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Long non-coding RNAs as key regulators of cancer metastasis
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The recent advances in functional genomics have discovered that a large number of long non-coding RNAs (lncRNAs) are pervasively 
transcribed from the human genome. Increasing evidence further indicates that lncRNAs are important for gene expression during cell 
differentiation and development through various mechanisms such as nuclear organization, post-transcription regulation, alternative 
splicing, and epigenetic regulation. Thus, aberrant expression of lncRNAs can cause abnormality in those cellular functions and lead to 
various pathological conditions. One of such fatal consequences is cancer metastasis which is responsible for more than 90% of cancer-
related deaths. A good understanding of how lncRNAs regulate different genetic and epigenetic changes during different stages of cancer 
metastasis is important not only for general cancer biology but also for identification of novel biomarkers and therapeutic targets for treatment 
of metastatic cancer. A significant progress has been made regarding the role of lncRNAs in cancer for past several years. In this study, we 
first discuss general functions of lncRNAs and then highlight recent findings of how lncRNAs impact cancer metastasis, and finally we 
provide our perspectives on clinical implications of lncRNAs.
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INTRODUCTION

It is well-known now that protein-coding genes account only 
about 2% of the human genome,[1] whereas the vast majority 
of the transcripts do not code for protein.[2] Although these 
non-coding RNAs were considered “transcriptional noise”, 
their functions are increasingly valued for defining the 
cellular complexity of organisms. For instance, the number 
of protein-coding genes in humans is only a 2-fold more 
than that in worms such as Caenorhabditis elegans do,[1] 
implying that the protein alone is not sufficient to determine 
the complexity of organisms. Instead, this complexity may 
be achieved by efficient programming, which helps in handy 

expression and functioning of protein in a different context. 
The versatility and plasticity of non-coding RNAs help in 
such programming of protein function by regulating their 
expression and assembly in contextual cues.[3]

Non-coding RNAs include a broad category of RNA 
molecules. Some of them are constitutively expressed in 
the cells, and they may play a housekeeping role such as 
ribosomal RNA, transfer RNA, small nuclear RNA, and 
small nucleolar RNA (snoRNA). In contrast, other non-
coding RNAs may be spatiotemporally expressed, and they 
often play a regulatory role. 

Yin-Yuan Mo is Professor in the Department of Pharmacology/Toxicology, Cancer Institute, at University of Mississippi 
Medical Center. His research interests are epigenetic regulation of genes involved in tumorigenesis and chemoresistance, 
cancer susceptibility due to alterations of microRNA expression, and lncRNA-mediated gene expression in cancer.
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These regulatory RNAs, on the basis of their size, are 
arbitrarily classifi ed into two groups. The first group is 
small non-coding RNAs (< 200 bp in length) such as short 
interfering RNA, microRNA (miRNA), and piwiRNA. 
The second group of non-coding regulatory RNAs is long 
non-coding RNAs (lncRNAs) (> 200 bp in length).[4,5] Like 
protein-coding genes, most lncRNAs are polyadenylated 
and capped.[6] Both protein-coding genes [messenger RNA 
(mRNA)] and lncRNAs carry genetic information [Figure 1]; 
however, their functions can be very different. Based on their 
locations in the genome, lncRNAs can be derived through 
the following means:[7] (1) intergenic lncRNAs which are 
located between two genes; (2) sense or antisense lncRNAs 
which may overlap with an exon of another transcript in 
the same or opposite direction; (3) intronic lncRNAs which 
reside within an intron and do not overlap with any exon; (4) 
processed transcripts which reside in a locus where none of 
the transcript has an open reading frame and thus, do not fit 
into any other categories because of structural complexity.

To date, an overwhelming number of lncRNAs have 
been reported. For example, the non-code database lists 
over 56,000 human lncRNAs (http://www.noncode.org) 
whereas LNCipedia (http://www.lncipedia.org/) lists over 
110,000 human lncRNAs. Although no unified source for 
categorizing and annotating lncRNAs is available yet, 
evidently, the number of lncRNAs is much larger than the 
number of protein-coding genes. Since lncRNA research 
is still at a very early stage and the majority of lncRNAs 

are poorly characterized, there is a critical need for a better 
understanding of their functions and role in cancer, and 
especially, how they impact metastasis.

