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Abstract
In this review, we aim to illustrate the state-of-the-art artificial intelligence (AI) applications in the field of capsule 
endoscopy. AI has made significant strides in gastrointestinal imaging, particularly in capsule endoscopy - a non-
invasive procedure for capturing gastrointestinal tract images. However, manual analysis of capsule endoscopy 
videos is labour-intensive and error-prone, prompting the development of automated computational algorithms 
and AI models. While currently serving as a supplementary observer, AI has the capacity to evolve into an 
autonomous, integrated reading system, potentially significantly reducing capsule reading time while surpassing 
human accuracy. We searched Embase, Pubmed, Medline, and Cochrane databases from inception to 06 Jul 2023 
for studies investigating the use of AI for capsule endoscopy and screened retrieved records for eligibility. 
Quantitative and qualitative data were extracted and synthesised to identify current themes. In the search, 824 
articles were collected, and 291 duplicates and 31 abstracts were deleted. After a double-screening process and 
full-text review, 106 publications were included in the review. Themes pertaining to AI for capsule endoscopy 
included active gastrointestinal bleeding, erosions and ulcers, vascular lesions and angiodysplasias, polyps and 
tumours, inflammatory bowel disease, coeliac disease, hookworms, bowel prep assessment, and multiple lesion 
detection. This review provides current insights into the impact of AI on capsule endoscopy as of 2023. AI holds 
the potential for faster and precise readings and the prospect of autonomous image analysis. However, careful 
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consideration of diagnostic requirements and potential challenges is crucial. The untapped potential within vision 
transformer technology hints at further evolution and even greater patient benefit.

Keywords: Artificial intelligence, capsule endoscopy, computer-assisted diagnosis, computer-assisted detection, 
deep learning, vision transformer, review

INTRODUCTION
Since its inception in 2001, wireless capsule endoscopy (WCE) has revolutionised the investigation and 
diagnosis of gastrointestinal (GI) diseases[1]. However, the process of reading WCE images, along with 
interpreting and diagnosing, is highly labour-intensive and error-prone considering that it is reliant on the 
expertise of the reader and tens of thousands of video frames collected, of which potentially only a few 
contain the lesion or pathology to be found. Hence, it is understandable that readers, with their limited 
attention spans and concentration, may miss pathology or over/underdiagnose lesions which are detected[2]. 
This is why capsule endoscopy offers a “fertile” field for artificial intelligence (AI) algorithms to be 
implemented, where AI can significantly streamline the reading process. Several commercial AI systems are 
already available, such as Quick-View and Express-View, which can recognise potential lesions and remove 
insignificant video frames. By identifying and selecting images with potential pathology for review and 
removing those with no suspicion of pathology, these programs decrease the total amount of images the 
reader is required to view, hence reducing overall reading time. This narrative review aimed to assess and 
synthesise the current evidence on the AI applications in enhancing the capability and efficiency of capsule 
endoscopy for investigation of the GI tract and propose future directions for this technology.

METHODS
Methodology for this review was formulated prior to its conduct. Ovid Embase, PubMed (incorporating 
MEDLINE), and Cochrane databases were searched from database inception to 06 July 2023, with a mixture 
of Medical Subject Headings (MESH) and free text terms including capsule endoscopy keywords such as 
“Capsul*”, “Endoscop*”, and “Gastroscop*”, AI-related keywords such as “Artificial Intelligence”, “AI”, 
“Convolutional Neural Network”, “Deep Learning”, “Computer-Assisted Diagnosis”, “Computer-Assisted 
Detection”, “Transformer”, and “Vision Transformer”, and common capsule endoscopy findings such as 
“Ulcer”, “Erosion”, “Vascular Lesion”, “Lesion”, “Gastrointestinal Bleed”, “Dieulafoy”, “Arteriovenous 
Malformation”, “Inflammatory Bowel Disease”, “Crohn’s Disease”, “Ulcerative Colitis”, “Coeliac Disease”, 
“Coeliac Sprue”, “Gluten-Sensitive Enteropathy”, “Neoplasm”, “Polyp”, “Cancer”, “Tumour”, and “Bowel 
Prep”.

Study screening was conducted by three reviewers (A.G., J.K., and J.T.), with disagreements resolved 
through consensus. Selection criteria were based on their relevance to the research topic of AI for capsule 
endoscopy. Articles were screened for AI applications, ensuring they focused on one of the sub-categories 
that were planned a priori: “Active GI Bleeding”, “Erosion and Ulcers”, “Angiodysplasia”, “Polyps and 
Tumours”, “Inflammatory Bowel Disease”, “Coeliac Disease”, “Hookworm”, and “Other Applications”. 
Furthermore, they were required to have constructed their own AI tool, including modalities such as 
support vector machines (SVMs), Multilayer Perceptrons, and convolutional neural networks (CNNs). 
Furthermore, they were screened for relevance to the field of capsule endoscopy, including domains such as 
Colon Capsule Endoscopy and Small-Bowel Capsule Endoscopy. Studies were excluded if they were not in 
English, were conference abstracts, did not report observational data (e.g., review articles), or did not 
conform to the inclusion criteria listed above.
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Figure 1. Modified PRISMA flow diagram of search strategy and study selection process.

SEARCH RESULTS
In our search, 824 articles were retrieved, of which 291 duplicates and 31 abstracts were removed. After 
study screening and full-text review, 106 articles were included for analysis in the present review. Data was 
synthesised into tabular and narrative formats. For studies with multiple trials, the best result achieved by 
the models was used.

Additionally, we have designed a modified PRISMA flow-chart [Figure 1].

RESULTS
Active GI bleeding
Automatic haemorrhage detection is one of the largest researched applications of AI for capsule endoscopy. 
From machine learning models such as the SVM and probabilistic neural network (PNN) methods[3-7], the 
field has progressed into deep learning models with enhanced efficacy and accuracy. Other models utilising 
multi-layer perceptrons (MLP)[8] and back-propagation neural networks[4] have also been replaced with deep 
learning, with this shift appearing to primarily have occurred post-2016. Only four SVM-based models[9-12] 
were constructed following 2016, compared with eight CNN models[13-20] and two Kernel Neural 
Networks[21,22]. For example, in 2021, Ghosh et al. constructed a CNN-based deep learning framework via 
the CNN architecture AlexNet, achieving a sensitivity of 97.51% and specificity of 99.88%, significantly 
enhanced from the sensitivity of approximately 80% previously mentioned by Girithiran et al.[3,17]. However, 
SVM models such as that of Rathnamala et al. in 2021 also produced excellent results, with a sensitivity of 
99.83% and specificity of 100% reported[12]. More recently, in 2022, Mascarenhas Saraiva et al. constructed a 
CNN detecting blood and haematic residues in the small blood lumen with a sensitivity and specificity of 
98.6% and 98.9%, respectively, with an impressive speed of around 184 frames/s[19]. Based on the current 
literature for gastrointestinal haemorrhage, incorporating AI significantly improves investigative capability. 
However, further implementation work is necessary to optimise its accuracy [Table 1].
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Table 1. Table of AI applications in capsule endoscopy for active GI bleeding

Ref. Application Year of 
publication

Study 
design

Study 
location Aim Training/Validation dataset AI type Results

Giritharan et al.[3] Active GI 
bleeding

2008 Retrospective America Develop a method to re-balance 
training images

550 bleeding images SVM Sensitivity of 80%

Li and Meng[8] Active GI 
bleeding

2009 Retrospective China Develop new CAD system utilising 
colour-texture features and neural 
network classifier

Training: 1,800 bleeding patches and 
1,800 normal patches 
Testing: 1,800 bleeding patches and 
1,800 normal patches

MLP Sensitivity of 92.6%, 
specificity of 91%

Pan et al.[4] Active GI 
bleeding

2009 Retrospective China Use colour-texture features in RGB 
and HSI as input in BP neural 
network

Training: 10,000 pixels 
Testing: 3,172 bleeding images and 
11,458 non-bleeding images

