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Abstract
The core (established) cerebrospinal fluid biomarkers of Alzheimer’s disease (AD), namely amyloid-beta 
peptide, total tau protein and phospho-tau protein, have become a part of the diagnostic workup of patients with 
cognitive disorders in many specialized centers, especially for ambiguous cases. Combined, these biomarkers can 
identify the presence or absence of an AD biochemical process with sensitivities and specificities approaching or 
exceeding 90% in both dementia and pre-dementia stages of AD. Thus, they have been incorporated in various 
sets of research or clinical diagnostic criteria and recommendations. Results that are atypical, incompatible with 
AD, or inconclusive may occur, necessitating the use of other cerebrospinal fluid or imaging biomarkers.    

Keywords: Cerebrospinal fluid, tau, phospho-tau, amyloid-beta, Alzheimer’s disease, alpha-synuclein, TDP-43, 
neurofilament light protein

INTRODUCTION
Almost 25 years after their first introduction, cerebrospinal fluid (CSF) biomarkers have become a part 
of the diagnostic workup of patients with cognitive disorders in many specialized centers. Furthermore, 
they provide neurochemical information about the disorder underlying each individual patient’s clinical 
presentation, which currently should be viewed as a biological process, sometimes starting many years 
prior to symptom onset and gradually evolving into a typical or atypical clinical phenotype. This paper 
provides an introductory, concise review, regarding the current status and future perspectives of CSF 
biomarker use.

Review
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WHY DO WE NEED BIOMARKERS?
Alzheimer’s disease (AD) is the most common type of dementia [1], followed by vascular cognitive 
impairment (VCI)[2], dementia with Lewy bodies (DLB)[3], frontotemporal dementia (FTD)[4] and others. 
Until relatively recently, diagnosis of AD was made according to clinically based criteria[5]. These criteria 
may show high diagnostic accuracy, especially when typical cases are examined in specialized centers[6]. 
However, it is long known that in the community, in early, presenile or atypical cases and in the presence 
of comorbidities, diagnostic accuracy may drop substantially, with clinicopathological concordance 
rates sometimes as low as 62.5%[7-9]. Furthermore, it is now recognized that AD, typically presenting 
as an amnestic dementia syndrome, may rarely have frontal (sometimes frontotemporal-like) [10,11], 
posterior[10,11], language[10-12] and even corticobasal-like presentations[13,14]. Thus, the same disease may 
present with different phenotypes, and one phenotype may be caused by different diseases/pathologies. 
Mixed pathologies are not infrequent in senile cases[15], especially AD mixed with various types of vascular 
lesions[16], or DLB with concomitant AD pathology[17]. Such mixed pathologies may modify the clinical 
presentation[18,19] and the rate of disease progression[20]. In addition, some patients present very early, in 
a symptomatic but pre-dementia stage [mild cognitive impairment (MCI) and MCI due to AD][21]. On 
the other hand, when the clinical impression is against AD, there is still a 39% chance for pathological 
verification of AD (co)existence[22].

The above are not uncommon causes of diagnostic confusion in everyday practice. Of course, the gold 
standard for diagnostic verification is post mortem pathological examination. However, correct ante 
mortem diagnosis is necessary since it may help in predicting prognosis and it is likely to affect therapeutic 
decisions[23]. Thus, biomarkers are needed to serve as objective diagnostic tools during life. In the last 
3 decades, various biomarkers have been developed (some being incorporated in various sets of diagnostic 
criteria), including structural neuroimaging (pattern of atrophy as a marker of neuronal injury), functional 
neuroimaging with positron emission tomography (PET), either as FDG-PET (hypometabolism as a 
marker of neuronal injury) or PET at least for amyloid-beta (Aβ), and CSF biomarkers[10,11]. The last have 
probably received the most attention.

ESTABLISHED (CORE) CSF BIOMARKERS OF AD
In an oversimplified scheme, there are two biochemical processes and pathological hallmarks of AD: 
(1) misfolding, oligomerization and finally polymerization and extracellular aggregation of Aβ, in 
the form of amyloid plaques, and (2) intracellular hyperphosphorylation and polymerization of the 
microtubule-associated protein tau, forming paired helical filaments which in turn aggregate in the 
form of neurofibrillary tangles[24,25]. The former process mobilizes various mechanisms that are toxic to 
neurons[26], and the second results in destabilization of microtubules and dysfunction of the cytoskeleton 
and of axonal transport[27]. Both processes, acting synergistically, lead to neuritic, synaptic and neuronal 
loss, through a vicious circle of interconnecting final pathways of oxidative stress, excitotoxicity, 
mitochondrial dysfunction, apoptosis and Ca2+-mediated cell death[28-30], while prion-like spread[31] and 
neuroinflammation[32-34] are increasingly recognized as important early mechanisms.

Total tau protein (τT)[35], hyperphosphorylated tau, especially at a threonine residue at position 181 (τP-181)
[36] 

and Aβ peptide with 42 amino acids (Aβ42)
[37] can be quantified in the CSF. In AD, τT is increased, and 

traditionally, this is viewed as a marker of neuronal/axonal injury[38]; τP-181 is also increased and this is 
considered a more specific marker of tangle formation[39]. On the other hand, Aβ42 is decreased and this is 
considered (inversely) a marker of amyloid burden[40]. The above markers are useful in the discrimination 
of AD from normal aging and other dementias, and even abnormal τT alone may show high sensitivity and, 
in a few diagnostic questions, adequate specificity for the diagnosis of AD[41]. Combinations of the above 
biomarkers in the form of various formulas (including the Hulstaert formula[42]) or ratios (including τT/Aβ42 
or τP-181/Aβ42

[43,44]) further increase their diagnostic value.
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HOW EARLY DO THE CLASSICAL BIOMARKERS BECOME ABNORMAL?
Currently, AD is viewed as a pathological or neurobiological entity, characterized by a continuum of 
3 stages, starting as a preclinical (“asymptomatic at risk” or “presymptomatic”) stage, which later on 
progresses to a symptomatic but pre-dementia stage (MCI) and finally to the dementia stage[11,45]. It seems 
that in most cases CSF biomarkers become abnormal during the preclinical stage of AD[45], and on the basis 
of studies in families with autosomal dominant AD, this may occur even 10-20 years prior to the expected 
age of symptom onset[46]. In patients with MCI, abnormalities are detected 5-10 years before progression 
to dementia[47]. Usually, the first abnormality detected is a decrease in Aβ42, followed by an increase in 
τP-181 and τT, but the reverse order may sometimes be observed[45]. Sometimes, only the Aβ42 decrease is 
seen in the preclinical stage, and the increase in τP-181 and τT is observed in the pre-dementia (MCI) stage 
of AD[48]. Thus, in the vast majority of patients, all 3 classical biomarkers are already abnormal when 
patients enter the dementia stage and in many (if not most), at the beginning of the MCI stage as well. 
CSF levels may continue to change during disease progression[46,48,49]. Such changes may be important from 
the neurochemical point of view, and it has been suggested that they may correlate with the stage of the 
disease[48]. However, from a diagnostic point of view, the changes compared to controls are small, and thus, 
these biomarkers are considered as state and not stage markers[49]. 

DEFINITION OF THE ALZHEIMER’S CLASSICAL CSF BIOMARKER PROFILE (SIGNATURE)
In the research diagnostic criteria for AD of the International Working Group (IWG-2), both decreased 
Aβ42 and increased tau protein (either τT or τP-181) are considered as in vivo evidence of AD pathology, with 
sensitivities and specificities approaching or exceeding 90%[11]. However, more recent recommendations 
suggest that all 3 biomarkers should be abnormal[50]. Indeed, this may increase specificity, and abnormality 
of all 3 biomarkers is highly suggestive (and specific) of the presence of AD, while normal values of all 3 
biomarkers is highly suggestive of the absence of AD pathology[50]. In patients with MCI, the combination 
of all 3 markers (τT and the Aβ42/τP-181 ratio) identified those harboring AD pathology with sensitivities and 
specificities of 95% and 87%, respectively[51].

In pathologically verified cases, the combination of Aβ42 and τT identified AD patients, discriminating them 
from other dementias or controls with sensitivity and specificity of 90% and 89%, respectively[52], while the 
combination of Aβ42 with the more specific τP-181 discriminated AD from other dementias with sensitivity 
and specificity of 80%-88% and 93%-100%, respectively[52,53].

The above indicates that, ideally, the AD CSF biomarker signature should be defined as abnormal values 
of all 3 core biomarkers. However, the combination of Aβ42 with one of the tau forms (either total or 
phosphorylated) may be sufficient in everyday practice.

ANSWERED AND UNANSWERED QUESTIONS
Classical AD biomarkers are useful in everyday practice since they can discriminate AD from normal 
aging[43] and psychiatric conditions[54]. They offer an added diagnostic value in everyday differential 
diagnosis of dementia patients, since they increase diagnostic confidence[41] and correctly identify the 
presence or absence of AD in 82% of patients with uncertain clinical diagnosis[55]. They can be useful in the 
differential diagnosis between AD and FTD[56], and they can identify the additional presence or absence of 
AD in patients with cerebrovascular disease and dementia[44], including subcortical small vessel disease[57]. 
These biomarkers may also determine the additional presence of AD in patients with DLB[58] and those 
with normal pressure hydrocephalus[59]. Additionally, they can identify the presence or absence of AD 
biochemical process in patients with certain cognitive and/or parkinsonian syndromes such as primary 
progressive aphasia[12], posterior cortical atrophy[60] and corticobasal syndrome[13].



Of course, CSF AD biomarkers are not standalone tools, and they should be used in conjunction with 
clinical, imaging, neuropsychological and other biochemical data to reach the correct diagnosis[11]. Keeping 
that in mind, CSF Aβ42, τT and τP-181 fulfill most of the criteria required for valid biomarkers[61], since they 
reflect key biochemical mechanisms of AD, and combined, they provide sensitivities and specificities 
greater than 80%-85%. Sampling needs lumbar puncture, which is less agreeable than urine or blood 
sampling. However, it is a minimally invasive procedure, usually well-tolerated and with a low incidence of 
post-lumbar puncture headache (< 4.5%) in dementia patients[43,62]. Thus, the 3 core CSF biomarkers were 
gradually incorporated in research and/or clinical diagnostic criteria for AD in the dementia (typical or 
atypical presentations)[10,11,63], MCI[11,64] and preclinical stages[65], and if testing is available, they are currently 
considered as part of the diagnostic workup of cognitive disorders, especially in ambiguous cases[66-68]. Since 
new disease-modifying or preventive treatments are currently underway, CSF biomarkers may be used for 
the selection of patients suitable for clinical trials across all stages of AD (including the preclinical stage) 
and/or for monitoring treatment effects[69,70].  

With time, it has become evident that biomarkers can detect CSF signatures different from the one observed 
in AD. The term “suspected non-Alzheimer pathophysiology” (SNAP) was introduced for a biomarker 
profile with normal Aβ42 but an abnormal marker of neuronal injury or neurodegeneration, while the term 
“primary age-related tauopathy” has been used for the tau pathology picture in the medial temporal lobe 
(hippocampus, entorhinal cortex), with or without minimal Aβ pathology[71]. In patients with normal Aβ42, 
the Aβ42/Aβ40 ratio may be used to confirm the absence of amyloid abnormality, since it “corrects” observed 
Aβ42 levels for the total level of Aβ40 (the most abundant form of Aβ peptide)[67,72]. When amyloid normality 
is confirmed, AD becomes unlikely[50] and tauopathies, TDP-43 proteinopathies and other pathologies may 
be considered to explain SNAP cases[73]. Controversies and questions concerning the “non-AD” biomarker 
profiles and the underlying pathologies have led to a modification of the 2011 National Institute on Aging 
and Alzheimer’s Association separate recommendations[10,64,65], to a unified biological definition of AD 
across all stages and incorporating the various possible biomarker profiles and disease categories (AD or 
non-AD)[74]. This incorporation of “extended” biomarker profiles in diagnostic recommendations, may 
prove useful in many atypical presentations, including patients resembling or even fulfilling criteria for AD, 
but without the expected AD CSF biomarker signature, although biomarker levels may remain conflicting 
in occasional patients.

Another profile which may be observed is characterized by abnormality (reduction) of only Aβ42, while τT 
and τP-181 being normal. In this case, the Aβ42/Aβ40 may be used to confirm or exclude amyloid abnormality. 
If amyloid reduction is confirmed, AD pathology may be less likely in patients with full-blown dementia, 
but it is still a possibility, especially in pre-dementia patients [50] and may be compatible with the “AD 
pathological change”[74]. This profile may also be observed in vascular cognitive decline[57] and in Lewy body 
synucleinopathies, including PD, PDD and especially DLB[75].

Furthermore, there is always the problem of mixed pathologies, especially in the elderly. In a patient with 
a clinical picture suggestive of DLB, the identification of the typical AD CSF signature, may indicate mixed 
synucleinopathy with concomitant AD pathology[11,76], but cases of AD with unusual DLB-like presentations 
have been described[77]. Even in the most common scenario of mixed pathology, the question arises as to 
whether it represents DLB with some degree of AD pathology, AD with some degree of Lewy-pathology 
or equally severe pathology of both types[58]. Similarly, in a patient with a FTD-like clinical picture, the 
identification of the typical AD CSF signature may serve as exclusion criterion for FTD[78], suggesting AD 
with an atypical clinical presentation (frontal variant)[11], but mixed pathology cannot be excluded, since 
patients with concomitant FTD and AD do exist[79].

Some patients may show borderline or gray-zone levels in one or more of the classical biomarkers. The 
τT/Aβ42 and τP-181/Aβ42 ratios may be of some help in such patients[12], but not always. The “Erlangen Score”, 
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which depends on normal, border-zone or abnormal biomarker levels, has been suggested to determine the 
level of neurochemical probability for (or against) AD in both dementia[80] and pre-dementia stages[81].

In case of atypical, conflicting or inconclusive CSF biomarker results, other neurochemical and/or imaging 
biomarkers, and/or later repetition of CSF sampling and analysis may be necessary[50].   

VARIABILITY OF BIOMARKER RESULTS 
Despite intensive research, there is still a significant inter- and intra-laboratory variability in the results 
of biomarker level determination, as a result of pre-analytical, analytical, post-analytical and kit-related 
factors, even between laboratories using the same methods[82-86]. During the last decade, various 
international initiatives, quality control programs and international workshops have been organized to 
reduce variability and harmonize the levels of biomarkers[67,82,83], including the “Biomarkers for Alzheimer’s 
disease and Parkinson’s disease” project of the Joint Programming Neurodegenerative Disease (JPND-
BIOMARKAPD)[87]. As a result, recommendations have been published regarding lumbar puncture, 
pre-analytical and analytical standardized operating procedures[82,88-90], leading to improvement in diagnostic 
performance and reduction of measurement errors[91]. Although a measurement error of ± 20% in only one 
of the three biomarkers may have a minimal effect on overall diagnostic performance in everyday practice 
(variability ≤ 8%), errors of greater magnitude and/or affecting more than one biomarker, may lead to a 
significant decrease in diagnostic accuracy[92]. Newer methods for the determination of classical biomarkers 
may show better repeatability and reproducibility and less inter-laboratory variability[66,93].  

NEW AND EMERGING BIOMARKERS FOR AD AND OTHER DISORDERS
Among many molecules studied in AD, neurogranin, neurofilament light (NFL), the ectodomain of 
triggering receptor expressed on myeloid cells 2 (sTREM2) and visinin-like protein 1 (VILIP-1) may 
serve as markers of synaptic loss, neuronal/axonal damage, microglial activation and neurodegeneration, 
respectively[66-68].

Recently, promising results have been published for CSF TDP-43 in patients with FTD and/or amyotrophic 
lateral sclerosis (ALS)[94-96]. The τP-181/τT ratio has been suggested as another marker, which may prove 
helpful in the identification of FTD pathology[97], but its combination with TDP-43 may increase its 
diagnostic value even more[95]. NFL may also have some value in patients with FTD and/or ALS[66]. Further 
studies are needed, and they are in progress, both for validation and standardization of TDP-43 methods 
and for identifying the optimum combination of TDP-43 with other biomarkers for in vivo detection of the 
FTD subtype.

Alpha-synuclein (α-syn) has been studied as a biomarker of Lewy body synucleinopathies, in the 
differential diagnosis of cognitive and/or movement disorders[98,99]. Several studies have revealed that 
in synucleinopathies such as DLB, CSF α-syn levels are reduced, as compared to controls or AD[100,101]. 
However, increased levels in DLB vs. AD[102] or PDD[103] have also been reported, especially of oligomeric 
α-syn[104], while for PD or PDD, a non-significant reduction was too small to achieve diagnostic significance 
vs. controls and other movement disorders[13] or AD[103]. The above discrepancies indicate that, despite 
intensive research, there are methodological problems in α-syn quantification. Determination of α-syn 
needs strict pre-analytical control for confounding factors (especially bloody CSF), while assay parameters 
such as antibodies used, and forms of α-syn detected, necessitate further studies before one or more robust 
tests become widely acceptable[99,105]. 

CONCLUDING REMARKS
Classical CSF biomarkers of AD are useful tools in the (differential) diagnosis of patients with cognitive 
decline, especially in early or atypical cases [Table 1]. They are useful in differentiating AD from normal 
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aging, psychiatric disorders such as depression, pure vascular cognitive impairment, pure DLB and FTD, 
and they can identify atypical and misleading clinical presentations of AD, or the coexistence of AD in 
other primary (such as VCI or DLB) or secondary cognitive disorders[12,14,44,54,56-59]. However, they should 
always be used in combination with clinical, neuropsychological and imaging data[15], and due to variability 
of measurements, each laboratory should establish their own normal or cut-off values[66].  

CSF biomarkers detect normal or abnormal biochemistry, offering (during life) an alternative to post-
mortem pathology and showing a very good concordance with pathological diagnosis[66]. Thus, many, if 
not most, of patients can be correctly diagnosed. However, borderline or inconclusive results may occur 
in some patients, requiring repetition of measurements and/or use of additional biomarkers[50,96,102]. 
Furthermore, classical CSF biomarkers cannot accurately detect mixed degenerative pathologies, which 
are not unusual in older patients. For example, the identification of an AD biomarker profile in a patient 
with dementia, parkinsonism and hallucinations, may indicate an atypical clinical presentation of AD, AD 
with some additional Lewy bodies, DLB with some additional AD-type pathology, or a severe degree of 
both pathologies[58]. This further necessitates the use of additional biomarkers (in the above case, α-syn). 
Unfortunately, methodological issues requiring further investigation prevent some of the newer biomarkers 
such as α-syn and TDP-43 to be currently considered “established”.

The 3 classical AD biomarkers (τT, Aβ42 and τP-181) become 4 by adding Aβ40. Adding NFL, α-syn, TDP-43 
and others increases the number to at least 7. Adding them to structural and functional neuroimaging and 
possibly to genetic biomarkers, leads to a tempting increase of available data for patients; unfortunately, 
there is an even more substantial increase in cost, while the diagnostic accuracy may not be equally 
increased in some patients. Instead of an “all for all” approach, a personalized, precision medicine approach 
may be more appropriate[106], while blood biomarkers may be adequate for some patients[107].

The ability to detect the AD CSF biochemical signature in pre-dementia and especially in pre-symptomatic 
subjects, raises some ethical issues[108]. Communication of a positive result in a non-demented subject 
may have adverse effects in quality of life and trigger significant emotional reactions[109]. Since the time 
of appearance of the initial vague symptom(s) is usually unpredictable, many authorities consider it 
inappropriate to perform such diagnostic tests in the majority of asymptomatic subjects (including families 
with autosomal dominant AD). However, other subjects prefer disclosure of the results, so that they can 
adjust their life accordingly (including measures for secondary prevention) or make important decisions 
before dementia affects their judgment[110]. Such parameters should be taken into consideration before 
determining CSF biomarkers and/or communicating results, especially in research settings[108].

On the other hand, early detection is important in correct classification of subjects in trials of disease-
modifying approaches, which may be effective when given in pre-symptomatic stages of AD. Since 
such trials are usually multicenter, stability, robustness and harmonization of methods and results, 
regulatory guidance, operator training, quality control programs, strict adherence to recommendations for 

Table 1. Levels of classical cerebrospinal fluid Alzheimer’s disease biomarkers in various cognitive disorders

Aβ42 or Aβ42/Aβ40 Total tau (τT) Phospho-tau*
Alzheimer’s disease Decreased Increased Increased
Vascular cognitive impairment May be decreased in some patients May be increased in some patients Normal
Frontotemporal dementia May rarely be decreased May be increased in some patients May be increased in some patients
Dementia with Lewy bodies Frequently decreased May be increased in some patients Normal
Creutzfeldt-Jakob disease May be decreased in some patients Extremely increased Normal
Normal aging Normal Normal Normal
Psychiatric disorders Normal Normal Normal

Based on the references cited throughout the text. *Usually for τP-181, others have also been suggested
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standardized operating procedures and harmonization of diagnostic criteria used, as well as well-organized 
and secure patient data sharing, are all required and pose challenges that should be faced by specialized 
centers[111].
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Abstract
The development of concepts concerning the role of microglia in different brain diseases has relied on studies of 
animal models or human brain tissue, which primarily use antibodies and immunohistochemistry techniques to 
make observations. Since initial studies defined increased expression of the major histocompatibility complex II 
protein human leukocyte antigen-DR as a means of identifying reactive, and therefore by implication, damage-
causing microglia in Alzheimer’s disease (AD) or Parkinson’s disease (PD), understanding and describing their 
activation states has evolved to an unexpected complexity. It is still difficult to ascertain the specific functions of 
individual microglia, particularly those associated with pathological structures, using a narrow range of antigenic 
markers. As many approaches to developing treatments for AD or PD are focused on anti-inflammatory strategies, 
a more refined understanding of microglial function is needed. In recent years, gene expression studies of human 
and rodent microglia have attempted to add clarity to the issue by sub-classification of messenger RNA expression 
of cell-sorted microglia to identify disease-associated profiles from homeostatic functions. Ultimately all newly 
identified markers will need to be studied in situ in human brain tissue. This review will consider the gaps in 
knowledge between using traditional immunohistochemistry approaches with small groups of markers that can be 
defined with antibodies, and the findings from cell-sorted and single-cell RNA sequencing transcription profiles. 
There have been three approaches to studying microglia in tissue samples: using antigenic markers identified 
from studies of peripheral macrophages, studying proteins associated with altered genetic risk factors for disease, 
and studying microglial proteins identified from mRNA expression analyses from cell-sorting and gene profiling. 
The technical aspects of studying microglia in human brain samples, inherent issues of working with antibodies, 
and findings of a range of different functional microglial markers will be reviewed. In particular, we will consider 
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markers of microglia with expression profiles that do not definitively fall into the pro-inflammatory or anti-
inflammatory classification. These additional markers include triggering receptor expressed on myeloid cells-2, 
CD33 and progranulin, identified from genetic findings, colony stimulating factor-1 receptor, purinergic receptor 
P2RY12, CD68 and Toll-like receptors. Further directions will be considered for addressing crucial issues.

Keywords: Neuropathology, RNA-sequencing, TREM2, microglia, activation states, immunohistochemistry

INTRODUCTION
Alzheimer’s disease (AD) and Parkinson’s disease (PD) have become the most significant and feared brain 
diseases of elderly populations who are now enjoying longer lifespans due to more effective treatments 
for cancer, cardiovascular and metabolic diseases. AD is the most common cause of cognitive decline and 
dementia in elderly populations[1], while PD can lead to severe loss of mobility and independence, amongst 
other features[2]. Both diseases are significant causes of morbidity in elderly populations and share many 
common pathological features involving the accumulation of aggregated proteins. In AD, it is extracellular 
amyloid and neurofibrillary-associated phosphorylated tau neurites and tangles[3], while in PD, it is 
aggregated/phosphorylated alpha-synuclein accumulated into pathological inclusions[4]. These diseases 
are distinctive on account of the degenerative changes occurring in different brain regions; however, one 
common feature is the appearance of “activated” microglia within brain regions showing degenerative 
changes. Inflammation has become one of the targets being investigated as treatment strategies for these 
diseases, and the importance of studying microglia in relation to many different brain diseases is widely 
appreciated[5-7].

Initial antibody-based observations on “activated” microglia in postmortem brain tissues were made 
30 years ago and gave rise to the inflammatory hypotheses for neurodegeneration. This is illustrated in 
Figure 1 and suggests that initial cell death or accumulation of aberrant/aggregated proteins [amyloid 
beta (Aβ), tau or alpha-synuclein (α-syn)] results in proinflammatory activation of microglia, causing the 
production of toxic and/or inflammatory cytokines. The resulting neurotoxicity would then accelerate 
further inflammation, thus exacerbating the neurodegenerative process. These concepts developed in the 
80’s and 90’s might now be considered imprecise based on more recent findings. However, it was from this 
hypothesis that treatments for AD and PD with anti-inflammatory agents were developed and tested. This 
approach was supported by data from epidemiological studies that patients who had long-term usage of 
anti-inflammatory drugs for inflammatory conditions such as arthritis, had less dementia, which appeared 
to support the inflammatory hypothesis of AD[8]. However, although many anti-inflammatory compounds 
and strategies have proven effective in AD animal models, clinical trials of AD patients have generally 
shown no significant effect[9]. The purpose of this review is to consider the approaches used to define 
changes in microglial phenotypes and neuroinflammation in brain tissue, and discuss how the role of 
microglia in neurodegeneration should be considered in light of a wider range of markers identified from 
recent transcriptional profiling of microglia. The focus of this review will be on studies relating to AD, but 
many of the concepts might be applicable to PD, multiple sclerosis (MS) or stroke. The aim for this review 
is to bridge the gap between the studies that have analyzed transcription in large numbers of samples or 
isolated cells with in situ studies in human brain samples with antibodies to define the microenvironments 
of microglia in the specialized neuroanatomy of the human brain[10-12]. Ultimately, the best way to define 
the microglia responsible for damaging inflammation in brain samples will be with a single or small panel 
of markers that can be studied reliably in widely available types of pathological brain samples. 

METHODOLOGY FOR INVESTIGATING MICROGLIAL PHENOTYPES 
Antibody-based methodology for in situ localization of microglial antigens
Pioneering observations on microglia by Rio-Hortega[13] used traditional metal-based histological stains to 
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identify these cells. The fascinating history of their discovery has been reviewed by Tremblay et al.[14], but 
it was the use of specific antibodies in more recent times to sensitively identify microglia in human brain 
samples that re-launched this field of study. Studies by McGeer and colleagues employed an antibody to 
the major histocompatibility complex class II (MHCII) protein human leukocyte antigen-DR to identify 
what was described as “activated” or “reactive” microglia in AD and PD brain samples[15-18]. These types 
of microglia were enhanced around AD and PD pathological structures. Similar observations were made 
by Rogers and colleagues using the same marker[19]. Early studies highlighted recurring issues in the study 
of microglia in human autopsy tissue, namely with the antibodies used and the fixation methods of brain 
tissue samples for study[20]. Many microglial antigens, including human leukocyte antigen (HLA)-DR, are 
membrane-associated glycoproteins that are sensitive to tissue fixation with cross-linking fixatives such as 
paraformaldehyde/formalin and glutaraldehyde. The most widely available tissue samples for research are 
those taken for routine pathological examination and diagnosis at autopsy and usually involve long-term 
immersion fixation and paraffin-embedding using treatment with alcohols, xylene and similar solvents. 
Many validated monoclonal antibodies to macrophage/microglia antigens will not recognize them in 
tissue fixed in this manner, though a newer generation of antibodies, particularly monoclonal antibodies 
developed in rabbits, work more effectively when combined with different antigen-retrieval techniques[21]. 
Optimally-fixed tissue is tissue with short postmortem interval between death of donor subject and start of 
fixation, and a short period of fixation (48 h) of sliced brain coronal sections (not whole hemispheres) in 
buffered formalin/paraformaldehyde followed by preservation at 4 oC or -20 oC in an anti-freeze solution. 
Tissue preserved in this manner, which is then sectioned and processed for immunohistochemistry without 
paraffin embedding, has given optimal results for this investigator for detecting a number of different 
microglial proteins in situ[22,23]. 

Cell-sorting, nuclei-sorting, transcriptional profiling of inflammation and microglia
Expression profiling methods used to address this question have evolved rapidly over the last few years 
with RNA-sequencing becoming the predominant method of identification and quantification of genes 
expressed. There are now enormous amounts of data available online for carrying out analyses using 
various statistical criteria to identify the interactions of expressed microglial genes. For a more detailed 
understanding of these analytical approaches, the review of Chew and Petretto provides an overview of the 
different analytical approaches focusing on how the identification of transcriptional networks of microglia 
in AD can give insight into disease pathogenesis[10]. One observation by these authors was the lack of 
agreement between studies on which genes/markers should be the targets for tissue validation. 

The findings from a number of RNA sequencing experiments of batch-sorted or single cell microglia 
isolated from AD or immune-stimulated animal models or human brain tissues will be considered. The 

Figure 1. Hypothesis on the involvement of microglia in neurodegeneration



results have been analyzed comparing AD animals with non-transgenic control animals, or between 
AD and controls from aged human tissues[24]. Although the focus of this article is on understanding 
how to define activation states in human brains, findings from rodent models in this context have to 
be considered. Microglia can be directly isolated from the mouse brain by Dounce homogenization to 
break up tissue, filtering through 70 mm mesh, separation by magnetic beads conjugated with anti-myelin 
antibody to remove myelin, and then selected using a fluorescence-activated cell sorter with appropriate 
labeled antibodies (e.g., CD11b, CD45) to isolate immune cells, including microglia[25]. This basic approach 
will isolate populations of cells that can be diluted to allow the isolation of single cells or analysis in bulk. 
Refinements to these techniques have allowed the sorting and RNA profiling of cellular nuclei from frozen 
human and animal tissue samples[11,26]. Different approaches for microglial profiling are illustrated in Figure 2.

Using these approaches, it was shown that trans-membrane protein 119 (TMEM119) was a specific marker 
for microglia in mouse and human brains[25]. The isolation of microglia from human brains using the same 
methodology is possible but has some limitations. Human brain tissue is not usually amenable to Dounce 
homogenization and requires additional enzymatic digestion to dissociate tissue into single cells, and 
density gradient centrifugation to separate the myelin content from the cellular components[27]. Studies 
using these approaches aimed to define genes that are unique to microglia and not expressed, or expressed 
at low levels in blood monocytes/macrophages[28-31].

Recent important studies relating to inflammatory changes in AD brains identified a type of “disease-
associated microglia” (DAM) that appear to be associated primarily with preventing inflammatory 
pathology rather than enhancing it[26,32,33]. Another key study involved the meta-analyses of multiple 
different gene profiling studies related to brain inflammation[24]. Amongst other findings, these studies 
confirmed TMEM119, purinergic receptor P2YR12 and fractalkine receptor CX3CR1 as markers with 
highly enriched expression in microglia compared to monocytes/macrophages. 

DAM
The identification of DAM was primarily carried out using single cell microglia RNA sequencing 
in AD model mice (5xFAD) of different ages followed by validation in human tissue samples. The 
progressive changes in microglia phenotypes was from homeostatic (non-activated) to stage 1 DAM, 
which represents a state of proinflammatory activation, to stage 2 DAM, an altered phenotype that 
restricts neurodegenerative changes. Based on results that included the use of mice that are gene deficient 
(knockout) for the crucial triggering receptor expressed on myeloid cells (TREM2), it was shown that 
the transition from stage 1 to stage 2 DAM was dependent on Trem2 signaling. These data have implied 
that the activation of Trem2 signaling was protective rather than pathogenic[32]. [Gene identification 
primarily from studies using rodents will use the lower case abbreviation; genes primarily identified 
in human will use the upper-case abbreviation]. This study defined expression of genes Hexb (Beta-
hexosaminidase subunit beta), Cst3 (Cystatin C), Cx3cr1 (Fractalkine receptor), Ctsd (Cathepsin D), 
Csf1r (Colony stimulating factor-1 receptor), Ctss (Cathepsin S), Sparc (Osteonectin), Tmsb4x (Thymosin 
beta-4), P2ry12 (Purinergic P2Y receptor 12), C1qa (Complement C1q subunit A), C1qb (Complement 
C1q subunit B) as features of homeostatic microglia. Activation and transition to stage 1 DAM involved 
downregulation of identified homeostatic genes Cx3cr1 (Fractalkine), P2ry12 (Purinergic 2Y receptor 
12) and TMEM119 (Transmembrane Protein 119), along with P2ry13 (Purinergic P2Y receptor 13), 
Tgfbr1 (Transforming growth factor receptor beta 1), Txnip (Thioredoxin-interacting protein) and Glu1 
(Glucoamylase 1), and upregulation of Tyrobp (TYRO protein tyrosine kinase binding protein - DAP12), 
Ctsb (Cathepsin B), Cstb (Cytstatin B), Ctsd (Cathepsin D) Apoe (Apolipoprotein E), B2m (Beta-2 
microglobulin), Fth1 (Ferritin heavy chain-1), Timp2 (Tissue inhibitor of metalloprotease-2), H2-D1 
(H2 class 1 histocompatability antigen) and Lyz2 (Lysozyme C-2). The expression of homeostatic genes 
C1qc (Complement C1q subunit C), C1qb, C1qa, Ctss, Hexb, Olfml3 (Olfactomedin-like 3), Csf1r and 
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Cst3 remained unchanged between the different classes of microglia. Transition to stage 2 DAM involved 
upregulation of Trem2, Ankh (Progressive ankylosis protein), Cd9 (Tetraspanin), Cd63 (Tetraspanin-30), 
Serpine2 (Serine Protease inhibitor-2), Ctsz, Cd68 (macrosialin), Cadm1 (Cell-adhesion molecule-1), Spp1 
(Secreted phosphoprotein-1), Cd52 (CD52), Ctsa, Clec7a (C-type lectin domain family 7 member A), 
Axl (AXL receptor tyrosine kinase), Ctsl, Lpl (Lipoprotein lipase), Ccl6 (C-C chemokine 6), Csf1 (Colony 
stimulating factor-1), Hif1a (Hypoxia inducible factor-1 alpha), Cusb (Cation efflux system protein 
CusB), Itgax (Integrin Subunit Alpha X) and Cst7 and downregulation of Cx3cr1, P2ry12, CD33 and 
TMEM119[32,33]. This study showed that Trem2 expression levels increased progressively upon activation 
from homeostatic to stage 1 and stage 2 DAM. This study chose Lpl (lipoprotein lipase), Timp2 (Tissue 
inhibitor of metalloprotease-2) and Itgax (CD11c) for antibody validation in human AD brain sections 
and showed strong expression in AD plaque-associated microglia. Lipoprotein lipase functions as a 
homodimer, and has the dual functions of triglyceride hydrolase and ligand/bridging factor for receptor-
mediated lipoprotein uptake. Its expression is not specific for microglia/macrophage cells. Other stage 2 
DAM markers that have been studied in human AD brains include TREM2 (see separate section below), 
CD68 and ITGAX (CD11c). There has been controversy about the significance of CD68 expression by 
microglia. This is a monocyte specific lysosomal-associated membrane protein that becomes upregulated 
with increased phagocytosis[34]. It has been considered an activation marker, but this does raise the 
question whether phagocytosis markers are genuine proinflammatory markers or whether increased 
phagocytosis is a reparative response. CD11c (a complement C3b integrin receptor CR4) is a cell adhesion 
and phagocytosis marker for dendritic cells. An earlier study had shown that CD11c was constitutively 
expressed by microglia in brain with some upregulation in reactive microglia in AD brains[35,36]. It has been 
considered an activation marker, but this does raise the Table 1. List of key genes associated with Disease-
Associated Microglia.