LNCRNAS AS MASTER GENE REGULATORS

Given that they can interact with RNA, DNA, and protein, 
lncRNAs have been shown to have an impact on almost 
every aspect of gene regulation. We list a few of examples 
as follows [Table 1].

Transcriptional regulation

Histone modifications such as acetylation and methylation 
impact chromatin structure and subsequent transcriptional 
activity. A large number of lncRNAs have been shown to 
play a role in regulation of chromatin structure. Polycomb 
repressive complex (PRC1 and PRC2) consists of several 
enzymes, including enhancer of zest homolog 2 (EZH2), 
and is essential for histone methylation.[8] Antisense non-
coding RNA in the INK4 locus (ANRIL) is one of the 
lncRNAs that can suppress transcription by remodeling 
chromatin structure. In this regard, the human chromosome 
9p21 harbors INK4b/ARF/INK4a locus which has 3 coding 
genes, p14/ARF, p15/CDKN2B, and p16/CDKN2A along 
with ANRIL. ANRIL is an antisense lncRNA, overlapping 
with p15/CDKN2B and p16/CDKN2A.[9] Binding of ANRIL 
to PRC1 and PRC2 facilitates the recruitment of PRC1 
and PRC2 into the INK4a/ARF locus, which causes 
trimethylation of the histone and reduces transcription 
activity of the locus.[10] Similarly, X-inactive specific 
transcript (XIST) is a key regulator of X chromosome activity 
by chromatin structure modifications during embryonic 
development. XIST recruits EZH2 in X chromosome and 
then causes the trimethylation of histone, leading to a factual 
heterochromatin structure and silencing of one of the two X 
chromosomes.[11] Besides, recruitment of different proteins 
in a gene promoter region can also change the transcription 
activity. For example, the enrichment of hnRNP-K in the 
promoters of p53 regulated genes represses the transcription 

Figure 1: Flow of genetic information involving messenger RNA and long 
non-coding RNA

Table 1: Function of lncRNAs
LncRNA Function
ANRIL, XIST, HOTAIR, H-19  Transcription control by 

chromatin modifi cations
LincRNA p21 Transcriptional regulation
H-19 Precursor for miRNA
Loc285194, Gas 5, 
lncRNA-ATB, CCAT1

Regulators of miRNA function

PTENP1, KRAS1P, Gas 5 Decoy
RoR, NEAT1, TER Scaffold
lncRNAs: long noncoding RNAs; lncRNA-ATB: lncRNA is 
activated by cytokine transforming growth factor-β; CCAT1: 
colon cancer-associated transcript 1; TER: telomerase RNA; 
NEAT1: nuclear paraspeckle assembly transcript 1; ANRIL: 
antisense non-coding RNA in the INK4 locus; HOTAIR: Hox 
transcript antisense intergenic RNA; XIST: X-inactive specific 
transcript; miRNA: microRNA
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of those genes.[12] However, lincRNA-p21 interacts with 
hnRNP-K and helps enrichment of hnRNP-K into these 
promoters, resulting in transcription suppression.[13] On the 
other hand, p53 enhances transcription of lincRNA-p21, 
thus forming an auto-regulatory feedback loop.