BP neural 
network

Sensitivity of 93%, 
specificity of 96%

Pan et al.[7] Active GI 
bleeding

2011 Retrospective China Use colour-texture features in RGB 
and HSI as input in PNN

Training: 50,000 pairs 
Testing: 3,172 bleeding images and 
11,458 non-bleeding images

PNN Sensitivity of 93.1%, 
specificity of 85.8%

Ghosh et al.[5] Active GI 
bleeding

2014 Retrospective Bangladesh Use RGB colour-texture feature in 
SVM

Training: 50 bleeding images and 
200 non-bleeding images 
Testing: 400 bleeding and 
1,600 non-bleeding images

SVM Sensitivity of 93.00%, 
specificity of 94.88%

Hassan and Haque[6] Active GI 
bleeding

2015 Retrospective Bangladesh Utilise characteristic patterns in 
frequency spectrum of WCE 
images

Training: 600 bleeding and 
600 non-bleeding frames 
Testing: 860 bleeding and 
860 non-bleeding images

SVM Sensitivity of 99.41%, 
specificity of 98.95%

Yuan et al.[9] Active GI 
bleeding

2016 Retrospective China Construct two-fold system for 
detection and localisation of 
bleeding regions

Testing: 400 bleeding frames and 
2,000 normal frames

SVM and 
KNN

Sensitivity of 92%, 
specificity of 96.5%

Jia and Meng[13] Active GI 
bleeding

2016 Retrospective China Develop deep neural network that 
can automatically and 
hierarchically learn high-level 
features

Training: 2,050 bleeding and 
6,150 non-bleeding images 
Testing: 800 bleeding, 
1,000 non-bleeding

CNN Sensitivity of 99.20%*

Jia and Meng[14] Active GI 
bleeding

2017 Retrospective China Combine handcrafted and CNN 
features for characterisation

Training: 200 bleeding frames and 
800 normal frames 
Testing: 100 bleeding frames and 
400 normal frames

CNN Sensitivity of 91%

Kundu et al.[21] Active GI 
bleeding

2018 Retrospective Bangladesh Detecting bleeding images based 
on precise ROI detection in 
normalised RGB colour plane

Testing: 5 videos, with 100 image 
frames each

KNN Sensitivity of 85.7%, 
specificity of 69.6%

Ghosh et al.[10] Active GI 
bleeding

2018 Retrospective Bangladesh/ 
Canada

Utilising cluster-based statistical 
feature extraction for global feature 
vector construction

Testing: 5 WCE videos SVM Sensitivity of 96.5%, 
specificity of 94.6%

Training: 340 bleeding frames and 
340 normal ones 
Testing: 160 bleeding frames and 

Xing et al.[22] Active GI 
bleeding

2018 Retrospective China Using SPCH feature based on the 
principal colour spectrum to 
discriminate bleeding frames

KNN Sensitivity of 98.5%, 
specificity of 99.5%
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160 normal ones

Pogorelov et al.[11] Active GI 
bleeding

2019 Retrospective Malaysia/ 
Norway

Combining colour features in RGB 
and texture features for bleeding 
detection

Training: 300 bleeding frames and 
200 non-bleeding 
Testing: 500 bleeding and 
200 non-bleeding frames

SVM Sensitivity of 97.6%, 
specificity of 95.9%

Hajabdollahi et al.[15] Active GI 
bleeding

2019 Retrospective Iran Developing a low-complexity CNN 
method

Training and testing on KID[110] CNN Sensitivity of 94.8%, 
specificity of 99.1%

Kanakatte and 
Ghose[16]

Active GI 
bleeding

2021 Prospective India Proposing compact U-Net model Training: 700 bleeding and 
700 non-bleeding 
Testing: 50 capsule endoscopy images

CNN Sensitivity of 99.57%, 
specificity of 91%

Rathnamala and 
Jenicka[12]

Active GI 
bleeding

2021 Retrospective India Utilising gaussian mixture model 
superpixels for bleeding detection

Training: 686 bleeding and 
961 non-bleeding images 
Testing: 487 bleeding images and 
1,160 non-bleeding images

SVM Sensitivity of 99.83%, 
specificity of 100%

Ghosh and 
Chakareski[17]

Active GI 
bleeding

2021 Retrospective America Develop CNN-based framework for 
bleeding identification

Alex-Net training: 1,410 
Alex-Net testing: 940 
SegNet training: 201 
SegNet testing: 134

CNN Sensitivity of 97.51%, 
specificity of 99.88%

Ribeiro et al.[18] Active GI 
bleeding

2021 Retrospective Portugal Automatic detection and 
differentiation of vascular lesions

Training: 820 images with red spots, 
830 images with angiodysplasia/varices, 
7,620 images with normal mucosa 
Testing: 206 images with red spots, 
207 images with angiodysplasia/varices, 
1,905 images with normal mucosa

CNN Sensitivity of 91.8%, 
specificity of 95.9%

Mascarenhas Saraiva 
et al.[19]

Active GI 
bleeding

2022 Retrospective Portugal Create CNN-based system for 
automatic detection of blood or 
haematic traces in small bowel 
lumen

Training: 10,808 images containing blood, 
6,868 with normal mucosa or other 
distinct pathological findings 
Testing; 2,702 images containing blood, 
1,717 with normal mucosa or other distinct 
pathological findings

CNN Sensitivity of 98.6%, 
specificity of 98.9%

Muruganantham and 
Balakrishnan[20]

Active GI 
bleeding

2022 Retrospective India Construct dual branch CNN model 
with a novel lesion attention map 
estimator model

Training and testing conducted on 
bleeding[111] and Kvasir-Capsule 
dataset[112] 
Training: 3,430 images 
Testing: 1,470 images

CNN No sensitivity and specificity
could be found
Accuracy of 94.40% for bleeding
detection on bleeding dataset
Accuracy of 93.18% for ulcer,
93.89% for bleeding, 97.73% for
polyp, 96.67% for normal on
Kvasir-Capsule dataset

*An inconsistency was noted in publications from the same group. Jia et al.’s 2017 later work referenced the prior 2016 work but reports an inconsistent recall/sensitivity[13,14]. AI: Artificial intelligence; GI:
gastrointestinal; SVM: support vector machine; CAD: computer aided design; MLP: multilayer perceptron; RGB: red, green blue; HSI: hue, saturation, intensity; BP: back propagation; PNN: probabilistic neural network;
WCE: wireless capsule endoscopy; KNN: K-nearest neighbour; CNN: convolutional neural network; ROI: region of interest; SPCH: superpixel-colour histogram; KID: koulaouzidis-iakovidis database.
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Erosion and ulcers
Erosions and ulcers are among the most common findings on WCE. These lesions have reduced visual 
features compared to visibly haemorrhagic lesions, as seen above, and hence, their characterisation is more 
difficult. Earlier work, as demonstrated by Charisis et al., utilising Bi-dimensional Ensemble Empirical 
Mode Decomposition and SVMs to identify ulcers obtained a sensitivity and specificity of around 95%[23]. 
While other MLP and SVM models were created prior to 2014 with similar accuracies[24-26], the earliest study 
utilising a deep learning framework for the detection of ulcers and erosions is believed to be the work by 
Fan et al. in 2018, which employed a CNN achieving a sensitivity of 96.80% and 94.79% and specificity of 
94.79% and 95.98%, respectively[27]. Since 2018, only two non-deep learning models were retrieved[28,29] in 
comparison to 14 deep learning models[30-42]. Most recently, in 2023, Nakada et al. published their use of the 
RetinaNet model to diagnose multiple types of lesions including erosions, ulcers, vascular lesions, and 
tumours[43]. This study obtained a sensitivity of 91.9% and specificity of 93.6% in the detection of erosions 
and ulcers [Table 2].