The identification of ApoE as a microglial activation marker does not concur with previous 
immunohistochemistry results. Possession of the APOE allele e4 is the most significant risk factor for 
developing sporadic AD[37,38]. Subjects homozygous for APOE e4 have up to a 7-fold greater risk of 

Table 1. List of key genes described associated with disease-associated microglia

Gene Gene Gene
Homeostatic Microglia Stage 1 DAM Stage 2 DAM
aHexb bCD33 cTrem2
aCst3 bCx3cr1 cAnkh
aCx3cr1 bP2ry12 cCd63
Ctsd bP2ry13 cCd9
Csf1r bTgfbr1 cSerpine2
Ctss bTxnip cCtsz
Sparc bGlu1 cCd68
Tmsb4x bTmem119 cCadm1
Tmem119 cTyrobp cSpp1
P2ry12 cCtsb cCd52
C1qa cCstb cCtsa
C1qb cCtsd cClec7a

cApoe cAxl
cB2m cCts1
cFth1 cLpl
cTimp2 cCcl6
cH2-d1 cCsf1
cLyz2 cHif1a

cCusb
cItgax

See text for gene identification. aCore homeostatic Genes; bDown regulated genes; cUpregulated genes. DAM: disease-associated 
microglia

Page 198                      Walker. Neuroimmunol Neuroinflammation 2020;7:194-214  I  http://dx.doi.org/10.20517/2347-8659.2020.09



developing AD but the mechanism(s) are still unclear. The possession of APOE e4 allele has also been 
associated with increased inflammation in the brain but immunohistochemistry studies have identified 
ApoE protein in neurofibrillary tangles, amyloid plaques and reactive astrocytes[39-42], not in microglia[43]. 
This is surprising as human microglia in culture and isolated brain microglia express high levels of APOE 
mRNA and protein. It is possible that the protein is rapidly secreted by microglia after synthesis, but 
evidence to date does not support ApoE as a marker for describing microglial activation states in human 
brain tissue. Complement C1q protein has also been studied in relation to AD pathogenesis. Antibodies 
to C1q have reactivity with amyloid plaques and neurofibrillary tangles in human brains[44,45]. Similar to 
ApoE, cultured brain-isolated microglia express high levels of complement C1q protein[46], but the reason 
microglia do not show immunoreactivity to ApoE or C1q in brain sections is unclear. 

Core transcriptional signature of human microglia
A different approach to address the question of an AD-specific microglial gene signature was carried 
out by analyzing 9 different datasets obtained from profiling either sorted cells or brain tissue using 
unbiased correction network analysis[12]. Despite the heterogeneity between the datasets, a consensus 
list of 249 genes was identified, and when used to compare AD vs. age-matched controls, 52 genes were 
identified. Key genes from this list were CD84 (Signaling Lymphocytic activation molecule-5), dedicator 
of cytokinesis 2 (DOCK2), hepatitis A virus cellular receptor 2 (HAVCR2), Fc fragment of IgG receptor IIa 
(FCGR2A), linker for activation of T cells family member 2 (LAT2), CD86 (B7-2), phosphatidylinositol-
4,5-bisphosphate 3-kinase catalytic subunit gamma (PIK3CG), apoptosis-associated speck-like protein 
containing a CARD (PYCARD), tetraspanin-26 (CD37), myosin IF (MYO1F), leukocyte immunoglobulin 
like receptor A2 (LILRA2), protein tyrosine phosphatase receptor type C - CD45 (PTPRC), inositol 
polyphosphate-5-phosphatase D (INPP5D), CD33, Toll-like receptor-5 (TLR5), SH3 domain and nuclear 
localization signals 1 (SAMSN1), integrin alpha M chain - CD11b (ITGAM), dedicator of cytokinesis 
8 - Zir3 (DOCK8), ribosomal protein S6 kinase A1 (RPS6KA1), colony stimulator factor-3 receptor 
(CSF3R), SLC7A7 (Y+L amino acid transporter 1), Oxidized low-density lipoprotein receptor 1 (OLR1), 
chemokine-like factor (CKLF), Parkin co-regulated gene protein (PARCG), lysozyme (LYZ), lymphocyte 
antigen 86 (LY86), arachidonate 5-lipoxygenase activating protein (ALOX5AP), Ras and Rab interactor 3 
(RIN3), regulator of G-protein signaling 18 (RGS18), colony stimulating factor 2 receptor beta common 
subunit (CSF2RB), Rho GTPase activating protein 15 (ARHGAP15), Rho GTPase activating protein 45 
(ARHGAP45), regulator of G-protein signaling 10 (RGS10), interleukin 10 receptor subunit A (IL10RA), 
macrophage scavenger receptor-1 (MSR1), bridging integrator-2 (BIN2), and cytokine-like 1 (CYTL1). 
Most of these have not been studied in AD brain tissues. Another study addressed the issue of microglial 
specific genes by performing meta-analysis of a number of different datasets[47]. This study only examined 
rodent gene datasets. Thirteen microglia-enriched genes were identified and 14 genes were differentially 
expressed in monocytes/macrophages.

Meta-analyses of multiple microglial-inflammation profiling studies
Complex analyses of a number of different gene expression profiling studies of different disease animal 
models, human diseased tissue and sorted murine and human cells identified multiple signatures 
(modules) for microglia associated with neurodegeneration. In human material, there appeared to be 
elevated expression of genes that were not observed in animal models. The microglia cluster of genes 
contain those more highly expressed in microglia compared to other myeloid cells, but these are not 
necessarily microglia-specific. The cluster contained Rho GTPase Activating Protein-5 (Arhgap5), 
C-C Chemokine receptor-5 (Ccr5), Sialomucin core protein 24 (Cd164), CUB and sushi multiple 
domains 3 (Csmd3), Cst3, Cx3cr1, Gcnt1 (Beta-1,3-galactosyl-O-glycosyl-glycoprotein beta-1,6-N-
acetylglucosaminyltransferase), Golgi membrane protein-1 (Golm1), G protein-coupled receptor 155 
(Gpr155), G protein-coupled receptor 34 (Gpr34), G protein-coupled receptor 56 (Gpr56), General 
Transcription Factor IIH Subunit 2 (Gtf2h2), LPS responsive beige-like anchor protein (LRBA), leucine-
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rich repeat-containing protein (Lrrc3), Geranyltranstransferase (FPPS), microfibril-associated glycoprotein 
3 (Mfap3), P2ry12, P2ry13, Plexin domain-containing protein 1 (Plxdc1), prostate transmembrane protein, 
androgen induced 1 (Prmepa1), Ras-related protein Rab-39 (Rab39), Spalt-like transcription factor 1 
(Sali1), Selectin-P ligand, CD162 (Selplg), Siglech (SIGLEC-H), Toll-like receptor-3 (Tlr3), and TMEM119. 
A panel of 134 neurodegeneration-related genes were defined (for complete list refer to supplementary 
data in reference[24]). It was noted that 75% of these genes were associated with plasma membrane or 
extracellular space proteins. It was concluded that this was due to changes in the way microglia interact 
with the degenerative environment. Other genes included transcription factors Bhihe40 (Clast-5), retinoid 
X receptor gamma (Rxrγ), Hif1a and melanocyte inducing transcription factor (MITF), and 10 lysosome-
associated genes including cathepsins (Ctsb, Ctsl and Ctsz). In a number of the models analyzed, increased 
expression of ApoE was consistently detected, and microglial responses to Aβ were highly dependent on 
Trem2 signaling. The central role for TREM2 in microglial responses has been demonstrated in network 
analysis showing TYROBP (DAP12), the essential adaptor protein that mediates TREM2 signaling, is a 
central hub gene for many of the above-listed inflammatory genes[31,48].

A recent publication employing single-nucleus transcriptomics combined with proteomic validation 
studies comparing AD model mice and human AD materials[26] showed that there were large differences 
in the glial phenotypes between AD mice and human AD samples. These investigators confirmed that the 
“Disease Associated Microglia” signature was dependent on expression of TREM2. There was increased 
expression of a number of “homeostatic” genes, including P2RY12, TMEM119 and CX3CR1, which have 
been downregulated in AD mouse models. This study also identified an amyloid-driven oligodendrocyte 
signature showing disruption in myelination, possibly driven by enhanced white-matter inflammation. 
In addition to the previously mentioned TREM2, APOE, HLA-DRA, and Alpha-2 macroglobulin (A2M), 
this study identified a number of additional markers that could be characterized in AD brains. These 
include Suppressor of Cytokine Signaling-6 (SOCS6), ZFP36 ring finger protein like 2 (ZFP36L2), SELPLG 
(Selectin-P ligand, CD162), sortilin related receptor 1 (SORL1), and chitinase-3-like protein 1 (CHI3L1), 
which were upregulated, and SLC11A1 (natural resistance-associated macrophage protein-1), S100A8 (S100 
calcium binding protein A8), HAMP (Hepcidin), FTH1, SLC2A3 (Glucose transporter-3), Interleukin-1 
beta (IL1B), Interferon Induced Transmembrane Protein 2 (IFITM2), S100 Calcium Binding Protein A9 
(S100A9), regulator of G-protein signaling 1 (RGS1) and SLC25A37.

Differences between old and middle-aged human microglia
Noticeable differences in gene expression profiles were identified in microglia isolated from middle aged 
(young-mean age 53) and old brains (aged-mean age 94)[49]. This study produced RNA sequencing profiles 
of aged brain microglia and compared the results with those in another published study to show that 
1060 genes were significantly upregulated in aged microglia and 1174 were downregulated[50]. Many of the 
significantly upregulated genes included those with genetic associations to AD risk [Table 2]. 

Prominent in the upregulated group were Cathepsin D (CTSD), Progranulin (GRN), Lymphotoxin beta 
receptor (LTBR), Translocator protein (TSPO), Cytochrome B245 alpha (CYBA), CD14 (LPS receptor), 
C1QA, C1QC and interferon regulatory factor-7 (IRF7), while prominent in the downregulated group were 
CD83, FLT1 (vascular endothelial growth factor receptor-1), nuclear factor kappa-light-chain-enhancer 
of activated B cells (NFKB), interleukin-1 beta (IL1B), cycloxygenase-2 (PTGS2), CCL4 (macrophage 
inflammatory protein-1 beta), CCL2 (monocyte chemoattractant protein-1), CCL3 (macrophage 
inflammatory protein-1 alpha), Toll-like receptor-4 (TLR4), prostaglandin E receptor-1 (PTGER1), 
transforming growth factor beta receptor 2 (TGFBR2) and mannose receptor C-type 1-CD206 (MRC1). 

A similar approach was carried out comparing the RNA sequencing profiles of aged human microglia bulk 
isolated from the human parietal cortex in 39 autopsy cases. Data were compared with available datasets 
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of human and rodent microglia[51]. The paper contained large datasets of differentially expressed microglia 
genes with aging but the key finding was the altered expression of genes associated with cell adhesion, cell 
motility and different cell surface receptors [Table 3].

The microglia genes related to cell adhesion and axonal guidance were altered in aged microglia. 
Upregulated genes were: carcinoembryonic antigen-related cell adhesion molecule 1-CD66a (CAECAM1), 
cadherin-3 (CDH3), dedicator of cytokinesis-1/-5 (DOCK1/5), neuroligin-2 (NLGN2), neuropilin-1/-2 
(NRP1/2), Plexin C1 (PLXNC1), protocaderin gamma -2,-4, 8 (PCDHGA2/4/8), protocadherin beta-
2, -4 (PCDHGB-2, -4), protein tyrosine kinase-7 (PTK7), roundabout guidance receptor 4 (ROBO4), 
and Semaphorin 4A (SEMA4A). Downregulated genes were: ADGRE5 (Adhesion G-protein-coupled 
receptor CD97), Cadherin-12 (CDH12), CHL1, intercellular adhesion molecule-3 (ICAM3), roundabout 
guidance receptor 2 (ROBO2), Semaphorin 3A (SEMA3C), and Semaphorin 7A (SEMA7A). Immune 
receptor-related genes were also altered in aged microglia. Upregulated genes were: CD163 (Hemoglobin 
scavenger receptor), C-type lectin domain family 2B (CLEC2B), C-type lectin domain family 5A 
(CLEC5A), Chemokine receptor type 4 (CXCR4), insulin growth factor 2 receptor (IGF2R), purinergic 
receptor X1 (P2RX1), tumor necrosis factor receptor superfamily14 (TNFRSF14), and interleukin-15 
(IL15). Downregulated genes were: interferon gamma receptor 1 (IFNGR1), interleukin 6 receptor (IL6R), 
lysophosphatidic acid receptor 1 (LPAR1), lysophosphatidic acid receptor 5 (LPAR5), mannose receptor 
C type 2 (MRC2), macrophage stimulating 1 receptor (MST1R), neurotrophic receptor tyrosine kinase 
2 (NTRK2), purinergic receptor Y12 (P2RY12), C-type lectin domain family 17A (CLEC17A), toll-like 
receptor 10 (TLR10) and triggering receptor expressed on myeloid cells like-4 (TREML4). 

ROLE OF CLASSICAL PRO-INFLAMMATORY CYTOKINES IN AD NEUROINFLAMMATION
The early theories of the role of neuroinflammation in AD suggested the involvement of classical 

Table 2. Prominent microglia genes that are altered with age[50]

Upregulated Downregulated
CTSD CD83
GRN FLT1
LTBR ILIB
TSPO PTGS2
CYBA CCL4
CD14 CCL2
C1QA CCL3
C1QC TLR4
IRF7 PTGER1

TGFBR2
MRC1

Table 3. Human microglia associated genes that change with aging[51]

Cell adhesion/axonal guidance Cell surface receptors
Upregulated Downre gulated Upregulated Downregulated
CAECAM1 ADGRE5 CD163 IFNGR1
CDH3 CDH12 CLEC2B IL6R
DOCK1/5 CDH19 CLEC5A LPAR1
NLGN2 CHL1 CXCR4 LPAR5
NRP1/2 ICAM3 IGF2R MRC2
PLXNC1 ROBO2 P2RX1 MST1R
PCDHGA2/4-8 SEMA3C TNFRSF14 NTRK2
PDHGB2-4 SEMA7A IL15 P2YR12
PTK7 CLEC17A
ROBO4 TLR10
SE MA4A TREML4
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proinflammatory cytokines and chemokines such as interleukin (IL)-1α, IL-1β, IL-6, IL-8, tumor necrosis 
factor-α (TNF-α), interferon-gamma (IFN-γ) and CCL-2. Demonstration of cytokines IL-1α, IL-1β and 
TNF-α in AD brain microglia has been reported but these are not widely-used markers for describing 
microglia in tissue[52-55]. There appears to be technical difficulties in localizing these secreted cytokines in 
tissue, and it should be noted that these classical cytokines do not prominently feature in the microglial 
disease-associated gene signatures of recent studies[10,11,24,32]. In the paper of Friedman et al.[24], they provide 
supplementary data from gene expression profiles of two studies comparing control and AD samples; 
neither of these detected increased expression of these classical cytokines in AD samples (supplementary 
data file in reference[24]). 

DISCREPANCIES BETWEEN GENE PROFILING RESULTS AND TISSUE STUDIES OF 

MICROGLIA
Apolipoprotein E and Complement C1q
Apolipoprotein E (APOE/Apoe) and the three complement C1q genes (C1QA/C1qa, C1QB/C1qb, C1QC/
C1qc) have been identified as microglial markers by expression studies, but these proteins have not been 
identified in microglia in AD tissue sections. APOE and C1Q proteins can be detected and are associated 
with Aβ plaques in AD brains[42,44], with expression of C1Q protein being detectable in neurons[45,56]. Recent 
experimental studies with mouse models showed that the majority of C1QA proteins in mouse brain was 
derived from microglia[57], and that C1Q overexpression can have a neuroprotective rather than pathogenic 
role[58]. As the majority of microglial gene profiling studies used rodent AD models, it is possible that these 
discrepancies are due to species differences in gene expression of human compared to rodent cells.

TREM2
TREM2 has become the most widely studied inflammatory/microglia marker for studies linking 
inflammation and AD. This came about due to the identification of heterozygous single nucleotide 
polymorphisms (SNP)/mutations associated with increased risk of developing AD[59,60]; and studies 
of Nasu-Hakola disease (NHD), which is associated with homozygous mutations in TREM2 gene or 
TYROBP gene[61]. TYROBP gene encodes DAP12, the essential adaptor protein that mediates TREM2 
signaling. Patients with NHD, also known as polycystic lipomembranous osteodysplasia with sclerosing 
leukoencephalopathy (PLOSL), develop a type of dementia similar to frontotemporal dementia. This 
dementia appears to be directly caused by microglial dysfunction resulting from the loss of function of 
TREM2 signaling. The function of TREM2 has been extensively characterized as a receptor for lipids, 
lipoprotein[62-64], including Apoe[65], heat shock protein 60 (HSP60), and Aβ peptide[66]. TREM2 appears 
to be a pattern recognition type of receptor rather than being ligand sequence specific. It is still not clear 
whether TREM2 is recognizing Aβ in plaques, or one of the many different plaque-associated proteins 
or lipids that accumulate, including lipoproteins such as ApoE and ApoJ (clusterin)[67]. An interaction 
of TREM2 and APOE signaling pathways has been implicated in altering microglia to a more damaging 
phenotype[68]. However, there are still inconsistencies about whether TREM2 signaling functions in a pro-
inflammatory (damaging) or anti-inflammatory (reparative) manner[32].

If one now considers the theme of this review as to whether TREM2 expression can be used to describe 
the phenotypes of microglia in human brain tissue, findings on this have been scarce and divergent. 
Studies have consistently shown that TREM2 mRNA is highly expressed in human and animal brains and 
in microglia, and many mechanistic studies of TREM2 associated with disease assume that all microglia 
express TREM2. However, few studies have successfully localized TREM2 expression to microglia in 
human or rodent brain tissue. An earlier study using aged Aβ plaque-developing mice showed TREM2 
expression by microglia associated with plaques[69], but two studies that used hard-fixed paraffin embedded 
human brain tissue with antigen retrieval concluded that TREM2 was not expressed by human brain 
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microglia[70,71]. One study that included characterization of a number of different commercial antibodies to 
TREM2 concluded that its expression was primarily in blood monocytes and possibly neurons[70]. Another 
study similarly concluded that TREM2 was expressed by monocytes or infiltrating macrophages and not 
by microglia[71]. These authors did not report neuronal staining[71]. The discrepancies found in these studies 
need to be resolved. Both of these studies carefully characterized the specificity of the TREM2 antibodies 
used and included positive control samples that demonstrated positive staining in blood or spleen 
monocytes[70,71]. By contrast, our laboratory was able to identify TREM2 immunoreactivity in different 
types of microglia, particularly those associated with plaques and tangles in AD brains. In our study, the 
expression of TREM2 by microglia was not extensive or robust, and small cells with shorter processes were 
identified, which is not typical of the features of tissue microglia identified with antibodies to HLA-DR or 
IBA-1[72].

These plaque-associated microglia might still represent infiltrating macrophages and further studies would 
be needed, but their localization in brain neuropil and morphology were consistent with microglia. Our 
study used a validated antibody, but the major difference between studies was our use of brain tissues 
that had not been hard-fixed or paraffin-embedded. These findings do illustrate the technical difficulties 
of showing TREM2-positive microglia in human brains. In further follow up studies, the demonstration 
of TREM2 immunolocalization using antibody AF1828 (R&D Systems, Minneapolis, MN, USA) was 
repeatable, but demonstration of positive TREM2 staining was not consistent, with some sections 
showing good microglial staining while others showing none (Figure 3: unpublished observations). 
Figure 3 demonstrates types of TREM2-positive microglia in an AD case (temporal cortex). In Figure 3B, 
the demonstration of colocalization of P2RY12 expression (brown) in TREM2 positive cells appears 
to define the phenotype of TREM2 expression as non-activated. P2RY12 expression has been defined 
to identify homeostatic microglia with this marker being downregulated with activation[28]. Our study 
showed increased levels of TREM2 protein in AD cases compared to control cases as measured by 
Western blotting[72], a finding repeated by others[73], though this latter paper did not demonstrate TREM2 
immunoreactivity in microglia in tissue sections. 

Figure 2. Technical approaches to characterizing microglia phenotypes in human brain tissue. Figure 2 illustrates different methodological 
approaches for defining microglia phenotypes using established immunohistochemistry methods compared to RNA gene expression 
profiling in sorted or single cell microglia populations, or microglia that had been laser micro-dissected from brain tissue sections
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A more recent paper suggested that there was a decrease in TREM2 protein levels in AD brains, and 
that neuronal and microglial TREM2 staining was also observable. These authors posited the hypothesis 
that brain TREM2 was derived from soluble forms of TREM2 from peripheral erythromyeloid cells and 
monocyte/macrophages that had trafficked into the brain[74]. These authors did not provide details on 
the type and fixation of the brain tissue samples employed. Replication of these findings by others would 
clarify the questions raised. Overall, we have demonstrated that TREM2 expression can be observed with 
appropriately fixed materials and a verified antibody, however, there are still inconsistencies that need to 
be addressed with optimal fixation methods and the availability of higher affinity antibodies. Due to the 
significance that experimental and gene expression studies have placed on TREM2 in AD inflammation, 
reliable methods to detect TREM2 in situ are needed to adequately define the phenotypes of TREM2-
expressing microglia.

CD33
CD33, also known as Sialic acid-binding Ig-like lectin 3 (Siglec-3) is a myeloid specific cell-surface 
protein that is activated by binding with sialic acid-modified proteins or lipoproteins. The rs3865444 
SNP resulting in a substitution of A for C in the 5’ untranslated region of CD33 mRNA was found to be 
protective for developing AD[75]. Based on animal studies, it was concluded that high levels of microglial 
expression of CD33 inhibited phagocytosis of Aβ, while lower levels of CD33 present in subjects with the 
minor A variant of rs3865444[76] was associated with increased phagocytosis of Aβ[77]. We demonstrated 
by immunohistochemistry of brain sections that increased microglial expression of CD33 was evident in 
AD cases, particularly in plaque-associated microglia. Similar plaque-associated CD33-positive microglia 
were demonstrated in another study[78]. CD33 expression does not fit into the established parameters 
of pro- or anti-inflammatory phenotypic markers as in vitro activation of cultured microglia resulted 
in significant down-regulation of expression[76]. In addition, CD33 functions as an inhibitory receptor 
resulting in activation of its immunoreceptor tyrosine-based inhibitory motif (ITIM) that results in 
downregulation of inflammatory signaling. CD33 is not itself an Aβ phagocytic receptor, but activation 
could inhibit functioning of other known Aβ binding/phagocytic receptors. It has been suggested that 
increased expression of CD33 could be pathogenic in AD, but there is evidence that the opposite should be 
considered. Studies of CD33 expression in macrophages from diabetics, where expression is downregulated, 
showed lower CD33 expression correlated with increased levels of proinflammatory cytokine TNFα[79]. 

Figure 3. TREM2 expression by microglia in AD brain tissue sections. Immunohistochemical localization of TREM2 protein using 
antibody AF1828 (R&D systems). Sections from an AD case are shown: (A) single-stained section showing microglial-like structures 
immunoreactive for TREM2. Purple represents reaction with nickel-enhanced diaminobenzidine substrate; (B) double-staining (TREM2 
- purple - P2RY12- brown) of AD section showing colocalization of TREM2 and P2RY12. Arrows indicate TREM2 positive microglia (purple) 
adjacent to P2RY12 microglia
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Increased levels of CD33 in AD brains might function to restrict inflammatory activation as well as 
inhibiting phagocytic receptors, but blocking CD33 activation could result in enhanced neuroinflammation. 
A clear demonstration of the interaction of CD33 and TREM2 signaling occurred in experimental mouse 
models[80]. The loss of CD33 in these models resulted in increased levels of key proinflammatory cytokines. 
Significant information on whether these proteins interact in AD brains could be obtained if high-
resolution immunohistochemistry could show microglia staining for both proteins in vivo. The phenotypes 
of CD33 or TREM2 positive microglia have not been rigorously investigated to determine if they primarily 
express pro-inflammatory or reparative/homeostatic markers. 

Progranulin
Increased expression of progranulin by microglia has also been observed in AD brains[81-83]. This protein 
has multiple functions including neurotrophic, anti-inflammatory and lysosomal function regulation[84]. 
Progranulin expression is not restricted to myeloid cells with abundant neuronal expression having been 
characterized. Mutations in GRN (progranulin gene) can cause some forms of frontotemporal dementia 
(FTD), a neurodegenerative disease associated with neurodegeneration in the frontal and temporal cortex. 
The mechanism for this degeneration has been associated with enhanced microglial inflammation caused 
by partial loss of progranulin protein and its associated activity[85]. This protein appears to be present 
in most brain microglia, colocalizing with lysosomal proteins in brain sections, with increased levels in 
plaque-associated microglia[83]. As increased levels of progranulin can be protective, upregulated expression 
in AD would be suggestive of a reparative stress-associated response to neurodegenerative changes. As a 
marker to define microglial phenotypes, progranulin has limited utility, but its continued expression by 
different types of microglia would suggest it is having an anti-inflammatory effect in AD affected tissue. 
A recent gene profiling study of middle aged compared to old brain-derived microglia showed that GRN 
mRNA expression was significantly higher in older microglia[49].

Toll-like receptors
Toll-like receptors (TLR) are a class of ten pattern recognition receptors associated with identifying 
ligands from bacteria, viruses and fungi. However, they have also been identified to have a large range of 
cellular ligands. Due to their demonstrated interactions with aggregated Aβ and α-synuclein, TLR2 and 
TLR4 have been implicated in AD and PD, though immunohistochemistry for TLR4 has demonstrated 
neuronal, not microglial, localization[86-88]. Activation of TLR9 by its ligand unmethylated double-stranded 
DNA caused increased microglial phagocytosis of Aβ in experimental AD models[89]; however, there have 
been no demonstrations of its localization in microglia in human brains. In a recent study focused on 
TLR3, native ligand double-stranded RNA and the neuronal protein stathmin[90], we demonstrated distinct 
microglial expression of TLR3 in human brains with increased expression in plaque-associated microglia, 
and in endothelial cells, but not neurons or astrocytes[91]. These results were different from previous studies 
and dependent on the antibody used for immunohistochemistry. TLR3 had previously been defined as a 
specific marker for dendritic myeloid cells including microglia[92].
 
Colony stimulating factor-1 receptor
The survival and proliferation of microglia is primarily dependent on the action of colony stimulating 
factor-1 (CSF1) and IL34, ligands for CSF1R[93]. Binding of these growth factors to CSF1R results in 
microglial proliferation. These growth factors have distinct structures and though their expression is 
regulated differently, they have overlapping properties. CSF1R expression in the brain is mainly restricted to 
microglia. Studies using different CSF1R antagonist administered to mice resulted in knockout of microglia 
from tissue with a variety of mostly therapeutic effects, although it can also be detrimental in some 
circumstances depending on the disease model[94-99]. These studies have defined the significance of CSF1R 
to microglial function. There has only been a single definitive study demonstrating localization of CSF1R 
in microglia in human brains[100]. This study showed that all microglia constitutively expressed CSF1R 
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and this was increased in pathology-associated microglia in AD brains[100]. This original finding of CSF1R 
expression by microglia is now 25 years old and requires replication using modern microscopic techniques 
to define the phenotypes of expressing microglia. We recently demonstrated increased expression of CSF1R 
and CSF1 mRNA in AD brains that correlated with severity of pathology, but reduced expression of IL34 
mRNA in these samples[101]. One study has shown that CSF1R can be expressed in neurons in lesioned rat 
brains, but this finding has not been replicated[102]. Further characterization of CSF1R in AD tissue would 
be helpful to map the sites of microglial proliferation in tissues. These studies could be combined with 
markers and transcription factors associated with microglial proliferation (e.g., PU.1, Ki67).

CD14-Lipopolysaccharide receptor
A number of blood macrophage markers that have been defined are expressed at increased levels in 
activated cells (reviewed[103]). These defining studies have generally utilized strong activation agents such as 
bacterial proinflammogens including lipopolysaccharide (LPS) and IFN-γ that induce strong inflammatory 
responses for killing invading microorganisms. One of the activation receptors is CD14, along with Toll-like 
receptor (TLR)-4, one of the components of the LPS receptor[104]. CD14 has been considered a constitutive 
marker for macrophages and microglia, but it is noticeable that its expression in human AD brains has 
only been described in a single study[105]. This study identified increased CD14 expression of plaque-
associated microglia. In Figure 4, we show examples of CD14 staining of microglia, but only in AD cases. 
Studies characterizing the expression of CD14 in microglia freshly isolated from human brains showed 
low levels of constitutive expression that increased significantly when isolated microglia were cultured for 
2-4 days in vitro[106,107]. This culture-associated increase in CD14 mRNA expression was not observed for 
TLR4, but culture-associated decreases of a number of genes (P2RY12, CX3CR1, TNFα, TGFβ HLA-DRA, 
CD11b, FCγR3) were detected[107]. Increased expression of CD14 was detected by immunohistochemistry in 
microglia and infiltrating monocytes in sections from cases with traumatic brain injury[108]. 

The immunohistochemistry results presented here that follow up the earlier findings[105] suggest that using 
CD14 as a marker to define pro-inflammatory activation phenotypes in human brain should be reassessed. 
As had been encountered for other markers, successful CD14 staining was dependent on the antibody 
used, and also the use of antigen-retrieval methods (pH 8.0, 80 oC, 30 min). Other CD14 antibodies tested 
did not produce this staining of microglia under the same conditions.

CD68
There has been some controversy in the literature about the status of CD68 (designated macrosialin for 
rodents) as an activation or functional phagocytic marker. CD68 is a myeloid cell-specific lysosomal 
associated membrane protein (LAMP) whose expression is increased in cells associated with elevated 
phagocytic and degradative activity. Under appropriate conditions, by employing antigen retrieval methods 
on free-floating sections, we can demonstrate CD68 positive structures in most microglia. We have recently 
demonstrated that the majority of progranulin-positive, P2RY12-positive and TLR3-positive microglia 
were CD68 positive to some extent, irrespective of whether the sections being examined were from 
non-demented control or AD cases[83,91,109]. Without antigen retrieval, there was a noticeable decrease in 
sensitivity of detection for CD68 with many microglia showing no reactivity (unpublished observations). 
It is clear that being able to optimize the sensitivity of detection of CD68 (and other antigens) has a 
significant effect on identifying the phenotypes of cells expressing this marker.

This is a good context to discuss semi-quantitative histological findings on the expression of a series of 
microglial markers, including CD68, carried out in a large series of cases by Boche and colleagues[34,110,111]. 
These investigators were able to examine the expression of microglial markers in samples from subjects 
who had received the Aβ vaccine as treatment to produce circulating levels of Aβ antibodies[110]. There were 
significantly decreased numbers of microglia positive for CD68, CD64, CD32 and MSR-1, but not IBA-1 
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in sections from immunized cases compared to control non-immunized subjects. The immunized cases 
had significantly reduced levels of Aβ[110]. In a follow-up study employing samples from 130 non-demented 
cases and 83 cases with AD pathology, the expression of markers CD68 (as an indicator of phagocytosis), 
HLA-DR, CD64, MSR1 and IBA-1 were quantified as a percentage of microglial load, and correlated with 
pathological and clinical indices. There were positive correlations between dementia status and microglial 
load for CD68, MSR-1, CD64, and a negative correlation with IBA-1 load; there was no correlation between 
HLA-DR load and dementia status[34]. It should be pointed out that the difference in mean load for CD68 
between non-dementia and dementia with AD pathology was only 10%, confirming widespread expression 
of CD68 even in non-dementia brains. A similar study that focused on microglia expressing CD68, HLA-
DR and IBA-1 in sections of white matter and gray matter from MS and AD cases showed stronger CD68 
staining in normal white matter compared to gray matter with an increase in white matter showing MS-
related demyelination[112]. Due to its intracellular location, these authors concluded that CD68 was not a 
good marker to describe morphological features of microglial activation.

Defining microglia by expression of homeostatic markers (TMEM119, P2RY12)
Transmembrane protein 119 (TMEM119)
TMEM119 has been identified to have a function in bone formation by promoting the differentiation of 
myeloblasts to osteoclasts. Its function in microglia has not been defined, but this marker was repeatedly 
shown to be expressed at much higher levels by microglia than macrophages, making it a good marker for 
specifically identifying microglia[25,28,47,113,114]. The only published report of TMEM119 expression in AD 
and non-demented brains demonstrated increased expression of TMEM119 mRNA in AD cases and no 
significant difference in the density of TMEM119 immunoreactive microglia or total protein levels in AD 
cases. There appeared to be an increased expression of TMEM119 in AD plaque-associated microglia[113]. 
This finding is contrary to the expected change in expression of TMEM119 mRNA, identified from 
gene expression profiling studies reported above, where microglial TMEM119/Tmem119 expression was 
decreased upon activation. A different result for TMEM119 was demonstrated in sections from multiple 
sclerosis cases with active and chronic white matter lesions. In these areas, there was a noticeable overall 
decrease in microglial immunoreactivity for TMEM119, but not in areas defined as pre-active white matter 
lesions[115]. 

Purinergic receptor P2RY12
P2RY12 is a receptor for adenosine triphosphate (ATP) and adenosine diphosphate (ADP). This receptor 
is primarily restricted to platelets and microglia. The activation of P2RY12 by ligands induces microglial 

Figure 4. CD14 expression by microglia in ND and AD brain tissue sections. Immunohistochemical localization of CD14 protein using 
CD14 antibody (Clone 18D11, Biolegend # 812401). Sections from an ND AD case are shown: (A) Double-stained section showing strong 
CD14 immunoreactivity of blood monocyte (purple) but not IBA-1 positive microglia (brown). Purple represents reaction with nickel-
enhanced diaminobenzidine substrate; (B, C) Double-staining (CD14 - purple - IBA-1- brown) of AD sections showing localization 
of CD14 and IBA-1; (B) Colocalization of CD14 and IBA-1 in microglia cells in AD case (blue arrows); (C) Strong CD14 staining of a 
perivascular microglia in AD section
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chemotaxis to sources that can include necrotic and apoptotic neurons. P2RY12 has also been identified 
by most microglia gene profiling studies as being a specific marker for microglia. Its expression is highest 
in homeostatic microglia with significant downregulation upon inflammatory activation[30]. Recent studies 
of P2RY12 expression by microglia in multiple sclerosis tissue sections showed downregulation in areas 
of active white matter lesions, similar to TMEM119, but less in areas with gray matter lesions[28,115,116]. 
In addition, it was observed that microglia around many Aβ plaques had reduced or no P2RY12 
immunoreactivity[116]. However, our recent study further characterized P2RY12 expression by microglia in 
AD brains, and observed that the pathological environment (diffuse or mature plaques) had an effect on 
microglial P2RY12 expression[109]. Our results were noticeably different from others. We have concluded, 
based on these observations of increased P2RY12 expressing microglia with activation morphologies, 
particularly in AD brains, that this marker could be identifying other classes of microglia in addition to 
homeostatic/resting microglia[109]. We observed that most P2RY12 positive microglia expressed CD68 and 
progranulin. It was observed that highly activated appearing microglia, but also expressing P2RY12, were 
frequently interacting with Aβ plaques. Although our results agreed that there was an overall decrease 
in P2RY12 immunoreactivity, the positive cells suggest an additional function besides as a marker for 
homeostatic microglia.

