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Abstract
Flexible electronic skin (e-skin) has been successfully utilized in diverse applications, including prosthesis sensing, 
body-motion monitoring and human-machine interfaces, due to its excellent mechanical properties and electrical 
characteristics. However, current e-skins are still relatively thick (> 10 µm) and uncomfortable for long-term usage 
on the human body. Herein, an ultrathin skin-integrated strain sensor with miniaturized dimensions, based on the 
piezoresistive effect, with excellent stability and robustness, is introduced. The fractal curve-shaped Au electrode 
in a serpentine format, which is the dominant component of the strain sensor, is sensitive to ambient strain 
variations and can turn the mechanical motion into a stable electrical signal output. With the advanced design of 
metallic electrodes, the device presents good operational stability and excellent mechanical tolerance towards 
bending, stretching and twisting. The stain sensor allows intimate mounting onto the human epidermal surface for 
the detection of body motion. By adopting a liquid bandage as an encapsulation layer, the device exhibits an 
ultrathin thickness (6.2 µm), high sensitivity towards mechanical deformations and capability for the clear 
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detection of motion, such as walking, finger bending and the human pulse rate with identifiable electrical signals. 
Furthermore, the tattoo-like strain sensor is applied in robotic control by tracing finger bending motion and results 
in the smooth control of a robotic hand nearly without any detention. This e-skin design exhibits excellent potential 
for wearable electronics and human-machine interfaces.

Keywords: Skin-integrated electronics, ultrathin, excellent repeatability, fractal design, stretchable electronics

INTRODUCTION
Recently, epidermal electronics have attracted significant attention globally as a result of their excellent 
mechanical properties and electronic characteristics[1-10]. Until now, extensive flexible strain sensors have 
been developed based on various operational principles, such as piezoelectricity[11-14], triboelectricity[15-17], 
piezoresistivity[18-21,22]. Among the reported strain sensors, piezoelectric and triboelectric devices have raised 
extremely high interests for their natural characteristics in self-powering[23-31]. However, the instantaneous 
electrical signals and fast attenuation of electrical performance significantly limit their further development 
in the application of electronic skin (e-skin)[32]. Distinguished from self-powered strain sensors, e-skin, 
based on the piezoresistive effect, provides functions closer to human skin, capable of the accurate real-time 
detection of strain variations[33-38]. The resistance change of the piezoresistivity in e-skin can be conveniently 
transformed into voltage changes via real-time electrical monitoring of the sensor, which is then recognized 
by a microcontroller for later robotic control.

Benefitting from the fast development of materials science, many piezoresistive effect-based e-skins have 
been reported by incorporating advanced conductive materials, such as graphene and polydimethylsiloxane 
(PDMS) composites[39-42], ion-conducting hydrogels[43-45] and graphene-coated fabrics[46-48]. To achieve 
sufficient repeatability and stability, the fabrication process of newly-developed materials tends to require 
expensive equipment and rigorous experimental environments, which are not readily available with 
standard facilities in academic cleanrooms. Compared to these strain sensors, e-skins based on metal 
electrodes can realize low-cost fabrication, as well as high stability and repeatability with sufficient electrical 
sensitivity[48]. As a noble metal, gold (Au) exhibits high oxidation resistance suitable for fabricating strain 
sensors[49,50]. To realize its long-term utilization on the surface of human skin, e-skin must be extremely 
lightweight with imperceptible architectures and without any limitation and influence on body motion. It 
also requires skin-compatible interfaces with the targeted skin with a soft, curved dynamic surface in a 
stable, safe fashion that does not easily split away from the skin surface, as well as outstanding operational 
performance characteristics with high sensitivity and accuracy.

Herein, we report an ultrathin skin-integrated strain sensor based on the piezoresistive effect with excellent 
stability and repeatability. The key component is the Au electrode in the format of a fractal curve that is 
sensitive to ambient strain variations. To minimize the effect of the device on the skin strain field 
distribution, the overall dimensions of the sensor are 5 mm × 2 mm × 6.2 µm (length × width × thickness) 
with a mass of 0.204 mg. Compared with conventional strain sensors based on the piezoresistive effect, our 
strain sensor demonstrates significantly reduced dimensions with a competitive stretching range and 
sensitivity [Supplementary Table 1][51-56]. Guided by theoretical modeling, the advanced structural design 
enables conformal integration with the skin under large mechanical deformations. In order to yield the 
intimate contact on complex textures of epidermal surfaces, a liquid bandage is sprayed as a connection 
layer between the sensors and the epidermal surface. Compared to the commonly adopted PDMS layer, the 
liquid bandage possesses the advantages of low thickness (1 µm) and lightweight. The tight bondage 
between the sensors and the epidermal surface allows the users’ unhindered movements and providing 
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precise measurements of the body motions sensing in a highly accurate approach. By accurately capturing 
finger motions and pulse rate, the sensor provides a promising alternative for real-time monitoring human 
health. In addition, with signals obtained from the strain sensors, a six-degree-of-freedom prosthetic arm is 
then used to imitate the motion of the human hand, by applying to program for sensitivity and detection 
adjustment.