Vascular lesions and angiodysplasias
Angiodysplasias, defined as accumulations of dilated, tortuous, and dilated blood vessels in the mucosa and 
submucosa of the intestinal wall, are common pathologies that can cause small intestinal bleeding. The first 
record of a software tool for the diagnosis of enteric lesions, including angiodysplasias, was the work by Gan 
et al. in 2008, which used Image Processing Software to obtain a median sensitivity of 74.2%[44]. Only two 
non-deep learning models were retrieved in the search: a study by Arieira et al. on evaluating the accuracy 
of the TOP 100 feature of Rapid Reader™[45] and a 2019 investigation by Vieira et al. on MLP and SVMs 
which obtained sensitivities above 96%[46]. Since 2019, only deep learning models have been employed in this 
field[47-53]. In 2018, Leenhardt et al. published their CNN model for detecting gastrointestinal 
angiodysplasias[54]. An exceptional sensitivity of 100% and specificity of 95.8% were obtained. Moreover, 
they assisted in constructing a French national database (CAD-CAP) to collect and maintain high-quality 
capsule endoscopy images for the training and validation of AI assistive tools. Recently, in 2023, Chu et al. 
published their CNN constructed on Resnet-50 architecture, which obtained a positive predictive value of 
94% and negative predictive value of 98%, in addition to the capability of segmenting and recognising an 
image in 0.6 s[53] [Table 3].

Polyps and tumours
The significance of detecting polyps and tumours stems from their potential to cause significant morbidity 
and mortality. A substantial body of research has been devoted to exploring AI-assisted capsule endoscopy 
for accurate identification and detection of these lesions. Early research in AI-assisted capsule endoscopy for 
this application includes a study by Li et al. in 2011, which utilised colour texture features to differentiate 
between normal and tumour-containing images with a sensitivity of 92.33% and a specificity of 88.67%[55]. 
Multiple other machine learning models utilising Binary Classifiers, SVMs, and MLPs have been utilised to 
varying accuracies and efficacies[56-61]. Deep learning was integrated into the field with the study by Yuan and 
Meng in 2017[62], where they utilised a stacked sparse autoencoder method to categorise images into polyps, 
bubbles, turbid images, and clear images with an overall accuracy of 98.00%. Since then, 12 deep learning 
applications were used for polyp and tumour detection[63-74]. More recently, a study by Lafraxo et al. in 2023 
proposed an innovative model using CNN (Resnet50), where they achieved an accuracy of 99.16% on the 
MICCAI 2017 WCE dataset[73]. In 2022, the research conducted by Piccirelli et al. investigating the 
diagnostic accuracy of Express View of IntroMedic achieved a 97% sensitivity and 100% specificity[75]. As AI 
polyp detection tools are commercially available for colonoscopy, such as FujiFilm’s CADeye[76] and 
EndoBRAIN (Olympus), the imminent release and usage of AI tools for capsule endoscopy is expected with 
these promising results, which will likely only be further supported by future research such as the planned 
multi-centre CESCAIL study[77] [Table 4].
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Table 2. Table of AI applications in capsule endoscopy for erosions and ulcers

Ref. Application Year of 
publication Study design Study 

location Aim and goals Training/Validation dataset AI type Results

Li and Meng[24] Erosions and 
ulcers

2009 Retrospective China Utilising chromaticity moment to 
discriminate normal regions and 
abnormal region

Training: 1,350 normal samples and 
1,350 abnormal samples 
Testing: 450 normal samples and 
450 abnormal samples

MLP Bleeding: sensitivity of 87.81%, 
specificity of 88.62% 
Ulcer: sensitivity of 84.68%, 
specificity of 92.97%

Charisis et al.[23] Erosions and 
ulcers

2010 Retrospective Greece Using BEEMD to extract intrinsic 
mode functions

Dataset: 40 normal and 40 ulcerous 
images 
90% for training, 10% for testing

SVM Sensitivity of 95%, specificity 
of 96.5%

Charisis et al.[25] Erosions and 
ulcers

2012 Retrospective Greece Associate colour with structure 
information in order to discriminate 
between healthy and ulcerous 
tissue

87 normal images, 50 “easy ulcer case” 
images, 37 “hard ulcer case” images 
90% was used for training, 10% for 
testing

MLP and 
SVM

SVM: sensitivity of 98.9%, 
specificity of 96.9%, for “easy 
ulcer”; sensitivity of 95.2%, 
specificity of 88.9%, for “hard 
ulcer” 
MLP: sensitivity of 94.6%, 
specificity of 98.2%, for “easy 
ulcer”; sensitivity of 82%, 
specificity of 95.1%, for “hard 
ulcer”

Iakovidis and 
Koulaouzidis[26]

Erosions and 
ulcers

2014 Retrospective Greece/ 
United 
Kingdom

Derive colour feature-based pattern 
recognition method

Training: 1,233 images 
Testing: 137 images

SVM Sensitivity of 95.4%, specificity 
of 82.9%

Fan et al.[27] Erosions and 
ulcers

2018 Retrospective China Automatic erosion detection via 
deep neural network

Ulcer training: 2,000 ulcer images, 
2,400 normal images 
Ulcer testing: 500 ulcer images, 
600 normal images 
Erosion training: 2,720 ulcer images, 
3,200 normal images 
Erosion testing: 690 ulcer images, 
800 normal images

CNN Ulcers: sensitivity of 96.8%, 
specificity of 94.79% 
Erosions: sensitivity of 93.67%, 
specificity of 95.98%

Khan et al.[28] Erosions and 
ulcers

2019 Retrospective Pakistan Utilising DenseNet CNN for 
stomach abnormality classification

Training: 2,800 ulcers, 2,800 bleeding, 
and 2,800 healthy regions 
Testing: 1,200 ulcers, 1,200 bleeding, 
and 1,200 healthy regions

MLP Sensitivity of 99.40%, 
specificity of 99.20%

Wang et al.[30] Erosions and 
ulcers

2019 Retrospective China Use deep convolutional neural 
networks to provide classification 
confidence score and bounding box 
marking area of suspected lesion

Training: 15,781 ulcer frames and 
17,138 normal frames 
Testing: 4,917 ulcer frames and 
5,007 normal frames

CNN Sensitivity of 89.71%, 
specificity of 90.48%

Aoki et al.[31] Erosions and 
ulcers

2019 Retrospective Japan Develop CNN system based on a 
single shot multibox detector

Training: 5,360 ulcer and erosion images 
Testing: 440 ulcer and erosion images, 
10,000 normal images

CNN Sensitivity of 88.2%, specificity 
of 90.9%

Training: 158,235 images from 
1,970 patients 
Testing: 113, 268, 334 images from 

Ding et al.[32] Erosions and 
ulcers

2019 Retrospective China Characterise SB-CE images as 
multiple lesion types

CNN Sensitivity of 99.90%, 
specificity of 100%
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5,000 patients

Majid et al.[33] Erosions and 
ulcers

2020 Retrospective Pakistan Using multi-type features 
extraction, fusion, and features 
selection to detect ulcer, polyp, 
esophagitis, and bleeding

Training: 6,922 images of bleeding, 
oesophagitis, polyp, and ulcerative colitis 
Testing: 2,967 images of bleeding, 
oesophagitis, polyp, and ulcerative colitis

CNN Sensitivity of 96.5%

Kundu et al.[29] Erosions and 
ulcers

2020 Retrospective Bangladesh Employing LDA for ROI separation Training: 65 bleeding, 31 ulcers, 
and 30 tumour images 
Testing: 15 continuous video clips

SVM Sensitivity of 85.96%, 
specificity of 92.24%

Otani et al.[34] Erosions and 
ulcers

2020 Retrospective Japan Multiple lesion detection using 
RetinaNet

Database of 398 images of erosions and 
ulcers, 538 images of angiodysplasias, 
4,590 images of tumours, and 34,437 
normal images for training and testing