“Alternative activation” markers (CD200 receptor, CD206, CD163)
Additional markers that have been studied for defining microglial phenotypes are CD200 receptor 
(CD200R), CD206 and CD163. These antigens have been defined as markers for alternative activation. 
CD200R was shown to be induced in cultured microglia by IL-4 and IL-13, defining it as an alternative 
activation marker[117,118]. CD200R has been the focus of a number of mechanistic and experimental 
studies because activation of this microglia/monocyte by its ligand CD200 results in downregulation of 
inflammatory activation signaling[119]. Activation of this receptor has significant neuroprotective effects. 
We showed that there was significantly decreased expression of CD200R mRNA in AD brains[117]. Despite 
having validated antibodies to CD200R, we could not detect CD200R protein in microglia in any brain 
tissue sections examined[117]. A study employing tissue from multiple sclerosis cases also could not 
demonstrate microglial staining of CD200R[120]. It appears then that freshly isolated microglia from human 
brains have very low levels of CD200R expression[120,121].

CD206 (macrophage mannose receptor C) is another widely used marker for alternative activation. 
Increased levels of this receptor are associated with phagocytic activity. Preliminary studies of ND and AD 
tissue sections with a validated antibody have failed to identify CD206-positive microglia. In our results, 
we can detect strong staining of vascular macrophages and perivascular macrophages [Figure 5] but not in 
microglia. These findings would suggest a deficit in levels of IL-4 in brain parenchyma. 

However, the localization of another alternative activation marker, the phagocytic receptor CD163 has 
been observed in microglia in AD and PD brains, and brains affected by human immunodeficiency virus 
(HIV)[113,122,123]. CD163 is a high-affinity scavenger receptor for hemogloblin-haptoglobin and a low-affinity 
receptor for hemoglobin alone. CD163 has been widely defined as a marker of macrophages rather than 
microglia, particularly those that infiltrate brain tissue following stroke. It can be highly expressed by 
macrophages but its role in neurodegeneration is unclear. Microglia strongly expressing CD163 were shown 
to be plaque-associated, and CD163 immunoreactivity was present in CD68-positive microglia, suggesting 
a phagocytic role, and also in TMEM119-positive microglia, a homeostatic role[122]. It should be mentioned 
that the description of microglia based on morphology is unreliable and so, CD163 immunoreactive 
microglia might be infiltrating macrophages.

SUMMARY
At present, it is unresolved from studies of human brain tissues whether “activated’ microglia, defined in 
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many studies based on morphology, have a predominantly pro-inflammatory phenotype or an alternative 
activation reparative phenotype. This remains an important issue for defining neuroinflammation in AD 
or other neurodegenerative diseases. Moving forward, investigators of the issues raised in this review need 
to consider using modern immunohistochemistry techniques that can localize multiple antigen markers to 
properly phenotype microglia associated with neuropathology (examples[124-126]).

CONCLUSION
Over thirty years of studies of tissue microglia in human brains and animal models of diseases have shown 
the increasingly complex behavior of microglial function in tissue, suggesting that classification into M1 
or M2 schemes, or classical and alternative activation, is too simplistic to reflect this complexity in disease 
processes[127].

Recent gene expression profiling studies have shown (not unexpectedly) that there are significant 
differences between human and rodent microglia. This is particularly applicable when comparing microglia 
in diseased human brains, which have taken decades to develop a disease-phenotype, while microglia in 
mice brains develop disease phenotypes over weeks. Caution is thus needed in the interpretation of results 
from rodent models with aged humans.

Gene profiling technologies have now been applied to isolated microglia and these studies have challenged 
the hypothesis that there is an acute-type (microbial driven) of inflammation in human brains causing 
accelerated proinflammatory damage in AD. These studies have shown that many of the microglia genes 
expressed at increased levels reflect responses to restore homeostasis and limit inflammatory damage. 

To fully understand the large amount of data from gene profiling technologies, ultimately there is the need 
for antibody-based studies to determine where a particular microglial marker is being expressed in the 
brain in relation to characteristic plaque and tangle pathology. Gene profiling studies have now identified 
a large number of new microglial antigenic markers that can be combined with established markers for 
phenotyping pathology-associated microglia.

To successfully accomplish immunohistochemistry in human brains, greater appreciation is needed for 
differences in the specificity and sensitivity of antibodies being used and the consequences of differences in 
tissue being examined (fixation, cause of death, postmortem autolysis).

To obtain consistency between laboratories in human tissue studies of microglia, some established 
protocols are needed to ensure that results do not simply reflect technical differences in tissue fixation and 
preparation, quality of antibodies being used, and sensitivity in detection of antigenic signals. 

Figure 5. CD206 immunoreactivity by macrophages but not microglia in ND and AD brain tissue sections. Immunohistochemical 
localization of CD206 protein using antibody AF2534 (R&D systems). Sections from an ND and AD case are shown: (A) Single-
stained section showing strong CD206 immunoreactivity of blood monocyte (purple). Purple represents reaction with nickel-enhanced 
diaminobenzidine substrate; (B) Single staining of AD section showing immunoreactivity of vascular and perivascular macrophages for 
CD206. No cells with morphologies of microglia were observed in sections examined. Similar findings observed by other investigators[122]
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Abstract
One of the emerging hot topics in biosciences is the intriguing link between gut microbial communities and 
its influences outside the gastrointestinal tract, such as the central nervous system (CNS), including its 
cognitive activities and immune responses. Beyond its neuroprotective properties, microglia are also critical 
for neuronal synaptic pruning and neural remodeling during CNS development. Prolonged microglia activation 
and neuroinflammation are considered key contributors to neurological disorders. In this regard, it is becoming 
increasingly important to consider the potential influences underlying the crosstalk between the intestinal 
microbiota ecosystem and host when determining biomarkers of disease and treatment efficacy. The commensal 
microbiota is critical for immune development and continuous function through the recognition of bacteria-
produced and regulated metabolites. In cases of microbial dysbiosis and microglial dysfunction, chronic 
neuroinflammation may persist, leading to the propagation of neurological disorders. To address potential 
mechanisms, this review focuses on the microbiota-gut-brain axis as it relates to communication pathways 
that have been linked to aberrant CNS immune activity and pathology. We also address anti-inflammatory and 
neuroprotective mediators which may counteract these detrimental activities. Finally, we explore the potential 
benefits of current and novel microbiome-targeted approaches to treat neuroinflammation and consequential 
neurological disease.

Keywords: Microglia, neuroinflammation, neurological disorders, microbiota, gut-brain axis, vagus nerve, short 
chain fatty acids, hypothalamic-pituitary-adrenal axes, hypothalamic-pituitary-gonadal axes, therapeutic 
interventions
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INTRODUCTION
Microglia are the central nervous system (CNS) resident macrophages responsible for initiating innate 
immune responses to a variety of different stress and damage signals in the brain[1]. For example, when 
less mobile “resting” microglia recognize these signals with actively surveying processes, they become 
highly motile and assume an activated phenotype, facilitating the release of pro-inflammatory and cell-
recruiting cytokines (e.g., IL-6, IL-12, IL-1β, and TNF-α) at the damage site[2]. After isolating and resolving 
the problem, it becomes critical for microglia to reestablish homeostatic conditions through the release of 
anti-inflammatory cytokines (e.g., IL-4, IL-10, and TGF-β) and return to the sentinel deactivated state[3]. 
On the other hand, prolonged microglial activation has been linked to harmful inflammatory states leading 
to dysfunctional brain activity and irreversible tissue damage, such as within Alzheimer’s and Parkinson’s 
diseases[4,5]. Beyond their immune functions, microglia are also important regulators of synaptic pruning 
and neural patterning during development and throughout adulthood[6]. Despite its evident importance in 
health and disease, it remains unclear whether signals to modulate microglia activity originate within the 
CNS only or may also occur externally from other organ/tissue systems. Identification of these additional 
factors related to microglial function will warrant a better understanding of causes of neuroinflammation 
and its relationship to CNS disorders.

Recently, one such factor has made a surprisingly strong debut within the scientific community: the vast 
microflora inhabiting the gastrointestinal (GI) tract has emerged as a critical player connected to multiple 
host systems, including those outside the GI tract. The gut microbiome (GMB) is able to modulate mucosal 
immunity and systemic immune activity as well as immune responses within the CNS. For example, the 
GMB has been demonstrated to affect the development and ongoing activity of microglia[7]. Aberrant 
changes to the microbiota (“dysbiosis”) and dysregulated microglial activity have both been linked to some 
of the same neurodevelopmental, neurobehavioral and neurodegenerative disorders, including autism 
spectrum disorder, anxiety, depression, and Alzheimer’s and Parkinson’s diseases[8-12]. Of note, the GMB 
and its relationship to immune system maturation and developmental disorders have been extensively 
described in multiple reviews and are not discussed in detail within this article[13-15]. This review instead 
focuses on the multidirectional pathways and microbial metabolites within the microbiota-gut-brain axis 
as they specifically relate to neuroinflammation-induced neuropathologies. Finally, we discuss recent and 
novel microbiome-targeted strategies as potential treatment options for neurological disorders.

MICROBIOME, MICROGLIA AND NEUROLOGICAL DISORDERS
A mother’s womb is aseptic, and, as such, we begin to develop our microbiome environments within the 
first few days after being born, and several factors, including method of birth, institution of breastfeeding or 
formula diet, and exposure to different environmental elements, determine initial microbiota compositions 
and continual adaptations[16]. The presence of early microbial colonization is essential for the maturation 
and healthy function of numerous CNS systems. The innate immune system require microbiota-induced 
epithelial signaling in order to correctly respond to pathogenic exposure[17]. For example, Erny et al.[7] 
demonstrated that adult germ-free (GF) mice were found to have major deficits in neuroimmune response 
compared to conventional controls, such as expressing reduced repertoire of cytokine and chemokine 
related genetic changes and inactivated microglial morphology (e.g., “failed to display rounded perikarya 
and small processes”) in response to lipopolysaccharide (LPS) exposure. Furthermore, they were able 
to demonstrate that reestablishing microbiota diversity and supplementation with microbial-derived 
short-chain fatty acids (SCFAs), rather than total bacterial abundance load was important for partial 
recovery of microglial function[7]. In another example, Sudo et al.[18] showed that sterile-bred GF mice, 
devoid of microbiota, express hyperresponsive irregular hypothalamic-pituitary-adrenal (HPA) activity 
in response to stress compared to conventionally bred laboratory mice. The HPA axis is considered one 
of the main relay stations between the GMB and host CNS immune responses, which has been linked to 
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the development of neuropsychiatric disorders later in life[19]. Another study by Thion et al.[20] found that 
mice born from GF maternal mice expressed changes in genes regulating LPS recognition and processing 
in utero and continued to exhibit sex-specific alterations in microglial-related gene expressions postnatally. 
It is important to note that the timeframe when the human GMB begins to stabilize and resemble an 
adult composition, i.e., around three years of age, also overlaps with critical periods of CNS development, 
synaptic pruning, and neural remodeling[21-23]. These observations support the assertion that a complex 
commensal microbiota ecosystem and their metabolites are integral to the early programming of key host 
physiological systems.

Continuous microbiota-gut-brain axis communication may also play an important role during progression 
of neurological disorders occurring later in life. Clinical analyses have revealed common comorbidities and 
correlations between neurological symptoms and GI dysfunction, such as anxiety levels corresponding with 
irritable bowel syndrome symptoms[24] and GI-related symptoms associated with Parkinson’s disease[25]. 
Furthermore, “sickness behavior” is a phenomenon descriptive of subjective changes in mood and 
behavior commonly found in humans and animal models of infection and illness[26]. These relationships 
highly suggest that GI activity, immunity and microbiome are linked to the CNS function and psychiatric 
disorders.

There are various methods to modulate the microbiome in order to study its direct impact on health and 
diseases, ranging from GF, sterile bred rodent models with overt developmental aberrations to antibiotic 
treatment and fecal matter transplantation (FMT)[27,28]. FMT studies have begun to reveal potential causal 
and therapeutic roles for the GMB through its ability to endow phenotypes from donor subjects to 
recipients, such as transferring anxiety-like behaviors and depressive symptoms within rodent models[29,30]. 
Furthermore, within the past 6 years, FMT has become a standard of care for patients suffering from 
recurrent C. difficile infections who were unresponsive to antibiotic treatments but responded favorably to 
the induction of healthy donor microbiota cultures[31]. Colonic samples from healthy donors were also able to 
improve GI and behavioral symptoms in a small (n = 18) cohort of children diagnosed with autism spectrum 
disorders[32]. Although the exact mechanisms directing microbiota-gut-brain axis influences in neurological 
disorders are still being investigated, communication pathways and components have been identified which 
are related to the systemic immune system, vagus nerve signaling, and neuroendocrine system[33].

THE MICROBIOTA-GUT-BRAIN AXIS AND IMMUNE SYSTEM
The gut microbiota, intestinal immune tolerance and homeostasis
Due to lifelong cohabitation with the intestinal microbiota, mucosal immune tolerance becomes important 
in differentiating between commensal and pathogenic bacteria[34]. The GMB is not hidden from immune 
systems but is instead active in maintaining homeostasis through “tolerogenic” signaling[35]. Toll-like 
receptors (TLRs) on the membrane of epithelial cells and lymphoid cells are responsible for recognizing 
different broad microbe-associated patterns, including bacterial membrane components, endotoxins such 
as LPS, and bacterial DNA[36]. TLR stimulation releases nuclear factor kappa-light-chain enhancer of 
activated B cells (NF-κβ) and involves activation of signaling chemokines, cytokines, and other effector 
proteins of humoral immune activity[37]. TLR signaling is decreased during the early weeks of development 
while the GMB ecosystem is being established, and immune-tolerance of bacteria is achieved when 
recognition of commensal bacteria-produced antigens inhibits inflammatory activation[38]. Specifically, TLR 
activation on the apical, microbiota-exposed membrane of epithelial cells, rather than on the basolateral 
membrane, inhibits the inflammatory cascade and limits immune response to microbial antigens found 
within the GI lumen[39]. Incorrect or incomplete immune-tolerance development can lead to autoimmune 
diseases, chronic inflammation, and tissue damage. The importance of the GMB in promoting immune 
homeostasis opens the possibility of microbiota-targeted therapeutics to reduce inflammation in response 
to GI diseases, such as colon cancer and colitis[40].



Microbiota-derived LPS and neural-immune interactions
The brain and connected CNS have previously been regarded as “privileged” and immunologically isolated 
from the rest of the body[41]. Consequently, we assumed the peripheral immune system was in place to 
assure healthy functioning and security for the rest of the body. Despite this separation, we have begun to 
identify factors outside the CNS which directly impact neurology and behaviors. 

The commensal gut microbiota confers colonization protection from pathogens through nutrient and 
spatial niche competition, in addition to their ability to interact with the mucosal immune system and 
influence release of soluble IgA antibodies, antimicrobial peptides, and defensins against invaders [42,43]. 
However, damage to the mucosal wall, for example due to antibiotic-induced microbiota dysbiosis, 
overgrowth of opportunistic pathogens, and chronic inflammation, can lead to increased susceptibility to 
infection and permeability of the intestinal epithelial layer, known as “leaky gut”, allowing luminal contents 
to escape into circulation and induce systemic inflammation[44,45]. 

The Gram-negative bacterial membrane component LPS is an endotoxin commonly utilized to study the 
effects of inflammation on behavior in rodent models, including voluntary ethanol intake, anxiety-like 
behaviors, and blood-brain barrier integrity[46-49]. Studies have demonstrated the direct effects of LPS on 
microglial activation and subsequent neurological pathologies and behaviors. For example, systemically 
introduced LPS has been shown to induce depressive-like behaviors in animals, similar to “sickness behavior” 
commonly comorbid with human infection diseases[50]. Biesmans et al.[50] showed that intraperitoneal injection 
of LPS increased serum levels of cytokines, including IL-1β, IL-6, TNF-α, IL-10, and MCP-1, peaking at 2 h 
after administration. This correlated with upregulation of CNS astrocytic immune activity biomarker glial 
fibrillary acidic protein, decreased locomotion, and reduced sucrose preference which indicates anhedonia 
associated with sickness behavior[50]. In another example, Hoogland et al.[51] demonstrated increased 
microglial activation after 48 h of LPS administration and 72 h after live E.coli injection. Furthermore, they 
found increased inflammatory cytokines within brain homogenates (TNF-α, IL-1β, MCP-1, and M-CSF) at 
3 h after LPS stimulation compared to 20 h after E. coli infection. This indicates that E. coli-associated LPS 
endotoxins induced neuroinflammation before circulatory introduction of LPS-producing bacteria, suggesting 
the importance of bacterial substrates in triggering immune responses. Furthermore, blocking TLR4-LPS 
recognition in a rat model prevented sickness behavior following LPS challenge[52]. While unclear of its origin, 
whether having migrated from the gut microbiome or being derived from a brain microbiome, bacterial LPS 
has also been identified within the neuronal parenchyma of Alzheimer’s patients[53]. Zhao et al.[54] observed that 
LPS tended to self-associate and congregate around neurons, indicated by neuronal marker NeuN- and DAPI 
(nuclear)-staining, within brain tissues from patients with Alzheimer’s Disease compared to age-matched 
controls that instead expressed more punctate and dispersed LPS. Furthermore, they were able to show that 
primary co-cultures of human neuronal-glial cells significantly reduced DNA transcription factors when 
incubated with LPS[54]. Collectively, these observations suggest the critical role of the GMB and microbial 
endotoxins in influencing systemic and CNS inflammation related to neurological disorders.

THE GUT AND VAGUS NERVE SYSTEM INTERACTIONS
Vagal afferents and chemosensing through G-protein coupled receptors
The vagus nerve allows for bidirectional communication between the gut and brain, where afferent 
signaling conveys sensory information from the gut to a mesh-like system of neurons in the brain. 
Microglia are sensitive to intestinal microbiome changes and are effective at receiving signals from the 
vagus nerve to regulate neuroimmune activity and function. Gut endocrine cells (EECs) play important 
roles in mediating intestinal information to the CNS. They serve as chemosensors that integrate extrinsic 
and intrinsic signals within the gut. EECs interact with the vagus nerve by responding to different stimuli, 
such as nutrients, harmful toxins, and bacterial products. Through this cell-mediated sensing mechanism, 
EECs interact with vagus afferents by releasing serotonin, gut hormones (CCK, PYY, ghrelin, leptin, 
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and GLP-1) and SCFAs that target receptors located on vagus fibers. Long chain fatty acids (LCFAs) also 
interact with vagus receptors through cholecystokinin-dependent mechanisms. 

Direct measurements of EEC activities have been challenging due to their location in the gut wall. Recently, 
the lab of Reimann et al.[55] has developed a method to directly investigate EEC activity by genetically tagging 
EECs with a fluorescent protein which expresses under the control of the promoter for a peptide hormone 
precursor proglucagon, GLP-1. Using this approach, they established the important role of G-protein 
coupled receptors (GPCRs) in chemosensing and their ability to activate EECs leading to the secretion of 
peptide hormones. GPCRs are critical for a variety of physiological functions, such as regulation of immune 
system, autonomic nervous system regulation, sensory (taste and smell) functions, and maintaining energy 
homeostasis. Recently, some GPCR chemoreceptors were found to be activated by bile acids, SCFAs, and 
LCFAs, which are also linked to EECs[56]. It was shown that the LCFA receptors GPR40 and GPR120 and the 
bile acid receptor GPR131 (TGR5) are all expressed on the surface of EECs[55]. In addition, Samuel et al.[57] found 
that isolated EECs express GPR41, a receptor for SCFAs. It has been shown that these chemosensors are 
located on the basolateral membrane of of EECs, which interact with the circulatory system[58]. In addition, 
it is likely that GPCRs co-store and co-release with gut-derived hormones, which indicate that GPCRs may 
be regulated by associated intestinal hormones. SCFAs and LCFAs, released from gut microbiota or derived 
nutritionally, can activate release of CKK hormone, which can bind to CCK-A and CCK-B receptors 
(CCK-r) on vagal afferents that signal the brain[59]. In response, the brain develops immune responses 
and triggers vagal efferent fibers to release acetylcholine (ACh), which is the principal parasympathetic 
neurotransmitter[60]. These observations suggest that gut dysbiosis can result in pathological changes in the 
levels of gut hormones and metabolites, thus influencing GPCR function and dysregulating the vagus nerve 
and subsequent CNS activities. 

The interactions between gamma-aminobutyric acid and vagus nerve
Gut microbiota also produce a number of neurotransmitters similar to mammalian physiological systems, 
including dopamine, norepinephrine, serotonin, and gamma-aminobutyric acid (GABA). GABA is the 
major inhibitory neurotransmitter in the CNS; however, GABA receptors are expressed throughout 
the body, including on the vagus nerve[61]. In human intestines, GABA is produced by the microbiota 
populations Lactobacillus brevis and Bifidobacterium dentium. GF animals were shown to have reduced 
levels of GABA, suggesting that the gut microbiota is able to influence GABA levels. Furthermore, altered 
GABA levels have also been associated with neurological conditions, such as depression, anxiety, autism, 
and schizophrenia[62,63]. For example, studies into rodents were found to have reduced depressive and 
anxiety-like behaviors after receiving chronic administration of the probiotic Lactobacillus rhamnosus, 
which was accompanied by decreases in GABA receptor subunit mRNA expression and corticosterone 
levels[64]. The GABA-related reductions in behavioral effects did not occur in vagotomized rats and 
mice[65]. Considering this effect existed only when the vagus nerve was intact, it suggests that intestinal 
microorganisms regulate GABA signaling through the vagus nerve. In support of this conclusion, animal 
studies by Takanaga et al.[66] demonstrated that GABA produced by intestinal bacteria are able to cross the 
blood-brain barrier and influence CNS activities. In addition, the impairment of GABA-mediated neuronal 
inhibition associated with epilepsy might contribute to the therapeutic efficacy of vagus nerve stimulation, 
as was demonstrated in patients with drug-resistant partial epilepsy[67]. 

Vagus nerve pathways in controlling inflammation
The microbiota-gut-brain interaction through the vagus nerve plays a major role in regulating 
inflammation. The anti-inflammatory properties of vagus nerve function is mediated through several 
debated pathways, such as the cholinergic anti-inflammatory pathway, the HPA axis and the splenic-
sympathetic nerve anti-inflammatory pathway. 

Previous studies demonstrated that the cholinergic anti-inflammatory pathway (CAP) plays a pivotal role 
in controlling neuroinflammation. The CAP modulates inflammation through vagal efferent fibers that 
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synapse onto enteric neurons surrounding the GI tract, which can release acetylcholine[68,69]. Acetylcholine 
binds to α-7-nicotinic acetylcholine receptors on macrophages, including microglia, and inhibit the release 
of the pro-inflammatory cytokine TNF-α[70]. Other studies also illustrate the ability of the vagal nerve to 
regulate neuroinflammation by sensing increased peripheral pro-inflammatory cytokines[71]. As a negative 
feedback loop, pro-inflammatory cytokine release is prevented if increased levels of inflammation are 
detected through the acetylcholine-mediated anti-inflammatory signaling system[71]. Wang et al.[72] observed 
that electrical stimulation of the vagus nerve can inhibit TNF synthesis in wild-type mice but not in α-7-
nicotinic acetylcholine receptor-deficient mice. Collectively, these results support the critical role of the 
vagus nerve in regulating microglia activity and neuroinflammation through CAP signaling. 

Studies of vagus nerve stimulation have provided additional evidence for vagus nerve afferent involvement 
in neuroimmune modulation. For example, non-invasive vagus nerve stimulation is widely used in the 
treatment of drug resistant depression and has been shown to increase levels of norepinephrine[73,74]. The 
locus coeruleus is an aminergic brain stem nucleus which represents the main source of norepinephrine in 
the brain and plays a critical role as a neurotransmitter and neuroimmune modulator, including regulation 
of microglial activity. By activating β-receptors on the cell surface, norepinephrine affects microglia cell 
dynamics, which then influence neuronal activity[75,76]. These observations indicate the potential of vagus 
nerve stimulation to regulate microglial activity. 

Recently, the inflammatory reflex was found to be located where vagus afferent fibers activate vagus efferent 
fibers. Borovikova et al.[77] reported that septic shock was prevented by vagus nerve stimulation of the 
distal end of the vagus nerve after injection of LPS. This effect is due to CAP activation and the binding of 
acetylcholine  to α-7-nicotinic acetylcholine receptors in order to inhibit macrophages from releasing pro-
inflammatory cytokines such as TNF-α[72]. However, the interaction between the vagus nerve and intestinal 
immune system is indirect because the vagus nerve does not directly interact with resident macrophages 
in the gut. Therefore, Rosas-Ballina et al.[78] suggested that the vagus nerve tends to activate the splenic 
sympathetic nerve through a vago-sympathetic co-activation of ventricular contractility and heart rate[78,79]. 
It is hypothesized that released norepinephrine from the distal end of the spleen can bind to the β2 
adrenergic receptor of splenic lymphocytes. Its binding leads to the release of acetylcholine, which in turn 
binds to α-7-nicotinic acetylcholine receptors on splenic macrophages and inhibits the release of TNF-α[80]. 
However, this hypothesis is still being debated due to the controversial interaction between the spleen and 
the vagus nerve[81]. Furthermore, some studies demonstrate the spleen receives not only sympathetic inputs 
but parasympathetic inputs as well. The sympathetic inputs relay information to the spleen via the arteries 
while the parasympathetic inputs transfer signals at the tips of the spleen. 

The vagus nerve also plays an important role within the neuroendocrine-immune axis, which can regulate 
coordinated neural, behavioral, and endocrine responses with the immune system in order to prevent 
chronic neuroinflammation. The vagus nerve recognizes peripheral pro-inflammatory cytokines released 
by macrophages, such as IL-1, IL-6, and TNF-α and conveys this information to the neurons within HPA 
pathway in order to decrease peripheral inflammation[82]. Overall, the vagus nerve has anti-inflammatory 
properties both through its afferent end (activation of HPA axis) and through its efferent end (activation of 
CAP).

THE GUT AND THE ENDOCRINE SYSTEM
In addition to the vagus nerve, intestinal microbiota are able to communicate with the CNS through 
hormones secreted by glands within the endocrine system. Steroid hormones take part in many critical 
physiological processes in our body, such as survival of stress, injury, metabolism, inflammation, salt 
and water balance, immune functions, and development of sexual characteristics. Studies show that gut 
microbiota are also able produce and regulate these hormones to affect brain activity, including the state of 
microglia and neuroinflammation. 
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Glucocorticoids through HPA axis
The HPA axis is a complex set of direct pathways and feedback interactions which include the 
hypothalamus, the pituitary gland, and the adrenal glands. The hypothalamus produces and releases 
corticotropin-releasing hormone (CRH), which can induce the pituitary to release adrenocorticotropic 
hormone (ACTH). ACTH then stimulates the adrenal cortex, producing glucocorticoid hormones. 
Each of these hormones can in turn act back on the hypothalamus and pituitary in a negative feedback 
cycle. Glucocorticoids are corticosteroids which bind to glucocorticoid receptors present in almost 
every vertebrate animal cell. They can reduce certain aspects of immune activities through a feedback 
mechanism. Cortisol is the most important human glucocorticoid which has a variety of cardiovascular, 
metabolic, immunologic, and homeostatic functions. The influence of microbiota on the HPA axis depends 
on many factors including bacterial strain, host age and sex, and different mouse strains[83-89]. Individual 
strains of bacteria can regulate the HPA axis and the microbiota as a whole participate in developmentally 
programming stress responses[90]. Conversely, microglial activity can also affect hormone release through 
HPA axis. In response to cerebral insults, microglia secrete a variety of inflammatory molecules, such as 
cytokines, stimulating neuronal activity within the paraventricular nucleus of the hypothalamus to activate 
the HPA axis anti-inflammatory feedback loop to reduce prolonged neuroinflammation. 

Glucocorticoids released by the HPA axis bind to glucocorticoid receptors, which are highly expressed 
in neurons and microglia to affect cellular responses[85,90]. Glucocorticoids work to suppress both stress 
and immune responses by binding to specific glucocorticoid receptors and mineralocorticoid receptors 
in CNS and immune cells[91]. Studies have demonstrated that acute stress induced higher levels of ACTH 
and corticosterone in the serum of GF mice compared to conventionally-raised control mice[85-87]. 
Recent targeted microarray analysis found 23 upregulated glucocorticoid receptor pathway genes in the 
hippocampus of GF mice compared to controls, of which six genes (Slc22a5, Aqp1, Stat5a, Ampd3, Plekhf1, 
and Cyb561) were confirmed by PCR validation[87]. Among these six genes, two (Stat5a and Ampd3) 
were upregulated in E. coli-derived LPS-treated mice. The GF mice demonstrated reduced anxiety-like 
behaviors in response to acute stress, whereas LPS-treated control mice demonstrated anti-depressive 
but not anti-anxiety behavior and a decrease in the basal serum cortisol levels. LPS-induced abnormal 
behavior was consistent with previous findings that E. coli colonization in GF mice enhanced the HPA 
axis response to stress[86]. In another study, plasma ACTH and corticosterone hormones were decreased 
in mice monocolonized with Bifidobacterium infantis, but were increased in E. coli-monocolonized mice. 
In addition, after receiving fecal samples from patients diagnosed with severe depression (“depression 
microbiota”), control mice exhibited anxiety- and depressive-like behaviors with parallel downregulation 
of Stat5a gene in their hippocampus compared with “healthy microbiota” recipient mice[92]. Stat5a is 
a member of STAT family encoded transcription factors, mediating signals for a broad spectrum of 
cytokines. The JAK2-STAT5 signaling pathway plays a critical role in mediating IL-3-induced activation 
of microglia[93]. Furthermore, STAT5 may play a protective role in damaged nerve cells and has been 
implicated in cellular functions of proliferation, differentiation, and apoptosis with relevance to processes 
including hematopoiesis and immunoregulation[92]. Collectively, these observations suggest that microbiota 
related STAT5 levels may influence neuroinflammation and related disorders.

CRH and glucocorticoids from the HPA axis have been shown to directly affect microglia activity by 
binding to functional CRH-R1 receptors on microglia and initiate apoptosis of microglia[94]. In that study, 
Ock et al.[94] demonstrated that CRH-induced apoptosis did not induce nitric oxide production or increase 
expression of pro-inflammatory genes, which indicates that CRH does not affect inflammatory activation of 
microglia. This mechanism has been linked to the mitochondrial pathway and induction of reactive oxygen 
species (ROS) production, which can damage microglia cells and promote apoptosis[95]. In support, the 
antioxidant N-acetyl cysteine inhibited CRH-induced microglial cell death suggesting that ROS was a main 
cause of apoptosis. 
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Glucocorticoid levels are strongly related to the activation of the HPA axis, and distinctively affect 
macrophage function. Low levels of corticosterone enhanced pro-inflammatory factors, while high 
corticosterone concentrations suppressed macrophage activation[96]. Steroid hormones directly target 
mature microglia; glucocorticoids predominantly modulate expression of glucocorticoid receptors to 
regulate microglial inflammatory activity[97]. Anti-inflammatory effect of glucocorticoids on microglia can 
reverse the pro-inflammatory function of CRH by attenuating the production of TNF-α, IL-6, and nitric 
oxide from LPS + IFN-γ-activated murine microglia. Physical or emotional stress may induce microglial 
activation in the brain as determined by changes in morphology [98,99]. The stress-induced elevation of 
glucocorticoids can activate microglia in rats, and chronic stress can cause a marked transition from a 
resting to non-resting state[100]. Temporal treatment of glucocorticoids can exhibit the opposite results[101]. 
Stress and administration of glucocorticoids prior to peripheral immune stimuli exerted pro-inflammatory 
effects on microglia, while exposure to glucocorticoids after stimuli had anti-inflammatory effects in a 
rodent model[101]. Corticosteroids limit microglial activation that occurs during acute stress, serving as 
an important endogenous suppressive signal limiting neuroinflammation[98,99]. Moreover, glucocorticoid 
level increases and microglial morphological complexity decreases with aging[88]. Increasing glucocorticoid 
levels in young mice enhanced microglial ramifications, pointing to their increased neuroprotective 
function. The opposite, amoeboid state of microglia renders them to move freely in the brain tissue and is 
indicative of inflammatory activation. Amoeboid microglia occur more frequently with aging. The effects 
of glucocorticoids or corticosteroids on microglia morphology are dependent on treatment time and 
concentration of glucocorticoids. 

Estrogen through hypothalamic-pituitary-gonadal axis
The hypothalamic-pituitary-gonadal axis (HPG axis) plays an important role in the reproductive and 
immune systems, and controls development, reproduction, and aging in animal models. The hypothalamus 
secretes gonadotropin-releasing hormone, the pituitary gland produces luteinizing hormone and follicle-
stimulating hormone, and the gonads release estrogen and testosterone. Although the HPG axis has not 
been as deeply studied as the HPA axis, strong evidence suggests that estrogen has the capacity to inhibit 
neuroinflammatory processes and can impact immune cells, including microglial functions. 

Estradiol (E2) is an estrogen steroid hormone and the major female sex hormone. Studies show 
that 17β-estradiol (E2) inhibits microglia activation[102] and reduces the expression of inflammatory 
mediators[102]. For example, E2 was able to inhibit Aβ-induced expression of scavenger receptor-A in 
microglia cells from an animal model of Alzheimer’s disease[102]. Ovarian hormone deprivation can alter the 
expression of major components of estrogen and neuronal inhibitory signaling, participating in the control 
of microglia reactivity[103]. Moreover, aging is related to exaggerated responses to acute inflammatory 
stimuli, modulated by the duration of hormone deprivation. This deprivation is due to decreased estrogen 
receptor activity, which, despite the continuous synthesis of the receptors, induces neuroinflammation[89].

