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Abstract
Frequency selective surfaces (FSSs) with reconfigurable resonant frequency show significant potential for 
engineering applications. In this study, we propose a flexible FSS with a buckling dipole prepared by releasing the 
substrate pre-strain to buckle the locally adhered two-dimensional precursors, which can withstand large 
mechanical tensile deformation and change their resonant frequency during deformation. When the FSS is 
subjected to uniaxial tensile deformation, the capacitive effect between the adjacent buckled metal unit cells is 
significantly reduced due to the increase in the gap between the unit cells and period. This significant change in the 
equivalent circuit parameters due to the geometry change is highly beneficial for actively tuning the resonant 
frequency of the FSS. Electromagnetic (EM) experiments and simulations and equivalent circuit calculations are 
used to explore the EM tuning mechanism of the FSS and consistent conclusions are obtained. The results show 
that the FSS exhibits band-stop EM wave transmission characteristics with a resonant frequency of 6.1 GHz in the 
unstretched state and 21% uniaxial stretching strain can introduce a ~1.1 GHz increase in the resonant frequency. 
The corresponding parameter analysis shows that when the gap of the buckling dipoles in the width direction is 
reduced, the change in the resonant frequency caused by uniaxial stretching can be significantly increased, even to 
2.5 GHz, which may help the FSS adapt to complex practical  applications by tai loring the 
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geometry of the buckling dipole.

Keywords: Frequency selective surfaces, flexible, reconfigurable, mechanical stretching, three-dimensional 
assembly

INTRODUCTION
Frequency selective surfaces (FSSs) are passive two-dimensional (2D) periodic resonant metal unit 
structures and essentially act as spatial filters that can achieve the selective filtering of electromagnetic (EM) 
waves in free space[1,2]. They have a wide range of applications in radomes[3,4], reflective surface antenna 
systems[5,6], absorbing materials[7,8], artificial EM materials[9,10], EM shielding[10-13] and other fields. However, 
since the EM wave transmission performance of conventional FSSs cannot be modulated after their design 
and fabrication, active frequency selective surfaces (AFSSs) have attracted the attention of researchers[14,15], 
which can actively tune the EM characteristics of FSSs, such as resonant frequency and bandwidth for 
different application scenarios through additional control to adapt to complex and variable multi-frequency 
communication systems[16]. In order to increase the adaptability and flexibility of FSSs in applications, a 
wide range of active control methods are used to tune the transmission properties, such as light 
intensity[17,18], temperature[19], active lumped elements[20,21] and microelectromechanical systems[22], which 
reconfigure the material properties, geometrical dimensions and structural shape of the periodically 
arranged metal resonant units. However, these AFSSs require complex fabrication processes, additional 
active modulation methods and special operating environments (e.g., light intensity and temperature)[23], 
which limit their applications in some special lightweight scenarios. Simultaneously, AFSSs are usually 
fabricated on non-deformable hard substrates, such as Si and quartz[24], rendering them inaccessible for 
application on surfaces that are abundantly present in engineering applications.

Recently, the rapid development of mechanically guided three-dimensional (3D) assembly fabrication 
processes and stretchable flexible electronics has provided new methods to actively modulate the 
transmission characteristics of FSSs through simple and reliable mechanical deformation[25-30]. This three-
dimensional assembly method uses the rapidly developing and technology-sophisticated semiconductor 
technology to form a 2D precursor, which is converted into the desired 3D conformation by controlled 
compression. This technology has shown significant potential in numerous fields, including communication 
antenna[23,31,32] and flexible electronic device design[33-37] and semiconductor fabrication[38,39]. Compared to the 
2D FSS structure, the 3D FSS design adds a degree of freedom for better constructing the resonant cavity, 
thereby providing the ability to achieve a filter response with incidence angle stability[40] and high selectivity 
performance[41,42]. FSSs prepared by 3D assembly maintain reversible unidirectional stretchable performance 
and the capability to change the shape and position of the 3D buckling metallic resonant units by stretching, 
which affect the coupling capacitive-inductive effect, thus actively tuning the EM characteristics, such as the 
resonant frequency and bandwidth, of the FSS by mechanical stretching.