RESULTS AND DISCUSSION
Figure 1A presents a schematic of the strain sensor. To ensure the surface smoothness and the fabrication 
compatibility, a quartz glass was first used as the substrate, with a spin coated poly(methyl methacrylate) 
(PMMA) thin film on top as a sacrificial layer and a thin polyimide (PI) film as the metal electrode 
supporting layer. Metallic layers (Cr/Au) were deposited on the PI film and patterned by photolithography, 
serving as the functional electrode for strain change detection. Spin-casting another PI film and selectively 
dry etching by reactive ion etching provided a top encapsulation layer for building a robust system. 
Dissolving the PMMA with acetone enabled transfer printing of the electrode onto the targeted skin area 
with pre-sprayed liquid bandage through a water-soluble tape (WST). Finally, an additional layer of liquid 
bandage was sprayed on top of the electronics to encapsulate the exposed gold electrode. The device features 
by the filamentary fractal design of the gold electrode (200 nm) and an ultrathin and stretchable 
encapsulation layer (liquid bandage, 1 µm) to enhance the overall flexibility and biaxial stretchability of the 
system [Figure 1B].

The liquid bandage acts as a tight adhesive and robust encapsulation for the strain sensor. A sensor is 
mounted on a volunteer’s forearm over 12 h and during this period, the volunteer is allowed to perform all 
daily movements, such as walking, running and twisting his forearm. After 12 h, the sensor is still mounted 
on their forearm with no evidence of flaking. According to the experimental studies, the ultrathin 
encapsulation layers can provide an excellent protection of the gold electrode underneath and the sensor 
could endure various mechanical forces, like continuous rubbing, while remaining undamaged 
[Supplementary Movie 1]. Apart from the external loads, the liquid bandage is waterproof, which could 
protect the sensor in moisture environments. There is experimental study proves that, with the 
encapsulation of the liquid bandage, the sensor is approximately unaffected in a watery environment, where 
the change in the electrical signal (ΔR/R0) is less than ±0.02% [Supplementary Figure 1]. This tight adhesion 
and waterproof capability of the liquid bandage allow the strain sensor to work unaffected under large body 
movements and a sweated skin surface.

The overall dimensions of the strain sensor are 5 mm × 2 mm × 6.2 µm (length × width × thickness), thereby 
making it convenient and comfortable when attached to the human body, as shown in Figure 1C. 
Compared with recently reported piezoresistive strain sensors, our device demonstrates superior 
dimensions with a competitive stretching range and sensitivity, as shown in Supplementary Table 1. The 
ultrathin design combined with filamentary fractal Au wires allows the device to be stretched, bent and 
twisted for the seamless and conformal integration onto curvilinear surfaces of human epidermis [Figure 1D 
and E]. It is found that most of the skin surface would stretch within 20%, without any external stretching 
[Supplementary Table 2], indicating that the strain sensor could be mounted on most of the body parts for 
the body movement monitoring. Finite element analysis shows that the maximum equivalent strain in Au is 
less than a yield strain of 0.3% for the device under 280° of bending (bending radius of ~2.7 mm), 20% 
stretching and 90° of twisting [Figure 1D]. These results highlight that this robust and stretchable device can 
operate under realistic physiological loads.
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Figure 1. Flexible, ultrathin, skin-integrated and Au-based strain sensor. (A) Schematic of strain sensor. (B) Optical image of patterned 
Au/Cr electrode design. (C) Optical image of strain sensor mounted on the human epidermal surface. (D) Finite element analysis of 
strain distribution on strain sensor under stretching, twisting and bending. (E) Optical image of strain sensor attached on a pink PDMS 
surface with three mechanical deformations, including bending, stretching and twisting.