SHORT-CHAIN FATTY ACIDS IN THE GUT AND NEUROINFLAMMATION
Microbiota are able to influence brain functions through the production of metabolites such as SCFAs. In 
addition to being derived from dietary sources, SCFAs are also produced by the microflora in the distal 
small intestine and colon though the fermentation of dietary fibers. The most abundant SCFAs in the 
human gut are acetate, propionate, and butyrate. Acetate is used for host synthesis of lipids and cholesterol, 
and propionate is mostly absorbed by the liver and serves as a substrate during gluconeogenesis. Butyrate 
functions as the main energy source for colonic enterocytes[104]. SCFAs are mainly absorbed in both the 
small and large intestine through similar mechanisms, such as diffusion of the dissociated forms and 
through active transport by SCFA transporters[105].

High doses of systemic or locally injected butyrate has been found to exert neuroprotective effects, such 
as memory enhancement and cognitive function restoration[106,107]. Physiological levels of butyrate may 
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influence and improve neuroinflammation through different mechanisms. Butyrate is a known inhibitor 
of histone deacetylases (HDACs)[108,109], which control the innate inflammatory system by regulating the 
number of microglia cells and astrocytes[110]. Histone acetylation is a post-translational modification 
through epigenetic process and causes the chromatin structure to loosen by weakening electrostatic 
attraction between the histone proteins and DNA backbone. Activation of microglia are suppressed by this 
process. Therefore, increased HDACs have been shown to be involved in neurodegenerative disorders, such 
as Alzheimer’s and Parkinson’s diseases[110,111]. 

Butyrate is one of the most important microbial end-products of the human colon fermentation process 
which displays several physiological effects via different mechanisms. One function is mentioned 
above: butyrate is a well-established HDAC inhibitor. In addition to having a significant impact on the 
transcriptional system, butyrate also serves as the energy substrate. Butyrate is the primary source of 
energy in the colon and microbiome, which accounts for nearly 70% of ATP produced. It may appear that 
metabolic events in the colon are disconnected with that of the brain. However, it is impossible to ignore 
the immense energy demand of the brain. In this regard, energy imbalance in the brain has been noted at 
early stages of neurodegenerative disease such as Alzheimer’s disease[112]. Another function of butyrate is its 
ability to activate GPCRs, as described in detail above, within the vagus nerve system section[113]. Butyrate 
can signal through GPR109a, which is widely expressed in colonocytes, T cells and has also been found in 
microglia. Butyrate is sensed by FFA2 (previously GPR43) and FFA3 (previously GPR41), which modulate 
the relationship between SCFAs and gut, as well as the whole body energy use[114,115]. 

Many studies have shown that butyrate can serve as an anti-inflammatory agent, improving gut barrier 
function, protecting against colon cancer and neurodegenerative diseases, such as Alzheimer’s disease[116-118]. 
These studies demonstrate that treatment with butyrate inhibited pro-inflammatory cytokines (IFN-γ, 
TNF-α, IL-1β, IL-6, and IL-8) and upregulated anti-inflammatory cytokines (IL-10 and TGF-β). This effect 
may be partly due to the inhibition of transcription factor NF-κB that controls the transcription of DNA, 
cytokine production, and cell survival. Aguilar et al.[119] demonstrated that butyrate suppressed the NF-
κB signaling pathway by rescuing the redox machinery and controlling ROS, which also regulate NF-κB 
activation. In addition, butyrate is known to enhance and repair barrier function of intestinal epithelial 
cells. In vitro experiments have illustrated that butyrate plays an important role in the maintenance of gut- 
barrier integrity in order to block the translocation of LPS, which can cause immune activation[120]. For 
instance, butyrate leads to the upregulation of mucin 2, the most prominent mucin protein, and enhances 
the protection of the mucosal layer[121]. These effects of butyrate were demonstrated in Caco-2 cell cultures, 
which are human epithelial colorectal adenocarcinoma cells, and can form confluent monolayers in vitro that 
both structurally and functionally resemble the small intestinal epithelium. For instance, butyrate leads to 
the upregulation of mucin 2, the most prominent mucin protein, and enhances the protection of the mucosal 
layer[121]. 

Gut dysbiosis and reduced levels of SCFAs have been observed within neurological disease, including 
Pelizaeus–Merzbacher disease[122]. Unger et al.[123] found changes in gut microbiota and SCFAs in patients 
diagnosed with Parkinson’s disease. Fecal SCFA concentrations were significantly reduced in Parkinson’s 
patients compared to controls. This was associated with reduced microbiota populations of Bacteroidetes 
and Prevotellaceae[123]. Furthermore, some studies have demonstrated beneficial effects of SCFAs during 
neuronal pathologies, such as against formation of neurotoxic Aβ aggregation, which occurs during the 
pathogenesis of Alzheimer’s disease[124]. SCFAs have been reported to increase the expression level of 
retinotic acid in the GI tract, which inhibits Th17 cell differentiation and promotes Treg proliferation, 
limiting prolonged neuroinflammation[125]. SCFAs, especially butyrate, are able to modulate immune 
cells and influence cell proliferation and apoptosis. For example, high concentration of butyrate induces 
cell apoptosis while low concentration will enhance cell proliferation[126]. Collectively, these observations 
support the ability of SCFAs to have a therapeutic effect on many neurodegenerative disorders. 
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MICROBIOME-TARGETED THERAPEUTICS ADDRESSING NEUROLOGICAL DISEASES
The conclusion of the 10-year NIH Human Microbiome Project has been integral in providing resources, 
methods, and discoveries linking humans and their microbiomes to health and disease [127]. The study 
utilized a combination of shotgun metagenomics, untargeted metabolomics, and immunoprofiling to 
determine host-microbiota interactions manifest in largely diverse ways, and sampling large population 
sizes is critical for accurately determining potential mechanisms of microbiome-linked diseases[127]. They 
demonstrated that microbiome composition alone was not always an accurate representation of host 
phenotype, and necessitated the consideration of microbial functions of the microbiota ecosystem as 
they interacted with host immunity, metabolism, and other interconnected activities [128]. Through this 
accomplishment, microbiome-targeted strategies have begun to gain interest in both studying mechanistic 
relationships within animal models and in the treatment of pathologies, including those related to the gut-
brain axis. 

Antibiotics: non-absorbable “eubiotic” rifaximin
Beyond their bacteriostatic and bactericidal effects in treating GI infections, antibiotics have been shown 
to negatively affect the intestinal flora, a phenomenon considered “collateral damage”. Antibiotic treatment 
can have long-lasting negative effects on the GMB, which has been shown to decrease diversity and reduce 
beneficial bacteria, leading to increased susceptibility to pathogens, such as Salmonella and Clostridium 
difficile[129,130]. Alternatively, rifaximin, a broad-spectrum, non-absorbable antibiotic, prescribed to treat 
irritable bowel syndrome and traveler’s diarrhea caused by E. coli, has shown unique qualities related to the 
GMB and symptoms beyond the GI tract[131]. The mechanism of rifaximin action to reduce pathogens is 
through binding the β-subunit of microbial RNA polymerase and inhibition of bacterial RNA synthesis[132]. 
However, unlike other antibiotics which commonly reduce microbiota diversity and promote dysbiosis, 
rifaximin exerts anti-inflammatory properties and has the “eubiotic” ability to enrich beneficial microbiota 
populations[133]. For example, Maccaferri et al.[134] found that in vitro treatment with rifaximin increased 
levels of Bifidobacteria, Atopobium, and Faecalibacterium prausnitzii cultured from colonic samples 
of patients with Crohn’s disease. These changes were also accompanied by increases in SCFAs, microbial 
metabolites known to be important in host health, metabolism, and immune homeostasis[135]. In a rodent 
model of ankylosing spondylitis spinal joint inflammation, rifaximin treatment was able to inhibit TLR-4/
NF-κβ signaling and decrease levels of pro-inflammatory cytokines, such as TNF-α, IL-6, IL-17A, and IL-
21[136]. Another important commensal GMB population and producer of the SCFA lactate, Lactobacillus, 
was increased in a rat model of visceral hyperalgesia with rifaximin treatment[137]. Furthermore, hepatic 
encephalopathy is a common complication of patients with acute or chronic liver disease that is detected 
through neuropsychological testing and presents as neurocognitive decline: forgetfulness, confusion, 
irritability, and coma at its most severe forms[138]. These symptoms are mainly a result of elevated levels 
of ammonia. Rifaximin was able to reduce levels of ammonia-producing intestinal bacteria without 
decreasing GMB diversity, while also significantly reducing hospital stay, mortality rate, and improving 
psychometric test performance in patients with mild and severe hepatic encephalopathy compared to other 
treatments[139]. These observations support alternate uses for rifaximin which may be related to beneficial 
changes in microbiota and SCFAs, including its indication for CNS-related disorders.

Microbial-derived metabolites: sodium butyrate
Beyond directly targeting and supplementing live bacteria in the GMB, the Human Microbiome Project 
stressed the importance of microbiota functions in influencing host immunity and pathologies. As a HDAC 
inhibitor, sodium butyrate can change the balance between two types of enzymes, histone acetylase and 
HDACs[140]. These two enzymes control acetylation, which is an important process in chromatin structure 
and gene expression associated with many diseases, such as diabetes, Alzheimer’s disease, and various 
cancers[141-143]. Physiological doses of sodium butyrate (0.25-4.00 mM) were observed to inhibit glioblastoma 
cell proliferation and induce cancer cell senescence in vitro[143]. Pharmacological treatment of sodium 
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butyrate was also shown to significantly increase survival rate and delay the neuropathological sequelae in the 
R6/2 transgenic mouse model of Huntington’s disease[106]. The findings of Arnoldussen et al.[144] demonstrated 
the beneficial effect of dietary butyrate intervention on the detrimental effects of high fat diet, including 
relieving high fat diet-induced cognitive impairment and dementia in humans. In addition to serving 
as a therapeutic agent in some specific diseases, sodium butyrate can have complementary effects when 
administered with other agents, such as metformin. Metformin is the most prescribed oral anti-diabetic 
agent, whose potential benefit in many diseases has been investigated. Recent research demonstrates that 
metformin is able to increase butyrate-producing populations within the gut microbiome[145,146]. Additional 
data indicate metformin and butyrate have anti-inflammatory effects in relation to physiological functions, 
including transcription, replication, and repair in the process of tumorigenesis[147]. Other SCFAs also have 
therapeutic effects. For example, glatiramer acetate serves as immunomodulator to reverse detrimental 
immune reactivity in two murine models of irritable bowel disorder. Collectively, these findings point to the 
therapeutic potential of sodium butyrate and other SCFAs in the treatment of various pathologies including 
neurological disorders.

Targeting the vagus nerve
Lewy body aggregates, constituted mainly by α-synuclein and ubiquitin, and GI dysfunctions are 
physiopathological characteristics of early development of Parkinson’s disease[148]. Braak et al.[149] 
hypothesized that these early biomarkers initiate within the gut and then progress to the CNS via the vagus 
nerve and spinal cord. In support, vagus nerve-mediated brain migration of α-synuclein injected into 
the intestinal wall has been found in a rodent model[150]. Sander and his colleagues further indicated the 
correlation between the vagus nerve and cognitive fatigue in multiple sclerosis patients[151]. It is thought 
to be the result of the vagus nerve stimulation due to the pro-inflammatory cytokines causing changes 
in neural activity in brainstem and hypothalamus[152]. Furthermore, the stimulation of the vagus nerve is 
used in the treatment of drug resistant depression, which is the major factor for developing Alzheimer’s 
disease. Experiments in APP/PS1 (a murine model of Alzheimer’s disease) animals were performed to 
induce morphological changes in microglia towards a neuroprotective phenotype, which was mediated 
by vagus nerve activation[153]. Therefore, due to its important role in regulating the gut-brain axis through 
transferring microbial metabolites and neurotransmitters, such as SCFAs and GABA, manipulation of vagus 
nerve signaling may play a key role in modulation of some neurological conditions, including Parkinson’s 
disease, Alzheimer’s disease, and multiple sclerosis.

LIFE-STYLE INTERVENTIONS
Lifestyle interventions can affect gut microbiome composition, which influence brain activity and immune 
responses. Since neuroinflammation is strongly linked to neurodegenerative diseases, lifestyle alterations, 
such as dietary supplement and exercise, are able to play an important role in improving disease states.

Pre-/probiotic supplementation
Probiotics are living beneficial microorganisms (bacteria and yeasts), and prebiotics are the indigestible 
fibers which feed them[154]. Probiotics have been widely marketed and consumed as dietary supplements or 
as functional foods, such as “live” yogurts[154]. Probiotic treatments with Lactobacillus acidophilus, L. casei, 
and L. rhamnosus were able to affect transcription of host genes related to mucosal immunity in healthy 
human volunteers, supporting the ability of live bacterial cultures to affect host activities[155]. D’Mello et al.[26] 
demonstrated a probiotic mixture, VSL#3, was able to reduce “sickness behavior” by increasing novel social 
investigation in a liver inflammation rodent model, which was related to an increase in circulating G-CSF, 
reduction in TNF-α, and a decrease in activated microglia. In an in vitro study, peripheral blood mononuclear 
cells isolated from patients with Parkinson’s disease were co-cultured with probiotic bacteria, Lactobacillus 
and Bifidobacterium, to investigate changes in innate immune cell release of inflammatory signaling markers. 
Probiotic strains were able to significantly reduce pro-inflammatory (TNF-α, IL-6, and IL-17A) and increase 
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anti-inflammatory cytokines (IL-4 and IL-10)[156]. In another study of a randomized, double-blind trial, patients 
diagnosed with Alzheimer’s disease given a probiotic mixture for 12 weeks, exhibited a significant score 
improvement on the mini-mental state examination compared to controls[157].  

High fiber prebiotic with or without probiotic supplementation can be a non-invasive strategy to treat 
neurological conditions. High fiber diets can affect gut microbiota abundance. For example, inulin is a 
prebiotic fiber and inulin-type fructan supplementation on the fecal microbiota is able to selectively change 
abundance of specific colon bacteria strains, such as Anaerostipes, Bilophila, and Bifidobacterium[158]. As 
such, high fiber supplementation has been shown to counter age-related microbiota dysbiosis[159]. Feeding 
mice with inulin has been shown to beneficially alter gut microbiome resulting in improved neurological 
outcomes through affecting gut microbiota-produced SCFAs. In support, high fiber diets, in which SCFAs 
can be derived, have numerous reported health benefits in reducing risk of type 2 diabetes, obesity, stroke, 
and cardiovascular disease. High fiber diets have been shown to increase circulating levels of butyrate, 
which may affect CNS function directly[160]. Collectively, these studies provide exciting evidence and 
demonstrate the need for further investigations into the ability of live bacteria with or without prebiotic 
supplementation to treat inflammation and neurological pathologies. 

Diet 
The microbiota composition and diversity are sensitive to host dietary habits[23,161]. Dietary factors may have 
pro-inflammatory or anti-inflammatory effects[162], which can indirectly affect gut microbiota by providing 
multiple nutrients and specific compounds. For example, data suggest that the modified Mediterranean-
ketogenic diet can modulate the gut microbiome and metabolites in association with improved Alzheimer’s 
disease biomarkers in cerebrospinal fluid[163]. The abundance of Enterobacteriaceae, Akkermansia, Slackia, 
Christensenellaceae, and Erysipelotriaceae increases while that of Bifidobacterium and Lachnobacterium 
reduces after modified Mediterranean-ketogenic diet treatment in subjects. A bad dietary habit, such as 
chronic alcohol intake, can induce neuroinflammation and neurodegeneration. Reduction of intestinal 
bacterial load was able to attenuate alcohol-associated CNS and gut inflammation[164]. Alcohol activated 
microglia and modified its cell morphology, taking on an amoeboid shape with enlarged soma and 
shortened peripheral processes[164].

Exercise
Exercise is considered as a protective treatment for neurodegenerative diseases[165]. Both voluntary and 
controlled exercise can alter the gut microbiota[166]. The microbiota composition of exercised rats was 
notably different from the sedentary rats with a significantly higher butyrate concentration[167]. Voluntary 
running has neuroprotective effects in an α-synuclein rat model of Parkinson’s disease[168]. It can protect 
rats against neuronal loss, increase enteric glial expression, and modify gut microbiome composition in 
the Parkinson’s disease model[169]. Exercise is also considered to enhance immune system. The vagus nerve 
regulates gastrointestinal inflammatory tone. Parasympathetic neuroimmune reflex depends on vagal 
afferent neurons for the local release of intestinal inflammatory mediators in response to pathogenic gut 
bacteria. For this reason, elevated vagal tone and parasympathetic influence in the resting state of athletes 
foster a preferential anti-inflammatory milieu through conditionally influencing microbial composition[170].

CONCLUSION AND FUTURE DIRECTIONS
Recent discoveries link the GBM and neurological disorders through the microbiota-gut-brain axis. It 
is also increasingly recognized that disruptions in the GBM ecosystem and its function may directly or 
indirectly impact CNS disease states, implicating the involvement of microglial-induced neuroinflammation 
and neurodegeneration. In this respect, there is bidirectional communication between the GBM and the 
brain, which is achieved through several pathways [Figure 1]. This communication involves the immune 
system, which not only supports the tolerance towards the microbiome ecosystem residing in the GI 
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tract but also can react to dysbiosis and “leaky” gut, thus relaying this information to the CNS. On the 
other hand, there is the involvement of the vagus nerve in the microbiota-gut-brain interactions, which 
have several afferent and efferent pathways involving a variety of factors such as gut endocrine cells, 
neurotransmitters, and receptors. Importantly, the vagus nerve plays an important function in controlling 
inflammation through cholinergic and splenic-sympathetic anti-inflammatory pathways and the HPA 
axis. The role of hormones in the microbiota-brain bidirectional communication is also deemed important 
through regulation of the HPA and HPG axes. In addition, microbiota-derived metabolites, such as SCFAs 
and LCFAs, are integral in maintaining intestinal health and have been shown to also impact neurological 
health.

The GMB’s critical influence on host development, immune homeostasis, and metabolism as well as 
involvement in the development of the CNS disorders, makes it an ideal candidate for novel preventative 
therapies and treatments. These strategies include the use of beneficial “eubiotic” antibiotics or other means 
such as lifestyle interventions (diet and exercise) aimed at reversing microbiota “dysbiosis” by targeting 
microbiota and their metabolites. Although in its infancy, studies into the efficacy of the microbiome-
targeted manipulation and FMT to treat diseases, including those beyond the GI tract, promise interesting 
insights into the importance and impact of the vast and diverse microcosm residing within us every day of 
our lives from birth to old age and death.

Certainly, we are still in the beginning of the research trying to reveal the causative links between the GMB 
and brain function as it relates to neurological disorders. There is a huge untapped potential in this area of 
microbiome in human health and disease, which will be more appreciated with the improvement of new 
technologies and methods of GMB research.
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Abstract
Microglia are dynamic cells that constitute the brain’s innate immune system. Recently, research has demonstrated 
microglial roles beyond immunity, which include homeostatic roles in the central nervous system. The function 
of microglia is an active area of study, with insights into changes in neurogenesis and synaptic pruning being 
discovered in both health and disease. In epilepsy, activated microglia contribute to several changes that occur 
during epileptogenesis. In this review, we focus on the effects of microglia on neurogenesis and synaptic pruning, 
and discuss the current state of anti-seizure drugs and how they affect microglia during these processes. Our 
understanding of the role of microglia post-seizure is still limited and may be pivotal in recognizing new therapeutic 
targets for seizure intervention. 

Keywords: Microglia, epilepsy, neurogenesis, neuroinflammation, seizures

INTRODUCTION
Epilepsy is a neurological disorder characterized by recurrent seizures. Microglia, the innate immune 
cells of the central nervous system (CNS), are increasingly recognized as mediators of seizures and 
contributors to the epileptogenic process. The progression to epilepsy is characterized by the presence of 
neuroinflammation, as well as structural and molecular alterations in the brain, that subsequently lead 
to increased neuronal hyperexcitability and a lasting disposition towards spontaneous recurrent seizures 
(SRS)[1]. Microglia regulate neuroinflammation and axonal sprouting and have been reported to modulate 



neurogenesis. Following seizures, microglia are activated, functioning as resident macrophages of the brain 
and respond quickly to injury while trying to maintain the physiological processes under its control [2]. 
Changes in neuronal homeostasis are also observed, highlighting the diverse ways in which microglia could 
be contributing to the development of epilepsy. 

This review will discuss the roles of microglia in neuroinflammation and neurogenesis, and how these 
contributions are altered post-seizure. We will examine microglia in the context of epileptogenesis, the 
process by which “the previously normal brain is functionally altered and biased towards the generation 
of abnormal electrical activity that subserves chronic seizures”[3]. Additionally, we will explore studies of 
pharmacological reagents and their effects on microglia as a therapeutic target to mitigate the epileptogenic 
process that drives epilepsy. 

EPILEPSY
Epilepsy is a chronic brain disorder characterized by abnormal brain activity that causes seizures. The 
propensity to generate recurrent seizure events has neuropathological, cognitive, and social consequences[4]. 
Epileptic seizures are aberrant, excessive, or synchronous neuronal discharges and manifest in a variety 
of ways. According to the International League Against Epilepsy (ILAE), seizures are classified into three 
types based on their onset: generalized onset seizures do not have a determined area of origin and can 
affect both sides of the brain; focal onset seizures originate from one area of the brain; and unknown onset 
seizure when the onset is missed or obscured. Generalized onset seizures can present with a variety of 
manifestations that include non-motor and motor presentations: they range from absence seizures (that 
present with lapses in awareness, accompanied with staring into space, probably accompanied by rapid 
blinking and/or orofacial automatisms) to generalized tonic-clonic seizures with tonic and/or clonic 
spasms, and are always accompanied by loss of consciousness. Focal onset seizures may or may not be 
accompanied by a loss of awareness and their origin can be attributed to a specific area of the brain that 
causes motor or sensory changes, including taste or smell. Focal seizures may also result in a loss of 
awareness, manifested by a person who appears to be dazed, confused, and unable to respond to questions 
for several minutes. Focal seizures may become generalized if the original behavior, which was localized 
to one brain hemisphere, expands to behaviors that involve both sides of the brain[5]. The cause of epilepsy 
in many patients is not known, though acquired causes include stroke, traumatic brain injury (TBI), 
autoimmune disorders, infection, and tumors.

It is estimated that almost 10% of people will experience a seizure in their lifetime[6]. Epilepsy affects 
approximately 1.2% of the population in the United States alone[7]. Higher incidence rates have been 
reported in younger (early childhood and infancy) and older age groups (older than 55 years of age), 
while a lower prevalence is seen in the period between early adulthood and midlife[8]. The imbalance 
between excitatory and inhibitory neurotransmission (E/I imbalance), with a propensity towards increased 
excitation, is believed to be the underlying cause of seizures in epilepsy. Research demonstrates hyper-
excitability during ictogenesis, when excitatory glutamatergic activity is increased while inhibitory gamma 
aminobutyric acid (GABA) ergic activity is dampened[9-11]. Currently, the treatment of epilepsy varies 
from patient to patient. Anti-seizure medications are typically the first choice of therapy for subsequent 
seizure prevention. When medication fails, surgery has been successful in significantly decreasing or 
making patients seizure free, though only a small number of patients with focal onset seizures would 
qualify for surgical options[12]. When surgery is not an option, patients are treated with antiepileptic drugs 
(AEDs). There have been > 30 medicines that have been approved by the United States Food and Drug 
Administration (FDA) or the European Medicines Agency (EMA). Even though many seizure medication 
options exist, nearly 33% of patients fail to respond to them[13]. Some patients with pharmacologically 
refractory epilepsy try to control seizures by exploring dietary changes, such as employing the ketogenic 
diet, a high fat/low carbohydrate diet which can be successful in reducing seizures in about 50% of adult 
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patients[14]. Though originally believed to result in an increase in levels of GABA production[15], there may 
be multiple mechanisms that contribute to its success in seizure cessation[16]. Neurostimulatory devices, 
such as deep brain or vagus nerve stimulation therapies, have also been used with varying success, as they 
help to normalize the excitatory state of the brain[17].

Epileptogenesis 
Epileptogenesis is the process by which structural and molecular changes occur in the brain and predispose 
towards epileptic seizures[18]. The epileptogenic process can be initiated by multiple underlying causes such 
as tumors, infections, stroke, and brain injuries. Epileptogenesis occurs prior to an unprovoked seizure 
and continues beyond the event. It is a dynamic process that can occur very quickly, after brain injury or 
stroke, or over an extended period of time (up to months in animal models, and years in humans)[18,19]. 
This window presents a temporal opportunity for treatment approaches, but also provides challenges for 
studying the process. Understanding the pathophysiological changes that occur during epileptogenesis is a 
pivotal part of developing new therapies. 

Changes during epileptogenesis occur in both neuronal and glial cells, all of which contribute to 
the dysfunction of neuronal circuits. The mechanisms underlying epileptogenesis suggest that the 
pathophysiological and compensatory changes are connected. Animal models of epileptogenesis have 
displayed histologically-detectable changes, such as sprouting along the mossy fiber pathway, neurogenesis, 
and gliosis [Figure 1] alterations, all of which can contribute to the potential for hyperexcitability[20]. The 
condition most frequently associated with mossy fiber sprouting is temporal lobe epilepsy (TLE), the 
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Figure 1. Granule cell neurogenesis and mossy fiber sprouting. A: Neurogenesis occurs in the dentate gyrus of the hippocampus. 
The cells proliferate in the subgranular zone and then migrate a short distance to the granule cell layer where they differentiate into 
mature granule cells; B: the axons of granule cells (mossy fibers) normally project to the cells in the CA3 region of the dentate gyrus; 
C: during seizures, several factors contribute to aberrant migration of granule cells that leads to their ectopic placement in the hilus. 
Ectopic granule cells (red cells) form functioning neural connections to the pyramidal neurons in the CA3 region and contribute to 
hyperexcitability and epileptogenesis through aberrant ‘sprouting’ along the mossy fiber pathway. Image created with BioRender.com



most common type of epilepsy in adults[21], but can occur in epilepsy patients without TLE[22]. Sprouting 
occurs when granule cell axons in the inner molecular layer (mossy fibers) project into the hilus of the 
dentate gyrus and CA3 region of the hippocampal formation, creating their own dendritic field. Mossy 
fibers synapse onto hilar mossy cells, CA3 pyramidal cells, and interneurons[23] to create de novo recurrent 
excitatory circuits. Aberrant sprouting in a model of TLE was reported to contribute to excitatory feedback 
loops of normal and ectopic granule cells[24]. Another study described aberrant mossy fibers that drive 
inhibitory basket cells to reduce neuronal excitability[25]. Mossy fiber sprouting is increased through the 
activation of several granule cell factors, such as neuromodulin and brain-derived neurotrophic factor 
(BDNF)[26], and involves the secretion and deposition of molecules of the extracellular matrix that facilitate 
aberrant growth[27-29]. The number of granule cells also affects mossy fiber sprouting. Hippocampal 
neurogenesis, which leads to the formation of new granule cells, is increased shortly after an epileptic 
seizure, but the increase is transient. The development of new granule cells, and their ectopic integration 
into neuronal networks contribute to aberrant mossy fiber sprouting that is evident post-seizure.

Reactive gliosis has also been identified as a contributor to epileptogenesis in genetic and chemically-
induced animal models of epilepsy[30]. Activated astrocytes and microglia exhibit changes that promote 
network hyperexcitability[31,32]. Microglia can be activated by cytokines and monocytes circulating in 
blood[33], neurotransmitters released by activated or damaged neurons, or by molecules migrating across 
the blood brain barrier (BBB)[31]. Disruption of the BBB during status epilepticus (SE) leads to the transport 
of plasma proteins and immune cells into the brain. The combined effects on astrocytic functions, ion 
concentration changes, entry of infiltrating systemic components, and potential pathogens into the CNS 
may lead to neuronal dysfunction, neuroinflammation, and neurodegeneration[34]. The BBB plays a pivotal 
role in diseases associated with neuronal hyperexcitability such as epilepsy, TBI, and post-stroke seizure 
activity[35-37]. Microglia-neuron signaling had been shown initially by the release of the neuronal chemokine 
fractalkine, which activates the CXC-chemokine receptor 1 (CXCR1) on microglia. Neurogenesis, synaptic 
plasticity, and neuronal survival have all been reported to be affected by the CXCR1 signaling pathway[31]. 
Cytokine release of IL-1β and tumor necrosis factor-α (TNF-α) and other signals (such as HMGB1 and 
ATP) from activated astrocytes and microglia lead to hyperexcitability in neurons[38,39]. Precise targeting 
of reactive astrocytes and microglia for therapeutic intervention during epilepsy and epileptogenesis 
may be beneficial due to microglial involvement in the processes of neurogenesis, axonal sprouting, and 
neuroinflammation. 

Models of epilepsy
The pursuit of AEDs has provided > 30 medications, with many that were developed in the 1980s [40]. 
Although several animal models of epilepsy exist, clinically validated models, ones that are validated 
to predict efficacy and tolerability, are limited and currently only consist of three models: the maximal 
electroshock (MES) seizure protocol, subcutaneous pentylenetetrazol (scPTZ) acute seizure tests, and 
the kindled rodent model of chronic hyperexcitability[41]. Though not validated, multiple other animal 
models have been developed that have contributed to the understanding of the premise of new therapeutic 
options[42]. Still, newer drugs continue to have similar adverse events or side effects without exhibiting 
greater efficacy[43]. Variation in seizure models can result in acute or chronic seizure paradigms, differences 
in severity, or the intervening time until seizures start[44]. Acute models lack persisting changes, like a 
decrease in seizure threshold or spontaneous seizures. Chronic seizure models of epilepsy accommodate 
a period during which epileptogenesis takes place and may better represent human epilepsy[45]. Newer 
models, such as the post-SE model, kindling[46], or genetic models, have become more extensively used due 
to their ability to result in spontaneous seizures. The kindling model, where repeated electrical stimulation 
leads to enhanced seizure susceptibility, is commonly utilized as it has been associated with seizure induced 
plasticity and provides a way to study such plasticity. Combining SRS with convulsive behavior or video-
electroencephalogram (EEG) represents a more accurate epilepsy model, though it is not considered a 
clinically validated model for AED discovery. 
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The chemical induction of status epilepticus, usually by injection of kainic acid or pilocarpine [47,48], can 
result in animals exhibiting SRSs days to weeks after SE, and allows for the determination of post-seizure 
changes in the brain neuropil. Models using chemoconvulsants and kindling have provided researchers 
with a way to study changes in mossy fiber sprouting, neurogenesis, and neuroinflammation post-seizure. 

MICROGLIA
Microglia, which make up approximately 10% of the brain’s cells, are the central nervous system’s primary 
form of immune defense. Originally thought to only serve immune response functions, they are now 
widely recognized to perform important functions that contribute to the development and maintenance 
of a healthy brain. Microglia are dynamic cells that survey their environment for injury or infection. 
Ramified microglia rapidly and constantly extend and retract their processes to assess the environment[49]. 
By evaluating their surroundings, microglia can actively participate in neurogenesis[50,51], neurotrophic 
functions[52], neuronal phagocytosis[53], modulation of axonal processes[54], synapse formation and 
pruning[55-57]. It has also been proposed that microglia aid in neurotransmitter clearance, specifically 
glutamate[58], due to their upregulation of glutamate transporter GLT-1 in a cortical injury model[59]. Many 
of these functions however, are reported to be similarly performed by astrocytes. 

Microglial contribution to epileptogenesis
Models of epilepsy provide insight into neuronal and glial behavior post-seizure. Microglia sense the injury, 
and their activation cascade is initiated[60,61] as they migrate to the region of insult, where they then remain 
activated for about 4-5 weeks post-seizure[62], creating an inflammatory environment around the site of 
seizure onset. The extent and duration of microglial activation depends on the model used[63]. Most, though 
not all, chronic seizure models of epileptogenesis present a persistent inflammatory state in neural tissue[64]. 
After an inciting event, inflammatory cascades can either begin in the CNS, or be activated by molecules 
in the systemic circulation via breakdown of the BBB[65]. The seizure-induced activation of microglia 
can be visualized and followed non-invasively by positron emission tomography using 11C-PK11195, a 
radiolabeled TSPO (a selective translocator protein) that is expressed at low levels in the healthy CNS, but 
upregulated when neuroinflammation is initiated. Although TSPO does not distinguish between microglia 
and infiltrating macrophages[66], its upregulation provides clear proof of the neuroinflammatory state of 
post-seizure CNS. Acute neuroinflammation is thought to contribute to chronic neuroinflammation states 
or worsen a pre-existing state[67]. Understanding how and when microglia are activated after seizures, 
and how they contribute over time to neuroinflammation may provide a target for downregulating or 
attenuating epileptogenesis.

Cytokines are signaling molecules that modulate inflammatory responses and are produced by neurons 
and glial cells after seizures. Interleukin-1β (IL-1β), IL-2, and IL-6 are present in the brain at low 
concentrations, which increase post-seizure[68]. Following seizures, mRNA expression of IL-1β, IL-6, 
TNF-α, TGF-β, and vascular endothelial growth factor (VEGF) were all reported to be upregulated ithe 
hippocampus. IL-1β may induce seizures by upregulating N-methyl-D-aspartate (NMDA) receptors on 
post-synaptic cells[69]. Studies also suggest that uncontrolled levels of IL-1β impair synaptic plasticity and 
cause neuronal dysfunction[70]. Other studies have demonstrated that IL-1β decreased GABA-mediated 
neurotransmission, leading to neuronal hyperexcitability and seizures[71]. When IL-1β activity was blocked, 
acute or recurrent seizures were reduced in rodent models[38,72,73]. Anakinra, a recombinant IL-1 receptor 
antagonist, was successfully used in a clinical study to treat febrile infection-related epilepsy syndrome 
(FIRES), demonstrating that IL-1β may be a crucial target in controlling seizure recurrence[74]. TNF-α 
is released by microglia and astrocytes, when low levels of glutamate are detected, to maintain neuronal 
excitation levels by upregulating synapses[75]. TNF-α also increases microglial glutamate release through 
glutaminase and gap junction regulation[76] and regulates the adhesion molecule N-cadherin, which is 
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involved in the organization of synapses[77]. Like IL-1β, TNF-α also affects GABA levels by increasing 
GABA receptor endocytosis, reducing its inhibitory action[78]. Another pro-inflammatory cytokine, IL-6, 
is upregulated by TNF-α and IL-1β. IL-6 has been reported to decrease hippocampal neurogenesis while 
increasing microgliosis, possibly contributing to epileptogenesis[79].

Changes in microglia post-seizure
The question of microglial activation status and its effects post-seizure have yet to be answered. Microglia 
modulate the severity of early seizures in a pilocarpine model with lipopolysaccharide (LPS) pre-
conditioning[80]: ablation of microglia prior to seizure onset resulted in dramatic increases of seizure 
severity. Since no other cell types were affected by the method of microglia ablation[81,82], it is suggested 
that microglia may play a role early on in seizure induction to protect the CNS from exaggerated neuronal 
activity. The presence of microglia may thus be beneficial during seizure; however, evidence suggests 
that their activation may be detrimental post-seizure. Minocycline, a tetracyclic antibiotic that has anti-
inflammatory properties, has been shown to act as an inhibitor of microglial proliferation/activation[83]. 
Studies that used minocycline have reported that it protects against neuronal cell death after seizures, thus 
indicating that microglia contribute to neurodegeneration following seizures[84]. Other studies demonstrated 
that a 2-week course of minocycline post-status epilepticus decreased the number, duration, and severity 
of spontaneous recurrent seizures, suggesting that microglia are involved in the propagation of these SRS[85-

87]. It should also be noted, on the other hand, that there are studies that show only partial effectiveness by 
minocycline[88], or inability to reverse the increase of epileptogenesis[89,90]. 

