapeutic strategy to address these disorders[24].
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Additionally, it is believed that the GM shapes the composition and diversity of intestinal microbiota by 
participating in the breakdown of dietary fiber and the production of short-chain fatty acids (SCFAs)[25]. 
Studies suggest that SCFAs, such as acetate, propionate, and butyrate, derived from GM play a significant 
role in BP regulation through various mechanisms and are essential in cardiovascular homeostasis. SCFAs 
interact with some receptors, influencing vasodilation and neural feedback in the gut, ultimately affecting 
BP levels[26,27]. Research indicates that SCFAs can activate different receptors, leading to complex and diverse 
effects on BP regulation. For instance, SCFAs binding to GPR41 can induce vasodilation and lower BP, 
while binding to Olfr78 may increase BP levels[28]. Moreover, SCFAs have been linked to the expression of 
genes involved in BP regulation, highlighting their potential as a target for novel prevention and treatment 
methods for hypertension[26]. Besides SCFAs, other microbial metabolites that have been investigated for 
their effects on BP regulation include trimethylamine-N-oxide (TMAO) and bile acids (BAs). TMAO has 
been shown to influence BP, with studies demonstrating its BP-lowering effects in patients with resistant 
hypertension[29]. Additionally, gut bacteria and their metabolites may affect BP variability through systemic 
mechanisms outside the intestine[8]. BAs have been implicated in BP regulation. Serum total bile acid (TBA) 
has been associated with new-onset hypertension during pregnancy, where high TBA levels were positively 
related to systolic and diastolic BP, and proteinuria[30]. Furthermore, some BAs have vasodilatory effects; for 
instance, taurocholic acid has been shown to induce vasodilation in mesenteric and aortic rings[31].

In general, the human GM plays a vital role in various physiological processes, and research on this topic is 
ongoing. Recent studies have brought to light the importance of the GM in the etiology and development of 
hypertension. Dysbiosis of the GM is linked to a reduction in the expression of tight junction proteins, a 
decrease in the quantity of goblet cells, a breakdown of the gut epithelial barrier, and a decrease in mucus in 
the intestinal lumen, suggesting that it might contribute to the development of hypertension[32]. 
Hypertension has been correlated with GM dysbiosis, which includes an increased abundance of Gram-
negative microbiota[33]. Through a variety of mechanisms, the GM can control BP by including host-induced 
modifications to microbiome-associated gene pathways, such as using G protein-coupled receptors to 
activate many downstream signaling pathways[26]. Both in humans and animals, the relationship between 
GM and hypertension has been noted, and microbial genera that influence BP have been identified[34].

Animal studies have indicated that the GM plays an important role in the regulation of hypertension. For 
instance, a study discovered that raised BP was linked to the prevalence of Firmicutes and Bacteroidetes in 
gut by using several hypertension models, including rats that were spontaneously hypertensive and Dahl 
salt-sensitive[35]. Numerous large-cohort investigations have revealed inconsistent microbiological 
indicators, and the connection between GM and hypertension still has to be clarified[36]. However, some 
studies have identified specific microbes and metabolic pathways that may help explain the protective effect 
of probiotics (live microorganisms, typically bacteria or yeast, that confer health benefits) in treating 
hypertension; in fact, the metagenomic analysis revealed that the increased Lawsonia and Pyrolobus, and 
reduced Alistipes and Alloprevotella levels were tightly correlated with lowered BP, suggesting that these 
bacteria could affect BP by changing steroid hormone levels[37].

It has been determined that several microbial genera influence BP. Blood pressure is correlated with 
increases in Lactobacillus, Roseburia, Coprococcus, Akkermansia, and Bifidobacterium, and inversely 
correlated with increases in Streptococcus, Blautia, and Prevotella[34]. Furthermore, several bacteria can 
stimulate the synthesis of trimethylamine-N-oxide (TMAO), a metabolite that is currently the subject of 
extensive research in the field of hypertension[38]. Specifically, Enterobacteriaceae have been shown to 
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promote the growth of bacteria that produce trimethylamine (TMA) from TMAO, while certain lactic acid 
bacteria also exhibit increased lactate production when grown in the presence of TMAO[39]. Additionally, 
other bacterial strains like Anaerococcus hydrogenalis, Clostridium asparagiforme, Clostridium hathewayi, 
and Clostridium sporogenes have been linked to TMA generation[40]. The GM plays a critical role in TMAO 
metabolism, and understanding how bacterial communities influence TMAO levels could inform new 
therapeutic approaches to manage conditions such as hypertension and cardiovascular disease[41,42].