Deep 
neural 
network

No sensitivity and 
specificity reported

Xia et al.[35] Erosions and 
ulcers

2021 Retrospective China Novel CNN and RCNN system to 
detect 7 types of lesions in MCE 
imaging

Training: 822,590 images 
Testing: 201,365 images

CNN, 
RCNN

Sensitivity of 96.2%, specificity 
of 76.2%

Afonso et al.[36] Erosions and 
ulcers

2021 Retrospective Portugal Identify but also differentiate ulcers 
and erosions based on 
haemorrhagic potential

Training: 18,976 images 
Testing: 4,744 images

CNN Sensitivity of 86.6%, specificity 
of 95.9%

Mascarenhas 
Saraiva et al.[37]

Erosions and 
ulcers

2021 Retrospective Portugal Identify various lesions on CE 
images and differentiate using 
Saurin’s classification

Training: 42,844 images 
Testing: 10,711 images

CNN Sensitivity of 88%, specificity 
of 99%

Afonso et al.[38] Erosions and 
ulcers

2022 Retrospective Portugal Identify but also differentiate ulcers 
and erosions based on 
haemorrhagic potential

Training: 4,904 images 
Testing: 379 normal images, 266 erosion, 
286 P1 Ulcer images, 295 P2 Ulcer 
images

CNN Sensitivity of 90.8%, specificity 
of 97.1%

Mascarenhas 
et al.[39]

Erosions and 
ulcers

2022 Retrospective Portugal Develop CNN-based method to 
detect and distinguish colonic 
mucosal lesions and luminal blood 
in CCE imaging

Training: 7,204 images 
Testing: 1,801

CNN Sensitivity of 96.3%, specificity 
of 98.2%

Xiao et al.[40] Erosions and 
ulcers

2022 Retrospective 
sensitivity of 96.9% 
and a specificity of 
99.9% specific

China Classify capsule gastroscope 
images into normal, chronic erosive 
gastritis, and gastric ulcer 
categories

Training: 228 images 
Testing: 912 images

CNN No sensitivity and specificity, 
accuracy of 94.81%

Ribeiro et al.[41] Erosions and 
ulcers

2022 Retrospective Portugal Accurately detect ulcers and 
erosions in CCE images

Training: 26,869 images 
Testing: 3,375 normal images, 357 
images with ulcers or colonic erosions

CNN Sensitivity of 96.9%, specificity 
of 99.9%

Nakada et al.[43] Erosions and 
ulcers

2023 Retrospective Japan Utilise RetinaNet to diagnose 
erosions and ulcers, vascular 
lesions, and tumours in WCE 
imaging

Training: 6,476 erosion and ulcer images, 
1,916 angiodysplasias images, 7,127 
tumour images, 14,014,149 normal 
images 
Testing: images from 217 patients

Deep 
neural 
network

Erosions and ulcers: sensitivity 
of 91.9%, specificity of 93.6% 
Vascular lesions: 
sensitivity of 87.8%, 
specificity of 96.9% 
Tumours: sensitivity of 87.6%, 
specificity of 93.7%

Erosions and Use various feature extraction Deep Sensitivity of 97.23%, Raut et al.[42] 2023 Retrospective India Training and testing on KID dataset[110]
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ulcers methods in the classification of 
WCE images as inflammatory, 
polypoid and ulcer

neural 
network

specificity of 52.00%

AI: Artificial intelligence; MLP: multilayer perceptron; BEEMD: bidimensional ensemble empirical mode decomposition; SVM: support vector machine; CNN: convolutional neural network; SBCE: small bowel capsule 
endoscopy; LDA: linear discriminant analysis; ROI: region of interest; RCNN: region-based convolutional neural network; MCE: magnetically controlled capsule endoscopy; CCE: colon capsule endoscopy; WCE: 
wireless capsule endoscopy; KID: koulaouzidis-iakovidis database.

Inflammatory bowel disease
Potential AI tools to improve the detection and assessment of ulcers and mucosal inflammation caused by Crohn’s disease have been researched for over a 
decade. In 2012, Kumar et al. published their work using a cascade for classifying CD lesions and quantitatively assessing their severity[78]. The severity 
assessment given (normal, mild, and severe) by the model was shown to correlate well with those manually assigned by experts. While multiple machine 
learning models have achieved reasonable sensitivities and specificities in this field[79-81], since 2018, deep learning systems have predominated research[81-92]. In 
2022, Ferreira et al. developed a CNN using a total of 8,085 images to detect ulcers and erosions in images from the PillCam™ Crohn’s Capsule, with an overall 
sensitivity of 90% and specificity of 96%[89]. Higuchi et al. published their work using CNN-based models to automatically classify ulcerative colitis lesion 
severity based on the Mayo Endoscopic Subscore, achieving an accuracy of 98.3%[90]. While reasonable results have been achieved, ulcers and erosions typically 
have fewer colour features compared to active bleeding lesions, making their detection and classification generally more difficult [Table 5].

Coeliac disease
Currently, there is a comparatively smaller body of research on AI detection and analysis of capsule endoscopy video for coeliac disease. Given the recency of 
the field, all retrieved articles utilised deep learning in their systems[93-96]. In 2017, Zhou et al. developed a deep learning method using the GoogLeNet model[93]. 
Impressively, a 100% sensitivity and specificity were found on testing, although only a small number of video clips were used for the study. More recently, in 
2021, Li et al. employed principal component analysis (PCA) for feature extraction, including the novel strip PCA (SPCA) method[95]. Using a small database of 
460 images, their process was found to have an average accuracy of 93.9% on testing. The small number of studies performed has resulted in a paucity of 
evidence on the utility of AI tools for this condition [Table 6].

Hookworm detection
Among the various pathological conditions that AI diagnostic techniques can identify, research into detecting parasitic infestations such as Hookworms has 
very little published data available. In 2016, Wu et al. proposed a new method that includes a multi-scale dual matched filter to locate the tubular structure of 
hookworms and a piecewise parallel region detection method to identify regions potentially containing hookworm bodies on WCE imaging[97]. Testing on a 
large dataset of 440,000 WCE images demonstrated accuracy, sensitivity, and specificity rates of around 78%. In 2018, He et al. furthered this work by 
integrating two CNN systems to model the visual appearances and tubular patterns of hookworms concurrently[98]. Testing and validating showcased an 
impressive accuracy of 88.5%. More recently, in 2021, Gan et al. utilised a deep CNN trained using 11,236 capsule endoscopy images of hookworms[99]. The 
trained CNN system took 403 s to evaluate 10,529 test images, with sensitivity, specificity, and accuracy of 92.2%, 91.1%, and 91.2%, respectively [Table 7].
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Table 3. Table of AI applications in capsule endoscopy for vascular lesions and angiodysplasias

Ref. Application Year of 
publication

Study 
design

Study 
location Aim and goals Training/Validation dataset AI 

type Results

Gan 
et al.[44]

Vascular lesions and 
angiodysplasias

2008 Retrospective China Develop computer-aided screening and 
diagnosis for enteric lesions in CE

Dataset of 236 patients with lesion, 
and 86 without lesion for training and 
validation

IPS Median sensitivity of 74.2%

Leenhardt 
et al.[54]

Vascular lesions and 
angiodysplasias

2018 Retrospective France Utilise CNN for detection of AGD in SB-CE 
images

Training: 300 normal frames, 
300 AGD frames 
Testing: 300 normal frames, 
300 AGD frames

CNN Sensitivity of 100%, specificity 
of 96%

Arieira 
et al.[45]

Vascular lesions and 
angiodysplasias

2019 Retrospective Portugal Evaluate accuracy and efficacy of “TOP 100” 
feature

Testing: 97 patients TOP 
100

No sensitivity or specificity. 
Accuracy of 83.5% for P2 
lesions, 
95.5% for AGD, 56.7% for 
ulcers, 
100% for active bleeding sites