LNCRNA AS A PROGENITOR OF SMALL 
RNAS, REGULATING THEIR FUNCTIONS

Although there is still no concrete evidence yet, lncRNAs 
may be post-transcriptionally processed into the small 
RNAs. For instance, the computational analysis indicated 
that exons of lncRNAs are highly enriched with small 
RNAs. In fact, snoRNAs are enriched 6-fold higher in 
their exons than any other genomic loci.[14] Similarly, many 
miRNAs are derived from transcripts which are capped and 
polyadenylated including lncRNAs. About 20% miRNAs 
are overlapped with either introns or exons of lncRNAs.[15] 
LncRNA H19 is one such prominent example which serves 
as the precursor of miRNA. The pri- and pre-miR-675 
resides in H19 and expression of miR-675 coincides with 
H19 in murine embryo. However, miR-675 is not expressed 
in NIH3T3 cells that lack H19 expression. The digestion 
of 32P-labeled H19 clone with Drosha: DGCR8 (enzyme 
for miRNA biogenesis) releases 57 nucleotide long pre-
miRNA 675, indicating that H19 is the parental transcript 
of miR-675.[16]

LncRNAs not only serve as the precursor for the small 
RNAs but also regulate the expression and the function of 
miRNAs. The lncRNAs provide putative binding sites for 
miRNAs. Such interactions alter the expression and the 
function of mature miRNAs. For example, loc285194 is a 
tumor suppressor in colon cancer and it carries two binding 
sites for oncogenic miR-211. This interaction does not affect 
the pri- and pre-miR-211 level but alters the mature miR-
211.[17] Similarly, growth arrest-specific 5 (Gas5) regulates 
the level of miR-21 through their interaction. Apparently, 
Gas5 does not affect the pre- and pri-miR-21. Moreover, 
both miR-21 and Gas5 are found in RNA-induced silencing 
complex (RISC), suggesting that Gas5 regulates miR-21 
through RNA interference (RNAi) mechanism.[18]

LNCRNAS AS A DECOY

A pseudogene is a class of lncRNAs, derived from mutations 
in protein-coding genes. They usually have similar 
sequences to their parental gene with few mismatches. 
This resemblance in structure could entice different cellular 
entities as lncRNAs rather than mRNAs, impacting the 
cellular function. For example, PTENP1 is a mutated form 
of PTEN and their sequences differ by only 18 mismatches. 
PTEN carries a number of different sites for miRNA in 
its untranslated region (3’-UTR). Although PTENP1 is 1 
kb shorter in the 3’-UTR than PTEN, most of the miRNA 
binding sites are conserved. This can trap many miRNAs to 
PTENP1 to compete with PTEN.[19] A similar relationship 

was also observed between Kras and its pseudogene 
KRAS1P. KRAS1P is amplified in most of cancers with 
activated Kras, indicating a positive correlation between 
them. Although how KRAS1P regulates KRAS level is not 
well-understood, it may act as a sponge for miRNAs that 
bind to the 3’-UTR of Kras and prevents degradation of Kras 
transcript.[19] The lncRNA decoy function is not limited to 
miRNAs, and it can also be applied to DNA. For instance, 
Gas5, which is enriched in growth-arrested cells,[20] inhibits 
the function of glucocorticoid receptor (GR) by competing 
with glucocorticoid response element (GRE) to bind GR. 
GR is a transcription factor and is activated by ligand and 
subsequently the activated GR binds to GRE to initiate 
transcription of downstream genes. A part of Gas5 sequence 
is capable of forming 6 hairpin structures; among them, 
hairpin structure 5 has two GRE-like structures that mimic 
GRE. Therefore, GR could bind Gas5 instead of GRE, 
and as a result, this interaction hinders the GR-mediated 
transcription activity.[21]