Figure 2A and B present the electrical signal (ΔR/R0) as a function of strain variation under the static state 
along length and width, respectively. It is obvious that the electrical response increases linearly with 
increasing strain along the two directions. At the strain change of 20%, the values of ΔR/R0 can reach 0.76% 
and 0.61% under longitudinal and transverse tensions, respectively. It is proved that the strain sensor is 
sensitive to both longitudinal and transverse strain and it is able to function at 20% strain in either direction. 
To investigate the frequency effect on the electrical signal, the device was tested under a constant strain 
variation (12.5%) with different frequencies from 1 to 6 Hz, fully covering the frequencies triggered by 
human daily motions, as shown in Figure 2C. It is found that the low frequency has no effect on the 
electrical response of the device due to its fast response time (0.04 s) [Figure 2D]. To demonstrate the high 
durability of the strain sensor, fatigue tests were conducted with repeated stretching for 150 cycles at 1 Hz 
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Figure 2. Electrical characteristics of strain sensor. (A) Electrical signals (∆R/R0) of strain sensor at different longitudinal tensions. (B)

Electrical signals (∆ R/R0) of strain sensor at different transverse tensions. (C, D) Electrical signals (∆R/R0) of strain sensor at different
frequencies under 12.5% strain and its detailed signals at 6 Hz. (E, F) Electrical signals (∆R/R0) of strain sensor in a fatigue test for 150
cycles and its detailed signals from a selected range.

under 11.8% strain [Figure 2E] with electrical signals ranging from 0% to 0.4% [Figure 2F]. The results prove 
that the strain sensor is sufficiently durable to endure highly intensive stretching and maintain stable 
electrical signal outputs.

To further demonstrate its meticulous structure, the sensor is mounted on the back of a hand [Figure 3A]. 
Due to its ultrathin thickness and good adhesion of the encapsulation layer, the device can be conformally 
mounted onto human skin without any delamination during stretching. As shown in Figure 3B, the 
electrical signals (ΔR/R0) at bending angles of 38°, 61° and 90° are 0.121%, 0.285% and 0.567%, respectively. 
This proves that the strain sensor is capable of capturing small body movements and output obvious signals, 
which are later applied in robotics control. As shown in Figure 3C and D, a sensor is attached onto an 
experimenter’s wrist for pulse rate recording (given with its circuit diagram), where the measured relative 
voltage shows a regular variation ranging from 0% to 0.073%, along with the pulse rate. It is sensitive 
towards the human pulse, which demonstrates the potential of the flexible skin-integrated sensors in the 
fields of clinical application. In Figure 3E, it shows an optical image of the strain sensor mounted on a 
volunteer’s ankle for his walking motion detection. The ΔR/R0 varies along with the paces, ranging from 
0.0173% to 0.354% [Figure 3F], which shows its capability of human motion capturing. Its sensitivity toward 
muscle contraction could be possibly applied in the field of motion detection in sports.

Next, the strain sensor is applied for human-machine interfaces by demonstrating the robotic hand control. 
The schematic of the testing circuit is shown in Figure 4A, in which the control system is composted with 
six strain sensors and their corresponding amplifiers (INA828, Texas Instruments) and an Arduino board. 
Figure 4B and C show the optical images of the strain sensors mounted on the joints of a hand and circuits 
connected with the Arduino board (Arduino nano with ATMEGA328P-MU chip), respectively. Those 
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Figure 3. Electrical signals of flexible strain sensor under different external stimuli. (A) Optical image of strain sensor mounted on the 
back of a hand and its enlarged optical image of the strain sensor during deformation. (B) Electrical signals (∆R/R0) of strain sensor 
under different finger bending angles. (C) Optical image of strain sensor mounted on a wrist for human pulse rate detection and its 
electrical diagram. (D) Electrical signals (V) of strain sensor in the pulse rate test in (C). (E) Optical image of strain sensor mounted on 
a waist for ankle for walking motion detection. (F) Electrical signals (∆R/R0) of strain sensor under the walking motion test.

sensors are mounted on the joints of the hand to capture the finger motions, which lead to a smooth control 
of the robotic hand. It is able to imitate the gestures of the hand almost without any detention. In Figure 4D, 
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Figure 4. Robotic hand controlling performed by flexible strain sensors. (A) Schematic diagram of testing circuit for controlling robotic 
hand. (B) Optical image of six sensors mounted on the joints of a hand for robotic hand control. (C) Optical image of Arduino 
breadboard linked with the sensors and the robotic hand. (D) Optical image illustrating that the sensors control the robotic hand to 
make gestures of “C”, “like you” and “grasp” and their corresponding electrical signals ( R/R0) of sensors at different gestures (E).

some meaningful hand gestures, including “C”, “like you”, and “grasp”, are demonstrated, which proves the 
high feasibility of robotic hand control. Moreover, there are three corresponding graphs underneath 
illustrating the electrical responses of the sensors for different hand gestures. This demonstrates that the 
signal intensity varies with the hand’s bending degree that at the fingers’ complete bending and 
straightening conditions, the electrical signals (ΔR/R0) are 0.75% and 0.04%, respectively [Figure 4E]. This 
distinct disparity of the electrical signals leads to the accurate control of the robotic hand. To summarize, we 
have demonstrated a human-machine interface application of the strain sensor by controlling a robotic 
hand in a natural and smooth approach, thereby indicating the high feasibility of applying flexible strain 
sensors in human-machine interfaces.

