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Abstract
Artificial intelligence (AI) is an innovative discipline in medicine, impacting both hepatology and hepato-pancreato-
biliary surgery, ensuring reliable outcomes because of its repeatable and efficient algorithms. A considerable 
number of studies about the efficiency of AI in the management of hepatocellular carcinoma (HCC) have been 
published. While its diagnostic role is well recognized, providing large amounts of quantitative radiological HCC 
features, its use in HCC treatment is still debated. Innovative use of AI may help to select the best approach for 
each patient as it is able to predict the outcomes after resection and/or other treatments. In this review, we assess 
the role of AI in selecting the best therapeutic option and predicting long-term risks after surgical or interventional 
treatments for HCC patients. Further studies are needed to consolidate AI applications.
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INTRODUCTION
The concept of artificial intelligence (AI) was developed as early as the 1950s[1], though it gained 
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prominence decades later. AI is defined as a branch of informatics engaged in the design of software capable 
of providing performance to solve real-world problems, whose results must be equal to or better than 
human ones. It applies to several fields, including medicine[2,3].

Machine learning (ML) is part of AI in which computer programs learn from data, improving with 
experience. It is already a validated medical technique based on handcrafted features, while deep learning 
(DL) is a more recent subfield of ML[4].

In ML, clinicians and researchers list quantitative visual features and put them in a classification algorithm 
that allows them to categorize data[5]. Random Forest (RF) and support vector machines (SVM) are among 
the most used ML models.

On the other hand, DL can be considered as a more complex branch of ML that requires specific hardware 
and usually analyzes more parameters than the basic ML. DL was designed with human neuroanatomy in 
mind, and it is organized in multiple layers (from input to output data, with more intermediate layers in 
between)[6]. Artificial neural networks (ANNs) are the principal branch of DL, with convolutional neural 
networks (CNNs) being a subset of ANNs algorithm [Figure 1][7,8]. A neural network is divided into three 
levels (layers): input layer, output layer, and hidden layer. The input layer comprises the data available for 
the analysis and the outcome layers comprise the outcome. The network learns how to associate an input 
with a specific output through the utilization of examples. Once the “network training” is completed, it can 
link new outputs to other inputs not used during the previous phase[9]. DL is not a handcrafted system. It 
automatically finds features associated with a particular outcome [Table 1].

The use of AI methodologies in healthcare research increased during the last decade as a result of the 
advantageous ability to receive, process and interpret the complex mathematical elaboration of a large 
amount of data using only computer algorithms[8].

Notably, AI has proven its efficacy in skin cancer management, diagnosis of diabetic retinopathy and eye 
disease, identification of prostate cancer and brain metastasis, polyp detection during colonoscopy, and 
fractures identification on X-Ray[10-15].

HCC represents the fifth most widespread primitive cancer and one of the principal causes of malignancy-
related death in the world[16]. HCC diagnosis is based on its characteristic radiological features in association 
with an α-fetoprotein (AFP) increase, and does not generally require a liver biopsy[17]. The radiological 
criteria widely known as LI-RADS (Liver Imaging Reporting and Data System) achieved good reliability by 
reducing imaging interpretation, facilitating communication with referring physicians, and improving 
research quality[18,19].

The cornerstone of treatment selection for HCC patients is the stage of the disease. For instance, liver 
transplantation (LT), liver resection (LR), or radiofrequency ablation (RFA) are all recommended in very-
early and early-stage HCC[20]. In this context, identifying novel approaches to predict outcomes for each 
specific treatment among HCC patients is of paramount importance[6].

ARTIFICIAL INTELLIGENCE, RADIOMICS AND HEPATOCELLULAR CARCINOMA
Radiomics has rapidly emerged as a personalized medicine technology due to its ability to extract 
quantitative data from radiological images that cannot be detected by the human eye. It provides crucial 
information that can be processed, reducing errors, and optimizing timing in a diagnostic-therapeutic 
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Table 1. A schematization of the difference between artificial intelligence, machine learning, and deep learning

Artificial intelligence Machine learning Deep learning

Definition Branch of informatics engaged in designing 
software capable of providing performance 
by imitating human thinking and action

Subset of AI that automates analytical 
model building

Subset of ML based on artificial neural 
networks

Application Building programs that utilize software to 
solve problems

Providing systems with the ability to 
automatically learn and improve 
performance from experience and data 
utilization

Providing systems with the ability to 
automatically process data and create 
patterns, improving performance via neural 
networks

AI: Artificial intelligence; ML: machine learning.