Inflammatory cytokines increase neuronal excitability and are believed to contribute to epileptogenesis[91]. 
Though inflammatory cytokines are expressed by several cell types in the brain, microglia-specific pro-
inflammatory cytokines, such as IL-1β, IL6 and TNF-α, showed increased expression three days after SE 
but had diminished by day 21[63]. Levels of anti-inflammatory cytokines, such as Arg1, IL-4 and IL-10, 
were also increased. These data contribute to the existing controversy on the role that microglia and 
cytokines play post-seizure. Additionally, Toll-like receptor (TLR) signaling has been implicated in the 
production of cytokines in seizure models. Studies have demonstrated that the downregulation of TLR3 
and TLR4 activities reduces recurrent and acute seizures, respectively[92,93]. Another study showed that the 
activated TLR4 pathway (mediated by MyD88) was part of the molecular response contributing to a pro-
inflammatory environment post-SE[94]. Matsuda et al.[95] reported that microglia secrete TNF-α to decrease 
the proliferation of neural progenitor cells (NPCs) in the subgranular zone (SGZ) and demonstrated that 
microglial activation is partly mediated through TLR9 post-SE. These studies emphasize the need for a 
better understanding of the role of cytokine signaling post-seizure. 

NEUROGENESIS
Neurogenesis, the incorporation of new neurons into the hippocampus, is a controlled process that affects 
fundamental brain activities such as memory formation and learning. Neurogenesis, and the newborn cells 
generated, contribute to brain plasticity and can be followed through maturation using specific markers. 
The progression from newborn cells to mature neurons can be tracked using markers such as Nestin and 
Sox-2 for newborn cells, doublecortin and polysialylated neuronal cell adhesion molecule for immature 
neural progenitor cells, and NeuN for mature neurons[96]. In recent years, there has been an increased effort 
to determine some of the major regulators of the neurogenic process in the adult brain[97-99]. Neurogenesis, 
mediated by the activation and differentiation of adult neural stem cells (NSCs), has been documented to 
occur primarily in two regions of the adult CNS: the subventricular zone (SVZ) of the lateral ventricles, 
and within the SGZ of the dentate gyrus (DG) in the hippocampus[100,101]. Neurogenesis in the hippocampus 
will be the main focus of this section, as the hippocampal region has been intimately linked and affected by 
seizures and epilepsy. 
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In rodent models of neurogenesis, radial glia-like NSCs located in the SGZ give rise to NPCs[102]. The 
neurogenic process involves five intricate stages, ultimately leading to the integration of newly mature 
granule cells in the hippocampus. During the first stage, NSCs proliferate and generate neural progenitors 
in the SGZ. Stage 2 is the continuous phase of survival, where NSC and progenitor cells are lost through 
apoptosis, in this early part of the process. During stage 3, progenitor cells undergo fate determination 
and differentiate into immature neurons. In stage 4, immature neurons migrate a short distance within 
the granule cell layer where they continue their maturation and integrate (Stage 5) into the hippocampal 
circuitry, receiving input from the entorhinal cortex, and projecting axons to the CA3 (mossy fibers) and 
hilar regions of the hippocampus[101,103-106], which further synapse with CA1 pyramidal cells[107]. 

In epilepsy, while the stimuli to trigger adult neurogenesis are activated, the orchestrated differentiation 
process is dysregulated at various steps. The newly formed granule neurons do not integrate appropriately 
into the dentate gyrus, thus forming aberrant connections with other neuronal cells, and contributes 
to epilepsy and associated cognitive decline[108-110].

The role of microglia in physiological neurogenesis
Variations in neurogenesis properties from the embryonic stages to adulthood have been studied and 
show that newborn neuron populations decrease with age[111], potentially due to a lowered ability of 
NSCs to regenerate[112], or changes in environmental cues in the hippocampus, including an activated 
state of microglia[113]. Microglia have been shown to participate in neurogenesis, during multiple stages 
of the process through the contribution of factors that affect the proliferation and survival of NSCs[114,115]. 
Cognitive decline has been correlated with decreased neurogenesis[116], and studies provide support to 
the idea that exercise or enriched environments result in an increase in neurogenesis[117-119], which may 
be modulated by microglial activation[120]. A pro-inflammatory environment has been demonstrated to 
inhibit adult neurogenesis, while anti-inflammatory treatments were able to rescue the phenotype[121,122]. 
All these findings demonstrate the need to understand the role of microglia in neurogenesis that takes 
place in the physiological and pathological CNS. The function of microglia is most likely influenced by the 
environmental signals in a particular setting, which will dictate the direction of their activation status. 

Microglia constantly survey their environment and are in the proximity of all cell types during neurogenesis, 
including newborn neurons. They are also involved in the phagocytosis of NPCs and neuroblasts in a 
homeostatic role for maintaining neurogenic stem cells without releasing pro-inflammatory cytokines[51]. 
In concordance with these data, ablating microglia in the DG inhibited adult neurogenesis by diminishing 
neuroblast survival[123]. Although these effects are most likely mediated by the secretion of cytokines and 
by microglial-regulated phagocytosis, the influence of microglia on neurogenesis also extends beyond 
these molecular steps and events. There is a growing body of evidence demonstrating that microglial 
receptors can modulate their activity in neurogenesis. For example, microglial P2Y13 receptor was 
recently described to contribute to microglial structural integrity. When the P2Y13 receptor is knocked 
out, increases in proliferation of NPCs and new neurons are observed, and this may be another way 
to regulate neurogenesis[124]. CX3CR1 has also been demonstrated to be involved in the regulation of 
adult neurogenesis: microglia have been reported to activate NPCs through CX3CR1 pathways in the 
hippocampus[125], and CX3CR1 null (-/-) mice exhibited impaired connectivity and aberrant synapse 
formation[126]. This was further supported by genetic and pharmacological inhibition of CX3CR1 signaling, 
which also led to aberrant neurogenesis[127,128]. 

Abundant data show that microglia are critical in adult neurogenesis and regulate several stages of accurate 
incorporation of new neurons into the hippocampal circuitry. As several seizure disorders and models 
manifest predominantly in the hippocampus, the effects of epileptic activity on SGZ neurogenesis is 
starting to be uncovered. 
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Neurogenesis and the pathophysiology of epilepsy
Adult neurogenesis increases following SE in animal models, resulting in an increased number of granule 
cells[129,130]. These additional granule cells undergo aberrant differentiation, axonal sprouting, and ectopic 
displacement in the hilar region of the dentate gyrus[109,131,132]. Ectopic granule cells are thought to contribute 
to pro-epileptic activity[133-135]; studies show that axonal sprouting and aberrant placement of granule 
cells were reduced when newborn granule cells were eliminated[132]. Following SE, microglia regulate 
the number of new granule cells through selective phagocytosis to maintain homeostasis in the dentate 
gyrus circuitry[136] and are capable of engulfing viable neurons in the hippocampus as well[137]. It has been 
suggested that microglia modulate each step (proliferation, survival, and maturation) of adult neurogenesis 
in both homeostasis and epileptic states[138], though their exact role in the integration of new cells has not 
been elucidated. Microglia may also suppress aberrant neurogenesis through the secretion of TNF-α[95], 
potentially leading to anti-epileptic effects [Figure 2]. Recent studies depleting microglia from the SVZ 
suggested that they might not be necessary for NSC proliferation[139,140], although this has not been shown 
in the hippocampus. 

Figure 2. Microglial responses in fnflammation and neurogenesis. A: Microglia activate in response to damage associated molecular 
patterns (DAMPs) released by injured neurons post-seizure. Upon activation, microglial adopt one of two phenotypes: M1-like, 
which presents a pro-inflammatory profile that consists of decreased expression of neurotrophic factors and increased levels of pro-
inflammatory chemokines and cytokines and reactive oxygen species, or M2-like, which is an anti-inflammatory response that includes 
the resolution of the inflammatory profile, neurogenesis and the clearance of debris; B: during neurogenesis in the hippocampus, 
unchallenged microglia clear cellular debris and control the number of newborn neuronal cells through phagocytosis. Post-seizure, the 
increased numbers of newborn cells may be cleared by microglia to reduce the potential for ectopic connections that contribute to pro-
epileptic activity. Image created with Biorender.com
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CONCLUSION
Investigation of inflammatory and neurogenic processes in epilepsy has revealed potential and critical roles 
of microglia in several facets of seizure generation. Epilepsy patients take AED with the aim of preventing 
seizures, yet studies looking at the anti-inflammatory and neurogenic effects of these drugs are sparse. 
Interrogating the literature for effects of AEDs in vivo on microglia, an important modulator of these 
processes, result in surprisingly few reports[141-143]. 

In vitro studies on microglial cells as mediators of inflammation have demonstrated that topiramate, 
a second generation AED, decreased the release of IL-1β, IL-6 and TNF-α[144]. Other AEDs such as 
levetiracetam, gabapentin, and phenobarbital showed slight modification in cytokine production[145]. 
The first generation AED valproic acid, was shown to increase IL-6 and TNF-α production in LPS-
induced microglial cells[145], which contrasts with in vivo results where TNF-α and IL-1β were decreased 
after valproic acid treatment[143]. It was also demonstrated that the AED levetiracetam suppressed 
neuroinflammation and phagocytosis in a pilocarpine induced SE model[143]. Itoh et al.[146] reported that 
levetiracetam lessened microglial activation, as demonstrated by lower numbers of Iba-1 positive microglia, 
higher ramified shape, and low expression of pro-inflammatory cytokines. While the results of in vitro 
studies may eventually be applicable to the clinic, they highlight the need for clarification of the effects of 
AEDs on inflammation in vivo. 

Studies concerning AEDs and neurogenesis are also extremely limited. Pregabalin, a widely used AED 
with an unknown mechanism of action, has been shown to accelerate the maturation of granule cells in the 
dentate gyrus[147]. In rats, lamotrigine increased the number of newborn cells in the hippocampus[148] and 
increased neurogenesis[149]. Valproic acid also induced neurogenesis, but these effects were not induced by 
phenobarbital and topiramate[149]. 

Epileptogenic changes in the brain are provoked by inflammation and increased neurogenic levels post-
seizure. To control this process, a greater understanding of microglial contributions is needed and could 
provide a mechanism and target for a new generation of AEDs.
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Abstract
Microglia were first characterized by del Rio Hortega about 100 years ago but our understanding of these cells has 
only gained traction in the last 20 years. We now recognize that microglia are involved in a plethora of activities 
including circuitry refinement, neuronal and glial trophic support, cell number modulation, angiogenesis and 
immune surveillance. Specific to immune surveillance, microglia detect threats which then drive their transformation 
from ramified to amoeboid cells. This morphological transition is accompanied by changes in cytokine and 
chemokine expression, which are far less conserved than morphology. To simplify discussion of these expression 
changes, nomenclature ascribed to states of macrophage activation, known as Macrophage 1 (“M1”; classic) and 
Macrophage 2 (“M2”; alternative), have been assigned to microglia. However, such a classification for microglia 
is an oversimplification that fails to accurately represent the array of cellular phenotypes. Additionally, multiple 
subclasses of microglia have now been described that do not belong to the “M1/M2” classification. Here, we provide 
a brief review outlining the prominent subclasses of microglia that have been described recently. Additionally, we 
present novel NanoString data demonstrating distinct microglial phenotypes from three commonly used central 
nervous system inflammation murine models to study microglial response and conclude with an introduction of 
recent RNA sequencing studies. In turn, this may not only facilitate a more appropriate naming scheme for these 
enigmatic cells, but more importantly, provide a framework for generating microglial expression “fingerprints” that 
may assist in the development of novel therapies by targeting disease-specific microglial subtypes. 

Keywords: Microglia, neuroinflammation, single cell RNA-seq, NanoString 
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INTRODUCTION
Microglia, the resident immune cells of the central nervous system (CNS), were first characterized 
100 years ago by Pio del Rio Hortega (reviewed in[1]) but our understanding of their function remains 
incomplete. The best-known function of microglia is CNS surveillance whereby cell debris are scavenged 
during periods of pathology to maintain and re-establish a healthy homeostatic environment. However, 
this limited view of microglia function has evolved to include a list of other potential functions designed 
to establish, maintain, and when necessary, re-establish CNS homeostasis following both pathologic events 
and in the developing and mature healthy brain. This new appreciation for the plethora of microglial 
functions in both health and disease has resulted in a renewed interest in these enigmatic and mercurial 
cells. 

At present, it is unclear how microglia are capable of mediating a wide range of activities that, in some 
cases, are seemingly in contrast to each other. For example, during development, microglia regulate 
neuronal numbers by both driving cell death[2-7] and promoting proliferation and survival[8-11]. This 
dichotomy of neurogenesis regulation is not limited to the developing brain since microglia both enhance [12] 
and deplete[13] the number of neural progenitor cells in the adult brain. Similarly, microglia regulate synapse 
numbers by both stripping/pruning[14-18] and stabilizing[19,20] dendritic spines and inhibitory synapses 
both in development and adulthood by potentially distinct mechanisms[21-24]. Furthermore, microglial 
regulation of cell populations is not limited to neurons as similar observations have also been reported for 
oligodendrocytes and astrocytes. Additionally, under pathologic conditions in the adult brain, microglia 
influence astrocytic phenotypes by ranging from neuroprotective to neurotoxic [25,26] and have been 
implicated in angiogenesis including regulation of the structure and function of the neurovasculature[27,28]. 
Taken together, it is becoming apparent that microglia oversee a vast array of events in the developing, 
healthy and diseased CNS although how such a single cell type can manage such a multitude of functions 
remains to be determined. Strong evidence is now emerging that microglia present as distinct subclasses 
but it remains to be determined if these subclasses represent intrinsically distinct cell populations, or if 
intrinsically similar cells are driven into functional heterogeneity dictated by changes in environmental 
cues provided by a highly dynamic CNS[29]. 

In addition to providing a brief review of several parameters and subclasses that define microglial 
heterogeneity, we also present novel RNA expression profile data that are consistent with the development 
of distinct microglial phenotypes as a consequence of distinct inflammatory environments. As presented 
in more detail below, we isolated cortical microglia from mice in three commonly used models to study 
various aspects of multiple sclerosis - cuprizone, lipopolysaccharide (LPS) and experimental autoimmune 
encephalomyelitis (EAE). Orally administered cuprizone results in CNS demyelination secondary to 
oligodendrocyte death. Intraperitoneal injection of the endotoxin LPS mediates a peripheral immune 
response that results in widespread CNS neuroinflammation. Similarly, EAE is induced by a peripheral 
injection of a bacterial exotoxin that is accompanied by Complete Freund’s Adjuvant and a myelin antigen 
resulting in breakdown of the blood brain barrier. Although microglia from all three models presented pro-
inflammatory profiles, the microglia from each expressed a unique set of factors suggesting environmental-
specific responses. Although these observations are consistent with environmental cues driving 
heterogeneity, it remains possible, and perhaps likely, that microglia also represent intrinsically distinct 
populations.

Microglial heterogeneity 
Currently, a prevailing thought is that microglia, which derive from the embryonic yolk sac, develop 
initially as a single-cell type lineage[30] and subsequently, into a heterogeneous population in the adult brain 
as a result of local environmental cues that define their differentiation and functional specificity[31-35]. For 
example, in the injured adult brain, neurons can express or secrete “find me” signals such as fractalkine/
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C-X3-C motif chemokine receptor 1 (Cx3Cr1)[36] and “eat me” signals such as calreticulin/low-density 
lipoprotein receptor related protein[37]. These signals, which are not present in the healthy CNS, cue 
microglia to assume a phagocytic phenotype and to “find” and “eat” the compromised cells. Therefore, 
environmental cues have the capacity to drive the transformation of microglia from a surveying to a 
phagocytic phenotype. It remains unclear if all microglia in the neighborhood of the “find me” and “eat 
me” signals respond in the same manner, or if intrinsic heterogeneity results in the response from select 
subclasses of the microglial population.

Heterogeneity between brain regions 
Some of the earliest evidence of heterogeneity within the microglial population was presented by Lawson et al.[38], 
who reported brain-region specific densities of cells with higher densities in the hippocampus and 
thalamus, and a lower density in the cerebellum. Although no functional differences were established, 
such density differences are consistent with local environmental cues regulating the microglial population. 
In line with this idea, De Biase et al.[39] reported that regional differences are tightly and specifically 
regulated since closely apposed nuclei within the basal ganglia present with dramatically different 
microglial densities[40] while other cell types in the same basal ganglia nuclei present with uniform densities, 
indicating that differential cell densities are not dictated by the spatial constraints of the tissue. Precisely 
how these region-specific differences are regulated remains to be fully explained although region-specific 
self-renewal rates have been presented[41] and it is possible that region-specific cues regulate proliferation 
and, ultimately, cell density[42]. Moreover, factors that regulate microglia numbers in the embryonic brain 
vs. the adult brain may also differ[43,44], which would be consistent with local cues defining both distribution 
and heterogeneity within the microglial population. This concept was supported by Grabert et al.[45], who 
demonstrated that microglia have regionally distinct transcription profiles. 

Heterogeneity between sexes
Variations in cell density and transcription profiles are not limited to regional differences as similar 
distinctions have also been reported between microglia from male and female mice. Male mice present with 
more microglia in the cortex, hippocampus, dentate gyrus, and amygdala in early postnatal brains. As the 
mice mature, these densities flip with female mice presenting with a greater cell density in these regions[46]. 
Although there is no direct evidence that sex-dependent differences in cell density are responsible for 
functional differences, studies have shown that male and female microglia are functionally distinct and 
respond differently to noxious stimuli[47,48]. For example, Nelson et al.[49] and Yanguas-Casás et al.[40] showed 
that female microglia have a greater phagocytic capacity but male microglia have greater migratory activity 
under both basal and interferon γ-induced inflammatory conditions. Guneykaya et al.[50] then reported 
that male microglia display a higher antigen-presenting capacity as compared to female cells. Interestingly, 
microglia may also play a role in sex determination since the inhibition of microglial activity in male 
rodent neonates, at an age critical for sex determination, resulted in the reduction of masculine dendritic 
spine density and altered copulatory behavior in adults[51]. A potential caveat to this work, however, was 
that microglial activity was inhibited by minocycline, which is a broad spectrum antibiotic that is known to 
target both T cells and astrocytes[52,53]. 

Intrinsically defined heterogeneity?
The mechanisms responsible for these sex differences are not known and transcriptomic studies comparing 
male and female microglia reveal expression differences in both the healthy and perturbed states[48,50,54,55]. 
Whether microglia are intrinsically distinct between males and females, or if the local sex-specific 
environment differentially regulate male and female cells remains to be determined. Microglia from male vs. 
female mice express different sex hormone receptors[56-58] however, and present with sex-specific outcomes 
when exposed to these hormones[49,51,59-61]. Independent of sex, microglia have also been shown to express 
different levels of markers in the adult, unchallenged brain[62]. Bertolotto et al.[62] showed that microglia 



express varying levels of keratin sulfate proteoglycan (KSPG) and these microglia are not uniformly 
distributed throughout the brain, with high concentrations in the hippocampus, brainstem and olfactory 
bulb while few were found in the cerebellum and cortex. The presence of these KSPG+ microglia was 
independent of development though, since they were found in the same regions of both the neonatal and 
adult CNS. Moreover, microglia have also been shown to respond differently to the same stimuli[63,64]. 
Although consistent with the involvement of environmental cues in defining subclasses, these findings are 
also consistent with microglia being intrinsically distinct and independent of environmental influences.

Heterogenic microglial morphology
Amoeboid vs. ramified microglia
Perhaps the most recognized heterogenic aspect of microglia is their morphology. Two main classes have 
been identified - amoeboid-like, with few processes; and ramified, with numerous thin, highly-branched 
processes. Following initial colonization of the embryonic CNS, the majority of microglia present with 
an amoeboid-like morphology[65,66]. With CNS maturation, microglia transform their shape with brain 
region specificity. In the steady state CNS, amoeboid-like microglia are more abundant in perivascular 
white matter regions. In contrast, the extent of ramified microglia varies among regions with cerebellar 
microglia presenting with a less ramified morphology compared to microglia in the cortex[38,67,68]. 
Interestingly, Hanamsagar et al.[69] reported heterogeneity with regard to sex as microglia from male 
rodents presented with a greater and more complex process of arborization, and exhibited a greater change 
in process morphology following LPS perturbation as compared to their female counterparts. With age, 
and as the local environment changes, amoeboid-like microglia become more ramified while ramified 
microglia transition into amoeboid-like microglia, exhibiting greater phagocytic activity and releasing 
pro-inflammatory cytokines following pathologic insult[70,71]. Although the use of the amoeboid/ramified 
classification provides a simple approach for discussion, microglial morphologies present a spectrum of 
shapes and a two-class scheme is insufficient to accurately describe microglial morphologic differences. 

Dark microglia
Recently, a new class of microglia was identified based on morphology. These microglia are “dark” based 
on their electron dense cytoplasm and are observed in non-homeostatic conditions[72]. Dark microglia 
exhibit signs of oxidative stress including condensed cytoplasm and nucleoplasm (consistent with their 
name), disrupted mitochondria and dilated endoplasmic reticulum, and are frequently observed extending 
processes toward synaptic clefts consistent with a role in pathologic synaptic pruning. Although their 
precise role remains to be fully determined, Bisht and colleagues[72] have proposed that these cells constitute 
a subclass of hyperactive microglia with dysregulated interactions with synapses. If correct, these cells may 
play a critical role in the progression of a plethora of neurodegenerative diseases with known synaptic 
loss[73] including Alzheimer’s Disease[74,75] and multiple sclerosis[76,77].

Axon initial segment-associated microglia 
Baalman et al.[78] have also presented evidence of a subset of microglia known as axon initial segment-
associated (AXIS) microglia[78]. AXIS microglia, which comprise ~8% of cortical microglia, establish an 
intimate association with the neuronal cell body and the proximal axon, in contrast to “satellite” microglia 
that associate with the neuronal cell body and proximal dendrites instead[68]. AXIS microglia, which are 
initially observed at postnatal day 9 and persist through adulthood, contact both inhibitory and excitatory 
neurons but present with a significant preference for axon initial segments (AISs) of excitatory pyramidal 
neurons of layer V of the cortex[78]. The function of AXIS microglia is not known but they may provide 
trophic support for the neuron and the AIS. 

Upon activation following a controlled cortical impact (CCI)-induced traumatic brain injury, the 
association between CNS microglia and the AIS is lost, consistent with the regulation of microglial 
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function and response by the local environment. Interestingly, our laboratory has also reported contact 
between microglia and the AIS[79,80]. Using three dimensional (3D) analysis encompassing multiple types 
of contact, which was defined by colocalization of ionized calcium binding adaptor molecule 1 (Iba-1) 
and AnkyrinG, termed (1) process touching, (2) process wrapping, or (3) process alignment [Figure 1], we 
found that ~45% of microglia in cortical layer V contact AISs. In contrast to the loss of contact observed 
following CCI injury, we observed a maintained [Figure 1], and even increased[79], association between the 
microglia and the AIS following inflammatory insults of LPS injection and EAE induction, respectively. The 
difference in AXIS microglial responses to insult is intriguing and requires further study to fully elucidate 
microglial response to pathology. 

Herein, we have reviewed several subclasses of microglia that have been defined based on morphology; 
however, it is unclear if these subclasses are truly distinct, or if they are merely the consequence of 
artificial classifications based on techniques used for identification, and loose criteria for defining 
subtypes (reviewed[29]). If the latter is the case, then there is likely considerable overlap among these 

Figure 1. Frequency of microglial-AIS contact is not altered in LPS-induced neuroinflammation. Female c57black6 mice were given a 
single intraperitoneal injection of LPS (5 mg/kg) or vehicle (0.9% saline, 10 mL/kg). Confocal z-stacks spanning an optical thickness of 
25 μm, using a pinhole of 1 Airy disc unit and Nyquist sampling (optical slice thickness, 0.48 μm), were collected from neocortical layer 
V for each of six sections (spanning 1.1 mm anterior to the bregma to 2.5 mm posterior to the bregma) per mouse, resulting in 12 images 
per animal (n  = 4-6 animals per treatment group). Microglial-AIS contact was quantitatively analyzed at 6 h-2 weeks post-injection in 
a blind manner using Volocity™ 3D Image Analysis Software, allowing each confocal z-stack to be observed in three dimensions. The 
number of microglia, AISs, and contact points in each double immunolabeled z-stack was counted manually. Contact points along the 
six edges of the z-stacks were excluded from analysis. A-F: double immunolabeling of Iba-1 and AnkG revealed that microglia (Iba-1, 
green) contact AISs (AnkG, red) (white arrows) in the cortex of saline- and LPS-injected mice; G: the mean ± SEM of microglia making 
AIS contact per FOV in saline- and LPS-treated mice as a percent of saline controls. Quantitation of confocal z-stacks revealed that 
~45% of microglia contact AISs in the cortex of saline-injected control mice. Contact was defined by co-localization of Iba-1 and AnkG 
and included process touching (A, yellow single asterisk), process alignment (A, yellow double asterisk), and process wrapping (F, 
yellow triple asterisk) as defined by 3D analysis. No change in the percent of microglia making contact was observed throughout the 
course of LPS-induced neuroinflammation; H: the mean ± SEM of the number of Microglia/FOV. A significant increase in the number 
of microglia was observed at 3 days post-LPS injection. Data were statistically compared by one-way ANOVA where mean differences 
were significant as assessed using Tukey’s post hoc analysis. An asterisk indicates a significant difference (P  < 0.05) from saline. Scale 
bar = 20 μm. LPS: lipopolysaccharide; FOV: field of view; AISs: axon initial segments
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subclasses. For example, we reported that under certain pathologic conditions, microglia exhibit both an 
increased association with, and disruption of the AIS[79]. It is possible that these microglia are no longer 
providing trophic support for the AIS, a suggested function of AXIS microglia by Baalman et al.[78] during 
homeostatic conditions, but are actively attacking the AIS, perhaps through the release of reactive ions[81]. If 
so, then could these microglia, which we characterized using immunocytochemical approaches, in fact, be 
“dark microglia”, which are identified by electron microscopy? Studies to address this question are currently 
underway. In addition, are the AXIS microglia, as described by Baalman et al.[78], the same subclass as the 
microglia we have described making AIS contact? Based on work from Baalman et al.[78], it is likely that 
the AXIS microglia are supporting the neuron and the AIS; but based on our observations, the microglia 
may be mediating AIS disruption instead. Answering these questions is essential for accurately classifying 
microglia but more importantly, it would help to fully understand the role that these mercurial cells play 
under different conditions. 

Heterogenic microglial transcriptomes 
Surveying vs. reactive (“M1/M2”) microglia
In an effort to more conclusively characterize microglia and to elucidate their functions, morphologic 
characterizations have been complemented by molecular classification studies. Initial attempts were based 
on presumed states of activity based on limited expression profiles. Simply, microglia were classified as 
either “activated” or “resting” but both terms are misleading. Microglia are never “resting” as we now 
recognize that they are constantly extending and retracting their processes to survey their surroundings[82,83]. 
As a result, the term “surveying”, which more accurately represents the state of activity of microglia, even 
under homeostatic conditions, is now used in place of “resting”. Similarly, a more appropriate term for 
“activated” is “reactive”. “Activated” implies a lack of activity until microglia are stimulated. Microglia are 
constantly active however, and upon detection of changes in the environment, become “reactive”. 

Reactive microglia have been further divided into “M1” and “M2” states, referring to the classical (pro-
inflammatory) and alternative (resolving/anti-inflammatory) phenotypes based on expression profiles. 
The “M1” and “M2” nomenclature is a naming scheme originally derived from the T cell literature and 
applied to macrophages based on their state of activation in vitro following exposure to either the T 
helper type 1 (Th1) cytokine interferon gamma (IFN-γ) for the “M1” phenotype, or the T helper type 2 
(Th2) cytokine interleukin 4 (IL-4) for the “M2” phenotype[84]. Based on speculation of similar functions 
between macrophages and microglia, the “M1” and “M2” classification was then applied to microglia. 
The advantage of the “M1/M2” classification is that it provides a simplified nomenclature to distinguish 
between microglia in functionally distinct states. However, these distinct states are frequently identified by 
a small subset of surface markers, which limits resolution required for appreciating heterogeneity that is 
defined by the entire transcriptome. Moreover, this naming scheme is based on assumptions that cannot be 
confirmed under close scrutiny. At best, the “M1/M2” classification is inadequate for accurate description 
of the complex functions of these cells (reviewed by[85,86]). With the recognized inadequacies of the “M1/
M2” nomenclature, it has been postulated that a continuum of activity states exists between the polarized 
extremes, resulting in studies presenting “M1” subtypes to better represent the heterogenic nature of these 
reactive cells[87,88]. Recent studies however, have shown that factors assigned to either the “M1” or “M2” 
phenotype are promiscuous yielding low fidelity to their assigned reactive state[88-90]. Thus, the complexity 
of microglia function is undermined by the overly simplistic and polarized naming scheme of “M1/M2”. 

Disease-associated microglia 
Another subclass of reactive microglia that is specific to non-homeostatic conditions is known as 
Disease-Associated Microglia (DAM). First identified in Alzheimer’s disease and amyotrophic lateral 
sclerosis models[91], DAM or microglia with DAM-like phenotypes have now been described in tauopathy 
models[92,93] multiple sclerosis[94] and aging[91,95]. DAM express typical microglia markers including Iba-1, 
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cystain 3 and hexosaminidase subunit beta. DAM can downregulate homeostatic genes including P2ry12, 
Cx3Cr1, and transmembrane protein 119 (Tmem119), and upregulate genes in either a triggering receptor 
expressed on myeloid cells 2 (Trem2) dependent (Axl, C-type lectin domain containing 7A, secreted 
phosphoprotein 1) or independent (Apolipoprotein E, TYRO protein tyrosine kinase-binding protein) 
manner[91]. Interestingly, another related class of microglia, which present with a similar expression profile 
as DAM[94], was recently described and named microglial degenerative phenotype (MGnD). It remains to 
be determined if MGnD and DAM represent the same subclass of cells. 

Although unique to non-homeostatic conditions, the function of DAM is not known. It has been 
hypothesized that these cells respond to a CNS stress signaling system that is akin to the peripheral 
immune system’s pathogen- and damage-associated stress signals (PAMPs and DAMPs)[96]. In this scenario, 
danger signals are recognized by microglia and trigger the transition of surveying microglia into DAM. 
This hypothesis is consistent with DAM accumulation in Alzheimer’s Disease plaques and regions of 
demyelination[91,94,97,98]. If correct, DAM would be a key component of an intrinsic mechanism designed 
to combat disease processes and could provide a promising target for therapeutic manipulation against 
neurodegenerative disease by further enhancing the DAM response.

Heterogenic expression in inflammatory microglia
Following injury or disease, reactive microglia are rapidly recruited to sites of damage where they 
phagocytose debris and dying cells, consistent with the described functions of DAM. Likewise, AXIS 
microglia may also be recruited to sites of damage following injury or disease[80,81]. However, unlike DAM, 
the expression profile of AXIS microglia has not been characterized. Instead, AXIS microglia have been 
characterized based on their physical interactions with the axonal domain of the AIS. Both surveying 
and reactive microglia make contact with AISs and this is increased or decreased based on the disease 
context[78,79]. Whether these cells provide trophic support at the AIS or drive pathogenesis remains unclear 
though. Reactive microglia also exhibit extensive changes in expression of their inflammatory profile[99]. 
While some of these secreted factors may provide neurotrophic functions, pro-inflammatory factors can 
also exhibit deleterious effects[100,101]. For example, pro-inflammatory microglia (“M1”) upregulate enzymes 
that produce reactive oxygen species (ROS)[100]. Activation of microglial nicotinamide adenine dinucleotide 
phosphate (NADPH) oxidase (NOX2) results in the extracellular production of ROS[102]. ROS then alter the 
function of calcium-permeable ion channels[103-105] and consequently, alters intracellular calcium levels[105,106], 
which have been implicated in AIS disruption[81,107-110]. 

In addition to regulating neuronal function through secreted factors, microglia also regulate neurons 
through physical contact[82,111-115]. In the developing and adult brain, microglia contact pre- and postsynaptic 
neuronal elements in an activity-dependent manner, and synapses that are contacted more frequently 
are subsequently removed[17,115,116]. In pathological conditions, microglia participate in synaptic stripping 
altering the neuronal excitatory/inhibitory balance[16]. Microglia also preferentially contact cell bodies and 
axons of highly active neurons to decrease neuronal activity and prevent excitotoxic cell death[113,114]. These 
studies underscore the importance of microglial contact in the regulation of neural signaling. 

Recently, we analyzed CNS pathology in three models of neuroinflammation. In all three models, microglia 
presented with reactive phenotypes and these cells maintained, or even increased, contact with the AIS. 
However, in two of the models, the AISs were disrupted and in one, the AISs were preserved. Since AIS 
integrity temporally correlated with the presence of reactive microglia and contact was at least maintained 
in all three models, we proposed that differential AIS integrity was consequential to the heterogeneity 
among the reactive microglia from all three models. 

For our studies, we exploited the immune-mediated inflammatory models of EAE[79], LPS[80] and the 
demyelinating model of cuprizone[79]. The EAE model is induced through subcutaneous injection of 
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myelin peptide (myelin oligodendrocyte glycoprotein peptide 35-55) accompanied by pertussis toxin and 
an adjuvant to ignite an inflammatory response[117-119], which transfers to the brain and results in chronic 
neuroinflammation persisting for months. While neuroinflammation is present after induction and 
throughout the EAE course, clinical symptoms do not begin to appear until ~15 days post-induction[79]. 
Mice exhibit a range of clinical symptoms from limp tail and loss of righting reflex (EAE 1 & 2, respectively) 
to single- or double- hind limb paralysis (EAE 3 & 4, respectively)[79]. AIS pathology begins to appear 
at an early timepoint after clinical onset (~18 days post-induction), but only in mice that display more 
severe clinical symptoms (EAE Early 3 & 4). Increased AIS pathology is observed with disease severity 
and progression (EAE Late 1 & 2, 3 & 4, ~25 days post-induction)[79]. In contrast, the LPS model is an 
acute neuroinflammatory model induced by a single peripheral injection of LPS[120,121]. This results in 
widespread peripheral inflammation that rapidly transfers to the brain (~3 h), but the neuroinflammation 
is resolved by 2 weeks post-injection. In the LPS model, AIS pathology was present from as early as 24 h 
post-injection and persisted until 1 week post-injection, coincident with the initiation and resolution of the 
acute neuroinflammatory environment[80]. In contrast to the immune-mediated neuroinflammatory models, 
the cuprizone model is a demyelinating model[79] where a copper-chelating toxin, cuprizone, is administered 
through chow resulting in oligodendrocyte cell death and, consequently, loss of myelin[119]. Demyelination 
is detectable 1-2 weeks after cuprizone treatment with peak demyelination occurring by 5-6 weeks of 
exposure[122-124]. The cuprizone model yields substantial cell death and demyelination resulting in microglial 
recruitment and neuroinflammation but no AIS pathology was observed[79].