Vieira 
et al.[46]

Vascular lesions and 
angiodysplasias

2019 Retrospective Portugal Automatic detection of AGD in WCE videos Dataset: 27 images from KID 
database[110], 
additional 248 AGD images, 
550 normal images

MLP 
and 
SVM

MLP: sensitivity of 96.60%, 
specificity of 94.08% 
SVM: sensitivity of 96.58%, 
specificity of 92.24%

Vezakis 
et al.[47]

Vascular lesions and 
angiodysplasias

2019 Retrospective Greece Combining of low-level image analysis, feature 
detection, and machine learning for AGD 
detection in WCE images

Training: 350 normal images, 
196 bubble images, 
75 blood vessel images, 
104 AGD images 
Testing: 3 full-length WCE

CNN Sensitivity of 92.7%, specificity 
of 99.5%

Leenhardt 
et al.[48]

Vascular lesions and 
angiodysplasias

2019 Retrospective France Develop CNN methodology to detect GIA in 
SB-CE

Training: 300 normal frames, 
300 GIA frames GIA 
Testing: 300 normal frames, 
300 GIA frames

CNN Sensitivity of 100%, specificity 
of 96%

Tsuboi 
et al.[49]

Vascular lesions and 
angiodysplasias

2020 Retrospective Japan Development of CNN system based on SSMB 
for small bowel AGD detection

Training: 2,237 angiodysplasia images 
Testing: 488 AGD images, 
10,000 normal images

CNN Sensitivity of 98.8%, specificity 
of 98.4%

Aoki 
et al.[50]

Vascular lesions and 
angiodysplasias

2021 Retrospective Japan Construct CNN based system for various 
abnormality detection

Training: 44,684 images of 
abnormalities and 21,344 normal 
images 
Testing: 379 full small-bowel CE 
videos

CNN No sensitivity or specificity 
reported. Accuracy of 100% for 
mucosal breaks, 
97% for AGD, 99% for 
protruding lesions, 
and 100% for blood content

Hwang 
et al.[51]

Vascular lesions and 
angiodysplasias

2021 Retrospective Korea Develop CNN algorithm for categorisation of 
SBCE videos into haemorrhagic lesions and 
ulcerative lesions

Training: 11,776 haemorrhagic lesions, 
18,448 ulcerative lesions, 
30,224 normal images 
Testing: 5,760 images

CNN Sensitivity of 97.61%, 
specificity of 96.04%

Detect common findings on SBCE images using 
CNN framework with aim to reduce false-

Hosoe 
et al.[52]

Vascular lesions and 
angiodysplasias

2022 Retrospective Japan Training: 33 SBCE cases 
Testing: 35 SBCE cases

CNN Sensitivity of 93.4%, specificity 
of 97.8%
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positive rate

Chu 
et al.[53]

Vascular lesions and 
angiodysplasias

2023 Retrospective China Utilise CNN segmentation method for AGD 
detection

Training: 178 cases 
Testing: 200 cases

CNN No sensitivity or specificity 
given. 
Pixel accuracy of 99%

AI: Artificial intelligence; CE: capsule endoscopy; IPS: image-processed software; CNN: convolutional neural network; AGD: angiodysplasias; SBCE: small bowel capsule endoscopy; WCE: wireless capsule endoscopy; 
KID: koulaouzidis-iakovidis database; MLP: multilayer perceptron; SVM: support vector machine; GIA: gastrointestinal angiodysplasia; SSMB: single shot multibox detector.

Other applications of AI in capsule endoscopy.
Automated calculation of bowel preparation quality
Effective and thorough bowel cleansing is essential for high quality images of the GI tract through capsule endoscopy. The diagnostic potential is reduced when 
bowel preparation is inadequately performed. Nam et al. created an automated calculation software for small bowel cleansing scores using deep learning 
algorithms. A five-step scoring system was developed based on mucosal visibility, which was then used to train the deep learning algorithm. The system 
assigned an average cleansing score (ranging from 1 to 5), which was compared with gradings (A to C) assessed by clinicians. The software was able to provide 
objective, automated cleansing scores for small bowel preparation, thus potentially allowing its use in the assessment of whether or not appropriate bowel 
preparation has been achieved for small bowel pathology detection[100] [Table 8].

Multiple lesion characterisation
A functioning, highly accurate method to detect and characterise a wide range of lesions through the same tool in real time would be the ultimate goal in the 
foreseeable future for AI research. Various models have so far attempted to achieve this goal[101-107]. Recently, in 2023, Yokote et al. constructed an object 
detection AI model from a dataset of 18,481 images to detect and characterise into the categories of Angiodysplasia, Erosion, Stenosis, Lymphangiectasis, 
Lymph follicle, Submucosal tumour, Polyp‐like, Bleeding, Diverticula, Redness, Foreign body, and Venous. The overall sensitivity was 91%[106].

Also, in 2023, Ding et al. developed an AI model to detect various abnormalities on capsule endoscopy imaging, trained on 280,426 images. The AI model 
showed high sensitivity in detecting various abnormalities: red spots (97.8%), inflammation (96.1%), blood content (96.1%), vascular lesions (94.7%), 
protruding lesions (95.6%), parasites (100%), diverticulum (100%), and normal variants (96.4%). Furthermore, when junior doctors used the AI model, their 
overall accuracy increased from 85.5% to 97.9% and became comparable to that of experts who had an accuracy rate of 96.6%[107]. AI tools, which are multi-
faceted and have the ability to detect and characterise a variety of common findings, will no doubt revolutionise capsule endoscopy diagnosis [Table 9].

DISCUSSION
The shifting of utilised AI types over time from traditional machine learning features such as SVMs to deep learning, including CNNs, is associated with an 
increase in accuracy, sensitivity and specificity of diagnostic results.
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Table 4. Table of AI applications in capsule endoscopy for polyps and tumours

Ref. Application Year of 
publication Study design Study 

location Aim and goals Training/Validation dataset AI type Results

Li et al.[55] Polyps and 
tumours

2011 Retrospective China Utilise textural feature based 
on multi-scale local binary 
pattern for tumour detection

Training: 450 normal samples, 
450 tumour samples 
Testing: 150 normal samples, 
150 tumour samples

KNN 
MLP 
SVM

Best Results: 
sensitivity of 92.33%, 
specificity of 88.67%

Karargyris and 
Bourbakis[56]

Polyps and 
tumours

2011 Retrospective America Utilising log Gabor filters for 
feature extraction to detect 
polyps and ulcers

Polyps testing: 10 frames with polyps, 
40 normal frames 
Ulcer testing: 20 ulcer frames, 
30 non-ulcer frames

SVM Ulcer detection: 
sensitivity of 75.0%, 
specificity of 73.3% 
Polyp detection: 
sensitivity of 100%, 
specificity of 67.5%

Barbosa 
et al.[57]

Polyps and 
tumours

2012 Retrospective Portugal Extracting textural features to 
detect polyps and tumours

Dataset for training and testing: 700 tumour 
images, 2,300 normal images

MLP Sensitivity of 93.9%, 
specificity of 93.1%

Mamonov 
et al.[58]

Polyps and 
tumours

2014 Retrospective USA/Portugal Development of binary 
classifier for tumour detection 
geometrical analysis and 
texture content

Dataset for training and testing: 
230 tumour images, 18,738 normal images

BC Per frame: sensitivity 
of 47.4%, specificity 
of 90.2% 
Per polyp: sensitivity 
of 81.25%, specificity 
of 93.47%

Liu et al.[59] Polyps and 
tumours

2016 Retrospective China Integrating multi-scale curvelet 
and fractal technology into 
textural features for polyp 
detection

Training: WCE videos of 15 patients 
Testing: 900 normal frames, 
900 tumour frames

SVM Sensitivity of 97.8%, 
specificity of 96.7%

Yuan and 
Meng[62]