LNCRNAS AS A SCAFFOLDING AND 
STRUCTURAL SUPPORT

Physical association between cellular entities is critically 
important for coordination of a variety of cellular functions. 
It is well-known that specific binding between two different 
cellular components can control the reprogramming of 
cellular signaling, leading to alternations of cell phenotype 
or function. Apparently, proteins can serve such function 
as a scaffolding and structural support.[22] Recent studies 
suggest that lncRNAs can also have a similar function 
because they can interact with different proteins, through 
which lncRNAs provide a platform for the assembly of 
various proteins. Such interactions may affect protein 
localization, protein function, transcriptional activity, gene 
splicing, etc. Linc-ROR is lncRNA as a regulator of induced 
pluripotent cell reprogramming.[23] Of interest, linc-ROR 
plays an important role in repression of p53 translation by 
interaction with phosphorylated hnRNP I in the cytoplasm. 
The physical association between linc-ROR and hnRNP I 
controls p53 translation and deletion of hnRNP I binding 
motif in linc-ROR abolishes its repression capability.[24] The 
scaffolding function of lncRNAs is also essential for the 
formation of special architect-like paraspeckles, a nuclear 
body structure that appears during interphase of cell cycle. 
Paraspeckles are primarily composed of proteins such as 
paraspeckle protein (PSP1, PSP2) and p54/nrb.[25] Although 
the function of paraspeckles is still not clear, components 
within paraspeckles are known to play an important role for 
transcription and alternative splicing.[26,27] Since paraspeckles 
do not have any membrane structure, lncRNAs within the 
paraspeckle may help to establish this compartment.[28] 
NEAT1 is one of the lncRNAs that interact with PSP1 and 
together, they may help to form paraspeckles. Importantly, 
the number of paraspeckles increases in vivo and in vitro with 
the increase in NEAT 1 expression and deletion of NEAT1 
eliminates the paraspeckles, suggesting an important role of 
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this lncRNA in the formation of paraspeckles.[29] Another 
lncRNA that provides a platform for the binding of protein is 
telomerase RNA (TER). TER along with telomerase reverse 
transcriptase (TERT) is essential for telomere synthesis. A 
telomere is nucleotide repeat at the end of DNA which is 
required for the genomic stability.[30] TER is a template RNA 
for the synthesis of telomere.[31] TER consists of various 
motifs; core domain is essential for template activity and 
CR4/CR5 domain binds with TERT.[32] The mutation in 
core domain of TER disintegrates proper structure of this 
RNA, losing the binding capability to TERT, which leads 
to aplastic anemia.[33] This indicates that a comprehensive 
structure of TER functions as a scaffold for telomerase to 
bind and work properly.

CANCER METASTASIS IS A MULTISTEP 
PROCESS

More than 90% of cancer death is attributed to metastasis. 
Cancer metastasis is a process in which cancer cells migrate 
from its origin to a distant site and then proliferate. The two 
major steps of metastasis are physical dissociation from the 
origin of the primary tumor and migration to distant sites and 
colonization of those migrating cells in the distant sites.[34]

This multistep process is usually inefficient and only very 
few cells that start migrating from the origin would be 
able to colonize in distant organs. The disaggregation of 
cells from the primary tumor is the first event during the 
metastasis. This process is greatly enhanced by loss of 
E-cadherin, a protein, that helps to adhere epithelial cells 
together.[35,36] The next barrier that prevents migration of the 
cancer cell is basement membrane. The disintegrated cancer 
cells can induce stroma to secrete proteolytic enzyme-like 
matrix metalloproteinases that dissolve the basal lamina.[37] 
Detached cells also require motility to move from one place 
to another. Several changes in cytoskeleton, interactions 
between cell and matrix, and induced Rho, cdc42, and 
Rac signaling are important for mobility. Furthermore, 
epithelial-mesenchymal transition (EMT) is critical for 
dissemination of the cancer cell to distant site as it helps 
in effective motility and invasiveness and survival of the 
cells.[38] To reach the distant organs, the cells also require a 
traveling path. The hematogenous route works as highway 
for this process.[39] Although it is still unclear how the 
altered cells invade into the blood vessels, the high invasive 
capacity of metastasizing cells and chemoattractive factors 
in the blood may help their intravasation. Inside the blood 
vessels, the migrating cells endure a constant physical 
pressure as well as immune responses, an inclement 
condition for tumor cells. However, the chance of survival 
can be increased by adhering tumor cells to different factors 
such as thrombin.[40] Tumor cells may also be able to attach 
to endothelial cells via protein-protein interaction (integrin 
α3β1 of tumor and laminin 5 of endothelial cells) to protect 
themselves from harsh condition.[41] The adherence of cells 
not only prevent their possible elimination, but also help 

their exit from the capillaries (extravasation). Extravasation 
is primarily supported by enhanced permeability of 
capillary. Vascular endothelial growth factor secreted by 
tumor cells can increase the permeability of blood vessels. 
In addition, other factors such as alterations in receptor 
expression and physical bursting may also help in the exit 
of tumor cells from blood vessels.[42]