We utilized these three models to further investigate microglial heterogeneity. AIS disruption only occurred 
in the LPS and EAE models, while microglial-AIS contact was abundant in all three models. Thus, while 
microglial reactivity and contact increased prior to and was coincident with disruption in EAE, contact 
alone did not disrupt AIS integrity[79,80]. Therefore, we analyzed the inflammatory expression profiles 
of cortical microglia across all three models to assess how microglial reactivity differentially influences 
neuronal integrity. Our goal was to assess microglia expression profiles early in the disease process 
to identify inflammatory changes that drive disease progression and are not consequential of disease 
progression. Thus, cortical microglia were isolated from mice induced with EAE, Cuprizone, or LPS at time 
points where neuronal pathology is detectable but had not peaked (EAE Early 3 & 4[79], 3 week Cuprizone[123], 
LPS 24 h)[80]. Briefly, total RNA, collected from cluster of differentiation (CD) 11b+ cells isolated from 
the cortex of c57black6 female mice, was submitted for NanoString mRNA expression analysis. (Further 
details on model generation, cell isolation and NanoString analyses are provided in Supplementary 
Materials[79,80,120-123,125-133]). Cells were collected at time points in each model that corresponded to the early 
presence of neuronal/myelin pathology, but prior to peak disease course in an effort to understand the 
inflammatory profiles that drive pathogenesis[79,80]. 

Microglia with reactive morphologies predominate in the cortex of all three models [79,80] [Figure 2A], 
which is consistent with these cells presenting with a pro-inflammatory phenotype. However, based 
on NanoString expression analysis of 248 inflammation-associated genes, microglia from all three 
neuroinflammatory models displayed distinct regulation of inflammatory genes [Figure 2B], underscoring 
the heterogeneity of morphologically similar cells. Of 248 analyzed genes, 95 were significantly upregulated 
(1.3 fold-change or greater) [Figure 2C] and 175 were significantly downregulated (at least 1.3 fold-change) 
among the three neuroinflammatory models when compared to microglia from naïve mice [Figure 2D]. 27 
of 95 (28.4%) upregulated genes [Figure 2C] and 50 of 175 (28.6%) downregulated genes [Figure 2D] were 
similarly changed across all three models but model-specific differences were observed for both categories. 
Numerous genes [Figure 2C] associated with a pro-inflammatory (“M1”) phenotype (such as interferon 
regulatory factor 1, lymphotoxin beta, C-C chemokine receptor type 7, C-C motif chemokine ligand 7, 
C-C motif chemokine ligand 17, lymphotoxin Alpha, Il1a, signal transducer and activator of transcription 
2, and tumor necrosis factor super family 14) were upregulated uniquely in EAE Early 3 & 4 and LPS 24 h 
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mice, consistent with the involvement of infective and inflammatory response pathways[127]. Gene ontology 
biological processes (GO-BP) function analysis[125,126] revealed that these genes were involved in functions 
related to regulation of the pro-inflammatory response as defined by the production of tumor necrosis 
factor alpha, nitric oxide biosynthetic process, and chemotaxis and chemokine signaling. In contrast, 

Figure 2. Microglia differentially express inflammation-associated genes in three neuroinflammatory models that demonstrate robust 
microglial reactivity. A: representative images of surveying microglia from the cortex of naïve mice and reactive microglia from LPS 24 h, 
3 week Cuprizone, and EAE Early 3 & 4 mice; B-D: analysis of NanoString data of 248 differentially expressed inflammation-associated 
genes in CD11b+ cells. Background subtraction was performed using the maximum value across samples of the negative controls and 
data normalization was performed using the geometric mean expression of six internal reference genes (CLTC , GAPDH , Gusb , Hprt , Pgk1 , 
Tubb5 ). Reporter probe counts reflecting the numbers of mRNA transcript in the RNA sample were analyzed and quantified using the 
nSolverTM Analysis Software, and are represented by fold-change compared to naïve cells. Two mice were pooled per sample and three 
total samples per group were submitted for NanoString analysis. Microglia were isolated by CD11b Miltenyi beads from the cortex of 
mice induced with EAE, Cuprizone, or LPS at early time points where neuronal pathology was detectable but had not peaked (EAE Early 
3 & 4[79], 3 week Cuprizone[123], LPS 24 h)[80]; B: heat map of differentially expressed genes; C: venn diagram representing the number of 
genes that are significantly upregulated, 1.3 fold-change or greater, in microglia from mice induced with EAE, Cuprizone, or LPS; D: venn 
diagram representing the number of genes that are significantly downregulated, 1.3 fold-change or greater, in microglia from mice induced 
with EAE, Cuprizone, or LPS; E: table showing the number of genes that were significantly upregulated (upward arrow) or downregulated 
(downward arrow) in each experimental group, and the number of altered genes shared among groups. Scale bar = 10 μm. P  < 0.05. LPS: 
lipopolysaccharide; EAE: experimental autoimmune encephalomyelitis 
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microglia from 3 week cuprizone treated mice had the greatest number of downregulated inflammatory 
genes, and the top four uniquely upregulated genes associated with phagocytosis and oligodendrocyte 
generation [guanine nucleotide-binding protein G(s) subunit, platelet derived growth factor alpha, 
TYRO protein tyrosine kinase-binding protein (TyroBP), C-C chemokine receptor type]. Platelet derived 
growth factor alpha is a mitogen that is critical for oligodendrocyte generation[134]. TyroBP is a microglial 
transmembrane signaling polypeptide that forms phagocytosis active zones preparing microglia for 
phagocytic activity[135]. Increased expression of TyroBP in the 3 week treated cuprizone mice, a treatment 
time point that corresponds to early myelin loss, is consistent with findings from transcriptome microglial 
analysis from demyelinating regions in other animal studies[136] and human tissue[137]. Thus, while microglia 
from all three models exhibit pro-inflammatory (“M1”), reactive expression profiles, microglia maintained 
a unique “fingerprint” for each model and these differences correspond with the integrity of the AIS, 
suggesting that subtle changes in microglial phenotype may mediate either stability or disruption of 
closely apposed neurons. It is still possible though that microglial phenotypes do not directly influence 
AIS integrity. The direct association of microglia with the AIS suggests however, that this neuronal domain 
may be particularly vulnerable to changes in microglial reactivity. These data support the growing body of 
literature demonstrating that microglia exhibit a plethora of inflammatory expression profiles within an 
“M1” phenotype despite having similar morphologies.

Transcriptomic defined subsets of microglia
Recently, several single cell RNA sequencing studies have begun to more clearly define subsets of microglia 
in the developing,mature and healthy, and pathologic CNS[45,138,139]. Grabert and colleagues[45] conducted 
the first genome-wide comparison of RNA expression profiles from microglia isolated from specific brain 
regions and across the adult life span. Their findings confirmed the presence of core profiles that distinguish 
microglia from macrophages, underscoring their distinct origins. In addition, they observed three primary 
RNA profiles that were regionally specific, demonstrating regional heterogeneity within the microglial 
population. Although regional specific heterogeneity was observed, similarities persisted between the 
cortex and the striatum, and between the cerebellum and hippocampus. With age, some of these differences 
dissipated as the profile of hippocampal microglia appeared to converge with the profiles of microglia from 
the cortex and striatum, while the profile of cerebellar microglia continued to diverge from the other three 
regions to reveal region specific changes over time. Li et al.[138] reported that the majority of microglia in 
mature, healthy CNS express similar profiles but significantly greater diversity was seen in postnatal CNS. 
An interesting finding of Li et al.[138] was the similarity between a postnatal subset of microglia, termed 
Proliferative-region Associated Microglia (PAM), and DAM, which demonstrates that genes expressed in 
development are reactivated with aging and pathology. PAM appeared transiently in regions of developing 
white matter, consistent with a role in phagocytosing the large numbers of oligodendrocytes that die during 
myelination[140]. The authors further state that the complete chemokine and cytokine expression profile of 
PAM supports additional roles including interacting with both neural and immune cells.

Using fluorescent assisted cell sorting gated by CD11b, CD45 and Cx3Cr1, Hammond et al.[139] defined nine 
unique clusters of microglia in the whole brain based on expression profiles. The percent of cells in each 
cluster changed across age and condition however. Canonical microglia genes were expressed by most cells 
but only C1qa, Fcrls and Trem2 were expressed in all clusters. Interestingly, P2ry12, Cx3Cr1 and Tmem119, 
which are frequently used as microglial identifiers[141-143], were either expressed in very low levels, or 
not at all in some clusters during development. Additionally, a novel subset of microglia, defined by the 
expression of secreted phosphoprotein 1, similar to PAM described by Li et al.[138], insulin like growth 
factor 1 and immunomodulators from the galectin family and several lysosomal proteins, was observed 
in the postnatal brain and associated with axonal tracts destined for myelination. Since these microglia 
express lysosomal markers, it was proposed that these cells clear the way for continued axon outgrowth, 
ultimately facilitating subsequent myelination. Other interesting findings include the lack of sex differences 

Benusa et al. Neuroimmunol Neuroinflammation 2020;7:248-63  I  http://dx.doi.org/10.20517/2347-8659.2020.03         Page 257



based on cluster comparisons, which is in contrast to previous reports[48,50,54,128]. Although sex differences 
were not observed, significant differences were observed within the aged brain (postnatal day 540) as 
certain clusters, which were comprised of very few cells in the adult brain (postnatal day 100), revealed a 
significant increase in the number of cells in the aged brain. Perhaps most interesting is the finding that 
specific subpopulations of microglia were similarly represented in demyelinating lesions in the mouse and 
human brains, suggesting that microglial cluster expression profiles may allow identifying disease-specific- 
“fingerprints”, and eventually aid in human disease treatment.

CONCLUSION
Although described 100 years ago, we are only just beginning to put together the various pieces of the 
microglial puzzle. We now recognize their involvement in establishing and maintaining a homeostatic CNS 
environment through trophic support and pruning of both neuronal and glial populations, modulating 
CNS wiring and circuitry, and facilitating axonal organization and outgrowth, myelin formation, and 
immunosurveillance in the healthy brain. Moreover, we are also beginning to appreciate their critical roles 
in disease, potentially both as CNS protectors by recognizing and removing infected, dying and dead cells, 
and also as CNS villains secondary to hyperactivation or dysregulation. We are also beginning to recognize 
that microglia may present as functionally distinct subclasses, which provides an explanation as to how a 
single lineage cell type can manifest into a plethora of diverse roles. However, it remains to be determined 
if distinct subclasses of microglia truly exist, or if microglia exist on a spectrum where they have the 
capacity to take on a multitude of identities depending on their environment. To address this issue, 
consistent approaches in cell isolation and analysis should be established and implemented. Additionally, as 
presented by other authors[86], the generation of a naming scheme that incorporates all aspects (age, brain 
region, morphology, gene expression, function, etc.) of microglia is essential for effectively moving the field 
forward. Although much has been learned over the past 20 years, our understanding of microglia remains 
limited. The immediate future though should be viewed with excitement as we continue to unravel the 
mysteries of these enigmatic cells. 
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Abstract
After ischemic stroke, proinflammatory molecules known as danger-associated molecular patterns (DAMPs) 
originating from damaged brain cells recruit and activate immune cells (neutrophils, macrophages, lymphocytes) 
further eliciting innate and adaptive immunity. During the acute phase from day 1 to day 3 of the stroke onset, 
macrophages play a major role in the progression of inflammation, promoting the destruction of brain tissue. 
During the recovery phase, from day 3~4 to day 7 after stroke onset, infiltrating macrophages switch to repairing 
macrophages, which clear the DAMPs and promote tissue repair by producing neurotrophic factors. Adaptive 
immunity during the late or chronic phase (> day 7) of stroke has not been well investigated. Recent studies have 
also indicated that antigen-specific T cells, especially regulatory T cells (Tregs), play major roles in neural repair. 
This review focuses mainly on the resolution of inflammation and tissue repair by macrophages and Tregs. 

Keywords: DAMPs, tissue repair, macrophages regulatory T cells, amphiregulin, IL-33

INTRODUCTION
Ischemic cerebral infarction accounts for 70% to 80% of all strokes, which is the leading cause of severe 
neuropathy, disability and bedriddenness[1]. Ischemic stroke causes the death of nerve cells as well as 
destruction of neuronal circuits, which leads to movement disorders, higher brain dysfunction, and sensory 



disturbance. Ischemic damages of the brain tissue further induce cerebral edema and inflammation, 
which exacerbates the functional prognosis and symptoms of stroke. Although administration of tissue-
plasminogen activator reduces ischemic neural damages, this treatment should be instituted within 4.5 h 
of stroke onset[2]. After this acute stage, no therapeutic drugs should be administered during the late stage 
of stroke, and following this short period, rehabilitation is the only modality of treatment for functional 
recovery at present. 

Sterile inflammation initially leads to tissue damages[3]. Likewise, in ischemic stroke, brain inflammation 
causes neural cell death and has been considered to be an attractive target for reducing brain damages not 
only in experimental rodent models but also in human patients[4-6]. As inflammation occurs within a few 
days after stroke onset, innate immunity, in which microglia, macrophages, neutrophils, and γδT cells play 
major role, has been thought to account for neuroinflammation after stroke, where such inflammation 
disappears after 1 week of stroke onset [Figure 1]. To date, only a small number of studies have investigated 
the adaptive immunity in stroke, which usually occurs over a week after the onset of the disease or 
infection[7,8]. However, our group and others have discovered an accumulation of lymphocytes including 
regulatory T cells (Tregs) in the brain at the chronic phase (more than 2 weeks) after stroke onset. This 
process has been shown to be involved in neural repair rather than progression of the disease[9-13].
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Figure 1. Schematic viewing a time-dependent recruitment of various inflammatory cells into the brain following cerebral ischemia in 
mice. In this review, we refer to day 1-3 after stroke onset as the acute phase, for days 3-7 being subacute phase, and period after 2 
weeks being chronic phase. This figure illustrates the conceptual changes in the population of immune cells, thus the numbers of each 
immune cell may not necessarily be accurate. Red line; M1 type inflammatory macrophages, green line; M2 type macrophages, gray 
broken line; γδT cells, pink broken line; Th1 cells and CD8+ T cells, blue line; regulatory T cells (Tregs). IL: interleukin; IGF: insulin growth 
factor  



In this mini-review article, we will focus on the resolution of inflammation and tissue repair of the brain 
after ischemic stroke.

INFLAMMATION CASCADE AFTER STROKE
In the very acute stage (< 24 h) after stroke onset, the major player involved is infiltrated macrophage, 
which can be differentiated from bone marrow-derived monocytes. Macrophages are activated by 
extracellular molecules known as danger-associated molecular patterns (DAMPs), which are released from 
damaged and dead cells. Infiltrated macrophages at this stage are highly pro-inflammatory and produce 
cytokines, chemokines and mediators which exacerbate ischemic encephalopathy, leading to dysfunction 
of the blood brain barrier (BBB)[4,14] [Figures 1 and 2]. HMGB1, S100A8 and S100A9, and peroxiredoxin-
family proteins are major DAMPs which activate infiltrated macrophages through toll-like receptor (TLR)-2 
and TLR-4[15]. 

Among inflammatory cytokines released from macrophages, TNFα, interleukin (IL)-1β, IL-23 have been 
shown to contribute significantly to brain damages and neural dysfunctions[16-19]. In particular, IL-1β and 
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Figure 2. Schematic view of the role of immune cell types in cytokine production, neuroinflammation, and tissue repair. In the early 
stage of around 24 h, macrophages infiltrate the injured brain and are activated through the TLR2/4 stimulation by molecules known 
as danger-associated molecular patterns (DAMPs) from necrotic cells. Thereafter, infiltrated macrophages produce inflammatory 
cytokines and mediators which increase probability of ischemic encephalopathy and blood brain barrier (BBB) destruction. At this stage, 
macrophages become M1-type inflammatory macrophages. Further on, IL-23 and IL-1β from inflammatory macrophages stimulate IL-17 
production from infiltrated γδT cells. After day 3, macrophages are converted into M2-type repairing macrophages which are involved in 
clearing DAMPs, resolving inflammation, and tissue repair by producing neurotrophic factors such as IGF-1. During the chronic phase, a 
massive T-cell infiltration occurs. Brain Tregs are attracted via chemokines and proliferate in the cervical lymph node (LN) and the brain. 
Brain Tregs may thereafter interact with various brain cells including that of microglia, astrocytes, endothelial cells, and neural cells 
promoting neural cell recovery in th process. IL: interleukin; IGF: insulin growth factor  



IL-23 induce IL-17 production from infiltrated γδT cells, further promote inflammation, BBB breakdown, 
and neuronal damage[19-21]. IL-17 is a cytokine which has been shown to play important pathological 
roles not only in ischemic stroke, but also in various neuroinflammation including neurodegenerative 
diseases[22-24]. The inflammasomes, which are necessary for mature IL-1β release, have also been described 
to cause deterioration in infarct volume resulting in neural defects in stroke patients. Inhibition of 
inflammasome is shown to be effective for reducing neuroinflammation and subsequently reducing infarct 
volume increase[20,25]. 

RESOLUTION MECHANISM OF INFLAMMATION AFTER STROKE
After 3-4 days post-ischemic stroke onset, inflammatory macrophages termed M1 type macrophages, are 
converted into repairing macrophages or M2-type macrophages. Repairing macrophages play a role in 
scavanging tissue debris and necrotic cells, futher supporting neural repair by releasing neurotrophic factors 
including insulin growth factor (IGF)-I[26] [Figure 2]. It has been suggested by some studies that IL-10 
and TGF-β from M2-type macrophages and microglia, promoting the resolution of inflammation [27]. Is 
is not clear whether the same M1 macrophages may convert to M2 type, or M2 macrophages replace M1 
type macrophages although an imaging study of infiltrated macrophages in experimental autoimmune 
encephalomyelitis (EAE) model revealed that single macrophage changes its phenotype from M1 to M2[28]. 
For clearance of DAMPs, Msr1 (macrophage scavenger receptor-1 or what is known as CD204 or SCARA1) 
was identified as a major scavanger receptor[29,30]. Msr1 promoter was described to be activated by Maf-b, 
and an RAR agonist, Am80, upregulating MAF-B expression, therefore promoting Msr1 expression and 
clearance of DAMPs which ultimately facilitates neurological recovery[29]. Am80 has also been shown to 
be neuroprotective by activating the PI3-kinase/Akt pathway[31]. Msr1 has been shown in several studies 
to clear various neurotoxic molecules including amyloid-β thus playing an important neuroprotective 
role[32,33]. Mannose receptors on infiltrating macrophages have also been reported to be involved in the 
clearance of DAMPs in focal cortical ischemia[34].

The early activation of microglia in the post-ischemic brain was demonstrated to be neuroprotective by 
regulating neuronal Ca2+ overload and spread of depolarization. Pharmacological ablation of microglia 
results in infract size increase and dysregulation of neuronal circuit, while microglia repopulation reverses 
these effects[35]. The pro-resolving mediators including protectins and resolvins, which have been shown to 
be neuroprotective. Resolvins reduce neural damage through suppression of leukocyte infiltration, IL-1β 
expression, and NF-κB activation[36]. Neuroprotectin-D1 similarly reduces infarct volume and diminishes 
disease burden[37]. LXA4 had also been reported to be neuroprotective by virtue of mitigating astrogliosis, 
IL-1β, TNFα expression, and neutrophil infiltration. Additionally, it also converts phenotypes of monocytes 
from inflammatory to an anti-inflammatory and serves functionally to repair tissues[38]. However, the 
mechanism of resolution (or suppression) of inflammation by microglia and these lipid-mediators remains 
to be described.

Lack of CCR5 expression has been reported to increase the severity of ischemic brain injury[39]. CCR5 
is uniquely expressed in cortical neurons within the damaged brain[40]. CCR5 antagonists accelerate 
recovery from neurological and cognitive dysfunction. Although various roles of CCR5 in neurons have 
been reported, the inhibition of CCR5 has been found to suppress astrocyte reactivity and macrophage 
recruitment[40,41]. Nevertheless, another study has revealed the pathogenic role of CCR5 in cerebral 
ischemia[42], suggesting that various types of cells may express CCR5 and contribute to both neuronal 
inflammation and tissue repair of the ischemic brain.

ROLE OF MICROGLIA IN RESOLUTION OF INFLAMMATION AND NEURAL REPAIR
Microglia have been shown to play important roles in neural inflammation, resolution of inflammation 
and clearance of dead cells in the brain[43]. Since major sources of IL-1β and IL-23 is infiltrated M1 type 
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macrophages originate during the acute phase of inflammation after stroke model[14,20], the contribution of 
microglia to severe inflammation post stroke is not very clear. Depletion of microglia leads to aggravated 
neuronal damage and apoptosis after ischemic brain injury, suggesting that microglia plays an important 
role in neuroprotection[44]. Mechanistically, microglia senses damaged cells through the purinergic 
receptors (P2X4R, P2X6R, P2X12R) which respond to adenosine triphosphate released from dead cells. 
The activation of the purinergic receptors initiates neuroprotective responses rather than destructive 
inflammation through the recruitment of microglia to the point of injury[45,46]. Microglia also express 
clearance receptors such as Msr1, complement receptors, and receptors for apoptotic cells[32,47]. A recent 
study shows beneficial effects of repopulating microglia which support adult neurogenesis by augmenting 
the survival of newborn neurons in traumatic brain injury thorough IL-6 trans-signaling pathways[48]. IGF-1 
produced by microglia has been found to be neuroprotective[49]. However, the significance of IGF-1 in 
neuroinflammation and neuroprotectin remain controversial[50]. 

ROLE OF LYMPHOCYTES IN POST-ISCHEMIC BRAIN INFLAMMATION
It has been reported that lymphocytes including T cells and B cells play various roles in the pathophy-
siology of stroke[51]. B cells and immunoglobulins are detected within and around the stroke core in 
a subgroup of stroke and dementia patients, and also in a murine experimental stroke model. Several 
studies suggest that post-stroke cognitive impairment has been associated with B cell activation and auto-
antibody production[52]. Nevertheless, the specific roles of B cells and/or antibodies in neurological deficits 
and inflammation after ischemic brain injury remain uncertain[53]. Plasma cells in the central nervous 
system (CNS) of mice with EAE have been shown to originate in the gut and produce IgA, which confers 
resistance to mice to the effector stage of EAE through the production of IL-10[54]. Interestingly, stroke 
patients demonstrate a type of auto-immunoreactivity to brain antigens[55]. 

T cells have been more intensively investigated than B cells. This is mostly because various cytokines, such 
as IL-10, IL-17, IL-21, IFN-γ, and TNF-α produced from CD4+T cells and/or γδT cells, affect and regulate 
glial cells, endothelial cells, neural cells, and various immune cells[56,57]. IL-21 is predominantly produced 
from CD4+T cells, but the role of this particular cytokine in stroke is controversial. In mice, a locus on 
distal chromosome 7 has been described to contribute variations in post-ischemic cerebral infarct volume, 
and the IL-21 receptor has been identified as a strong candidate which functions in a neuroprotective 
manner[58]. However, another study suggested that IL-21 promotes brain injury after stroke in mice[57], thus 
further research is necessary to clarify the role of IL-21 in brain injury. 

The route of infiltration of T cells to the brain is not described clearly. A recent study shows that T cells 
specifically accumulate within the peri-infarct cortex after stroke and that the ipsilateral choroid plexus 
plays a key cerebral invasion route for T cells[59]. This study suggests that the CCR2-ligand gradient between 
cortex and choroid plexus serves as the potential driving force for T cell invasion.

In the experimental cerebral ischemia model, infiltration of subsets of T cells occurs at various time 
points [Figures 1 and 2]. Many reports indicate that T cells promote brain damage at the early phase of 
stroke[19,60]. In humans, FTY720 (fingolimod) treatment within 72 h post stroke onset blocks the infiltration 
of pathogenic T cells into the brain, effectively ameliorating neurological symptoms in the patient[61]. 
CD8+ T cells may infiltrate within several hours after stroke onset[61]. Nerve-damaging substances such as 
granzymes and perforin from CD8+T cells can exacerbate the infarction[62]. γδT cells increase immediately 
after stroke onset and are present in the brain parenchyma accompanied with BBB breakdown. On day 
3 after stroke onset, the number of γδT cells reaches its maximum concentrations[19,21]. IL-17 produced 
from γδT cells promotes neural cell damages in the ischemic penumbra region[19,21,63]. Taken together, γδT 
cells depletion well as anti-IL-17 neutralizing antibody are shown to suppress ischemic brain injury[19,64]. 
CD4+T cells and NKT cells infiltrate the brain after 24 h of ischemic stroke[65]. These reports indicate that 
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T cell could serve as a therapeutic target for stroke. However, we should remain cautious that within one 
week after stroke onset, the number of T cells in the brain is small and represents only a small fraction of 
infiltrated mononuclear cells[19] [Figure 1]. 

It has been reported that during the acute phase of stroke, Tregs infiltrate the brain, suppressing 
neuroinflammation, therby reducing the severity of ischemic brain injury[60,66,67]. However, the significance 
of Tregs in brain injury has become controversial[68,69]. Importantly, the number of Tregs in the brain at this 
stage is extremely low (less than 100 cells/brain in mice), and antigen-specific activation and proliferation 
of Tregs may not occur in such a short period (within 3 days), since it usually takes more than a week to 
raise adaptive immunity in the host [Figures 1 and 2]. Thus, bystander effects, such as paracrine effects of 
IL-10, may explain an anti-inflammatory role of Tregs at the acute phase.

ACCUMULATION OF BRAIN TREGS AT THE CHRONIC PHASE OF STROKE
It is thought that inflammation no longer plays an important role in neural damage and recovery at the 
chronic phase of stroke (> 7 days after stroke onset). Inflammation is not clearly obvious at this stage. 
However, compared to the acute phase, Tregs as well as other lymphocytes have been shown to accumulate 
in substantial quantities in the brain at the chronic phase of the experimental stroke model[9-13] [Figures 
1 and 2]. Infiltration of Tregs proceeds with slightly delayed kinetics compared with that of other T cells. 
Tregs may also infiltrate the spinal cord parenchyma during the subacute to chronic phases in the spinal 
cord injury model[70]. Tregs consist of approximately 50% of CD4+ T cells, and localize within and around 
the cerebral infarction lesion. Outside the infarct core area, Tregs remain in close proximity to scar-forming 
astrocytes and neuronal cells. Treg fractions in the brain are extremely higher that those in other lymphoid 
organs such as the spleen and lymph nodes. Since CD8+ T cells are also present, about 1/4 to 1/5 of T cells 
in the brain are calculated as Tregs. 

To determine the role of T cells in ischemic brain injury, mice were treated with FTY720 or anti-CD4 
antibody during the chronic phase after stroke. Tregs can also be depleted by the use of Foxp3-diphtheria 
toxin receptor (DTR) mice, where DTR is specifically expressed on Tregs[71]. These treatments drastically 
reduce the number of CD4+T cells including Tregs in the brain, delaying neurological recovery. These data 
indicate that brain Tregs at the chronic phase are important for suppressing neurological symptoms[9]. 
Stubbe et al.[10] observed no changes regarding neurologic outcome if they depleted Tregs through the use 
of anti-CD25 antibody[10]. Anti-CD25 antibody, however, may not be able to completely deplete Tregs, 
possibly depleting pathogenic T cells as well[72]. Other studies have also shown that brain Tregs play 
neuroprotective roles during the late stage of stroke and spinal cord injury models[12,73].

CHARACTERIZATION OF BRAIN TREGS
Tregs consist of approximately 10% of CD4+ T cells, located within most lymphoid organs and blood, 
moving to specific sites of inflammation after immunization. In addition, Tregs have recently been 
discovered in various tissues besides lymphoid tissues, in steady state conditions as well as during injury. 
These tissue-residing Tregs are now termed “tissue Tregs”, which have a limited TCR repertoire and 
recognize the self-antigen characteristically expressed in each tissue. Such tissue Tregs exist in fats, muscles, 
skin, lungs, and intestines, exhibiting similar phenotypes among organs, but are quite different from those 
of lymphoid tissue[74-78]. The features common to various tissue Tregs are high expressions of Il10, Areg 
(amphiregulin), Klrg1, Tigit, Il1rl1 (encoding ST2, IL-33 receptor), Ctla4, Irf4, Batf, and Gata3 and low 
expressions of Bcl2, Tcf7, and Lef1 compared with lymphatic Tregs[74,79]. BATF is shown to be an important 
regulator for Tregs to accumulate preferentially in several tissues[80]. In addition to the common genes 
expressed in various tissue Tregs, unique tissue-specific genes are also found in tissue Tregs namely Pparg 
in fat Tregs. The microenvironment of each organ appears to determine the tissue-specific phenotypes of 
tissue Tregs. 

Yoshimura et al. Neuroimmunol Neuroinflammation 2020;7:264-76  I  http://dx.doi.org/10.20517/2347-8659.2020.22            Page 269



Like other tissue Tregs, brain Tregs express Helios, which suggests that brain Tregs are derived from the 
thymus embryonically. Brain Tregs possess a unique TCR repertoire and express high levels of CTLA-4, 
PD-1, Areg, KLRG1, and ST2, indicating that the brain Tregs share common features of tissue Tregs. 

MOLECULES DEEPLY INVOLVED IN TREG-MEDIATED NEURAL RECOVERY 
Chemokine receptors
Tissue Tregs express unique chemokine receptors in each organ. Brain Tregs express specific chemokine 
receptors including CCR6 and CCR8, and their ligands. CCL20 and CCL1 in particular are highly 
expressed in the cerebral infarct area. Intra-ventricular injection of CCL1 and CCL20 has been reported to 
increase the number of Tregs, resulting in improvement of neurological recovery[9].

IL-33
Of note, IL-33 promotes tissue recovery after CNS injury[81] and up-regulates M2 type macrophage-related 
genes[82]. Since many reports suggest that IL-33 induces the expansion of Tregs in the brain[9,12,83], it is 
highly possible that brain Tregs are involved in the beneficial effects on CNS damage[12,84]. In the skeletal 
muscle injury model, local mesenchymal stromal cells express the receptor for the calcitonin-gene-related 
peptide (CGRP), producing IL-33 in response to CGRP, which further promotes accumulation of Tregs 
and muscle tissue repair[78]. IL-33-expressing cells in the brain consist of astrocytes and oligodendrocytes[9]. 
Higher serum IL-33 levels in acute ischemic stroke patients correlated positively with better prognosis, as 
compared with those with lower IL-33 levels. These patients presented with poorer outcome[85] suggesting 
that IL-33 is protective to stroke.

Serotonin receptor
As earlier described, tissue Tregs express a common set of genes among various tissue Tregs, while each 
organ-specific Treg expresses tissue-specific genes. Unlike other tissue Tregs, brain Tregs express several 
unique CNS-related genes. For example, brain Tregs express serotonin receptor 7 (Htr 7), which increases 
cellular cAMP[86]. It has been acknowledged that cAMP promotes the Treg proliferation and thereby 
potentiating Treg functions[87]. Serotonin was reported to decrease Th1/Th17 cytokines, but increased Treg 
population in multiple sclerosis (MS) patients[88]. Serotonin further activates Tregs from the ischemic brain 
in vitro in an Htr7-dependent manner. The administration of serotonin or a selective serotonin reuptake 
inhibitor (SSRI) thus increases the number of brain Tregs in the chronic phase after stroke onset, improving 
neurological symptoms[9]. Many reports suggest that SSRI ameliorates neurological symptoms after stroke 
onset[89,90], although some studies did not prove that functional recovery improved[91]. It is highly likely that 
brain Tregs work on neuronal repair in human stroke patients. 

Amphiregulin
Hypertrophic astrocytes exhibit increased Ca2+ signaling, which leads to the increased expression of pro-
inflammatory cytokines (IL-1β, IL-6) and chemokines (CCL3, CCL5) expression, promoting the formation 
of glial scars[92]. Amphiregulin (Areg) is also known to suppress the production of inflammatory cytokines, 
including IL-6 and TNFα, in several inflammatory diseases[93]. 

Areg from brain Tregs has been described to suppress the excessive activation of astrocytes, so-called 
astrogliosis or reactive astrocytes, which is then reported to lead to a delay in the recovery from ischemic 
stroke or spinal cord injury[94]. Although astrogliosis would be necessary for forming scars in order to 
demarcate the ischemic regions from the surrounding healthy tissue, excessively activated astrocytes can 
produce neurotoxic factors, resulting in neural cell damage[95]. Areg further suppresses apoptosis of neurons 
by suppressing excessive astrocyte activation[9]. The molecular mechanism of suppression of astrocyte 
activation by Areg has not been completely elucidated. Among inflammatory cytokines, IL-6 is important 
for astrocyte activation[96]. Since Areg suppresses IL-6 expression in microglia and astrocytes in vivo and 
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in vitro[9], suppression of IL-6 by Areg may play a key role in astrocyte regulation. In addition, Areg has 
been postulated to be directly involved in the proliferation of neural stem cells[97]. 

Enkephalin
Prepro-enkephalin is produced in Regulatory T cells[98]. Pharmacologically active encephalin has been 
reported to be therapeutic for stroke[99]. Opioid growth factor ([Met(5)]-enkephalin) is also neuroprotective 
in the murine EAE model[100]. However, some studies indicate that preproenkephalin accelerates the 
generation of autoimmune IFN-γ-producing T cells and exacerbates EAE[101]. 

PPARγ
PPARγ levels are high in brain Tregs. PPARγ agonists have been reported to increase accumulation of 
adipose-tissue Tregs and improve insulin sensitivity[102] In particular, PPARγ agonists have a protective 
effect against various types of injury to the brain[103]. Thus, it is possible that PPARγ is involved in Treg 
expansion in the brain, which should be further investigated.

TREGS AND HUMAN CNS INFLAMMATORY DISEASES
Accumulation of Tregs in the human brain of ischemic stroke patients has not been clearly shown. 
However, a correlation between peripheral blood Treg/Th17 ratio or IL-17/IL-10 levels and stroke 
prognosis has been reported in human stroke[104-107]. An inverse correlation between the number of Tregs in 
the peripheral blood and the severity of stroke has also been reported in patients[13,108]. 

It has been established that neural inflammation plays important roles not only in cerebral infarction, but 
also in various types of damage to cerebrospinal tissues. These include spinal cord injury, autoimmune 
diseases such as multiple sclerosis, and in neurodegenerative diseases such as Alzheimer’s and Parkinson’s 
diseases. Innate and adaptive immunity may be involved in these neural inflammations. Although Tregs 
have been shown to infiltrate and accumulate within the CNS[109] of neuroinflammatory diseases, role of 
Tregs in such diseases have not been well characterized. Since Tregs of MS patients have been shown to 
proliferate by serotonin stimulation[88], Tregs in the CNS diseases may be similar to the brain Tregs that 
have been characterized in a murine ischemic stroke model.