Polyps and 
tumours

2017 Retrospective China Construction of SSAEIM for 
polyp detection

Testing: 1,000 bubble images, 1,000 TIs, 1,000 
CIs, 1,000 polyp images

SSAEIM Polyps: sensitivity of 
98%, specificity of 
99% 
Bubbles: sensitivity of 
99.5%, specificity of 
99.17% 
TIs: sensitivity of 
99%, 
specificity of 100% 
CIs: sensitivity of 
95.5%, 
specificity of 99.17%

Blanes-Vidal 
et al.[74]

Polyps and 
tumours

2019 Retrospective Denmark Developed algorithm to match 
CCE and colonoscopy polyps 
and construct CNN for polyp 
detection

Training: 39,550 images 
Testing: 8,476 images

CNN Sensitivity of 97.1%, 
specificity of 93.3%

Saito et al.[63] Polyps and 
tumours

2020 Retrospective Japan Constructing CNN model for 
protruding lesion detection

Training: 30,584 protruding lesion images 
Testing: 7,507 protruding lesion images, 10,000 
normal images

CNN Sensitivity of 90.7%, 
specificity of 79.8%

Yang et al. Polyps and Development of algorithm Sensitivity of 95.80%, 2020 Retrospective China Testing: 500 normal, 500 polyp images SVM[60]
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tumours based on LCDH for polyp 
detection

specificity of 96.20%

Vieira et al.[61] Polyps and 
tumours

2020 Retrospective Portugal Construction of GMM and 
ensemble system for tumour 
detection

Database of 936 tumour images, 3,000 normal 
images for training and testing

SVM 
MLP

Best result: sensitivity 
of 96.1%, specificity 
of 98.3%

Yamada 
et al.[64]

Polyps and 
tumours

2021 Retrospective Japan Construction of CNN based on 
SSMD for colorectal neoplasm 
detection

Training: 15,933 colorectal neoplasm images 
Testing: 1,850 colorectal neoplasm images, 2,934 
normal colon images

CNN Sensitivity of 79.0%, 
specificity of 87%

Saraiva 
et al.[65]

Polyps and 
tumours

2021 Retrospective Portugal Development of CNN for 
protruding lesion detection on 
CCE imaging

Database: 860 protruding lesions images, 2,780 
normal mucosa images 
Training: 2,912 images of database 
Testing: 728 images of database

CNN Sensitivity of 90.7%, 
specificity of 92.6%

Jain et al.[66] Polyps and 
tumours

2021 Retrospective India Creation of deep CNN based 
WCENet model for anomaly 
detection in WCE images

Training and testing on KID database[110] and 
CVC-clinic database[113]

CNN Sensitivity of 98%

Zhou et al.[67] Polyps and 
tumours

2022 Retrospective China Utilising neural network 
ensembles to improve polyp 
segmentation

Training: 195 images 
Testing: 41 images

CNN No sensitivity and 
specificity reported

Mascarenhas 
et al.[68]

Polyps and 
tumours

2022 Retrospective Portugal Construction of CNN for 
protruding lesion detection on 
CCE

Training: 1,928 protruding lesion images, 2,644 
normal/other finding imagesTesting: 482 
protruding lesion images, 661 normal/other 
finding images

CNN Sensitivity of 90.0%, 
specificity of 99.1%

Gilabert 
et al.[69]

Polyps and 
tumours

2022 Retrospective Spain Comparing AI tool to RAPID 
Reader Software v9.0 
(Medtronic)

Testing: 18 videos CNN Sensitivity of 87.8%

Piccirelli 
et al.[75]

Polyps and 
tumours

2022 Retrospective Italy Testing the diagnostic 
accuracy of Express View 
(IntroMedic)

Testing: 126 patients Express 
view

Sensitivity of 97%, 
specificity of 100%

Liu et al.[70] Polyps and 
tumours

2022 Retrospective China Constructing DBMF fusion 
network with CNN and 
transformer for polyp 
segmentation

Training: 1,450 images 
Testing: 636 images

DBMF No sensitivity and 
specificity given

Souaidi et al.[71] Polyps and 
tumours

2023 Retrospective Morocco Modifying existing SSMD 
models for polyp detection

Training: 2,745 images 
Testing: 784 images

SSMD No sensitivity and 
specificity given

Mascarenhas 
Saraiva et al.[72]

Polyps and 
tumours

2023 Retrospective Portugal Developing CNN for automatic 
detection of small bowel 
protruding lesions

Training: 14,900 images 
Testing: 3,725 images

CNN Sensitivity of 96.8%, 
specificity of 96.5%

MICCAI2017[114]: 
training: 2,796 images 
Testing: 652 images 
Kvasir-SEG dataset [115]: 
Training: 800 images 
Testing: 200 images CVC-ClinicDB dataset[116]: 
Training: 490 images 

No sensitivity or 
specificity given. 
Accuracy of 99.16% 
on MICCAI2017 
reported, 
97.55% on Kvasir-
SEG, 

Lafraxo 
et al.[73]

Polyps and 
tumours

2023 Retrospective Morocco Proposing novel CNN-based 
architecture for GI image 
segmentation

CNN
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Testing: 122 images and 97.58% on CVC-
ClinicDB databases 
respectively

Lei et al.[77] Polyps and 
tumours

2023 Combined 
prospective/retrospective

United 
Kingdom

Study is proposed to determine 
efficacy of AI tools for polyp 
detection in capsule endoscopy

Study is incomplete CNN Study is incomplete

AI: Artificial intelligence; KNN: K nearest neighbour; MLP: multilayer perceptron; SVM: support vector machine; BC: binary classifier; WCE: wireless capsule endoscopy; SSAEIM: stacked sparse autoencoder with 
image manifold constraint; TI: turbid image; CI: clear image; CCE: colon capsule endoscopy; CNN: convolutional neural network; LCDH: local colour difference; GMM: gaussian mixture model; SSMD: single shot 
multibox detector; KID: koulaouzidis-iakovidis database; DBMF: dual branch multiscale feature fusion network; GI: gastrointestinal.

Current commercial endoscopes have some algorithm built to assist with interpretation. However, the training of such algorithms are based on traditional 
supervised learning methods. Given the rise in higher resolution and increase the amount of training images and videos, unsupervised methods will be more 
efficient and accurate.

Deep learning has shown significant promise in the field of diagnostic capsule endoscopy due to its ability to learn from large volumes of data and make 
accurate predictions. Current commercial capsule endoscopes have algorithms available to assist with interpretation such as the TOP 100 feature of Rapid 
Reader[45]. However, the training of these algorithms is based on traditional supervised learning methods. Unlike traditional machine learning algorithms, 
which require manual feature extraction and selection, deep learning ones can automatically learn and extract features from raw data[108]. CNNs, in particular, 
are designed to automatically and adaptively learn spatial hierarchies of features from raw data, which makes them well-suited for image classification tasks in 
capsule endoscopy, as evidenced in the studies above. Given the rise in image resolution and amount of training images and video, unsupervised methods 
capitalising on these AI systems will become even more efficient and accurate in future.

Despite the advantages of deep learning, it is not without its pitfalls. One of its main criticisms is the “black box” problem. Due to the complexity and depth of 
these models, it can be challenging to understand and interpret how they make their predictions. This lack of transparency and interpretability can be 
problematic in medical applications, where understanding the reasoning behind a diagnosis is crucial for patient care and trust[109]. The “black box” problem 
also raises concerns about the reliability and fairness of deep learning models. If the reasoning behind a model’s prediction is not clear, determining whether 
the model is making decisions based on relevant features or whether it is being influenced by irrelevant or biased data can be difficult[109]. This is an intrinsic 
issue with deep learning, and hence, images must be validated prospectively prior to usage in clinical settings. Currently, AI researchers are exploring a concept 
known as Explainable AI to help understand the logic and decision-making process within a black box.