Figure 1. Relationship between artificial intelligence, machine learning, deep learning, and radiomics. AI: Artificial intelligence; 
ML: machine learning; RF: random forest; SMV: support vector machine; DL: deep learning; ANNs: artificial neural networks; CNNs: 
convolutional neural networks. This is an original image, created by the authors.

setting[21]. Its development is based on technological improvements and AI[8]. Radiomics generally includes 
several steps in its workflow:

- acquisition of images,

- selection of the region of interest (segmentation), which defines the volume for the features extraction 
phase,

- elaboration of features by software with pre- or post-processing tools (exploratory analysis),

- creation of a statistical model to select main data capable of predicting the objective of the analysis (model 
building)[22].

Each phase presents some criticalities and sources of variability that can affect the validity of the final 
model. Nevertheless, repeatable and efficient algorithms ensure reliable outcomes because of AI[23].
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The refinement of prognostic models is fundamental to avoid unnecessary procedures and facilitate the 
individual management of HCC patients[24]. In the era of personalized medicine, the innovative use of AI 
might analyze certain tumor characteristics to predict the risk for recurrence or survival after resection, 
optimizing their effects with standardized risk stratification models[25].

LIVER TRANSPLANTATION
LT is the principal curative therapy for early-stage HCC[17]. Unfortunately, not all patients can benefit from 
it because the demand for LT exceeds the donor organ availability, and most of them undergo a subsidiary 
treatment, such as LR[26,27].

Linear regression and standard predictive modeling are fundamental for organ selection. Nowadays, donor 
risk index (DRI), model for end-stage liver disease (MELD), survival outcome following LT (SOFT), and the 
balance of risk score (BAR) are widely accepted models[28-31]. However, AI models are showing great 
potential in predicting LT short and long-term outcomes.

ML classifiers can be used to: list potential liver recipients and eventually remove them from the waiting list, 
and help to match and prognosticate candidates who may benefit from LT[32]. Moreover, they may identify 
factors that influence recurrence and survival and increase the use of marginal organs[32,33].

In terms of prediction, ANNs are the most popular classifiers due to their excellent capacity to analyze the 
numerous data involved in LT, including donor and recipient variables[34].

Most articles available focus on the risk of liver failure and overall survival at 3 months and/or at 1 year[34,35]. 
Briceño et al. explained that many of the current predictive models (i.e., MELD, DRI, SOFT, BAR) are too 
simplistic, because they assume a linearity among survival and LT variables, pointing out that LT follows a 
nonlinear pattern[35]. For this reason, ML scoring systems, using ANNs in conjunction with clinical 
judgment, represent the best way to predict the probability of graft survival and liver failure. ANNs allowed 
the authors to predict 3-month outcomes, achieving an area under the curve (AUC) of 0.82 and an accuracy 
of 0.91.

Some articles examined graft survival in the very short term, considering survival predictors at less than 30 
days. Lau et al. elaborated an ANNs model to encourage clinical decisions, specifically for marginal organ 
allocation[36]. They identified the top 15 donor and recipient characteristics from a dataset of 276 variables, 
obtaining an AUC of 0.84, which is higher compared to traditional scoring systems.

Liu et al. focused on the prediction of patient survival after LT and created a ML model which includes 
patient’s blood tests within 9 days before surgery[37]. Their experimental model outperformed the MELD 
score in predicting postoperative survival, achieving a specificity of 0.815 and an AUC of 0.771.

AI does not yet have a widely recognized role in LT. However, because of the lack of deceased donor organs, 
it is crucial to acquire and standardize a method to help clinicians to maximize LT. In this context, a recent 
multicenter Korean study[38] developed and validated a novel AI model, MoRAL-AI, to predict cancer 
recurrence after LT. The study involved 563 HCC patients from three principal LT centers in Korea who 
underwent LT. Some of the most influencing factors in MoRAL-AI were tumor diameter and number, AFP, 
age, and portal invasion. The MoRAL-AI demonstrated a C-index of 0.75, showing a significantly better 
capacity for predicting cancer recurrence after LT compared to standard predictive models.
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Similarly, Ivanics et al. gathered data from 739 transplanted patients, including preoperative imaging, 
locoregional therapy and response, and post-transplantation outcomes, to elaborate an AI model with the 
purpose of predicting HCC recurrence with excellent results[39].