Once the cells depart the capillary, they try to colonize in 
distant organs. However, few of circulating tumor cells can 
colonize to establish micro-metastases. The colonization 
is dictated by the microenvironment of primary site and 
distant site. A number of cytokines both from tumors and 
the site of colonization provide mitogenic signals for the 
successful proliferation, survival and resist to apoptosis in 
alien environment, finally to develop macro-metastases.[43]

LNCRNAS AND CANCER METASTASIS

In the previous section, we highlighted the steps during 
metastasis. Several genetic and epigenetic modifications 
during this multistep process make cells sturdy to survive 
the foreign ambience. Although we still do not have a clear 
picture as to what causes those change, increasing evidence 
suggests that lncRNAs play a crucial role in different stages 
of metastasis [Figure 1]. We list the following lncRNAs as 
examples.

Metastasis-associated lung adenocarcinoma 
transcript 1

Metastasis-associated lung adenocarcinoma transcript 1 
(MALAT1) is located at chromosome 11q13 with 8.7 kb 
in length. It is expressed in most tissues with the highest 
level in pancreas and lung. The elevated expression of 
MALAT1 was found in metastatic cases of non-small cell 
lung carcinoma, and as such, it was named MALAT1. The 
high expression of MALAT1 in metastatic tumors predicts 
poor prognosis.[44] As a nuclear lncRNA, MALAT1 plays an 
important role in alternative splicing.[45] However, loss of 
MALAT1 does not seem to affect alternative splicing in the 
lung cancer tissue; rather it affects expression of different 
genes, including those involved in EMT (LPHN2, ABC1) 
and others in regulation of metastasis formation (GPC6, 
MCAM, PRCKE). Furthermore, tail vein injection of 
xenograft mice with A549 cells overexpressing MALAT1 
shows diffused growth in the lung. Knockdown of MALAT1 
results in either fewer tumor nodules or the cells cannot exit 
out of endothelial cells.[46] Similarly, loss of MALAT1 in 
A549 cells inhibits expression of those genes (CTHRC1, 
CCT4, HMMR) that regulate folding of cytoskeleton and 
migration of cells.[47] These lines of evidence indicate that 
MALAT1 is critically important for the cell motility and 
extravasation of cells from capillaries.

In addition to lung cancer, MALAT1 is also important for 
pancreatic and cervical cancer metastasis.[48] In pancreatic 
cancer, MALAT1 enhances expression of EMT markers 
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(loss of E-cadherin and gain of N-cadherin, vimentin, and 
slug) dependent on transforming growth factor-β (TGF-β). 
Similarly, MALAT1 was found highly expressed in cancer 
stem cells (CSCs) of pancreatic cancer and knockdown of 
MALAT1 in those cells greatly reduces CD133+ population 
and sphere formation,[49] suggesting an important role of 
CSC formation which may help in migration and survival 
of cells during metastasis.

HOX transcript antisense RNA

HOTAIR stands for HOX transcript antisense RNA with 
2.2 kb in length. It is derived from HOX C gene (which 
determines anterior and posterior plane during embryonic 
development). High expression of HOTAIR is correlated 
with metastasis, and it signifi cantly decreases the chance 
of survival of those patients. Overexpression of HOTAIR 
in different cell lines increases cell invasion and transforms 
non-invasive cells into invasive cells in vivo. Similarly, 
overexpression of HOTAIR in breast cancer MDA-MB-231 
cells increases metastatic lung nodules by a 10-fold as 
compared to control.[50]