Here, a resonant frequency and -10 dB bandwidth tunable FSS with a buckling dipole is designed and 
fabricated using a mechanically guided 3D assembly technique. The structure is prepared by releasing a 
unidirectional pre-stretched flexible substrate to buckle the dipole resonant metallic units, which are 
partially adhered to the flexible substrate, in the out-of-plane direction. An additional unidirectional 
stretching of the flexible substrate causes the out-of-plane buckling 3D dipole to gradually unfold to the 2D 
plane. In this process, the shape and size of the resonant metallic cell changes dramatically, resulting in 
extremely different capacitive-inductive coupling effects between the 3D and 2D structures, which enable 
active modulation of the EM transport properties of the FSS by mechanical stretching. The free-space 
method of EM experiments and related simulations show consistent results, indicating that mechanical 
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unidirectional stretching can significantly and actively modulate the EM wave transmission performance of 
the FSS. The physical mechanism of this active modulation is qualitatively explained from the method of 
equivalent circuits by Agilent Advanced Design System (ADS) software. The influence of geometrical 
parameters (e.g., the gap of the buckling dipole in the width direction) on the effect of this active 
modulation is also evaluated, which can guide the application of the FSS in different scenarios. These results 
show that the modulation of the EM properties of an FSS by means of the active control of mechanical 
stretching may have excellent potential for applications in areas such as communications and EM shielding.

EXPERIMENTAL
Sample preparation
The precursor with a Jerusalem shape, endextended cross structures popular in the FSS units, was obtained 
using a programmable laser cutting machine (Silhouette Cameo) to carve the commercial flexible printed 
circuit board [TURK2210S, laminated from polyimide (22.5 μm) and copper (18 μm)]. Afterwards, the 
whole film was picked up by water soluble tape (WST/AQUASOL) and any unnecessary parts of it were 
torn off so that periodically arranged precursors were retained. After being covered with a mask made by 
laser cutting, local regions of precursors were coated with commercial glue (DingLi Feng). The precursors 
were then transferred to a pre-stretched ecoflex substrate (Dragon Skin) and adhered at predefined 
locations. By slowly releasing the pre-strain of the substrate, the assembly of the FSS (450 mm × 450 mm) 
was finally completed.

EM measurements and simulations
The free-space method was utilized for the EM measurements. Using a coaxial cable (produced by HBTE), 
the information reflecting the EM wave before and after being filtered by the flexible 3D FSS was sent to a 
vector network analyzer (VNA) (R&S, ZNB20) by a transmitting horn antenna (Tx ANT) and a receiving 
horn antenna (Rx ANT), respectively, operating from 2 to 18 GHz. Therefore, corresponding to each 
uniaxial stretching strain, the transmission properties of the flexible 3D FSS were measured progressively. 
To assess the contributions on the focusing of the EM waves, the sample was located at the middle of the 
antenna using ground rails. Around a uniaxial extensometer, 150 and 300 mm height conical wave 
absorbers were arranged to keep the EM waves from transmitting around the flexible FSS. Finally, the 
transmissions of the 2-18 GHz EM waves were shown on the VNA. The EM simulation was completed 
using Studio Suite software (CST). First, the mesh elements of the flexible 3D FSS, with each stretching rate 
determined by mechanical simulation, were imported to HYPERMESH software to create the 
corresponding geometric configurations to be imported to CST, in which a hexahedral transmission line 
matrix element was used. Cu was regarded as a perfect electric conductor and the relative permittivities (εr) 
were set as εr-ecoflex = 3.2 and εr-PI = 3.4. The boundary conditions were set in the unit cell in the x- and y-
directions and open (add space) in the z-direction. Finally, the frequency domain analysis method was 
adopted to guarantee accuracy for the EM simulations.