According to ClinicalTrials.gov (https://clinicaltrials.gov/), we are waiting for the final results of a study 
(NCT05200195) by Lai et al., which includes more than 4000 transplanted HCC patients during the period 
2000-2018 (international cohort, 3670 patients across 17 centers in Europe and Asia; external validation 
cohort, 356 patients transplanted at the Columbia University, New York). This large international study 
would prove that AI might be widely used in clinical settings in the near future.

The review of the literature is summarized in Table 2.

LIVER RESECTION
The European Association for the Study of the Liver (EASL) Clinical Practice Guidelines[40] recommends LR 
for patients with very-early/early-stage HCC (stage 0-A) and well-preserved liver function.

Although the increasing evolution of surgery and the accuracy of perioperative clinical monitoring, post-
hepatectomy liver failure (PHLF) is one of the most alarming complications after LR, particularly in 
cirrhotic patients, and is associated with a high risk of postoperative mortality[41]. The accurate assessment of 
the volume of the future liver remnant (FRL) is pivotal to reducing PHLF. Despite the globally accepted role 
of contrast-enhanced tomography scan (CT) for FLR assessment, recent fully automated liver volume 
assessments are showing good speed and accuracy compared to manual segmentation[42,43].

Accurate knowledge of liver anatomy is critical for any successful LR to reduce the risk of PHLF. In several 
cases, liver anatomy is so complex that it is difficult to reconstruct it mentally during LR, and preoperative 
imaging might be insufficient. Nowadays, FLR may be estimated with better accuracy, and HCC 
resectability may be carefully assessed thanks to innovative 3D visualization techniques[44]. However, 3D 
simulation techniques are costly and time-consuming. ML could be exploited to accelerate the 3D 
modelling process through quicker image acquisition and segmentation[45].

Several scoring systems are employed in clinical practice to determine the quality of the liver and predict 
PHLF, including Child-Pugh grade, MELD, albumin-bilirubin (ALBI), platelet-albumin-bilirubin (PALBI), 
the aspartate aminotransferase to platelet ratio index (APRI) and the fibrosis index (FIB-4)[29,46-50]. However, 
most of these scoring systems are not always reliable for PHLF prediction. In this context, Mai et al. 
developed and validated an ANNs model in which they included blood tests (platelet count, total bilirubin, 
prothrombin time, and aspartate aminotransferase) and expected FLR[50]. This study showed a significantly 
more accurate prediction of severe PHLF (AUC value of 0.880) compared to the predictive systems.

Despite significant progress in the management of HCC, the recurrence rate after LR is still high (70%-80%) 
and is associated with a poor prognosis[51,52]. At the moment, there are no reliable risk stratification models 
for HCC recurrence after LR.

Several clinical features including number of nodules, maximum nodule diameter, cytological 
differentiation, and microvascular invasion (MVI) have been used to predict HCC recurrence, using a 
conventional Cox proportional hazards regression model[53-56], without satisfactory results.

https://clinicaltrials.gov/
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Table 2. A summary of the articles describing the role of artificial intelligence in the prediction of hepatocellular carcinoma 
recurrence and/or survival after liver transplantation

Author Year Country Method Aim Findings

Kazemi et al.[33] 2019 Iran ML To identify effective factors for patient 
survival after LT

The model predicted survival based on 26 identified 
effective factors. The AUC and model sensitivity were 
0.90 and 0.81

Briceño et al.[35] 2014 Spain ANNs To use ANNs for D-R matching in LT 
and to compare its accuracy with 
validated scores

The models showed their best performance in predicting 
the probability of graft-survival (90.79%) and -loss 
(71.42%) for each D-R pair

Lau et al.[36] 2017 Australia ML To predict graft failure using donor and 
recipient factors, based on local data 
sets

The combination of factors used in DRI with the MELD 
score obtains an AUC of 0.764, whereas survival 
outcomes after LT score obtain an AUC of 0.638