Like many other lncRNAs, HOTAIR impacts metastasis via 
chromatin remodeling. HOTAIR can directly bind to PRC2 
and LSD1, a demethylase that fl anks HOXD. This binding 
coordinates enrichment of EZH2 in HOXD promoter which 
causes methylation of H3K27, leading to silencing of 
transcription through HOXD gene.[51] A similar mechanism 
was also observed in the metastatic breast cancer cell lines, 
where HOTAIR helps in PRC2 occupancy on promoter of 
hundreds of genes and silences them by trimethylation of 
H3K27. Many of those genes are involved in breast cancer 
progression, cell adhesion, and metastasis.[50]

In addition to breast cancer metastasis, HOTAIR has 
been attributed to enhance metastasis in oral squamous 
cell carcinoma by suppressing the level of E-cadherin.[52] 
Moreover, HOTAIR along with miR-196a is also associated 
with high-risk metastasis and poor survival of a patient with 
gastrointestinal stromal tumors.[53]

H19

H19 is one of the first lncRNAs identified in early 
1980 and its expression is in accordance to expression 
of α-fetoprotein.[54] This gene represents a maternally 
imprinted gene in both humans and mice. The expression 
of H19 gradually decreases from fetal tissue to adult, which 
indicates its importance in embryo development.[55] Initial 
reports suggested that H19 could work as a tumor suppressor 
in different cancer cases;[56] however, other studies 
suggested that H19 expression is high in tumor tissues.[57,58] 
Despite high expression in tumor samples, overexpression 
of H19 in T24 bladder carcinoma cell line did not provide 
proliferative advantage. This implies that H19 may regulate 
metastasis rather than formation of primary tumor. Indeed, 
overexpression of H19 up-regulates genes [e.g. uPAR, 

tumor necrosis factor-α, interleukin-6 (IL-6), and Ezrin] 
that are required for angiogenesis and metastasis in T24 
cells.[59] Furthermore, H19 is highly expressed in most 
cases of bladder carcinoma which subsequently metastasize 
compared to those that do not metastasize. Similarly, H19 
level is substantially higher in invasive bladder carcinoma 
cell lines than non-invasive cell lines. Mechanistically, H19 
recruits EZH2 in the promoter region of Nkd1 (an antagonist 
gene of Wnt/β-catenin) and suppresses its transcription by 
hyper-methylation. This makes Wnt/β-catenin constitutively 
active while E-cadherin is suppressed, leading to metastasis 
of bladder cancer.[60] In addition to alterations in the gene 
expression pattern, H19 also enhances the interaction of the 
tumor cell with extracellular matrix. MDA-MB-231 cells 
growing in three-dimensional culture exhibit high level 
of H19, which helps in enhanced scattering of the cells, 
suggesting a role of H19 in breast cancer metastasis.[61] 
In addition to bladder and breast cancer, H19 may also 
contribute to metastasis of colorectal cancer. For instance, 
H19 is highly expressed in methotrexate resistant HT-29 cells 
which reveal mesenchymal morphology. Overexpression 
of H19 increases the EMT markers vimentin, ZEB-1, and 
ZEB-2 and also promotes cell migration.[62]

Nuclear factor-κB interacting lncRNA

Nuclear factor-κB (NF-κB) interacting lncRNA (NKILA) 
is a 2.5 kb transcript mostly found in the cytoplasm and 
it negatively regulates the NF-κB signaling.[63] NF-κB is a 
transcription factor which mediates inflammatory signaling 
pathways and is often constitutively active in various cancer 
cells.[64] NF-κB is in an active (phosphorylated) or inactive 
state (dephosphorylated) in the cell. In the inactive state, 
the dimer NF-κB (p65 and p50) is bound with an inhibitory 
subunit IκB. This complex keeps the dimer in the cytoplasm 
by masking the nuclear localization signal. Several external 
stimuli activate IKKβ which phosphorylates IκBα (a subunit 
of IκB) and leads to proteasomal degradation of IκBα. Now, 
the free NF-κB dimer translocates to the nucleus where it 
binds to NF-κB response element and activates transcription 
of different genes.[65] Thus, NKILA adds a new layer of 
regulation for NF-κB activity, by interacting with IκBα and 
masking its phosphorylation site from IKKβ. This prevents 
phosphorylation of IκBα and translocation of NF-κB dimer 
from the cytoplasm to the nucleus.