Mechanical measurements and simulations
A uniaxial extensometer was made with two commercial slides (HongYuan Tai) and two 3D printing 
clamps (AURORA), with which the flexible 3D FSS was stretched uniaxially. According to the Saint-Venant 
principle, the central part of the sample was purely uniaxially stretched without considering boundary 
conditions. A laser displacement sensor (Micro-Epsilon), instead of touching, measured the 3D morphology 
of the sample. The mechanical simulations were implemented by the commercial software ABAQUS. Shell 
elements (S4R) and 3D solid elements (C3D8R) were used to model the Cu/PI lamination and ecoflex 
substrate, respectively. The linear elasticity constitutive relationship was applied to the ecoflex, PI and Cu, 
and the elastic moduli (E) and Poisson’s ratios (ν) could therefore be set as Eecoflex = 0.06 MPa and νecoflex = 
0.49, EPI = 2.5 GPa and νPI = 0.34, and ECu = 119 GPa and νCu = 0.34, respectively. Primarily, releasing the pre-
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strain of the substrate to buckle the precursors simulated the assembly process of the flexible 3D FSS. 
Afterwards, with uniaxially stretching the ecoflex substrate progressively, both the 3D configuration and 
principal strain of the PI/Cu lamination were confirmed under each stretching rate. In addition, the 
convergence of the mesh sizes was tested in order to guarantee the computational accuracy.

RESULTS AND DISCUSSION
Figure 1A illustrates the FSS, a periodically arranged structure consisting of a flexible ecoflex substrate and 
metal dipoles buckled along the x-axis, with the ability to dynamically tune the EM wave transmission 
performance by uniaxial stretching mechanical deformation. As shown in the upper right corner of 
Figure 1A, the dipole laminated beams consisted of metallic Cu and PI films as metal precursors and were 
attached to the upper surface of the ecoflex upon uniaxial stretching in the two red rectangular bonded 
areas, which were buckled into a 3D structure by the substrate pre-strain release. The ecoflex was chosen as 
the flexible substrate due to its excellent stretchability and the easy nature of bonding PI with glue. The 
geometry of the dipole precursors was as follows: period of unit cell in two directions, Pw = 12 mm and Pl = 
28 mm; width and length of Cu arm, w = 3 mm and l = 26 mm; width of bond area, a = 1.5 mm, half length 
of the metal spacing, d1 = 1 mm and d2 = 3 mm; thickness of Cu, PI & ecoflex, t1 = 0.018 mm, t2 = 0.0225 mm 
and t3 = 1.87 mm, respectively. Due to the stretchability of the buckling dipole and the flexible ecoflex 
substrate, the FSS can be bent and stretched to suit complex application scenarios. Figure 1B shows the 
optical image of the FSS after bending it by hand, as well as the local magnified image. Figure 2A-C illustrate 
in detail the flow chart for the preparation of the FSS. In the first step, the cured and completed ecoflex 
substrate was stretched by uniaxial pre-stress.

In order to study the modulation effect of uniaxial stretching mechanical deformation on the FSS, its 
transmission performance was investigated by EM experiments and simulations. First, the free-space 
method EM experiment was designed as shown in Figure 3A, while the EM simulation was obtained by CST 
simulation software. The transmittance of the EM experiment was calculated with help of the VNA by 
comparing the EM wave energy irradiated before and after the FSS sample, obtained by Tx ANT and Rx 
ANT, respectively. The sample was stretched uniaxially at the applied strains by a extensometer, the 
accuracy of which was guaranteed by the commercially available sliders with scales.

Figure 3B shows the EM experimental measurements and simulation results when the FSS was uniaxially 
stretched by 0%, 5.4%, 11.3% and 21%. It can be seen that the EM wave transmittance is in good agreement 
between the simulations and experiments, indicating the reliable and stable “band resistance” frequency 
selection performance of the FSS when using mechanical deformation to modulate. Unfortunately, due to 
the limitations of the imperfect experimental equipment accuracy caused by the small power of the antenna 
horn and the low dynamic range of the VNA, the experimental data of transmittance less than -25 dB were 
not measured. However, this does not affect the calculation of the resonant frequency and -10 dB 
bandwidth, i.e., the two parameters describing the EM properties of the FSS. To further explore the EM 
modulation effect, the trends in resonant frequency and -10 dB bandwidth vs. x-axis uniaxial stretching 
strains are depicted in Figure 3C and D. The results show that the resonant frequency and -10 dB 
bandwidth of the FSS in the unstrained state are 6.1 and 3.9 GHz, respectively. In contrast, the 21% uniaxial 
stretching strain increases the resonant frequency to 7.25 GHz and the -10 dB bandwidth to 5.5 GHz, with a 
significant EM tuning effect.