Liu et al.[37] 2020 Taiwan ML To predict 30-day postoperative survival 
based on patient's preoperative 
physiological measurement values

The model achieves an AUC of 0.771 and a specificity of 
0.815, showing superior discrimination power in 
predicting postoperative survival

Nam et al.[38] 2020 Korea AI To develop a novel model to predict 
tumor recurrence after LT by adopting 
AI (MoRAL-AI)

The largest weighted parameter in the MoRAL-AI was 
tumor diameter, followed by AFP, age, and PIVKA-II. The 
MoRAL-AI had better predictability of tumor recurrence 
after LT than conventional models

Ivanics et al.[39] 2022 Canada ML To leverage ML to develop an accurate 
post-LT HCC recurrence prediction 
calculator, to optimize the utility of 
limited donor organs

The model performed well with a concordance of 0.72 
(95%CI: 0.63-0.81) and was not significantly 
outperformed

ML: Machine learning; LR: liver resection; DFS: disease-free survival; LT: liver transplantation; AUC: area under the curve; ANNs: artificial neural 
networks; D-R: donor-recipient; DRI: donor risk index; MELD: model for end-stage liver disease; AI: artificial intelligence; AFP: α-fetoprotein; 
PIVKA-II: protein induced by vitamin K absence-II; HCC: hepatocellular carcinoma; CI: confidence interval.

Biomarkers, including gene mutational status, proteins, and micro-RNA (miRNA), have been shown to be 
better survival predictors than TNM staging[57,58].

MVI represents an independent predictive factor of recurrence after LR and is consequently associated with 
poor prognosis[59]. Radiomic signatures have been elaborated, focusing on preoperative MVI detected on CT 
or magnetic resonance imaging (MRI), to enable HCC recurrence prediction[60-62]. Moreover, Dong et al. 
used radiomic algorithms based on grayscale ultrasound images to predict MVI in patients affected by HCC 
and scheduled for surgery[63].

Ho et al. explored the 1-, 3- and 5-year disease-free survival (DFS) prediction in HCC patients undergoing 
LR using ANNs[64]. The ANNs model collected demographic data, clinical features, surgical details, and 
outcomes, outperforming the conventional logistic regression models for prediction accuracy.

Saillard et al. elaborated a survival prediction model for HCC patients who underwent LR[65]. They 
processed all the HCC digital slides to create a DL model, achieving higher accuracy compared to main 
scores that include clinical, biological, and pathological features.

Schoenberg et al. recruited 181 patients who underwent partial LR and used their data to develop a ML 
algorithm to predict DFS after LR[26]. This model was built on 26 preoperatively laboratory variables and 
standard clinical-pathological parameters. A RF-based workflow was employed to process data, reporting 6 
relevant DFS predictors: modified Glasgow Prognostic Score (mGPS), partial thromboplastin time (aPTT), 
C-reactive protein (CRP), age at surgery, largest tumor size and number of lesions.

Ji et al. acquired data from 470 patients to elaborate preoperative and postoperative ML-based radiomics 
models to predict HCC recurrence after LR[66]. The available preoperative CT imaging, AFP value, ALBI 
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grade and liver cirrhosis were used to create the preoperative model. The postoperative model was created 
by adding the presence of satellite nodules to the other predictors. The two models presented a C-index of 
0.733 and 0.801, respectively, showing a superior accuracy after comparison with other non-radiomic 
models.

Zheng et al. tried to predict both HCC recurrence and postoperative survival in patients with solitary HCC, 
who were selected for LR using a ML-based radiomics model[67]. This model reached a good predictive 
survival accuracy with a C-index of 0.71. Moreover, adding TNM and Barcelona Clinic Liver Cancer 
(BCLC) stage to this model, they demonstrated a further increase of C-index.

Similarly, Zhang et al. used a radiomics model based on dynamic contrast-enhanced MRI to predict the 
survival of patients who underwent LR for HCC[62]. The tumor, perilesional, and non-tumoral parenchyma 
imaging was used to obtain three radiomics scores. The non-tumoral parenchyma score had the highest 
prognostic role showing a C-index of 0.72.