WHAT IMPACT DOES THE GUT MICROBIOTA HAVE ON BLOOD PRESSURE?
Numerous studies using germ-free mouse models have provided compelling evidence of the causal 
relationship between the GM and BP regulation[43,44]. These investigations have demonstrated that the GM 
has an essential role in BP control and that altering the microbiota may be a promising treatment for 
hypertension. Utilizing gnotobiotic, or germ-free, mice has proven crucial in this field. The mice exhibit 
blunted responses to angiotensin II and experience elevated blood pressure after receiving fecal transplants 
from hypertension patients instead of normotensive donors. In both genetic and pharmacological models, 
restoration of normal microbiota reduces and prevents the development of hypertension, and experimental 
hypertension is typically associated with alterations in the composition of the GM[45]. Comparing germ-free 
rats to their conventionalized counterparts, the lack of microbiota led to relative hypotension, indicating 
that GM is essential for BP regulation. When microbiota was introduced to germ-free rats, both BP and 
vascular contractility returned, suggesting that microbiota might influence BP via a vascular-dependent 
mechanism[46].

It remains to be seen how the GM influences BP. Global knowledge about the gut microbiome’s role in 
hypertension may offer crucial insights into its prevention. Recently, it was demonstrated that the human 
breast milk-derived bacteria, administered orally, could lower BP and alter metabolites in a mouse model of 
elevated BP induced by high fructose, suggesting a potential therapeutic approach[37].

The interplay between the gut microbiome and the immune system is complex and dynamic, and it has 
significant implications for health and disease, including the regulation of inflammatory responses and the 
maintenance of immune homeostasis[47]. Studies have shown that anti-inflammatory and antioxidant 
properties can help regulate BP. A disruption in the equilibrium between oxidants and antioxidants is 
known as oxidative stress, and it has been connected to the emergence of endothelial dysfunction, 
inflammation, and heightened vascular contractility, which in turn leads to the remodeling of 
cardiovascular tissue[48]. Antioxidants and microbial components, such as carotenoids, polyphenols, 
vitamins, and sterols, have been shown to restore the proper functioning of vessels and reverse the harmful 
effects of free radicals. Additionally, flavonoids have been reported to have vasodilatory and 
antihypertensive effects[49]. The phytochemical indole-3-carbinol, which is obtained from cruciferous 
vegetables, has demonstrated anti-inflammatory, antioxidant, antihypertensive, and antiarrhythmic 
properties[50]. Anti-inflammatory and antioxidant properties of some microbial metabolites may help 
regulate BP and have great potential for therapeutic treatments[51]. For instance, SCFAs like acetate and 
butyrate have been observed to have anti-inflammatory effects on myeloid and intestinal epithelial cells, 
potentially benefitting BP regulation[52]. Additionally, SCFA-producing bacteria like Faecalibacterium and 
Coprococcus have been associated with lower BP and better mental health outcomes[53].

It is interesting to note that some GM plays a crucial role in metabolizing certain nutrients, such as nitrates 
from vegetables, and converting them into nitric oxide, a vasodilator molecule that helps relax blood vessels 
and regulate BP. This process involves the microbial reduction of nitrates to nitrites and further to nitric 
oxide, which has been shown to contribute to the maintenance of cardiovascular health and the regulation 
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of BP[38]. The microbially-derived NO can cross the epithelial barriers, reaching the portal vein and 
eventually entering the systemic circulation[54]. The production of nitric oxide from dietary nitrates by the 
GM represents an important link between diet, the gut microbiome, and cardiovascular function, 
highlighting the potential impact of microbial metabolism on human health[8].

The gut microbiome can also play a significant role in the metabolism, pharmacokinetics, and efficacy of 
antihypertensive medications. The GM can influence the pharmacokinetics of antihypertensive drugs, 
affecting their absorption, distribution, and elimination. This can lead to changes in drug concentrations 
and may impact the overall effectiveness of the medication[55]. Understanding these interactions is crucial for 
optimizing the treatment of hypertension and addressing the challenges associated with drug resistance. 
Antihypertensive medications can interact with the gut microbiome, which may affect drug 
pharmacokinetics and the efficacy of BP-lowering drugs[56]. Resistant hypertension is a condition where BP 
remains high despite taking at least three different antihypertensive drugs at optimal doses. Understanding 
the interactions between different medications and lifestyle factors is crucial for optimizing the treatment of 
hypertension and addressing the challenges associated with drug resistance[57].

The GM plays a role in the metabolism of antihypertensive drugs, which can contribute to drug 
resistance[58]. For example, antihypertensive drugs such as amlodipine and nifedipine can be metabolized by 
gut microbial enzymes, influencing drug absorption, and leading to changes in their pharmacokinetic 
parameters[59]. The GM has been shown to be involved in the development of antihypertensive drug 
resistance, which can lead to a reduced response to antihypertensive medications[58]. Depletion of the GM, 
achieved through antibiotic treatment, has been shown in a patient to enhance the BP-lowering effect of 
certain antihypertensive drugs, suggesting that the GM plays a significant role in their efficacy[60].