When training WCE with AI, “images” obtained may not be histologically verified due to an inability to obtain biopsies without invasive enteroscopy. This 
issue undoubtedly has implications for the reliability of the AI algorithms due to the potential inaccuracy of the training dataset used. This may adversely affect 
the diagnostic accuracy, causing either false-positive or false-negative results, both of which have significant clinical implications. The issue of data quality can 
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Table 5. Table of AI applications in capsule endoscopy for inflammatory bowel disease

Ref. Application Year of 
publication

Study 
design

Study 
location Aim and goals Training/Validation dataset AI 

type Results

Haji-Maghsoudi 
et al.[79]

Inflammatory 
bowel disease

2012 Retrospective Iran Develop method for the detection of 
lymphangiodysplasia, xanthoma, CD, and 
stenosis in WCE image

Stenosis: 45 images 
CD: 74 images 
Lymphangiectasia: 32 images 
Lymphoid hyperplasia: 27 images 
Xanthoma: 28 images

CED Crohn’s: sensitivity of 
89.32%, 
specificity of 65.37% 
Stenosis: sensitivity of 
91.27%, 
specificity of 87.27% 
Lymphangiectasia: 
sensitivity of 95.45%, 
specificity of 94.1% 
Lymphoid: sensitivity of 
87.01%, 
specificity of 79.71% 
Xanthoma: sensitivity of 
97%, 
specificity of 97.13%

Kumar et al.[78] Inflammatory 
bowel disease

2012 Retrospective United States 
of America

Constructing classifier cascade for classifying 
CD lesions into normal, mild, and severe

Training: 355 images 
Testing: 212 normal images, 213 mild, 
108 severe images

SVM Sensitivity over 90% was 
found

Charisis and 
Hadjileontiadis[80]

Inflammatory 
bowel disease

2016 Retrospective Greece Utilise novel feature extraction method for 
detecting CD lesions

Database of 466 normal images and 
436 CD images

SVM Sensitivity of 95.2%, 
specificity of 92.4%

de Maissin 
et al.[82]

Inflammatory 
bowel disease

2018 Retrospective France Develop CNN for automatic detection of SB CD 
lesions

Training: 589 images 
Testing: 73 images

CNN Sensitivity of 62.18%, 
specificity of 66.81%

Klang et al.[83] Inflammatory 
bowel disease

2019 Retrospective Israel Utilise CNN for CD monitoring and diagnosis by 
SB ulcer detection

Training: 1,090 images 
Testing: 273 images

CNN Sensitivity of 96.9%, 
specificity of 96.6%

Barash et al.[81] Inflammatory 
bowel disease

2020 Retrospective Israel Automatic severity grading of CD ulcers into 
grades 1 to 3

Training: 1,242 images 
Testing: 248 images

CNN Sensitivity of 71%, 
specificity of 34%

Klang et al.[84] Inflammatory 
bowel disease

2020 Retrospective Israel Construction of CNN to differentiate normal and 
ulcerated mucosa

Training: 14,112 images 
Testing: 3,528 images

CNN Sensitivity of 97.1%, 
specificity of 96%

de Maissin 
et al.[85]

Inflammatory 
bowel disease

2021 Retrospective France Assessing importance of annotation quality on 
CNN

Database of 3,498 images was 
annotated by different readers for 
different trials

RANN Sensitivity of 93%, 
specificity of 95%

 
Klang et al.[86]

Inflammatory 
bowel disease

2021 Retrospective Israel Identify intestinal strictures on CE images from 
CD patients

Database of 1,942 stricture images, 
14,266 normal mucosa images, 
7,075 mild ulcer images, 
2,386 moderate ulcer images, 
2,223 severe ulcer images used for 
training and testing

CNN Sensitivity of 92%, 
specificity of 89%

Training: 7,391 CD mucosal ulcer 
images, 
10,249 normal mucosa 
Testing: 980 NSAIDs ulcer images, 

Klang et al.[87] Inflammatory 
bowel disease

2021 Retrospective Israel Identify NSAID ulcers, which are common 
differentials for CD ulcers on CE images

CNN Sensitivity of 92%, 
specificity of 95%
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625 normal mucosa images

Majtner et al.[88] Inflammatory 
bowel disease

2021 Retrospective Denmark Detection and classifying CD lesions based on 
severity

Training: 5,419 images 
Testing: 1,558 images

CNN Sensitivity of 96.2%, 
specificity of 100%

Ferreira et al.[89] Inflammatory 
bowel disease

2022 Retrospective Portugal Automatically detecting ulcers and erosions in 
the small intestine and colon

Training: 19,740 images 
Testing: 4,935 images

CNN Sensitivity of 90%, 
specificity of 96%

Higuchi et al.[90] Inflammatory 
bowel disease

2022 Retrospective Japan Classifying ulcerative colitis lesions using MES 
criteria

Training: 483,644 images 
Testing: 255,377 images

CNN No Sensitivity or 
specificity given. 
Accuracy of 98.3% on 
validation

Kratter et al.[91] Inflammatory 
bowel disease

2022 Retrospective Israel Accurately identify ulcers on capsule endoscopy 
by combining algorithm viable for two models of 
capsule endoscope

Database of 15,684 normal mucosa 
images, 
17,416 ulcerated mucosa images used 
for training and validation

CNN No Sensitivity or 
specificity given. 
Accuracy of 97.4% on 
validation

Mascerenhas 
et al.[92]

Inflammatory 
bowel disease

2023 Retrospective Portugal Construct CNN for automatic classification of 
various types of pleomorphic gastric lesions

Database of 6,844 normal mucosa 
images, 
1,407 protruding lesion images, 
994 ulcer and erosion images, 
822 vascular lesion images, 
2,851 haematic residue images used for 
training and validation

CNN Sensitivity of 97.4%, 
specificity of 95.9%

AI: Artificial intelligence; WCE: wireless capsule endoscopy; CED: canny edge detector; SVM: support vector machine; SB: small bowel; CNN: convolutional neural network; RANN: recurrent attention neural network; 
CE: capsule endoscopy; NSAID: non-steroidal anti-inflammatory drugs; MES: mayo endoscopic subscore.

be mitigated by ensuring that the AI models are trained on high-quality, histologically proven images, such as the French-created CAD-CAP. This could 
involve collaborations with medical institutions and experts to curate and verify the training datasets.

The current AI models used in capsule endoscopy also do not appear to harness the potential of vision transformers (ViTs), a state-of-the-art AI model 
adapted from natural language processing, which utilises self-attention methods for training. ViTs offer a far superior capacity for data handling compared to 
other deep learning models, with approximately four times as much capacity as that of traditional CNNs. Moreover, their ability to combine spatial analysis 
with temporal analysis allows them to demonstrate a much superior performance in image-based tasks. Their employment in capsule endoscopy could open 
the door to more precise lesion characterisation, thereby enhancing the diagnostic potential of this technology. The lack of current models using ViTs presents 
a notable gap in the field. However, this is primarily due to the recency of the technology in the medical imaging world. The use of ViT in endoscopy has only 
been explored very recently in research settings, and more applications are expected in the near future.