As already discussed, most of the models are based on preoperative imaging. Otherwise, Shen et al. 
proposed a ML-radiomics model trained on CT imaging within one month after treatment (surgery or 
ablation)[68]. They analyzed lesions suspicious for HCC recurrence. The AUC, accuracy, specificity, and 
sensitivity of this model for detecting recurrence were 0.89, 0.86, 0.75 and 0.91, respectively.

According to ClinicalTrials.gov (https://clinicaltrials.gov/), Zhujiang et al. are employing the innovative 
Watson computer system (an AI platform developed by IBM®) to select the best treatment options for each 
patient affected by HCC. This innovative ML-based system acquires a large amount of structured and 
unstructured data and selects the main clinical features to guide surgical decisions. A more comprehensive 
and reliable ML-based decision model available in daily clinical practice should be created. In this context, 
Zhejiang et al.’s study might be crucial.

The review of the literature is summarized in Table 3.

RADIOFREQUENCY ABLATION
According to EASL[40], RFA is suggested for patients affected by HCC at very-early stage and early stage 
(BCLC stage 0 and A) with sufficient functional liver reserve[20]. RFA can also be considered as an effective 
bridging therapy to LT for cirrhotic patients with small HCCs, and a valuable treatment option for patients 
with unresectable HCfC[22,69].

HCC recurrence after RFA is currently still frequent. DFS at 5 years is more than 70% and this is due to 
concomitant risk factors, including underlying viral hepatitis and cirrhosis[70-72]. Therefore, a ML-based 
predictive model for HCC recurrence is needed for HCC patients who undergo RFA to support clinical 
decision-making. In this context, patients who are identified as high-risk subjects could be selected for a 
tight follow-up.

Wu et al. developed an ANNs model to predict 1- and 2-year DFS in HCC patients scheduled for RFA[73]. 
They found that this model, which includes 15 clinical variables, had a better prediction power than scores 
with limited inputs, reaching an AUC of 0.77 and 0.72 for 1-year and 2-year DFS, respectively.

https://clinicaltrials.gov/
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Table 3. A summary of the articles describing the role of artificial intelligence in the prediction of hepatocellular carcinoma 
recurrence and/or survival after liver resection

Author Year Country Method Aim Findings

Schoenberg et al.[26] 2020 Germany ML To develop a ML algorithm to predict 
which patients are sufficiently treated with 
LR

Six predictors identified: mGPS, aPTT, CRP, 
largest tumor size, number of lesions and age 
at the time of LR. Predictive value of the model 
0.78 

Mai et al.[50] 2020 China ANNs To establish and validate an ANNs model 
to predict severe PHLF

ANNs accurately predicted the risk of severe 
PHLF after hemihepatectomy

Ma et al.[60] 2019 China Radiomics To develop and validate a radiomics 
nomogram for preoperative prediction of 
MVI

The proposed radiomics nomogram can 
preoperatively predict MVI

Xu et al.[61] 2019 China Radiomics To develop radiomic features from CT to 
predict MVI and clinical outcomes

Good performance for predicting MVI and 
clinical outcomes, without providing 
statistically significant added value to 
radiographic scores

Zhang et al.[62] 2020 China Radiomics To evaluate the efficiency of gadoxetic 
acid-enhanced MRI-based radiomics 
features for prediction of OS after LR

The combined model incorporating clinic-
radiological and radiomics features showed an 
improved predictive performance with C-index 
of 0.92

Dong et al.[63] 2020 China Radiomics To establish a radiomic algorithm based on 
grayscale US images for preoperative 
predictions of MVI

Potential value to facilitate preoperative 
prediction of MVI

Ho et al.[64] 2012 Taiwan ANNs To develop prediction models for 1-, 3- and 
5-year DFS after LR

The ANNs model outperformed the LR and DT 
models for predicting disease-free survival

Saillard et al.[65] 2020 France DL To build models for predicting survival after 
LR

Models had a higher discriminatory power than 
a score combining all baseline variables and 
helped predict prognosis

Ji et al.[66] 2019 China ML; 
radiomics

To explore the potential of radiomics 
coupled with ML algorithms to improve the 
predictive accuracy for HCC recurrence

The two models showed superior prognostic 
performance, with C-index of 0.733-0.801 
compared with models without radiomics