The highly metastatic breast cancer cell lines express a very low 
level of NKILA while less aggressive breast cancer cell lines 
exhibit a high level of NKILA. Furthermore, overexpression 
of NKILA in MDA-MB-231 cells reduces their metastasis 
in the lung, liver, and lymph nodes. In contrast, knockdown 
of NKILA in MCF-7 cells increases their metastasis to those 
distant sites. Clinically, loss of NKILA is associated with 
advanced breast cancer and distant metastases; low expression 
of NKILA is associated with the patient survival.[63] Therefore, 
NKILA can predict the outcome of breast cancer and may 
serve as a prognostic marker.
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LncRNA-ATB

This lncRNA is activated by cytokine TGF-β (lncRNA-
ATB) that is well-known for its role in tumor metastasis. 
TGF-β modulates different signaling pathways involved in 
EMT, migration, invasion, and metastasis.[66-68] A long time 
treatment of cells with TGF-β induces EMT (decreased 
E-cadherin and increased N-cadherin, vimentin, slug, twist1, 
ZEB-1 and ZEB-2). Similar treatment of hepatocellular 
carcinoma (HCC) cells with TGF-β activates the lncRNA-
ATB in a time- and dose-dependent manner. Clinically, 
lncRNA-ATB level is high in HCC tumors as compared to 
adjacent normal tissue. Similarly, a high level of lncRNA-
ATB is positively correlated with microvascular invasion 
and portal vein tumor thrombosis. Consistent with these 
observations, injection of HCC tumor cells overexpressing 
lncRNA-ATB into orthotropic mice promotes metastasis 
to different organs.[69] One of the possible mechanisms is 
through enhancement of EMT by interfering the action of 
miR-200 which can inhibit EMT by suppressing ZEB-1 and 
ZEB-2.[70] This 2.5 kb long lncRNA carries 6 binding sites 
for miR-200. Therefore, lncRNA-ATB traps miR-200 and 
prevents degradation of ZEB-1 and ZEB-2 by miR-200. The 
high level of ZEB-1 and ZEB-2 ultimately promotes EMT 
and invasiveness of different cells in vitro and in vivo. In 
addition, lncRNA-ATB enhances colonization of migrating 
cells by enhancing the function of IL-11-STAT3 signaling 
pathway. In this case, lncRNA-ATB binds to IL-11 mRNA 
and stabilizes it. The increased stability of IL-11 facilitates 
its secretion. As a ligand, IL-11 promotes phosphorylation 
of STAT3. This autocrine mitogenic signal helps in robust 
cell survival and effective colonization in distant organs.[69]

LncRNA-low expression in tumor

Low expression in tumor (LET) was originally identified in 
HCC cells.[71] Along with HCC, a reduced level of LET is also 

found in lung squamous carcinoma and colorectal cancer 
as compared to adjacent normal tissue. Overexpression 
of lncRNA-LET suppresses metastasis of HCC and colon 
cancer cells in vivo.[72] LncRNA-LET could limit HCC 
metastasis in both hypoxic and normoxic condition by 
different mechanisms. In hypoxic condition, lncRNA-
LET interferes with the function of hypoxia-inducible 
factor-1α (HIF-1α), a transcription factor that regulates 
a number of genes under tumor hypoxia, and promotes 
angiogenesis and metastasis.[73] The high expression of 
lncRNA-LET suppresses HIF-1α through inhibiting NF90 
which is required for accumulation of HIF-1α mRNA. 
However, hypoxia keeps the level of lncRNA-LET low by 
deacetylating its promotor. As a result, HIF-1α is increased 
promoting metastasis. In normoxic condition, lncRNA-
LET inhibits expression of CDC42 (which is required for 
trans-endothelial migration) of circulating tumor cells. The 
low level of lncRNA-LET in HCC keeps CDC42 high and 
this results in profound metastasis of HCC.[72]