Research on the mechanical deformation law of the unit cell is beneficial to understanding the EM 
modulation mechanism of FSS with a buckling dipole by uniaxial stretching. The mechanical deformation 
of the buckling dipole at different uniaxial stretching strains was quantitatively portrayed using finite 
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Figure 1. (A) Schematic diagram of FSS irradiated by EM waves and geometry of metal unit cell precursors. (B) Optical image of bended 
FSS and local magnified detail image. FSS: Frequency selective surface; EM: electromagnetic.

Figure 2. Schematic diagram of fabrication process of frequency selective surface: (A) pre-stretching; (B) bonding 2D precursors; and 
(C) releasing pre-strain.

element analysis in ABAQUS and a uniaxial extension test setup. In the finite element model, the elastic 
moduli of PI, Cu and ecoflex were 2.5 GPa, 119 GPa and 0.06 MPa, and the relaxation ratios were 0.34, 0.34 
and 0.49, respectively[43]. The Cu/PI laminate and ecoflex were modeled via S4R elements and C3D8R 
elements, respectively. The morphology of the cells at different uniaxial stretching strains were obtained 
using a laser displacement sensor. Figure 4A illustrates the deflection of the buckling dipole in the z-
direction for stretching strains of 0%, 5.4%, 13.2% and 21.0%. It can be seen that as the uniaxial stretching 
proceeds, the buckling dipole tends to flatten, but the “bell” shape remains similar in appearance. 
Simultaneously, the maximum deflection in the z-direction gradually decreases, while the copper length 
gradually increases, as also demonstrated in Figure 4B, which shows the quantitative trends of the FSS 
period, the copper length and the maximum deflection along the z-direction vs. the uniaxial stretching 
strains.

The EM modulation mechanism is illustrated by the surface current and the corresponding electric field 
excited by EM wave irradiation in the FSS, as shown in Figure 5. Figure 5A shows that the surface current is 
mainly concentrated in the middle of the buckling dipole, oscillating left and right along the dipole arm, 
when the EM wave at resonant frequency with the electric field direction E along the x-axis is incident on 
the unstretched FSS. Figure 5B and C show the electric field cloud and vector diagram of the electric field 
distribution on the FSS surface, respectively, with the electric field concentrated at the gap of the dipole. 
Figure 5C shows that the electric field intensity above the flexural dipole FSS is large, while the electric field 
intensity below is relatively small, which indicates that the EM wave at the resonant frequency cannot 
transmit the band-resistive FSS.
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Figure 3. (A) Schematic diagram of EM measurement experiment by the free-space method and an image of the extensometer. (B) EM 
experimental measurements and simulation results of FSS with uniaxial stretching strains of 0%, 5.4%, 11.3% and 21%, respectively. 
Trends of (C) resonant frequency and (D) -10 dB bandwidth vs. x-axis uniaxial stretching strains. VNA: Vector network analyzer; EM: 
electromagnetic.

Figure 4. (A) Deflection of buckling dipole in the z-direction for stretching strains of 0%, 5.4%, 13.2% and 21.0%, respectively. (B) 
Trends in periodic length, Cu length and maximum deflection along the z-direction vs. the uniaxial stretching strains.

Figure 5. (A) Surface current vector diagram. (B) Electric field distribution and (C) vector diagram on frequency selective surface 
excited by electromagnetic wave with an x-axis electric field.
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The equivalent circuit modeling process and results of the FSS are shown in Figure 6A. The concentration 
of the electric field and surface currents can be equated as capacitance C1 and inductance L, respectively[44]. 
The capacitive effect between the cells in the y-direction cannot be ignored and needs to be replaced by 
capacitance C2 due to the small gap of only 6 mm. The ecoflex dielectric substrate and the free air layer are 
equated as transmission lines with characteristic impedances Z1 and Z0, respectively. According to 
transmission line theory[45]:

where Z0 = 377 Ω and εr = 3.4, denoting the relative permittivity constant of the ecoflex substrate[46].