Zheng et al.[67] 2018 China Radiomics To estimate postoperative recurrence and 
survival in patients with solitary HCC

The model had a better prognostic 
performance as compared with traditional 
staging systems

Shen et al.[68] 2021 China Radiomics To develop a radiomics algorithm, 
improving the performance of detecting 
recurrence, based on post-treatment CT 
images within one month

The algorithm integrated radiomic features of 
post-treatment CT and showed superior 
performance compared with the conventional 
AFP

ML: Machine learning; LR: liver resection; mGPS: modified Glasgow Prognostic Score; aPTT: partial thromboplastin time; CRP: C-reactive protein; 
ANNs: artificial neural networks; PHLF: post-hepatectomy liver failure; MVI: microvascular invasion; CT: computed tomography; MRI: magnetic 
resonance imaging; OS: overall survival; US: ultrasound; DFS: disease-free survival; DT: decision tree; AFP: α-fetoprotein.

Liang et al. elaborated a predictive model for HCC recurrence focusing on patients who underwent RFA as 
their first treatment[74]. In this study, they tried to select few significant clinical features from a total of 16. 
They employed 5 widely used selection methods and combined them with SVM to develop a predictive 
model with better sensitivity and specificity.

Currently, the research, development, and clinical application of innovative post-RFA predictive models 
remain inadequate.

The review of the literature is summarized in Table 4.

TRANSCATHETER ARTERIAL CHEMOEMBOLIZATION
HCC receives its blood supply primarily from hepatic artery branches. Hence, transcatheter arterial 
chemoembolization (TACE) represents a highly selective therapeutic option that might deliver a high 
concentration of chemotherapeutics to target tumors, sparing the surrounding hepatic tissue[75].
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Table 4. A summary of the articles describing the role of artificial intelligence in the prediction of hepatocellular carcinoma 
recurrence and/or survival after radiofrequency ablation and transcatheter arterial chemoembolization

Author Year Country Method Aim Findings

Wu et al.[73] 2017 Taiwan ANNs To build ANNs models with HCC-
related variables to predict the 1- 
and 2-year DFS after RFA

Parameters for performance assessment of 1-year DFS 
prediction were: accuracy 85.0%, sensitivity 75.0%, 
specificity 87.5%, and an AUC 0.84. For 2-year DFS 
prediction, the values of accuracy, sensitivity, specificity, 
and AUC were 67.9%, 50.0%, 85.7%, and 0.75, 
respectively

Liang et al.[74] 2014 Taiwan ML To develop recurrence predictive 
models after RFA

The developed model had a sensitivity, specificity, 
accuracy, PPV, NPV, and AUC of 67%, 86%, 82%, 69%, 
90%, and 0.69, respectively

Mähringer-Kunz  
et al.[81]

2020 Germany ANNs To develop a survival prediction 
model for patients undergoing TACE 
using novel ML algorithms and to 
compare it to conventional 
prediction scores

The model had a promising performance for predicting 1-
year survival, with an AUC of 0.77 ± 0.13, a PPV of 
87.5%, and a NPV of 68.0% 

Liu et al.[82] 2020 China Radiomics To validate an AI-based radiomics 
strategy for predicting responses to 
a first TACE treatment by 
quantitatively analyzing CEUS

The AUC for the model was 0.93. It can be used to 
achieve accurate and personalized prediction

Oezdemi et al.[83] 2020 USA ML To predict the response to TACE 
using CEUS-derived imaging 
features

The model may help to provide personalized therapy 
planning. Number of vessels, number of bifurcations and 
vessel-to-tissue ratio are the dominant features for the 
prediction of long-term TACE response

Morshid et al.[84] 2019 USA ML To evaluate a fully automated ML 
algorithm that uses pre-therapeutic 
quantitative CT imaging features 
and clinical factors to predict 
response to TACE

The model’s response prediction accuracy rate was 
74.2%, using a combination of the BCLC stage plus 
quantitative imaging features vs. 62.9% using the BCLC 
stage alone

Peng et al.[85] 2020 China ANNs To train and validate a model of DL 
for the prediction of the response of 
patients with intermediate-stage 
HCC undergoing TACE

The model had an accuracy of 84.3% and AUC of 0.97, 
0.96, 0.95, and 0.96 for complete response, partial 
response, and stable disease, respectively