CONCLUSION
In summary, brain macrophages as well as brain Tregs play important roles in the resolution of 
inflammation and neural recovery. The conversion mechanism from inflammatory macrophages to tissue-
repair macrophages and the mechanism of expansion of brain Tregs by recognizing self-antigens in the 
cervical LN and the brain remain to be described. Neuroprotective factors such as IGF-1 from macrophages 
and Areg produced by brain Tregs not only suppress excessive activation of microglia and astrocytes, but 
may also promote neural cell survival and neural stem cell recruitment [Figure 2][110,111]. The molecular 
mechanisms whereby macrophages and Tregs acquire brain-specific characteristics, including Maf-b/
scavenger receptor expression and serotonin receptor expression, respectively, remain to be clarified. Such 
mechanisms could be used for increasing Tregs in the brain. Identification of brain factors and self-antigens 
for brain-specific macrophages and Tregs may facilitate the development of therapies for not only cerebral 
infarction but also other central nervous system diseases. Adoptive transfer of mesenchymal stem cells to 
the brain has been proposed to treat stroke patients[112]. Similarly autologous Tregs transfer into the brain 
is also possible for the treatment of cerebral inflammation. It is also important to define the role of brain 
Tregs in other neurodegenerative disorders and neuroinflammatory diseases.
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Abstract
Multiple sclerosis is an autoimmune disease characterised by a chronic inflammation within the central 
nervous system. In the last ten years, studies on multiple sclerosis have been concentrated on the discovery 
of new biomarkers of disease and potential therapeutic targets. In chronic infection or in cancer, the immune 
system response is faulty and maintained in a condition defined as T-cell exhaustion induced by expression of 
co-inhibitory receptors. The PD-1/PDL-1 pathway is demonstrated to be the main one responsible for promoting 
T-cell exhaustion, and immunotherapies targeting PD-1 or PDL-1 have shown beneficial clinical outcomes in several 
tumours and chronic diseases. Contrarily, transcriptional T-cell exhaustion signature and high expression of 
co-inhibitor receptor PD-1 are associated with favourable prognosis in multiple sclerosis and other autoimmune 
diseases. Several studies have clearly demonstrated PD-1 has a dual role in immune self-tolerance: to constrain 
autoreactive T cells in anergic condition and to protect the tissue from the damage caused by the activation of 
endogenous autoreactive T cells. Consequently, immune checkpoint inhibitor therapies that target inhibitory 
receptors in cancer cause an exacerbation of autoimmune diseases. This review describes the roles of the PD-1/ 
PDL-1 pathway in cancer and autoimmune diseases, especially in multiple sclerosis, and how manipulating PD-1 
can be a therapeutic approach in multiple sclerosis.

Keywords: T-cell exhaustion, inhibitory checkpoints pathways, PD-1/PDL-1 axis in autoimmune disease, multiple 
sclerosis, immune checkpoint inhibitor treatments, multiple sclerosis biomarkers 



T-CELL EXHAUSTION
The word “exhaustion” originates from the Latin “exaurire” and was used for the first time to explain a 
mechanism for silencing antiviral T-cell response during a Lymphocytic Choriomeningitis Virus infection 
(LCMV)[1]. Antigen-specific CD8 T cells remove viral infection by killing infected cells and the production 
of antiviral cytokines such as interferon gamma (IFNg). The damping of immune response in LCMV 
was associated with two mechanisms silencing the CD8 Cytotoxic T Lymphocytes (CTLs) response: the 
depletion of nucleoprotein-specific CD8 T cells and the persistence of exhausted glycoprotein-specific 
CD8 T cells unable to kill virus-infected cells and release antiviral cytokines[1]. Further investigations 
showed that the exhaustion process suppresses the CD8 antiviral activity by the hierarchical loss of T cell 
function[2]. Proliferation, release of IL-2 and cytolysis were lost at an early stage of exhaustion, followed 
by tumor necrosis factor alpha (TNFa) production and, at the severe late stage, IFNg production. CD4 T 
helper cells (Th cells) drive the fate of CD8 T-cell responses in chronic viral infections. Mice with transient 
depletion of CD4 T cells before infection with chronic strains of LCMV develop CD8 T-cell exhaustion 
and high viral load compared with non-treated mice[3]. Th cells are necessary for the generation of stable 
and functional CD8 memory cells[4-6]. During a chronic infection, CD8 T cells develop an exhaustion 
phenotype that produces a state of immunosuppression in the absence of CD4 T cells[7]. The exhaustion 
process induces low levels of Th cells[8-10] and affects CD4 T cell functions with loss of proliferation and IL-2 
and TNFa production[11]. Moreover, CD8 T cell and B cell response was restored when functional LCMV-
specific CD4 T cells were transfected in LCMV chronically infected mice. PD-1 expression increased in 
LCMV-specific CD4 T cells by two weeks after transfer in chronically infected mice and programmed death 
1 (PD-1) blockage improved the CD4 T-cell activity[12,13]. In addition, the rescue of CD8 T cell function in 
terms of proliferation and cytokine release was greater in mice receiving the combination of PD-1 blockade 
and Th cells compared with the mice receiving either treatment alone[12].

INHIBITORY CHECKPOINT PATHWAYS
Cytotoxic T Lymphocytes A-4 (CTLA-4), PD-1 and programmed death ligand 1 (PDL-1) are the first 
inhibitory checkpoint receptors to be discovered and targeted in cancer immunotherapy and chronic 
viral infection. The amplitude of T-cell response depends on the activation of co-stimulatory (CD28) 
or inhibitory receptors after the engagement of T-cell receptor (TCR) with the cognate-peptide-major 
histocompatibility complex. Co-inhibitory receptors show distinct patterns of expression and different 
mechanisms of action and signalling.

The knockout CTLA-4 mice has shown a lethal hyperactivation phenotype, confirming that CTLA-4 is a 
vital inhibitor checkpoint of the immune system. After TCR activation, CTLA-4 upregulates in the CD4 
T cells and competes with the co-stimulatory receptor CD28 for its ligands CD80 and CD86, for which 
CTLA-4 has more binding affinity. The link of CTLA-4 to CD80 and CD86 inhibits T-cell activation. 
Because antigen-presenting cells and dendritic cells express CD80 and CD86, the suppression of anti-
tumour immunity by CTLA-4 is thought to occur in the secondary lymphoid organs as well as in the 
tumour microenvironment. 

PD-1 is an inhibitory receptor that belongs to the CD28 family. The receptor has been detected on activated 
T lymphocytes, B lymphocytes, dendritic cells, macrophages and natural killer cells after a transcriptional 
activation[14]. PDL-1 is the ligand of PD-1, belongs to B7 family and is present on B lymphocytes, antigen-
presenting cells (APC) and tissue cells, including several types of cancer. PD-1 engagement activates the 
inhibitory phosphatase PP2A and SHP-2 by immune receptor tyrosine inhibitory motif and immune 
receptor tyrosine switch motif, inhibits T-cell activation and increases T-cell migration within tissues.

T-cell exhaustion in cancer and infectious diseases. T-cell exhaustion has been described in animal 
models of polyomavirus[15] and adenovirus[16], as well as in chronic human infections mediated by human 
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immunodeficiency virus (HIV)[17] and hepatitis B and C virus (HBV, HCV)[18,19]. The loss of antiviral 
activity on CD8 T cells is associated with the upregulation of PD-1 in an animal model of LCMV followed 
by hierarchy suppression of cyto- and cytotoxic function[20]. The CD8 cytotoxic function against infected 
cells and antiviral cytokines production can be restored by blocking the PD-1/PDL-1 pathway, leading to 
clearance of infection in LCMV. The PD-1/PDL-1 pathway is the principal regulator of T-cell exhaustion 
in the animal model of LCMV. Studies on PD-1 in human chronic infections such as Human HIV and 
HCV have shown an increase of PD-1 on virus-specific CD8 T cells. PD-1 increases in HIV-specific 
CD4 and CD8 T cells and is directly correlated with the viral load and inversely with CD4 T cell counts. 
Furthermore, PD-1 increases in patients with HIV progression as compared with patients with long-term 
progression. 

Moreover, T-cell exhaustion suppresses cancer immune-surveillance, leading to tumour spread. Restoring 
the immune surveillance by blocking PD-1/PDL-1 pathway has been an essential improvement in the 
cancer treatment. The function of PD-1 and its deregulations are summarised in Figure 1.

Nonetheless, some tumours develop resistance to PD-1 blocking, which is regulated by the tumour 
microenvironment where infiltrates of regulatory and immune suppressor cells (myeloid suppressor cells, 
regulatory T cells, immature dendritic cells and immune-suppressive macrophages) reduce the activity of 
cytotoxic CD8 T cells. Any treatment that induces changes in the levels of hormones and growth factors 
increases the vulnerability of cancer cells to cytotoxic drugs, which become sensitive to PD-1 treatment. 
Furthermore, short-term starvation (STS) has been described to reduce levels of insulin-like growth factor 
1 (IGF-1) in the lung cancer microenvironment with an increase in the infiltration of immune cells and 
cytotoxic CD8 T cells[21]. The combining of PD-1 blockade treatment with STS boosts the immune system, 
reducing the tumour size significantly in a mouse model of KRAS-driven lung adenocarcinoma and 
Lewis lung carcinoma[21]. The combination of the two treatments induced in the mice an extended lasting 
memory response. The immunological study has shown an increase in tumour-infiltrating CD8 and natural 
killer cells by reducing the proportion of CD4 and B cells. CD8 and CD4 T cells showed a reduction in 
PD-1 expression. Depletion of CD8 T cells abrogated utterly the effect of the STS and anti-PD-1 treatment, 
confirming that STS sensitises the lung cancer to CD8 T cells reactivated by PD-1 blocking. The tumour-
immune infiltrate treated with anti-PD-1 after STS was analysed with a flow cytometer and presented an 
increase in the frequency of tumour-specific IFN-g-producing T cells as compared with mice treated with 
only one agent or vehicle[21]. 

A selective ablation of PD-1 on myeloid cells or T cells has essentially contributed to understanding the 
function of PD-1 in the cancer-immunity cycle. Mice with PD-1 ablated only on myeloid cells showed an 
increase of effector memory T cells and an enhanced response against the tumours. Ablation of PD-1 on 
myeloid cells changes the tumour microenvironment, skewing the myeloid cell fate toward differentiation 
of monocytes, macrophages and CD11c+MHCII+ dendritic cells (DC) rather than myeloid suppressor 
cells and granulocyte/macrophage progenitors. The reduction of myeloid suppressor cells due to PD-1 
ablation contributes to restoring the functionality of effector memory T cells and, consequently, an immune 
response to the tumour[22].

PD-1/PDL-1 AXIS IN AUTOIMMUNE DISEASE
Autoimmune thyroid diseases (AIDTs) are an organ-specific autoimmune disease that affects 50/100,000 
people per year, with a prevalence in females[23]. Infiltrating lymphocytes generating follicle structures are 
described in the thyroid glands in Hashimoto thyroiditis and Grave’s disease (GD), the most common 
AIDTs[24]. Interferon signalling and increased expression of PD-1 and M2 macrophages markers were 
revealed in the transcriptomic analysis of GD glands[25]. Thyroid autoimmunity is one of the most common 
Immune-Related Adverse Events observed after immune checkpoint inhibitors (ICI) treatments in cancer[26]. 
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Figure 1. PD-1 inhibitor checkpoint regulates T cell activation during immune surveillance and induces T-cell exhaustion in cancer. (1) 
PD-1 is expressed on activated T cells and regulates the activity of late differentiate effector cells. The foreign antigens are presented 
to T cells by the TCR engagment with MHC expressed on dendritic cells, infected cells or tumor cells. Thus, T cells proliferate and 
differentiate in effector and memory cells. Effector cells kill the foreign antigens express on infected or tumor cells by releasing 
inflammatory cyokines and cytotoxic granules that induce target-cells to apoptosis. PD-1 is an inhibitory checkpoint able to regulate 
the T cell activation when the inflammation is resolved. (2) After activation, PD-1 increases on T cells and the link with the ligand 
PDL-1 reduces the T cell functionality. Thus, T cells are not able to kill the tumor or reduce the viral load and this condition called 
T-cell exaustion favours a persistent infection and tumor spread. (3) The blocking of PD-1 with monoclonal antibodies restores T cell 
function. T cells proliferate and differentiate in effector and memory cells contributing to resolve the infection or tumor. MHC: major 
histocompatibility complex
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The PD-1/PDL-1 axis has been investigated in the peripheral blood and the infiltrating lymphocytes in 
glands of patients with GD and compared with non-multinodular goitres as non-autoimmune controls 
and healthy controls (HC)[27]. A decrease of naïve as well as an increase of memory and effector subsets 
of CD4 T cells was observed in GD as compared with the healthy donors (HD)[27]. Besides, infiltrating 
lymphocytes in the gland of GD patients were predominantly effector and memory cells. PD-1 was found 
higher in GD than HD in CD4 T cells, and it increased in effector memory T cells re-expressing CD45RA 
(TEMRA), effector and central memory subsets. PD-1 expression increased in infiltrating CD4 and CD8 T 
cells in infiltrating lymphocytes with predominance on effector and memory subsets. The expression of 
PDL-1 but not  programmed death ligand 2 (PDL-2) was observed in epithelial thyroid follicular cells in 
the thyroid tissue from GD patients but not in non-multinodular goitres patients[27].

Rheumatoid arthritis (RA) is a chronic progressive inflammatory disorder characterised by damage of 
articular cartilage and joint destruction[28-31]. Environmental, genetic, infectious and hormonal factors can 
contribute to the pathogenesis of the disease[32,33]. The overproduction of TNFa generates inflammation 
and damages the joints. The interaction of B and T lymphocytes[34] with synovial-like fibroblasts and 
macrophages causes the overproduction of TNFa that induces the production of several inflammatory 
cytokines, such as interleukin-6 (IL-6)[35,36]. Several animal and clinical studies revealed the presence of 
CD4 T cells in the perivascular cuff and infiltration of CD8 T cells into the tissue. Depletion of T cells or 
treatment of anti-cytokines that are involved in T-cell activation or promote antigen-presentation reduces 
inflammation. T helper 17 cells are the primary T cell subsets involved in inflammation and autoimmunity 
in RA[37]. PD-1-/- C57BL/6 mice developed arthritis. PD-1 polymorphisms have been reported to be 
associated with RA[38,39]. Expression of PD-1 was detected in synovial T cells and macrophages in patients 
with RA[40]. In the peripheral blood of RA patients, PD-1 was significantly decreased in CD4 T cells (P = 
0.002) and CD8 T cells (P < 0.001) as compared with HC (P < 0.05)[41]. DAS28 score is a measure of disease 
activity in RA, and PD-1 expression was found inversely correlated with DAS28 scores in RA patients[41]. 
Besides, CRP is an indicator of inflammation and cases with positive CRP detection had a lower proportion 
of PD-1+CD4+ T cells than those with negative CRP[42].

Systemic Lupus Erythematous (SLE) is an autoimmune disease generated by the production of antibodies 
against self-antigens and deposition of immune complexes in different tissues. Inflammation and 
multisystem disorders characterise the disease[43]. The disorder affects mainly women of reproductive 
age with an incidence of 20-70 cases per 100,000 individuals[44,45]. Environmental, genetic and hormonal 
factors are relevant in the pathogenesis of the disease[46-48]. Genetic variations in the immune checkpoint 
genes such as PD-1, T-cell immunoglobulin domain, mucin domain (TIM) and CTLA-4 increase the 
susceptibility to develop the autoimmune disease as a consequence of the breakdown of immune tolerance 
to self-antigens[49,50]. Several single-nucleotide polymorphisms (SNPs) have been identified to affect PD-1 
function and to contribute to tumours and autoimmune disease[49,50]. The frequencies of PD-1 SNPs (PD1.1, 
PD1.3, PD1.5 and PD1.9) were analysed in SLE patients. The PD1.5 genotype frequency was increased in 
Iranian, Malaysian and European patients with SLE as compared with healthy donors[51-53]. The distribution 
of PD1.5 C/C, PD1.5 C/T and PD1.5 T/T genotypes versus other genotypes in patients with SLE differed 
from healthy controls[53]. In addition, there were significant differences in the PD1.5 genotypes between 
patients with renal involvement and neurological involvement and between neurological involvement and 
HC[53]. The allelic analysis revealed that there was a significant association between PD1.5 allele frequency 
and SLE susceptibility[53].

Type I diabetes (TID) is caused by autoreactive cells that destroy the insulin-producing beta cells in the 
pancreatic islet of Langerhans[54]. PD-1 and PDL-1 protect from TID. PD-1 deficiency accelerates the 
onset and the frequency of TID in NOD (non-obese diabetic) mice and infiltration of T cells into the 
islets. PD-1 or PDL-1 but not PDL-2 blockage rapidly induces diabetes in NOD mice with an expansion 
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of activated glutamic acid decarboxylase (GAD)-reactive cells[55-59]. In addition, despite CTLA-4 blockage 
showing a negative regulation of autoimmune diabetes only in early stages of the life, the PD1-PDL-1 
pathway regulated autoreactive T cells throughout the life span of the animal and appeared to be critical 
for progression of autoimmune diabetes[59]. Moreover, polymorphisms that reduce the function of PD-1 
are associated with human TID[60]. PD-1 function was also investigated by using a model that mimics the 
naïve pre-immune repertoire. Fewer islet specific BDC2.5 transgenic naïve CD4 T cells were transferred 
into prediabetic NOD mice[61]. BDC2.5 CD4 T cells accumulated in the pancreas surrounding the islet 
(peri-insulitis)[61]. When BDC2.5 naïve T cells were preactivated in vitro and then transferred into NOD 
mice, the majority of them accumulated in the pancreas but within the islet (insulitis), developing severer 
TID[61]. The majority of BDC2.5 cells differentiate in IFNg-producing cells. Anti-PDL-1 administration 
caused a conversion from peri-insulitis to destructive insulitis[61]. PD-1 on BDC2.5 naïve T cells regulate 
proliferation, C-X-C Motif Chemokine Receptor 3 (CXCR3) expression, infiltration of the pancreas, and 
release of inflammatory cytokines IFNg, TNFa and IL-2. Moreover, PD-1 but not PDL-1 expressed by 
BDC2.5 cells is required to suppress proliferation and infiltration of the pancreas[61].

A fusion protein containing a single-chain variable fragment (scFv) of PD-1 antibody (aPD-1), an albumin-
binding protein and Pseudomonas aeruginosa exotoxin A was used to select and kill PD-1+ cells[62]. The 
treatment was tried first in animal model of TID. Depletion of PD-1+ cells inhibited the development 
of TID in NOD mice, reducing the pancreatic infiltration of PD-1+ cells as compared with the controls. 
Contrarily, anti-PD-1 was observed to induce a TID progression in NOD mice, suggesting that PD-1 
blocking restores the proliferation and effector function of autoreactive cells. The TID progression was 
reduced in mice pre-treated with PD-1 depletion before PD-1 blocking, confirming that PD1 is expressed 
in autoreactive cells[62]. 

Multiple Sclerosis (MS) is an autoimmune disease of the central nervous system (CNS). Disease genetic 
and cellular studies sustain that autoreactive T cells are responsible for CNS damage[63,64]. Post-mortem 
studies showed that T and B cells infiltrate the CNS and, in the long term, develop lymphoid follicles 
with a functional germinal centre in the meninges and this meningeal inflammation causes white matter 
demyelination[65]. Further investigations demonstrated that inflammatory cytokines and molecules involved 
in T and B cell development and lymphoid-neogenesis increased in the cerebrospinal fluid (CSF) from 
post-mortem MS cases with a high level of meningeal inflammation and Gray matter demyelination, as 
well as in the CSF of patients with MS[66] and Gray matter damage at diagnosis[67]. Moreover, infiltration of 
T cells enriched the brain lesions[68] and T- and B-depleted therapies reduced activity and progression in 
MS[69]. 

IFNg and IL-17-producing CD4 T cells have been defined as the effector populations driving CNS damage. 
Adoptive transfer of Th1 cells inducing experimental autoimmune encephalomyelitis (EAE) and the 
cytokine profile of cells isolated from the CNS of mice with acute EAE have shown that Th1 cytokines 
are released from infiltrating CD4+ T cells and TNFa is predominantly transcribed by macrophages and 
microglia[70-72]. T-bet is the transcription factor regulating Th1 development and IFNg production, and it 
is induced by interferon g transducer and activator of transcription (STAT)-1 signalling pathway during 
T-cell activation. The role of Th1 in inducing EAE was confirmed in STAT-4 and STAT-6 deficient mice. 
STAT-4 pathway controls the Th1 differentiation and STAT-4-/- mice showed resistance to the development 
of AEA. Mice deficient in STAT-6, which regulates the differentiation of Th2 cells, develop severer AEA 
and have more Th1 phenotype[73]. The IFNg-producing CD4+T cells generate in the cervical lymph nodes 
and Th1 migration happens 24 h before the onset of neurological signs of EAE[74]. Although Th1 cells 
contribute to EAE, IFNg knockdown mice are predisposed to develop EAE and infiltrates of lymphocytes, 
macrophages and granulocytes were detected in the CNS[75-77]. The results from IFNg knockdown and 
STAT-1 deficient mice established the contribution of other effector cells to the disease pathogenesis. 
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Besides, the discovery of IL-23 rather than IL-12 being crucial for EAE development led to evaluating Th17 
cells and their transcriptional factor RORgt in the EAE pathogenesis[78-80], Moreover, Th1, Th17 and Th9 
were defined to induce EAE with a different disease phenotype[79,81]. In addition to effector cells in EAE[82], 
the mechanisms of immune regulations, including regulatory B and T cells, and expression of inhibitory 
receptors were investigated in EAE. CD4 T cells were observed to protect against spontaneous development 
of CNS autoimmunity in EAE[83], and CD4 regulatory T cells characterised by high expression of CD25 and 
transcription factor FOXp3 isolated from peripheral blood had a reduced effector suppression function in 
patients with MS as compared with healthy donors[84]. A defect in regulatory B cells was also described to 
induce EAE and autoimmunity in mice and patients[85,86]. 

Single-cell transcriptomics of blood and CSF cells isolated from patients with MS and healthy donors 
revealed that different mechanisms operate in the two compartments[87]. Analysis of the data showed that 
MS affects the cellular composition of the CSF and the transcriptional phenotype of blood cells[87]. Blood 
cells exhibited several transcriptional changes, including induction of activation markers (ICOS), cytokine 
receptors (IL17RA) and trafficking molecules (PECAM1/CD31 and ITGA5/a5 integrin) in T cells[87]. 

Contrarily, an enrichment of CD4 T cells with T helper 1 and T follicular helper (Tfh) profiles, regulatory T 
cells, myeloid lineage cells and late-stage B lineage cells were detected in the CSF[87]. Furthermore, Tfh cells 
expressing PD-1 were observed to correlate with the proportion of plasma cells and showed cytotoxicity 
and co-inhibitory function. Follicular T helper (Tfh) cells, a subset of T helper cells, are necessary for B cell 
differentiation and antibody production[87,88]. These cells express CXCR5, CD40 ligand and IL-21 as well 
as high levels of inducible T-cell constimulator (ICOS) and PD-1. They were described to migrate in the 
germinal centre and to activate B cells. An elevated frequency of circulating Tfh and B cells was identified 
in MS patients undergoing relapse and Tfh-like cells upregulated during the course of EAE progression[88]. 
In addition, an adoptive cell transfer experiment showed that myelin oligodendrocytes glycoprotein 
(MOG)-reactive Tfh-like cells induced a worsening of the disease, delaying the remission of EAE in vivo[88]. 
Despite the use of PD-1 to identify Tfh cells, the role of PD-1 signalling on Tfh cells is only beginning to 
be investigated. When PD-1 is engaged by its ligand PDL-1 on follicular B cells, a bystander mechanism 
is activated and PD-1-expressing Tfh cells are recruited into a special niche inside the GC, even though 
Tfh PD-1neg migrates to the follicle outside of the germinal centre[89]. Moreover, both ICOS and PD-1 are 
requested for maintaining the stringency of affinity-based selection between Tfh cells and antigen-specific 
cells[89]. 

The transcriptional signature of CD8 T-cell exhaustion predicted better prognosis in multiple autoimmune 
diseases[90]. Transcriptomes of CD4 and CD8 T cells isolated from a group of patients with active 
autoimmune diseases were analysed to identify modules of genes with a strong correlation with relapse rate. 
Modules corresponding to CD4 T-cell co-stimulation were found to correlate with clinical outcomes. In 
detail, CD4 co-stimulatory receptors, CD2, KAT2B and other surrogate markers were described to increase 
in MS patients with active autoimmune disease. 

The immune regulatory role of PD-1 in MS was suggested by experiments in EAE, a mouse model of 
MS[59,91,92]. Mice in which PD-1 was deleted or the PD-1 pathway was inhibited by blocking the link 
between PD-1 and its ligand PDL-1 develop a worsening EAE with an increase of infiltrating immune cells, 
especially CD8 T cells into the CNS[59,92,93]. The deterioration of disease in PD-1-/- and PDL-1-/- mice was 
related to over production of inflammatory cytokines IFNg, TNFa, IL-6 and IL-17 released by draining 
lymph node cells during re-stimulation in vitro with different concentrations of MOG[93]. PDL-1 is rarely 
expressed in the brains of controls[94]. Contrarily, PDL-1 was detected in the majority of lesions expressed 
from astrocytes and microglia/macrophages with low expression of PD-1 on infiltrating T cells in post-
mortem MS brain tissues[94]. A recent publication shows that the PDL-1 in dendritic cells improves EAE in 
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mice. The authors used a hypomethylating agent 5-aza-2’-deoxycytidine, which reduces methylation in a 
“CPG” island located near the transcription site of Cd274 gene. The reduced methylation favours the gene 
transcription and upregulation of PDL-1 in dendritic cells. This effect was observed in DC isolated from 
EAE mice pre-treated with hypomethylating agent and in vitro treatment of bone marrow dendritic cells 
with the hypomethylating agent. Furthermore, DC isolated from EAE mice pre-treated with 5-aza or bone 
marrow dendritic cells treated in vitro with 5-aza suppressed proliferation and release of inflammatory 
cytokines such as IL-17 and TNFa when the DC were co-cultured with CD4 T cells isolated from EAE 
mice. In addition, an inhibition of EAE was observed in mice pre-treated with 5-aza before EAE induction. 
An increase of PDL-1 and PDL-2 was detected in DC isolated from EAE mice in accordance with the in 
vitro results. Moreover, blocking of PDL-1 but not PDL-2 exacerbated the EAE symptoms, confirming that 
the link of PDL-1 but not PDL-2 with PD-1 is relevant in the suppression of T cell function by DC[95]. 

PD-1 depletion was also applied in mice immunised with a peptide of myelin oligodendrocyte glycoprotein 
as adjuvant to develop EAE[62]. After PD-1 depletion, the mice recovered from EAE with a clinical score 
of one at the end of the experiments compared with the control mice that showed a score four without 
recovery. Depletion of PD-1 reduced the fractions of PD-1+CD4+ and PD-1+CD8+ T cells but not B cells in 
the CNS as compared with the controls. Besides, PD-1 depletion did not alter the ability of the treated mice 
to mount an immune response. The baseline number of PD-1+ cells in the blood and peripheral lymphoid 
organs was low, confirming that PD-1 is expressed on autoreactive cells infiltrating target organs[62].

In view of publications giving PD-1 a crucial role in protection against autoimmunity in human and animal 
models, Jang et al.[96] investigated how PD-1 controls the activation and accumulation of autoreactive 
T cells, by constraining them in anergic state. PD-1 is one of the checkpoint inhibitors investigated in 
self-tolerance and discussed previously in CD8 T cells. Self-reactive cells were deleted during thymic 
development[97] and, of those that survived thymic deletion, only 10%-25% preferentially differentiated into 
immune suppressive regulatory T cells (Tregs)[98,99]. Jiang et al.[96] demonstrated that PD-1 is required in 
culling endogenous peripheral high-affinity autoreactive CD4 T cells and protect against autoimmunity[96]. 
The tracking of endogenous autoreactive CD4 T cells showed that more than 90% of autoreactive CD4 T 
cells remained FOXp3- effectors and were not regulatory T cell precursors, despite the high TCR affinity[96]. 
Instead, self-reactive CD4 T cells acquired cell-intrinsic tolerance through the expression of the immune 
checkpoint molecule PD-1[96]. Monitoring the progeny of individual autoreactive CD4 T cell clones showed 
that the clones with the greatest expansion burst size and highest TCR affinity expressed high levels of PD-1 
and the affinity for the self-antigen induces the expression of PD-1[96] and the absence of PD-1 converts this 
signal when priming with consequent cell activation. A similar mechanism was described to induce the 
peripheral CD8 T tolerance in vivo. The peripheral CD8 T tolerance is induced by resting dendritic cells 
and depends on activation of PD-1 and CTLA-4 pathways[100]. 

Several studies have analysed the gene expression and protein levels of PD-1 and PDL-1 in MS, focusing 
on delineating any correlation with disease susceptibility or risk of progression in MS. PD-1 gene 
polymorphism has been investigated in MS, and the PD 1.3 SNP has been reported to correlate with 
progression of the disease, demonstrating that human polymorphisms that reduce PD-1 activity increase 
the risk of disease. Furthermore, a significant reduction in PD-1 expression was observed in patients 
with mutation as compared with donors with wild-type phenotype. Furthermore, patients bearing the 
mutual allele showed a lower suppression of IFNg-producing CD4 T cells after aCD3-PD-1-microbead 
stimulation compared with healthy donors[101]. In addition, PD-1 and PDL-1 expression in peripheral 
blood mononuclear cells reduced in a cohort of patients with MS as compared with healthy donors[102]. 
The association of three PD-1 SNPs, namely PD-1.3, PD-1.5 and PD-1.9, with MS and disease outcome 
were investigated in a cohort of 203 patients with a diagnosis of relapsing-remitting and secondary-
progressive MS showing any association with MS risk[103]. The expression of inhibitory receptor genes, 

Page 284                 Cencioni. Neuroimmunol Neuroinflammation 2020;7:277-90  I  http://dx.doi.org/10.20517/2347-8659.2020.18



including CTL-4, PD-1 and TIM-3, decreased in patients with MS as compared with healthy controls[104]. 
PD-1 is usually the most downregulated gene among the investigated inhibitors[104]. PD-1 was analysed on 
cytotoxic CD8+CD57+T cells in the peripheral blood of patients with relapsing–remitting MS and in T cells 
infiltrating the brain tissue in post-mortem MS cases. PD-1 increased in CD8+CD57+T cells in patients 
with stable disease and decreased in active-relapsing MS compared with healthy donors[105]. PD-1 was also 
found to increase in CD4 and CD8 T cells in MS patients early after autologous hematopoietic stem cell 
transplant[106]. A study of long-term immune reconstitution in MS patients after autologous hematopoietic 
stem cell transplant demonstrated that an early expansion of CD8+PD-1+T cells and CD19+PD-1+B cells 
is associated with favourable neurological outcomes[106]. PDL-1 was also investigated in post-mortem MS 
brain tissue. In MS lesions, glial cells with elevated PDL-1 and PD-1 expression were found absent in many 
infiltrating CD8 T cells[94]. Moreover, PDL-2 but not PDL-1 is expressed in human brain endothelial cells 
under basal culture conditions whilst both are upregulated under inflammatory condition[107]. PDL-1 or 
PDL-2 blockade lessens CD8 and CD4 T cell transmigration and CD8 T cells response[94]. Furthermore, 
PDL-1 is undetectable in the brain endothelium in normal tissues and MS lesions, even though PDL-2 is 
detectable in all blood vessels in normal brain tissue and in 50% of MS lesions[94].

MULTIPLE SCLEROSIS DIAGNOSIS AFTER CANCER IMMUNOTHERAPY
ICI treatments are immunotherapies engaged in restoring the immune response to tumour or viral 
infection by blocking the inhibitory pathways mediated by CTLA-4 and PD-1. ICI treatments have induced 
neurological immune-related adverse events. Patients with an MS history developed relapses after ICI 
treatment for melanoma[108,109] and a biopsy of the lesions revealed acute/inflammatory demyelination 
without any evidence of tumour cells[109]. A comparative functional profiling of myelin-reactive T cells 
of patients after ICI- treatment and 14 age/sex-matched patients with MS and healthy controls was 
performed. Myelin-reactive T cells isolated from ipilimumab-treated patients and MS patients showed a 
similar autoimmune response to myelin antigen but distinct from healthy controls. That confirmed that 
ICI treatment causes a reactivation of self-antigen cells in MS patients. The lack of outcomes to the ICI 
treatment in tumour is associated with an effect on the neurological condition. A case reported maintaining 
stable MS during ipilimumab treatment for melanoma that did not respond to the therapy, and the patient 
died from metastatic melanoma[110].

Furthermore, a 29-year-old man with metastatic melanoma underwent two cycles of ipilimumab before 
developing MS. The TCR repertoires of tumour-infiltrating T cells isolated from the primary melanoma 
and those of T cells isolated in two CSF samples, five and thirteen months after the second course of 
ipilimumab therapy, were analysed and compared. Distinct clonotypes of CD4 and CD8 T cells in the 
melanoma and the CSF were identified, demonstrating that the protective antitumor response and the anti-
CNS response target different antigens[111]. Outcomes of MS relapse after ICI treatment were reported in 
a meta-analysis study including the published literature, the analysis of food and the drug administration 
adverse event reporting system database and a detailed case[112]. Fourteen cases were identified with MS, 
of which eight had a reported history of MS. All patients presented rapid disease progression, and two 
of them died from severe MS after ICI treatment[112]. The median age of MS diagnosis was 52.5 years, 
and ICI treatment was used as immunotherapy in several types of cancer: melanoma, non-small cell 
lung carcinoma, pleural mesothelioma, renal cell carcinoma and colorectal cancer[112]. ICI treatments 
such as nivolumab, ipilimumab, pembrolizumab and atezolizumab have caused MS relapse. In addition, 
Isitan and Wesley[113] described the case of a 49-year-old woman with a history of relapsing–remitting 
MS reported to develop a severe progressive MS after atezolizumab (monoclonal antibody targeting PD-
L1) therapy for metastatic colonic adenocarcinoma. The women died after her first dose of atezolizumab. 
Although ICI therapy has given beneficial outcomes in cancer and infectious diseases, this treatment has 
shown neurological side effects in patients with MS history, inducing a rapid worsening of neurological 
conditions. The examined cases showed a worsening of the conditions associated with the activation of T 
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cells recognising self-antigen in the CNS. The relevance of PD-1 blocking and depletion of PD-1+ cells in 
the pathogenesis of multiple sclerosis is shown in Figure 2.