However, the potential of AI-assisted capsule endoscopy, particularly for colonoscopy for polyp detection and characterisation, is notable. While capsule 
endoscopy is quite costly compared to the Faecal Occult Blood Test (FOBT), it could serve as an alternative for patients where FOBT may yield high false 
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Table 6. Table of AI applications in capsule endoscopy for coeliac disease

Ref. Application Year of 
publication

Study 
design

Study 
location Aim and goals Training/Validation 

dataset AI type Results

Zhou 
et al.[93]

Coeliac 
disease

2017 Retrospective China Develop CNN-
based methodology 
for coeliac disease 
identification

Training: 6 coeliac disease 
patient CE videos, 5 control 
patient CE videos 
Testing: 5 coeliac disease 
patient CE videos, 5 control 
patient CE videos

CNN Sensitivity of 
100%, 
specificity of 
100%

Wang 
et al.[94]

Coeliac 
disease

2020 Retrospective China Construct novel 
deep learning 
recalibration 
module for the 
diagnosis of coeliac 
disease on VCE 
images

Database of 1,100 normal 
mucosa images, 1,040 CD 
mucosa images used for 
training and testing

CNN 
SVM 
KNN 
LDA

Sensitivity of 
97.20%, 
specificity of 
95.63%

Li 
et al.[95]

Coeliac 
disease

2021 Retrospective China Utilise novel SPCA 
method for image 
processing to 
detect coeliac 
disease

Training: 184 images 
Testing: 276 images

KNN 
SVMCNN

No 
Sensitivity or 
specificity 
given, 
accuracy of 
93.9%

Chetcuti 
Zammit 
et al.[96]

Coeliac 
disease

2023 Retrospective United 
Kingdom/ 
United 
States of 
America

Evaluate and 
compare coeliac 
disease severity 
assessment of AI 
tool and human 
readers

Training: 444,659 images 
Testing: 63 VCE videos

MLA No 
Sensitivity or 
specificity 
given

AI: Artificial intelligence; CNN: convolutional neural network; CE: capsule endoscopy; VCE: video capsule endoscopy; SVM: support vector 
machine; KNN: K nearest neighbour; LDA: linear discriminant analysis; SPCA: strip principal component analysis; MLA: machine learning 
algorithm.

Table 7. Table of AI applications in capsule endoscopy for hookworm detection

Ref. Application Year of 
publication

Study 
design

Study 
location Aim and goals Training/Validation 

dataset
AI 
type Results

Wu 
et al.[97]

Hookworm 
detection

2016 Retrospective China Automatically detect 
hookworm on WCE 
images

440,000 images from 11 
patients used for training 
and testing

MLA Sensitivity of 
77.3%, 
specificity of 
77.9%

He 
et al.[98]

Hookworm 
detection

2018 Retrospective China Utilise deep learning for 
automatic hookworm 
detection

440,000 images from 11 
patients used for training 
and testing

CNN Sensitivity of 
84.6%, 
specificity of 
88.6%

Gan 
et al.[99]

Hookworm 
detection

2021 Retrospective China Construct CNN for the 
automatic detection of 
hookworm on CE 
images

Training: 11,236 images of 
hookworm 
Testing: 531 hookworm 
images, 9,998 normal 
images

CNN Sensitivity of 
92.2%, 
specificity of 
91.1%

AI: Artificial intelligence; WCE: wireless capsule endoscopy; MLA: machine learning algorithm; CNN: convolutional neural network; CE: capsule 
endoscopy.

positives such as in those with haemorrhoids or who do not wish to partake in FOBT-based screening 
programs. Furthermore, the non-invasiveness and cost-effectiveness of AI Capsule colonoscopy offer 
advantages over traditional procedures, making it a promising option for mass screening in the near future. 
It is expected that AI tools will replace parts of the endoscopy procedure after undergoing further clinical 
evaluation, especially with examples such as AnX Robotica’s ProScan receiving FDA approval in 2024.
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Table 8. Table of AI application in capsule endoscopy for bowel prep scoring

Ref. Application Year of 
publication

Study 
design

Study 
location Aim and goals Training/Validation 

dataset
AI 
type Results

Nam 
et al.[100]

Bowel prep 
scoring

2021 Retrospective Korea Automatically detect 
and score bowel prep 
quality on CE images

Training: 500 images for 
each score (1-5), totalling 
2,500 
Testing: 96 CE cases

CNN Sensitivity of 
93%, 
specificity of 
100% 
At cleansing 
cut-off value of 
3.25

AI: Artificial intelligence; CE: capsule endoscopy; CNN: convolutional neural network.

Table 9. Table of AI applications in capsule endoscopy for multiple lesion detection

Ref. Application Year of 
publication

Study 
design

Study 
location Aim and goals Training/Validation 

dataset AI type Results

Park 
et

 
al.[101]

Multiple 
lesion 
detection

2020 Retrospective Korea Develop CNN 
model to identify 
multiple lesions on 
CE and classify 
images based on 
significance

Training: 60,000 
significant, 60,000 
insignificant 
Testing: 20 CE videos

CNN No sensitivity or 
specificity given; 
overall detection 
rate of 81.6%

Xing 
et

 
al.[102]

Multiple 
lesion 
detection

2020 Retrospective China Develop AGDN 
model for WCE 
image 
classification

CAD-CAP[54] and KID[110] 
databases used for training 
and testing

CNN Sensitivity of 
95.72% for 
normal, 90.7% for 
vascular images, 
87.44% for 
inflammatory 
images

Zhu 
et

 
al.[103]

Multiple 
lesion 
detection

2021 Retrospective China Construct new 
deep learning 
model for 
classification and 
segmentation of 
WCE images

CAD-CAP[54] and KID[110] 
databases used for training 
and testing

Deep 
neural 
network

Sensitivity of 97% 
for normal, 
94.17% for 
vascular images, 
92.71% for 
inflammatory 
images

Guo 
et

 
al.[104]

Multiple 
lesion 
detection

2021 Retrospective China Utilise CNN 
models for the 
automatic 
detection of 
vascular and 
inflammatory 
lesions

Training: 1,440 images 
Testing: 360 images

CNN Sensitivity of 
96.67% for 
vascular lesions, 
sensitivity of 
93.33% for 
inflammatory 
lesions

Goel 
et

 
al.[105]

Multiple 
lesion 
detection

2022 Retrospective India Develop CNN 
framework to test 
importance of 
colour features for 
lesion detection

Trained and tested on 
collected 7,259 normal 
images and 1,683 
abnormal images 
Also trained and tested on 
KID[110] database

CNN Sensitivity of 
98.06% on 
collected 
database, 
sensitivity of 97% 
on KID

Yokote 
et al.[106]

Multiple 
lesion 
detection

2023 Retrospective Japan Construction of 
objection detection 
AI model for 
classification of 12 
types of lesions 
from CE images

Training: 17,085 images 
Testing: 1,396 images

CNN Sensitivity of 91%

Ding 
et

 
al.[107]

Multiple 
lesion 
detection

2023 Retrospective China Development of AI 
tool to detect 
multiple lesion 
types on CE

Training: 280,426 images 
Testing: 240 videos

CNN Median sensitivity 
of 96.25%, 
median specificity 
of 83.65%

AI: Artificial intelligence; CNN: convolutional neural network; CE: capsule endoscopy; AGDN: attention guided deformation network; WCE: 
wireless capsule endoscopy; CAD-CAP: computer-assisted diagnosis for capsule endoscopy; KID: koulaouzidis-iakovidis database; SVM: support 
vector machine.

While AI shows high overall accuracy across many studies, it is important to note that overall accuracy 
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alone does not paint a comprehensive picture of model performance in medical applications. For diagnostic 
models, maintaining a low rate of false negatives is crucial to ensure no diagnoses are missed. While false 
positives may cause unnecessary worry and additional testing, false negatives can lead to delayed treatment 
with potentially severe consequences. Additionally, the current body of research is primarily conducted 
retrospectively, introducing the risk of investigator bias. Hence, future prospective multicentre research on 
this topic is required.

CONCLUSION AND FUTURE DIRECTIONS
This narrative review provides a comprehensive synthesis on the literature relating to AI in WCE. While 
integrating AI into capsule endoscopy shows immense promise in reading time reduction and accuracy 
improvement, there is a potential possibility that the system could independently read images in the future. 
This path, though, must be navigated carefully, bearing in mind the unique challenges associated with 
medical data and the specific requirements of diagnostic models. The potential of ViTs is yet to be fully 
exploited in this field. We anticipate an exciting progression in the coming years as more refined and 
accurate models are developed.
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