Antihypertensive drugs such as losartan, valsartan, and telmisartan can be transformed by GM in the in 
vitro setting, suggesting potential interactions with the gut microbiome. However, the specific metabolites 
generated and their effects on the efficacy of the drugs are not clear and may represent secondary effects due 
to the complex interplay between antihypertensive agents and GM. Interestingly, the angiotensin receptor 
antagonist losartan reduced gut dysbiosis and improved gut integrity in an experimental model[61]. Some 
medications may affect gut microbiome composition and gut epithelial barrier, as endothelial dysfunction 
and attenuation of BP may be increased in response to angiotensin[62]. Captopril (angiotensin-converting 
enzyme inhibitor) reshaped the gut microbiome composition, and following its withdrawal, there was a 
noticeable alteration in microbial composition, with Parabacteroides, Mucispirillum, and Allobaculum being 
the most prominently increased genera[63]. Additionally, the medication reduced gut inflammation and 
permeability. The metoprolol (beta-blocker) hypertension treatment might affect BP by changing levels of 
gut microbiome-derived metabolites in patients with hypertension[64], and the medication enalapril might be 
involved in BP regulation by changing gut microbiome composition and reducing blood TMAO levels in an 
experimental model[65].

A recent study has shown how complex and multifaceted the relationship is between BP, antihypertensive 
drugs, and GM[55]. It is expected that a significant percentage (more than 10%) of hypertension patients 
show resistance to standard treatments[66]. The pathophysiological processes and etiology of resistant 
hypertension are still not well understood. Thus, additional investigation is necessary to have a more 
profound comprehension of these processes and may reveal possible therapeutic consequences resulting 
from these intricate relationships.
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PREBIOTIC AND PROBIOTIC INTERVENTIONS
Many studies have highlighted the importance of prebiotics, which are components that selectively promote 
the proliferation and/or activity of specific bacteria in the gut, improving host health[67]. According to recent 
studies, prebiotics may have a role in preventing and/or lowering hypertension based on experimental 
findings. Prebiotics have been shown to reduce the incidence of hypertension through a variety of strategies, 
but one particularly noteworthy one is their impact on blood lipid and cholesterol levels, which are both 
strongly associated with hypertensive disorders[68]. A possible mechanism for the lipid and cholesterol-
lowering benefits of prebiotics is the synthesis of SCFAs. This interaction highlights one possible way that 
prebiotics support the regulation of BP. Prebiotics have been shown to be effective in lowering the risk of 
hypertension by aiding in the gastrointestinal tract’s ability to absorb minerals such as calcium[69]. This 
comprehensive strategy highlights the potential of prebiotics to affect multiple physiological systems linked 
to BP management in addition to altering GM. Furthermore, new studies demonstrate how a high-fiber 
prebiotic supplement can lower BP in people with hypertension due to changes in the makeup of gut 
bacteria[68].

Probiotics are living microorganisms that provide health advantages to the host when ingested in 
appropriate amounts[70]. Several probiotic bacterial strains are ingested for their health benefits. Examples of 
such strains include those belonging to the genera Lactobacillus, Bifidobacterium, Saccharomyces, 
Enterococcus, Streptococcus, Pediococcus, Leuconostoc, and Bacillus. According  to  var ious  s tudies ,  
incorporating probiotics into diet could potentially lead to a reduction in BP, particularly among individuals 
with initially elevated levels[71]. Probiotic supplements dramatically lowered systolic and diastolic BP, 
according to other studies[72], notably in individuals with hypertension and type 2 diabetes. In addition, it 
has been discovered that two probiotic strains, Lactobacillus rhamnosus and Bifidobacterium lactis, which 
are found in foods like cheese and yogurt, may help decrease BP[37]. Utilizing both probiotics and prebiotics 
together offers a synergistic approach to optimally modify GM and potentially exert greater BP-reducing 
effects than either alone. These results suggest that prebiotics and probiotics may help lower BP, but more 
studies are needed to confirm their effectiveness. Remarkably, patients’ prebiotic and probiotic choices 
should be customized according to their unique circumstances, including age, sex, ethnicity, food 
preferences, way of life, and amount of physical activity they engage in each day[73,74].

CONCLUSION
The microbiota plays a fundamental role in controlling hypertension, exerting a direct influence on various 
aspects of the cardiovascular system and health. In addition to traditional factors such as diet and lifestyle, 
the microbial community in the gastrointestinal tract has a notable impact on BP regulation. Recent studies 
have revealed the complex interaction between the microbiota and BP control. Beneficial bacteria in the gut 
produce metabolites, such as SCFAs, that play a crucial role in hypertension control. These compounds 
have anti-inflammatory and antioxidant properties, helping regulate BP. The GM also plays a role in 
metabolizing certain nutrients, such as nitrates from vegetables, converting them into nitric oxide, a 
vasodilator molecule that helps relax blood vessels and regulate BP. Furthermore, the GM influences the 
immune system by modulating systemic inflammatory responses. Chronic inflammation is associated with 
the development of hypertension, and the microbiota plays a key role in regulating this inflammatory state. 
Therefore, understanding the importance of the microbiota in hypertension control offers an innovative 
perspective on the therapeutic and preventive approach to this condition. Targeted strategies to promote a 
healthy microbiota, through dietary interventions, probiotics, and prebiotics, can become valuable tools in 
managing BP and promoting health in a holistic manner.
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