Abajian et al.[86] 2018 USA ML To develop a method to predict 
response to TACE treatment prior to 
LR

The model predicted TACE response with an overall 
accuracy of 78%

ANNs: Artificial neural networks; HCC: hepatocellular carcinoma; DFS: disease-free survival; RFA: radiofrequency ablation; AUC: area under the 
curve; ML: machine learning; PPV: positive predictive value; NPV: negative predictive value; TACE: transcatheter arterial chemoembolization; 
AI: artificial intelligence; CEUS: contrast-enhanced ultrasound; CT: computed tomography; BCLC: Barcelona Clinic Liver Cancer; DL: deep learning; 
LR: liver resection.

According to the BCLC classification, ACE is the gold standard for cirrhotic patients with multinodular, 
unresectable HCC (stage B) with preserved liver function[22,24].

One of the best outcome predictors for cirrhotic patients affected by stage B HCC is the response to the first 
TACE. Large tumors often respond unsatisfactorily to a single TACE session. Repeating sessions increase 
the risk of multiple adverse effects including liver and/or kidney failure, gastroduodenal ulceration, and 
death[76,77].

In this context, several conventional scoring systems have been created to support critical clinical decisions 
in case of uncertain retreatment with TACE, including Assessment for Retreatment with TACE (ART), 
Child-Pugh, Objective Radiological Response (SNACOR), and Child-Pugh and Response (ABCR)[78-80].

Mähringer-Kunz et al. developed an ANNs prediction model for survival after TACE combining all of the 
above-mentioned scores[81]. They elaborated a 1-year survival model obtaining better results compared to 
ART, SNACOR, and ABCR scores.
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Liu et al. employed radiomics to predict personalized response to a first TACE session by quantitatively 
analyzing contrast-enhanced ultrasound (CEUS) cines[82]. This DL radiomics-based CEUS model established 
high reproducibility and presented an AUC of 0.93.

Oezdemir et al. used morphological and anatomical features detected by CEUS to create a ML-based 
predictive model for HCC patients treated with TACE[83]. Their study involved 36 HCC patients and 
revealed that number of vessels, number of bifurcations, and vessel-to-tissue ratio represented the principal 
features for the prediction of long-term TACE response, with an accuracy of 86%.

Morshid et al. managed to improve the accuracy of predicting HCC response to TACE thanks to a ML-
based model, which combines BCLC stage and quantitative image features[84]. They achieved a prediction 
accuracy rate of 74.2%.

Peng et al. used preoperative CT images to elaborate a DL prediction model of response to TACE[85]. 
Notably, they focused on every possible occurrence after TACE: complete response, partial response, stable 
disease, and progressive disease. This DL model reached an accuracy of 84.3% and an AUC tending to 1 for 
each occurrence after TACE.

Abajian et al. used ML to combine MRI images with clinical data to predict response to TACE in a case 
series of 36 patients, reaching an overall accuracy of 78%[86].

Hypoxia is the main mechanism of cell death induction in embolization because it produces complex 
molecular changes, promoting cell death or cell survival depending on genetic features[87]. Recent studies 
used AI to focus on the efficacy of TACE by analyzing these genetic characteristics. For example, Ziv et al. 
developed the linear SVM (a ML supervised model) to study genetic mutations[88]. They managed to identify 
the upregulation of the WNT/β-catenin signaling pathway, which is highly sensitive to embolization.

The review of the literature is summarized in Table 4.

MEDICAL THERAPY 
In the era of personalized medicine, the knowledge of HCC molecular features (i.e., genome, transcriptome, 
proteome, and metabolome) can help stratify tumor aggressiveness and choose the best therapy accordingly. 
Notably, the identification of commonly altered pathways has traditionally been more difficult in HCC than 
in other cancers. In this context, AI can be helpful in the fields of target-based therapeutic discovery, 
systems-based approaches, and immune HCC landscape definition[89].

The targeted therapy with Sorafenib is widely used as first-line therapy in advanced HCC patients, but it is 
associated with delicate dose-limiting toxicity and a high risk of drug resistance[90-92]. In this context, AI 
should emerge as a tool to individually predict the risk for adverse effects in this group of patients. 
Abuhelwa et al. developed a predictive model including bilirubin, hemoglobin, and sex to define subgroups 
at risk of developing severe hand-foot syndrome[93]. Their model was validated with ML.