CONCLUSION
An ultrathin Au-based stretchable strain sensor has been developed for body motion caption and human-
machine interfaces. It possesses the advantages of miniaturized dimensions (5 mm × 2 mm × 6.2 µm), skin 
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integrability, high stability and stretchability, which allow it to be tightly mounted on the epidermal surface 
for body motion capturing. Its electrical signal output ΔR/R0 can rise to 0.76% and 0.61% under 20% 
longitudinal and transverse stretching rate, respectively, and it can undergo repeated stretching for 150 
cycles at 1 Hz under 11.8% strain. With a liquid bandage as the encapsulation, the strain sensor can be 
tightly mounted on epidermal surface that can measure the human pulse rate and the walking motions. 
Furthermore, the strain sensors are applied in robotic hand control, which can imitate the finger motions of 
the human hand precisely, smoothly, and almost without any detention. The results in this work present the 
potential in body motion measuring and robotic control, which indicates a new strategy for flexible sensors 
in clinical applications and human-machine interfaces.

EXPERIMENTAL
Assembly of tattoo-like e-skin
First, a quartz glass was cleaned with acetone, ethanol and deionized water sequentially. Then, a PMMA 
solution (20 mg/mL) was spin-coated onto the surface of the cleaned glass at 2000 rpm for 30 s and then 
baked on a hotplate at 200 C for 20 min. The PMMA thin film served as a sacrificial layer. Afterwards, 
polyamic acid solution (12.0 wt.% ± 0.5 wt.%, 3 µm) was spin-coated on the PMMA sacrificial layer at 3000 
rpm for 30 s. The PI thin film was then cured on the hotplate at 250 °C for 30 min to densify. Cr (40 nm) 
and Au (200 nm) were next deposited on the PI film by magnetron sputtering, patterned with 
photolithography and further wet etched to form the desired pattern. The photolithography process was 
carried out by exposing the pre-spin-coated (3000 rpm, 30 s) and soft-baked (110 °C, 3 min) positive 
photoresist (PR, AZ 5214, AZ Electronic Materials) to ultraviolet light for 5 s. The pattern was then 
developed in an AZ 300MIF developer for 15 s, followed by a post bake at 110 C for 3 min.

After etching the Au/Cr layer, the PR was removed with acetone and rinsed with deionized water. A second 
layer of PI thin film (2 µm) was then spin coated (3000 rpm, 30 s) and annealed (250 °C, 30 min), followed 
by selectively dry etching (Oxford Plasma-Therm 790 RIE system, 200 W, 10 min). The patterned PI thin 
film served as the encapsulation layer covering the whole interconnects except the electrode areas. Next, the 
sample was immersed in acetone for 12 h to fully dissolve the PMMA layer. WSTs were utilized as a stamp 
to pick up the prepared pattern. An ultrathin layer of liquid bandage (1 µm, Banitore company) was sprayed 
on the target area of human skin. Tightly attaching the WSTs on the target area then dried in the air at 25 °C 
for 5 min formed strong mechanical bonding. Immersing the sample in water to remove the WSTs and 
realize stretchable electrodes on human skin. Next, a liquid bandage layer (1 µm) was sprayed on the top of 
the electrode. The liquid bandage was dried in air for 5 min to form a robust structure with strong 
interfacial bonding between different layers.

Characterization
The resistance was measured by a DAQ6510 data acquisition/multi-meter system. The tiny voltage variance 
in Figure 3D was calculated by measuring the voltage of a fixed value resistor connected in series with the 
triboelectric nanogenerator (the voltage was measured by PL3516/P Powerlab 16/35, which owns much 
lower noise signal and higher sampling rate than the DAQ6510 multimeter system).

Mechanical simulations
The finite element analysis commercial software ABAQUS (Analysis User’s Manual 2016) was utilized to 
design the layout of strain sensor and study the corresponding mechanical performance. The objective was 
to decrease the strain level in Au layer under different typical loads (stretching, bending and twisting). The 
phantom skin was modeled by hexahedron elements (C3D8R), while the thin Au, Cr, liquid bandage and PI 
layers was modeled by shell elements (S4R). The minimal element size was one quarter of the width of the 
Au wires (50 µm), which ensured the convergence of the mesh and the accuracy of the simulation results. 
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The elastic modulus (E) and Poisson’s ratio (ν) used in the analysis were EAu = 78 GPa, νAu = 0.41; EPI = 
2.5 GPa, vPI = 0.34; Eskin = 60 kPa, vskin = 0.5; EGr = 294 GPa, vGr = 0.21 and ELB = 85 MPa, vLB = 0.42.
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