Figure 6B illustrates the FSS equivalent circuit. With the aid of ADS, the L, C1 and C2 values of the 
equivalent circuit were extracted by fitting the FSS transmittance and reflectance of the buckling dipole 
calculated by EM simulations. The ADS S-parameter calculation, experimental and EM simulation results of 
the unstretched FSS are given in Figure 6C and D. The results show good agreement both for reflectivity 
and transmittance, which strongly suggests that the above equivalent circuit can describe the frequency 
selection performance of the FSS. Figure 6E and F depict the trends in capacitance and inductance vs. 
uniaxial stretching strains, respectively. As the FSS is uniaxially stretched, the unit cell gap d1 in the x-axis 
direction gradually increases, which results in the capacitance C1 remaining lower in the overall trend. 
However, C2 monotonically increases due to the enhanced capacitive coupling effect between the cells in the 
y-direction as the stretching due to the flattening of the buckling dipole unit cells and the decreasing 
maximum deflection. Furthermore, the progressively flattened metal dipole loses the coupling inductance 
between the 3D metals, resulting in a gradually decreasing inductance L. The modulation of each parameter 
of the buckling dipole equivalent circuit caused by uniaxial stretching eventually results in a gradual 
increase in resonant frequency, which is an inevitable consequence of the gradual flattening of the buckling 
dipole losing the miniaturization characteristics of the 3D FSS from another perspective.

The use of structural parameter analysis to study the tuning effect of the FSS with different sizes after being 
stretched uniaxially can help to further understand the physical mechanism of actively tuning EM waves by 
mechanical deformation. As shown in Figure 1A, different sizes of the unit cell of the FSS with half of the 
gap (d2) in the width direction can significantly change the capacitive coupling effect between unit cells, 
which have the potential ability to influence the active tuning effect. Figure 7 depict the effect of 21% 
uniaxial stretching strain on the EM transmission performance of the FSS when d2 is taken to be 1.5, 3.0, 4.5 
and 6.0 mm, respectively. It can be seen that the uniaxial stretching strain has a greater active tuning 
performance when d2 is smaller than 1.5 mm, with a resonant frequency shift of 2.5 GHz. This result helps 
to parametrically tailor the FSS of a specific size for different tuning purposes in different practical 
application scenarios.

CONCLUSIONS
In summary, an FSS with a buckling dipole with continuous modulation of resonant frequency and 
bandwidth by the mechanical method of uniaxial stretching has been presented. The structure was prepared 
by a mechanically guided three-dimensional assembly process that has been developed rapidly in recent 
years. The FSS was obtained by the compression generated from releasing the uniaxial stretching pre-strain 
on a flexible substrate, which makes the dipole precursor partially attached to it to buckle gradually. The re-
uniaxial stretching allows the buckling dipole unit cells to unfold gradually from a 3D to 2D shape. 
Significant changes in the metal resonance unit shape cause a gradual tuning of the EM properties. The EM 



Page 8 of Fan et al. Soft Sci 2021;1:13 https://dx.doi.org/10.20517/ss.2021.1811

Figure 6. (A) Equivalent circuit modeling process and (B) results of FSS. (C) EM transmittance S21 and (D) reflectance S11 obtained from 
ADS calculation results, experimental measurements and EM simulation results of the unstretched FSS. Trends in capacitance (E) and 
inductance (F) vs. uniaxial stretching strains. FSS: Frequency selective surface; ADS: Advanced Design System; EM: electromagnetic.

Figure 7. Effect of 21% uniaxial stretching strain on electromagnetic transmission performance of frequency selective surface when d2 is 
taken as 1.5, 3.0, 4.5 and 6.0 mm, respectively.

experiments, CST simulations and ADS calculations showed consistent results and that 21% uniaxial 
stretching strain can lead to an increase in the 1.15 GHz resonant frequency and an increase in the -10 dB 
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bandwidth of 1.6 GHz for FSS. The active modulation effect can be significantly influenced by the 
customized design of the gap in the width direction of the dipole precursor. These studies have revealed that 
the active modulation of EM waves through mechanical methods could have prospective applications in the 
fields of EM communication and shielding.
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