The progress made in immunotherapy (IT) with checkpoint inhibitors plays an increasingly decisive role in 
controlling the progression of HCC[94]. AI represents an emerging tool to validate predictive markers and 
anticipate the effectiveness of this innovative medical therapy.
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Table 5. Artificial intelligence applications in the therapy of hepatocellular carcinoma

Artificial intelligence and HCC treatment

Facilitates D-R matching for LT

Predicts short and long-term outcomes after LT

Predicts the risk of MVI after LR

Predicts PHLF after LR

Predicts RFS and OS after LR

Predicts RFS after RFA

Predicts response to TACE

Predicts medical therapy toxicity

Identifies markers associated with response to IT

Identifies new drug targets

HCC: Hepatocellular carcinoma; D-R: donor-recipient; LT: liver transplantation; MVI: microvascular invasion; LR: liver resection; PHLF: post-
hepatectomy liver failure; RFS: recurrence-free survival; OS: overall survival; RFA: radiofrequency ablation; TACE: transcatheter arterial 
chemoembolization; IT: immunotherapy.

Tumor immune microenvironment and cancer stem cells (CSCs) behavior are clearly related to HCC 
progression and drug resistance. ML has been recently applied to realize algorithms that highlight different 
stemness subtypes and predict response to IT according to the stemness index[95].

Sangro et al. reported how the expression of the inflammatory markers anti-programmed death 1 receptor 
(PD1) and PD-ligand 1 (PD-L1), and some particular immune gene signatures are associated with improved 
survival and response in patients treated with nivolumab, a PD1 inhibitor utilized in patients with advanced 
HCC[96]. In this setting, Zeng et al. trained CNNs using digital histological slides and gene signature status as 
labels and investigated three deep learning approaches to predict immune and inflammatory gene 
signatures directly from HCC histology[97]. The clustering-constrained attention multiple-instance learning 
(CLAM) model proved to be the best in predicting the upregulation of the immune gene signatures, with 
AUCs ranging from 0.78 to 0.91.

Lui et al. included 47 clinical variables in 6 different ML models to analyze the 1-year cancer-related 
mortality in advanced HCC patients treated with IT[98]. They demonstrated an optimal predictive capacity of 
ML compared to C-reactive protein and AFP in both the ImmunoTherapY score (CRAFITY) and ALBI 
score. In this study, it was also highlighted how baseline AFP, bilirubin, and alkaline phosphatase act as 
three common risk factors in all the models.

In the drug discovery setting, RF, SVM, neural networks, and the gradient boosting machine were 
compared by using nested cross-validation to evaluate the gene-disease association data from the Open 
Targets platform to predict therapeutic targets that are actively being pursued by pharmaceutical companies 
or are already on the market. On a test set, the neural network classifier achieved the best accuracy with an 
AUC of 0.76 in predicting novel targets[99].

Tong et al. employed the human protein-protein interaction (PPI) network to potentially map drug target 
genes working on a genetic dependency score[100]. They combined these manually collected drug target genes 
with gene expression profiles, and clinical data and they used SVM to build a drug target predictor. 
Similarly, Cetin-Atalay et al. used the CROssBAR innovative system to integrate a large number of 
biomedical data sources to define ligands of HCC-associated proteins as potential drug targets and 
repurpose known small molecule inhibitors as potential drug candidates[101]. They used ML as a virtual 
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screening in target identification and drug discovery, developing DL-based drug/compound-target protein 
interaction predictors.

Table 5 summarizes the applications of AI in the treatment of HCC.

CONCLUSION
AI has become an important tool in HCC diagnosis, revealing a large amount of quantitative radiological 
HCC features. It has also shown very promising results in the fields of segmentation, prediction of 
recurrence and survival after specific treatments, thanks to its ability to process large quantities of data. It 
might become crucial in defining a tailored approach for each patient and may be routinely used in clinical 
practice for HCC management. Nevertheless, based on its complexity and the need for further validation, 
additional studies are necessary to implement its acceptance and diffusion. The most skeptical opponents to 
AI should consider that it is a tool to support human intelligence, not replace it.
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