CONCLUSION
PD-1 is an immune checkpoint inhibitor demonstrated to reduce the immune system response in cancer 
and chronic infection. Recent investigations have highlighted the dual role of PD-1 in immune tolerance, 
and the loss of PD-1 causes autoimmune diseases. Depletion of PD-1+ T cells has given beneficial effect 
in autoimmune disease, slowing down the inflammation and disease progression. A decrease of PD-1 is 
predisposed to autoimmunity, as described in experiments of PD-1 blocking or knockout in mice. PD-1 
could be a target of immunotherapies in MS, although further investigations are required to define the role 
of PD-1 in MS. The majority of information has been derived from animal models and sporadic studies in 
humans. To this purpose, expression and levels of PD-1 and PDL-1 in the peripheral blood, CSF and post-
mortem MS brain tissues and the correlation of their levels with risk of MS disease and inflammation could 
make relevant contributions for considering PD-1 a target in MS immunotherapies.
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Abstract
Multiple Sclerosis (MS) is a chronic, inflammatory and degenerative disease of the central nervous system (CNS) 
with an unknown etiology. The MS pathophysiology is due to altered bidirectional interactions between several 
immune cell types in the periphery (such as T and B cells, myeloid cells) and resident CNS cells (such as microglia 
and astrocytes). It is also known that inflammatory responses have both detrimental and neuroprotective effects. 
The release of brain derived neurotrophic factor (BDNF) by immune cells, in both peripheral blood and into 
inflammatory lesions in MS, but also by microglia and astrocytes, into the CNS, seems to be a possible mechanism 
for this neuroprotective effect. So far, the link between BDNF and neuroinflammation has been poorly investigated. 
A better understanding of this link could help in the development of new therapeutic strategies for MS. In this 
review, the role of BDNF in MS will be discussed as well as its possible alternative as an innovative therapeutic 
target.

Keywords: Multiple sclerosis, neuroinflammation, brain derived neurotrophic factor, neuroprotection, neurotrophin, 
therapeutic target

INTRODUCTION
Multiple Sclerosis (MS) is a chronic, inflammatory and degenerative disease of the central nervous system 
(CNS)[1,2] of which the etiology is unknown. The clinical course of MS is characterized by fluctuating 
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neurological symptoms in most patients, with early clinical relapsing-remitting episodes and/or 
radiological worsening and different degrees of recovery (RRMS)[3]. The relapsing-remitting phase, in most 
patients, is subsequently followed by a chronic progressive phase; approximately 10%-15% of patients show 
a progressive form of the disease from onset.

For some authors, MS is an exclusive autoimmune inflammatory disease caused by dysregulated auto-
reactive immune cells that traverse the blood-brain barrier (BBB) into the CNS parenchyma, attacking 
various cell types (the “outside-in” autoimmune hypothesis). For other authors it is a primary degenerative 
disease (the “inside-out” hypothesis) in which inflammation is secondary to the release of auto-antigens 
(components of myelin oligodendrocyte glycoprotein, myelin basic protein, and proteolipid protein), 
promoting autoimmunity[4]. Thus far, it is difficult to discern whether the inflammatory processes of MS are 
a product or a cause for neurodegeneration with a background autoimmune etiology. In all phases of the 
disease both immune and degenerative processes appear to coexist and this makes it difficult to definitively 
resolve the “outside-in” vs. “inside-out” controversy.

Despite this, there is well-documented evidence that, in MS, an uncontrolled inflammatory response in the 
CNS (neuroinflammation) causes destruction through high levels of pro-inflammatory cytokines, proteases, 
glutamate, and free radicals. Consequently, immunomodulatory drugs that reduce or suppress the activity 
of immune cells have been successfully used to reduce clinical relapses in MS and/or neuroradiological 
“activity”, which are associated with the entry of leukocytes through the BBB[5]. Sustained disability, 
however, is due to a progressive neurodegenerative process, ending with axonal loss and brain atrophy, 
primary or secondary to the peripheral and compartmentalized inflammation in the CNS[6]. To date, no 
approved therapy has provided marked neuroprotective effects nor have commonly anti-inflammatory 
therapies, used in the treatment of the disease, showed great efficacy in the progressive phase of MS. 

Neuroinflammation have not only harmful but also neuroprotective effects[7,8]. In MS and other 
neurological diseases, the reparative activities of inflammatory response have been demonstrated[9]. 
Therefore, some authors introduced the concept of “neuroprotective autoimmunity”[10,11]. The release of 
neurotrophins by immune cells in both peripheral blood and directly into inflammatory lesions in MS[12,13], 
but also by microglia and astrocytes in the CNS, stimulating neuronal growth and survival, seems to be a 
possible mechanism for this neuroprotective effect[14]. Among neurotrophins, brain derived neurotrophic 
factor (BDNF) seems to be a good candidate in promoting the beneficial effects of inflammation in MS. 

In this review, the role of BDNF in MS neuroinflammation and as a novel therapeutic target will be 
discussed.

NEUROINFLAMMATION: THE DETRIMENTAL EFFECT
MS pathophysiology is characterized by altered bidirectional interactions between several immune cell 
types in the periphery and resident cells of the CNS, such as microglia and astrocytes[15]. The MS relapses, 
typical in the early phases of disease, are characterized by the infiltration of pro inflammatory CNS-
specific effector T cells (CD4+ and CD8+ T cells), B cells and myeloid cells into the CNS parenchyma, 
that are activated and/or regulated in an aberrantly way[16]. The altered function of regulatory T (Treg) 
cells and resistance of CNS-specific effector T cells to Treg cell-mediated regulation could be a possible 
cause of the neuroinflammation[17-21]. Furthermore, CNS-resident cells, that secrete many inflammatory 
mediators, recruit inflammatory cells into the CNS. Microglia and astrocytes in particular, can also produce 
cytokines, chemokines and reactive oxygen species in the presence of homeostatic disturbance, promoting 
and sustaining axonal damage and neurodegeneration in MS[16]. Therefore, both peripheral and CNS-
compartmentalized inflammatory mechanisms contribute to MS pathogenesis[22]. 
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In the advanced stages of the disease, the infiltration of immune cells into the CNS is reduced, whereas 
ongoing CNS-compartmentalized inflammation seems to dominate progressive phases of MS. During this 
progressive phase, the role of B cells in driving inflammation seems to be prominent, particularly within 
meningeal inflammation[23]. In this phase, the B cell functions are antibody production, cytokine secretion, 
antigen presentation and ectopic formation of follicle-like structures[23-25]. The latter seem to maintain a high 
level of humoral response and other autoimmune mechanisms, in the CNS, independently from peripheral 
inflammation. This is very relevant during progressive MS phase, with the BBB being relatively intact and 
the contribution to disease from entry of peripheral immune cells into the brain fairly exiguous[26]. 

Activated microglia also plays a central role in neuroinflammation because it can sustain ongoing 
inflammation[27]. Microglia activation, in MS, is diffusely present in the lesions, in normal-appearing 
white and in grey matter[28]. Activated microglia, secreting pro-inflammatory cytokines, such as IL-1, IL-6, 
TNF-alfa, and IFN, promoting phagocytic activity, and presenting antigens via MHC Class II to CD4+ 
T cells[27], causes damage to oligodendrocytes; moreover, microglia inducing mitochondrial dysfunction, 
through reactive oxygen and nitrogen species, contributes to neuronal damage[29]. 

In addition, activation of astrocytes into demyelinating lesions contribute to oligodendrocyte injury and 
axonal degeneration[30]. So far, theories of either innate immune cells in the CNS are dysregulated and 
drive primary degeneration, or react against an unidentified primary injury causing tissue damage remain 
unknown.

NEUROINFLAMMATION IN MS: THE NEUROPROTECTIVE EFFECT
Evidence for neuroprotective functions of immune cells
Some evidences have unexpectedly shown that some cells of the immune system might have a protective 
function during inflammation. This neuroprotective effect may be partially mediated with the production 
of anti-inflammatory cytokines (TGF-beta, IL-10 etc.) and secretion of pro-inflammatory cytokines (such 
as IL-6, IFN-gamma, TNF-alfa) in a dose- and time-dependent manner[31-33]. Immune cells also induce 
neuroprotection by production and local secretion of neurotrophic factors[11,12,34]. neural growth factor 
(NGF) was the first neurotrophin shown to be produced by T and B lymphocytes, macrophages, and 
mastcells[35]. The expression of BDNF by immune cells was also subsequently described[12]. In particular, 
CD4+ and CD8+ T lymphocytes, B lymphocytes, and monocytes in the human peripheral immune system 
can produce BDNF[12]. Moreover, neurotrophin receptors expressed by immune cells can also be targeted by 
autocrine or paracrine neurotrophin actions. Therefore, neurotrophins seem to mediate bidirectional cross-
talk between the immune and nervous systems[11]. 

Evidence for neuroprotective function of microglia and astrocytes
Resident CNS cells also exercise a defensive action against immune-mediated attacks, aside from being 
involved in neuroinflammation. Microglia has an important role in neuroprotection and this action seems 
to be time-dependent. Acutely activated microglia produces inflammatory mediators that recruit other 
activated immune cells, amplifying the inflammatory damage, but chronically activated microglia may 
have a neuroprotective effect supporting the growth and survival of neural progenitor stem cells [31,36]. 
On oligodendrocyte precursor cells microglia seems to have always direct protective action, being the 
detrimental action mediated by astrocytes[37]. 

The neuroprotective function of microglia is mediated by different mechanisms such as debris clearance, 
production of growth factors (overall BDNF), production of the immunosuppressive cytokine IL-10 and 
neuronal circuit-shaping[27,38]. 

TGF-beta secretion and CTLA-4 expression produced by neurons induce CD4+CD25-effector T 
cells to take regulatory phenotype that exerts bystander suppression in experimental autoimmune 
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encephalomyelitis (EAE)[39]. Self-associated molecular patterns expressed by resident neurons and 
astrocytes drive innate cell immune responses toward a less inflammatory response[40]. Astrocytes also cause 
apoptosis of activated immune cells and drive microglial activity towards a less inflammatory pattern[41,42].

THE ROLE OF BDNF IN MS NEUROINFLAMMATION
BDNF
BDNF is a member of the neurotrophins gene family that includes also NGF and neurotrophins 3 and 
4 (NT3 and NT4)[43] and is the neurotrophin most expressed in the brain by numerous cell types[44,45]. It 
plays a critical role on neuronal and oligodendroglial growth and survival, in healthy brains and in several 
neurologic diseases[46]. Interestingly, BDNF also modulates inflammatory homeostasis in the injured 
CNS[47,48]. 

The BDNF gene consist of a common 3′-exon that encodes the pro-BDNF region of the protein, and 
several species-dependent 5′-noncoding, promoter-regulated regions, terminating in a coding 5′-exon that 
contain the gene expression[49,50]. BDNF is translated as a proneurotrophin (pro-BDNF) that can be cut in 
the mature form. Both mature BDNF and pro-BDNF bind to the low affinity p75 neurotrophin receptor, 
activating the apoptosis cascade[51,52]. Mature BDNF binds to its high-affinity receptor tyrosine kinase B 
(TrkB), activating several signalling cascades[53,54] [Figure 1]. Among these, an increase in Ca2+ intake, 
phosphorylation of transcription factors, and de novo expression of the BDNF gene can be induced[53]. The 
nuclear factor-kappa B (NF-κB), a transcription factor with the ability to increase the expression of several 
pro- and antiapoptotic genes, including BDNF, is one of the main factors of inflammatory activation[55]. The 

Figure 1. Intracellular signaling cascades induced by interaction of mature (m-)BDNF with TrkB receptor. Binding of BDNF to TrkB 
receptor induces its phosphorylation and translocation to cellular membrane. The BDNF/TrkB receptor complex triggers signaling 
pathways mediated by activation of PI3K, MAPK, PLC-γ, and GTP-ases. All these pathways induced by BDNF cause the enhancement/
activation of dendritic growth and branching and growth of neuronal fibers. TrkB: tyrosine kinase B; BDNF: brain derived neurotrophic 
factor; PI3K: phosphoinositide 3-kinase; Akt: Protein kinase B; PLC: phospholipase C; MAPK: mitogen-activated protein kinase; TrkB: 
tropomyosin receptor kinase B
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binding of BDNF to the TrkB receptor can also induce the expression of NF-κB but, the pathways for this 
modulation are not yet completely understood[54]. Thus, the role of BDNF in neuroinflammation, is strongly 
linked to its ability to induce, and being induced by, NF-κB.

Lai et al.[56] recently demonstrated that BDNF modulates inflammatory homeostasis, reducing inflammatory 
activity on microglia also through the erythropoietin and sonic hedgehog signalling pathways. BDNF may 
also influence the microglia inflammatory response differently in male and females probably by driving 
activated microglia responses toward a less inflammatory pattern in females[57].

The understanding of BDNF function in humans has greatly benefited from the identification of an SNP in 
the BDNF gene that causes a valine (Val) to methionine (Met) substitution at codon 66 (Val66Met, c.196G>A, 
dbSNP: rs6265). In this Met variant form of BDNF carriers, that is, BDNF Val/Met heterozygotes and Met/
Met homozygotes, the pro-domain structure of the gene is altered[58]. The polymorphism can potentially 
alter BDNF protein-protein interactions, binding affinities, localisation, or conformational stability of the 
protein. Whether the polymorphism has any significant impact on the proteome profile or posttranslational 
modifications of various proteins in the neuronal tissues or body fluids is currently unknown[58]. Several 
studies have emerged implicating the association or otherwise of this polymorphism with MS. So far, no 
conclusive data have been published[59]. New advances in the epigenetic field, highlight the role of BDNF 
antisense RNA (BDNF-AS), a naturally conserved long noncoding RNA, and of DNA methylation, in the 
regulation of BDNF expression in MS and in several neurological diseases[60-63]. So far, only few studies have 
been published on this argument[64]. 

BDNF in MS
BDNF is the neurotrophin which is expressed more in inflammatory brain lesions of MS patients[12,13]. A 
significant amount of BDNF was found in infiltrating immune cells, overall in T cells and macrophages, 
and in neurons and astrocytes[11]. BDNF is expressed by immune cells in actively demyelinating areas of 
MS lesions but not in lesions without ongoing myelin breakdown. Moreover, the neurotrophin is expressed 
more in the actively demyelinating edge of the plaque in the early phase of its development. It is released 
near to axons, not directly attacked by activated immune system cells but is at high risk of bystander 
damage[13]. Outside MS lesions, neurons are the major source of BDNF[13]. The literature data agree in 
showing that neurons are the major targets for neurotrophic interactions in the CNS. In particular, the 
full-length isoforms of TrkB (receptor for BDNF and NT4/5) and TrkC (receptor for NT3) are usually 
expressed on neuronal cells. Neurons close to MS plaques showed a prominent expression of full-length 
TrkB (gp145TrkB)[11]. Moreover, TrkB is upregulated in a part of damaged neurons. It is known that BDNF 
can be anterogradely transported and released by neurons. This process is up-regulated after axonal injury 
and transection[65]. The common occurrence of axonal damage in MS suggests that neuronal BDNF might 
contribute to endogenous neurotrophic support in MS plaques[66,67].

In older and chronic MS plaques, endogenous neurotrophins are low[13]. This may be one cause for the 
ongoing axonal degeneration in the chronic progressive stage of MS[68-70].

In the relapsing phase, levels of BDNF are generally reported to be increased in peripheral blood 
mononuclear cells (PBMC) and serum[71,72], but Azoulay et al.[73] found less BDNF in the serum of RRMS 
patients with no difference in remission and relapse phases. In MS patients, serum and CSF levels and 
PBMC secretion of BDNF are reduced compared to healthy controls[74,75]. In line with neuropathological 
findings[68-70], BDNF production by immune cells in RRMS patients is higher compared to progressive 
MS, suggesting again that progression of MS may be due to a failure of neuroprotection and neurorepair 
functions under chronic injury[72,75]. 
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Numerous studies tried to correlate the role of rs6265 BDNF polymorphism with the prognosis of MS 
patients, with conflicting data so that other mechanisms could be involved in the modulation of BDNF 
gene[59]. Latest advances in the field of epigenetics highlight the role of epigenetic mechanisms, such as 
methylation, in controlling key biological processes. The presence of rs6265 SNP is not a prognostic factor 
for reaching a more severe Expanded Disability Status Scale (EDSS)[64]. When the percentage of methylation 
of the BDNF gene is considered, a lower percentage is associated with higher odds in achieving significant 
disability regardless of its polymorphism. Being a higher methylation a “silencer” of the gene, a lower 
inhibition of the gene correlates with a high probability in achieving an EDSS score of 6.0. Patients with 
more severe inflammation could appeal to a de-methylation to have a higher secretion of BDNF, preserving 
better CNS functions. The same patients tend to reach a more severe disability score by depleting the 
functional reserves of the brain at a faster rate[64]. If BDNF methylation is considered as an epiphenomenon 
of the disease activity (or better of the neuroinflammation status), it might help to differentiate patients 
with a higher degree of inflammation from patients with a lower ones. If these data will be confirmed by 
other studies, BDNF rs6265 polymorphism methylation could become a valid prognostic factor in MS to 
precociously recognise patients with a more severe disease from those with a milder one[64].

BDNF AS PROMISING THERAPY IN MS
MS, but also many other CNS diseases, are tricky to treat due to the difficulty of drugs to cross the BBB. To 
do this, a drug must have the appropriate physicochemical properties. Alternatively, some drugs may be 
directly injected into the CNS but these invasive procedures are not risk-free.

Most available MS treatment have an exclusive anti-inflammatory effect helpful in reducing clinical 
and neuroradiological relapses but ineffective in preventing axonal loss and neurodegeneration. On the 
other hand, neuroprotective and/or remyelinating molecules failed to achieve the primary endpoint in 
clinical trials[76,77]. Conversely, brain delivery of BDNF has a potential role in reversing neurodegenerative 
diseases[78,79] but, so far, not through systemic administration. Therefore, there is an urgent need for 
development of a non-invasive trans-BBB delivery method. All the therapeutic strategies designed for 
delivery of neurotrophins are well summarised in the review by Huang and Dreyfus[80].

Recently, the possibility to deliver BDNF in a non-invasive way into the CNS through a BBB modulator, 
the ADTC5, has been found[81]. BDNF + ADTC5 delivered to the brains of mice with RR-EAE via systemic 
administration, significantly improve the clinical body scores of EAE mice and induce remyelination, 
compared to controls. Further studies are needed to confirm these data and to definitively find the best way 
to delivery BDNF in CNS via systemic administration.

CONCLUSION
Few studies investigated the link between BDNF and neuroinflammation even if, in many brain disorders, 
neuroinflammation and altered BDNF expression are commonly found. Better understanding of the 
interaction between BDNF and neuroinflammation could help in improving the knowledge of diseases 
pathogenesis and in developing of new therapeutic strategies for CNS disorders. 

In MS, a large body of neuropathological, experimental and clinical evidences shows that BDNF may play 
an important role in neuroinflammation modulation, neuroprotection and neurorepair. These data make 
BDNF a good candidate for new therapeutic strategies in MS. But, when growth factors are considered 
as possible treatments in brain disease, some issues have to be taken into account: first, how to increase 
growth factors levels within specific regions of the CNS; second, how to optimize entry of growth factors 
from the periphery; third, to define the rate at which BDNF is taken up by the brain; fourth, the need to 
better understand the pharmacological characteristics of BDNF-based substances. Further studies are 
needed to define these aspects.
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However, the challenge for neuroprotection in MS is greater than in other brain disease, because MS 
requires the association of both neuroprotective and immunomodulation therapies. Any exclusive 
inflammatory suppression is likely required to abolish both destructive and protective components and any 
neuroprotective treatment cannot work without a powerful anti-inflammatory therapy.
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Original 
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Structured abstract 
including Aim, Methods, 
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No more than 250 words.
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Introduction, Methods, 
Results and Discussion.
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Meta-
Analysis

A Meta-Analysis is a statistical analysis combining 
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an overview of clinical trials.

Structured abstract 
including Aim, Methods, 
Results and Conclusion. 
No more than 250 words.

3-8 keywords The main content should 
include four sections: 
Introduction, Methods, 
Results and Discussion.

Systematic 
Review

A Systematic Review collects and critically 
analyzes multiple research studies, using methods 
selected before one or more research questions 
are formulated, and then finding and analyzing 
related studies and answering those questions in a 
structured methodology.

Structured abstract 
including Aim, Methods, 
Results and Conclusion. 
No more than 250 words.

3-8 keywords The main content should 
include four sections: 
Introduction, Methods, 
Results and Discussion.

Technical 
Note

A Technical Note is a short article giving a brief 
description of a specific development, technique 
or procedure, or it may describe a modification of 
an existing technique, procedure or device applied 
in research.

Unstructured abstract. 
No more than 250 words.

3-8 keywords /

Commentary A Commentary is to provide comments on a newly 
published article or an alternative viewpoint on a 
certain topic.

Unstructured abstract. 
No more than 250 words.
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Editorial An Editorial is a short article describing news 
about the journal or opinions of senior editors or 
the publisher.

None required None 
required

/

Letter to 
Editor

A Letter to Editor is usually an open post-
publication review of a paper from its readers, 
often critical of some aspect of a published paper. 
Controversial papers often attract numerous 
Letters to Editor

Unstructured abstract 
(optional). No more than 
250 words.

3-8 keywords 
(optional)

/

Opinion An Opinion usually presents personal thoughts, 
beliefs, or feelings on a topic.
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(optional). No more than 
250 words.
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Perspective A Perspective provides personal points of view on 
the state-of-the-art of a specific area of knowledge 
and its future prospects. Links to areas of intense 
current research focus can also be made. The 
emphasis should be on a personal assessment 
rather than a comprehensive, critical review. 
However, comments should be put into the context 
of existing literature. Perspectives are usually 
invited by the Editors.
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No more than 150 words.
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that any change to authorship is not allowed after manuscript acceptance.

2.3.1.3 Abstract
The abstract should be a single paragraph with word limitation and specific structure requirements (for more details please 
refer to Types of Manuscripts). It usually describes the main objective(s) of the study, explains how the study was done, 
including any model organisms used, without methodological detail, and summarizes the most important results and their 
significance. The abstract must be an objective representation of the study: it is not allowed to contain results which are not 
presented and substantiated in the manuscript, or exaggerate the main conclusions. Citations should not be included in the 
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2.3.1.4 Keywords
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discipline.
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work and a comment about whether that aim was achieved. Relevant controversies or disagreements in the field should be 
introduced as well.

2.3.2.2 Methods
Methods should contain sufficient details to allow others to fully replicate the study. New methods and protocols should be 
described in detail while well-established methods can be briefly described or appropriately cited. Experimental participants 
selected, the drugs and chemicals used, the statistical methods taken, and the computer software used should be identified 
precisely. Statistical terms, abbreviations, and all symbols used should be defined clearly. Protocol documents for clinical 
trials, observational studies, and other non-laboratory investigations may be uploaded as supplementary materials.

2.3.2.3 Results
This section contains the findings of the study. Results of statistical analysis should also be included either as text or as 
tables or figures if appropriate. Authors should emphasize and summarize only the most important observations. Data on 
all primary and secondary outcomes identified in the section Methods should also be provided. Extra or supplementary 
materials and technical details can be placed in supplementary documents.

2.3.2.4 Discussion
This section should discuss the implications of the findings in context of existing research and highlight limitations of the 
study. Future research directions may also be mentioned.

2.3.2.5 Conclusion
It should state clearly the main conclusions and include the explanation of their relevance or importance to the field.

2.3.3 Back Matter
2.3.3.1 Acknowledgments
Anyone who contributed towards the article but does not meet the criteria for authorship, including those who provided 
professional writing services or materials, should be acknowledged. Authors should obtain permission to acknowledge 
from all those mentioned in the Acknowledgments section. This section is not added if the author does not have anyone to 
acknowledge.
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2.3.3.2 Authors’ Contributions
Each author is expected to have made substantial contributions to the conception or design of the work, or the acquisition, 
analysis, or interpretation of data, or the creation of new software used in the work, or have drafted the work or substantively 
revised it. 
Please use Surname and Initial of Forename to refer to an author’s contribution. For example: made substantial contributions 
to conception and design of the study and performed data analysis and interpretation: Salas H, Castaneda WV; performed 
data acquisition, as well as provided administrative, technical, and material support: Castillo N, Young V. 
If an article is single-authored, please include “The author contributed solely to the article.” in this section.

2.3.3.3 Availability of Data and Materials
In order to maintain the integrity, transparency and reproducibility of research records, authors should include this section 
in their manuscripts, detailing where the data supporting their findings can be found. Data can be deposited into data 
repositories or published as supplementary information in the journal. Authors who cannot share their data should state 
that the data will not be shared and explain it. If a manuscript does not involve such issue, please state “Not applicable.” in 
this section.

2.3.3.4 Financial Support and Sponsorship
All sources of funding for the study reported should be declared. The role of the funding body in the experiment design, 
collection, analysis and interpretation of data, and writing of the manuscript should be declared. Any relevant grant numbers 
and the link of funder’s website should be provided if any. If the study is not involved with this issue, state “None.” in this 
section.

2.3.3.5 Conflicts of Interest
Authors must declare any potential conflicts of interest that may be perceived as inappropriately influencing the 
representation or interpretation of reported research results. If there are no conflicts of interest, please state “All authors 
declared that there are no conflicts of interest.” in this section. Some authors may be bound by confidentiality agreements. 
In such cases, in place of itemized disclosures, we will require authors to state “All authors declare that they are bound by 
confidentiality agreements that prevent them from disclosing their conflicts of interest in this work.”. If authors are unsure 
whether conflicts of interest exist, please refer to the “Conflicts of Interest” of OAE Editorial Policies for a full explanation.

2.3.3.6 Ethical Approval and Consent to Participate
Research involving human subjects, human material or human data must be performed in accordance with the Declaration 
of Helsinki and approved by an appropriate ethics committee. An informed consent to participate in the study should also 
be obtained from participants, or their parents or legal guardians for children under 16. A statement detailing the name of 
the ethics committee (including the reference number where appropriate) and the informed consent obtained must appear 
in the manuscripts reporting such research. 
Studies involving animals and cell lines must include a statement on ethical approval. More information is available at 
Editorial Policies. 
If the manuscript does not involve such issue, please state “Not applicable.” in this section.

2.3.3.7 Consent for Publication
Manuscripts containing individual details, images or videos, must obtain consent for publication from that person, or in 
the case of children, their parents or legal guardians. If the person has died, consent for publication must be obtained from 
the next of kin of the participant. Manuscripts must include a statement that a written informed consent for publication was 
obtained. Authors do not have to submit such content accompanying the manuscript. However, these documents must be 
available if requested. If the manuscript does not involve this issue, state “Not applicable.” in this section.

2.3.3.8 Copyright
Authors retain copyright of their works through a Creative Commons Attribution 4.0 International License that clearly 
states how readers can copy, distribute, and use their attributed research, free of charge. A declaration “© The Author(s) 
2019.” will be added to each article. Authors are required to sign License to Publish before formal publication.

2.3.3.9 References
References should be numbered in order of appearance at the end of manuscripts. In the text, reference numbers should 
be placed in square brackets and the corresponding references are cited thereafter. Only the first five authors’ names are 
required to be listed in the references, other authors’ names should be omitted and replaced with “et al.”. Abbreviations of 
the journals should be provided on the basis of Index Medicus. Information from manuscripts accepted but not published 
should be cited in the text as “Unpublished material” with written permission from the source. 
References should be described as follows, depending on the types of works:
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Types Examples
Journal articles by 
individual authors

Weaver DL, Ashikaga T, Krag DN, Skelly JM, Anderson SJ, et al. Effect of occult metastases on 
survival in node-negative breast cancer. N Engl J Med 2011;364:412-21. [PMID: 21247310 DOI: 
10.1056/NEJMoa1008108]

Organization as author Diabetes Prevention Program Research Group. Hypertension, insulin, and proinsulin in participants 
with impaired glucose tolerance. Hypertension 2002;40:679-86. [PMID: 12411462]

Both personal authors and 
organization as author

Vallancien G, Emberton M, Harving N, van Moorselaar RJ; Alf-One Study Group. Sexual dysfunction 
in 1,274 European men suffering from lower urinary tract symptoms. J Urol 2003;169:2257-61. [PMID: 
12771764 DOI: 10.1097/01.ju.0000067940.76090.73]

Journal articles not in 
English

Zhang X, Xiong H, Ji TY, Zhang YH, Wang Y. Case report of anti-N-methyl-D-aspartate receptor 
encephalitis in child. J Appl Clin Pediatr 2012;27:1903-7. (in Chinese)

Journal articles ahead of 
print

Odibo AO. Falling stillbirth and neonatal mortality rates in twin gestation: not a reason for 
complacency. BJOG 2018; Epub ahead of print [PMID: 30461178 DOI: 10.1111/1471-0528.15541]

Books Sherlock S, Dooley J. Diseases of the liver and billiary system. 9th ed. Oxford: Blackwell Sci Pub; 
1993. pp. 258-96.

Book chapters Meltzer PS, Kallioniemi A, Trent JM. Chromosome alterations in human solid tumors. In: Vogelstein 
B, Kinzler KW, editors. The genetic basis of human cancer. New York: McGraw-Hill; 2002. pp. 93-
113.

Online resource FDA News Release. FDA approval brings first gene therapy to the United States. Available from: 
https://www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/ucm574058.htm. [Last accessed 
on 30 Oct 2017]

Conference proceedings Harnden P, Joffe JK, Jones WG, editors. Germ cell tumours V. Proceedings of the 5th Germ Cell 
Tumour Conference; 2001 Sep 13-15; Leeds, UK. New York: Springer; 2002.

Conference paper Christensen S, Oppacher F. An analysis of Koza's computational effort statistic for genetic 
programming. In: Foster JA, Lutton E, Miller J, Ryan C, Tettamanzi AG, editors. Genetic 
programming. EuroGP 2002: Proceedings of the 5th European Conference on Genetic Programming; 
2002 Apr 3-5; Kinsdale, Ireland. Berlin: Springer; 2002. pp. 182-91.

Unpublished material Tian D, Araki H, Stahl E, Bergelson J, Kreitman M. Signature of balancing selection in Arabidopsis. 
Proc Natl Acad Sci U S A. Forthcoming 2002.

For other types of references, please refer to U.S. National Library of Medicine. 
The journal also recommends that authors prepare references with a bibliography software package, such as EndNote to 
avoid typing mistakes and duplicated references.

2.3.3.10 Supplementary Materials
Additional data and information can be uploaded as Supplementary Material to accompany the manuscripts. The 
supplementary materials will also be available to the referees as part of the peer-review process. Any file format is 
acceptable, such as data sheet (word, excel, csv, cdx, fasta, pdf or zip files), presentation (powerpoint, pdf or zip files), image 
(cdx, eps, jpeg, pdf, png or tiff), table (word, excel, csv or pdf), audio (mp3, wav or wma) or video (avi, divx, flv, mov, mp4, 
mpeg, mpg or wmv). All information should be clearly presented. Supplementary materials should be cited in the main text 
in numeric order (e.g., Supplementary Figure 1, Supplementary Figure 2, Supplementary Table 1, Supplementary Table 2, etc.). 
The style of supplementary figures or tables complies with the same requirements on figures or tables in main text. Videos 
and audios should be prepared in English, and limited to a size of 500 MB or a duration of 3 minutes.

2.4 Manuscript Format
2.4.1 File Format
Manuscript files can be in DOC and DOCX formats and should not be locked or protected.

2.4.2 Length
There are no restrictions on paper length, number of figures, or amount of supporting documents. Authors are encouraged 
to present and discuss their findings concisely.

2.4.3 Language
Manuscripts must be written in English.

2.4.4 Multimedia Files
The journal supports manuscripts with multimedia files. The requirements are listed as follows:
Videos or audio files are only acceptable in English. The presentation and introduction should be easy to understand. The 
frames should be clear, and the speech speed should be moderate.
A brief overview of the video or audio files should be given in the manuscript text.
The video or audio files should be limited to a duration of 3 min and a size of up to 500 MB.



Author Instructions

Please use professional software to produce high-quality video files, to facilitate acceptance and publication along with the 
submitted article. Upload the videos in mp4, wmv, or rm format (preferably mp4) and audio files in mp3 or wav format.

2.4.5 Figures
Figures should be cited in numeric order (e.g., Figure 1, Figure 2) and placed after the paragraph where it is first cited;
Figures can be submitted in format of tiff, psd, AI or jpeg, with resolution of 300-600 dpi;
Figure caption is placed under the Figure; 
Diagrams with describing words (including, flow chart, coordinate diagram, bar chart, line chart, and scatter diagram, etc.) 
should be editable in word, excel or powerpoint format. Non-English information should be avoided;
Labels, numbers, letters, arrows, and symbols in figure should be clear, of uniform size, and contrast with the background;
Symbols, arrows, numbers, or letters used to identify parts of the illustrations must be identified and explained in the 
legend; 
Internal scale (magnification) should be explained and the staining method in photomicrographs should be identified; 
All non-standard abbreviations should be explained in the legend;
Permission for use of copyrighted materials from other sources, including re-published, adapted, modified, or partial 
figures and images from the internet, must be obtained. It is authors’ responsibility to acquire the licenses, to follow any 
citation instruction requested by third-party rights holders, and cover any supplementary charges.

2.4.6 Tables
Tables should be cited in numeric order and placed after the paragraph where it is first cited;
The table caption should be placed above the table and labeled sequentially (e.g., Table 1, Table 2);
Tables should be provided in editable form like DOC or DOCX format (picture is not allowed);
Abbreviations and symbols used in table should be explained in footnote;
Explanatory matter should also be placed in footnotes;
Permission for use of copyrighted materials from other sources, including re-published, adapted, modified, or partial tables 
from the internet, must be obtained. It is authors’ responsibility to acquire the licenses, to follow any citation instruction 
requested by third-party rights holders, and cover any supplementary charges.

2.4.7 Abbreviations
Abbreviations should be defined upon first appearance in the abstract, main text, and in figure or table captions and used 
consistently thereafter. Non-standard abbreviations are not allowed unless they appear at least three times in the text. 
Commonly-used abbreviations, such as DNA, RNA, ATP, etc., can be used directly without definition. Abbreviations in 
titles and keywords should be avoided, except for the ones which are widely used.

2.4.8 Italics
General italic words like vs., et al., etc., in vivo, in vitro; t test, F test, U test; related coefficient as r, sample number as n, 
and probability as P; names of genes; names of bacteria and biology species in Latin.

2.4.9 Units
SI Units should be used. Imperial, US customary and other units should be converted to SI units whenever possible. There 
is a space between the number and the unit (i.e., 23 mL). Hour, minute, second should be written as h, min, s.

2.4.10 Numbers
Numbers appearing at the beginning of sentences should be expressed in English. When there are two or more numbers 
in a paragraph, they should be expressed as Arabic numerals; when there is only one number in a paragraph, number < 10 
should be expressed in English and number > 10 should be expressed as Arabic numerals. 12345678 should be written as 
12,345,678.

2.4.11 Equations
Equations should be editable and not appear in a picture format. Authors are advised to use either the Microsoft Equation 
Editor or the MathType for display and inline equations.

2.5 Submission Link 
Submit an article via https://oaemesas.com/nn/.
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