Colon cancer-associated transcript 1

Colon cancer-associated transcript 1 (CCAT1) was found 
up-regulated in colon cancer tissue, circulating blood cells 
of colon cancer patient and metastasis cases, indicating its 
role in colon cancer progression.[74] Besides, high expression 
of CCAT1 is also associated with primary tumor tissue, 
lymph node metastasis, and metastatic cases of gastric 
carcinoma.[75] The elevated level of CCAT1 reduces the 
survival of HCC patients. In both gastric cancer and HCC cell 
lines, overexpression of CCAT1 enhances the proliferation 
and migration of cells driven by c-Myc, an oncogenic 
transcription factor required for cell survival. On one hand, 
c-Myc binds to promoter of the CCAT1 and up-regulates its 
level in cancer cells.[75] On the other hand, CCAT1 prevents 
degradation of c-Myc by interaction with let-7, a known 
miRNA that can target c-Myc through its 3’-UTR.[76]

Figure 2: Long non-coding RNAs involved in different stages of cancer metastasis
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DEREGULATION OF LNCRNA EXPRESSION 
IN CANCER

It is well-known that most of lncRNAs are transcribed 
through RNA polymerase II, just like protein-coding genes; 
they are also spliced products via canonical genomic splice 
site motifs, frequently ended with a poly A tail. Importantly, 
lncRNAs are often regulated by well-established 
transcription factors and are expressed in a tissue-specific 
manner.[77] For example, we have shown that wild-type p53 
can transcriptionally induce linc-RoR and loc285194, but 
mutant p53 cannot.[17,24] On the other hand, c-Myc, as an 
oncogene, can regulate a group of lncRNAs.[78] In cancer, 
c-Myc is often amplified or up-regulated, which may 
explain why some lncRNAs are often deregulated.

CONCLUSION AND PERSPECTIVE

A tremendous progress has been made in our understanding 
of the genes and events involved in metastasis in recent 
years. Moreover, emerging evidence indicates that lncRNAs 
have also joined this complex regulatory network and may 
serve as very important regulators at different stages of 
metastasis (e.g. EMT, invasion, migration, and colonization) 
often through their expression levels [Figure 2]. However, 
overall, lncRNA research in this field is still at the infancy 
stage. Given the complex interactions of lncRNAs with 
DNA, RNA, and protein, a systematic approach may be 
needed to better understand the molecular mechanism of 
lncRNA-mediated metastasis. With the development of 
advanced technology such as CRISPR/Cas9, it is now 
feasible to perform knockout or knockin experiments and 
these research tools will no doubt speed up new discovery. 
In this system, nuclease Cas9 assisted by a sequence-
specific guild RNA (gRNA) which is functionally similar 
to RNAi, cuts targeted DNA sequence.[79] Once the double 
strand break is made, the cell employs one of two major 
DNA repair mechanisms, non-homologous end joining 
(NHEJ), and homologous recombination (HR). Unlike HR, 
the NHEJ mechanism often leads to deletions or insertions, 
and thus it is an error-prone repair, a feature important for 
knockout. The HR mechanism would allow for introducing 
mutations or correcting a mutant sequence by knockin. 
Increasing evidence indicates that this technology has a 
potential to transform the field of cancer genetics such as the 
development of next-generation models of human cancer.[80]

Given the nuclear localization nature for a number of 
lncRNAs, genetic manipulations at the DNA level provides 
a better alternative to RNAi approach which mainly works 
through RISC complex in the cytoplasm. Our recent study 
indicates that a dual gRNA/Cas9 system combined with 
donor vector for HR can greatly improve the efficiency 
of obtaining complete lncRNA knockouts in various 
cancer cell lines.[81] As this field advances, we anticipate 
that more lncRNAs will be identified to be important 
players in cancer metastasis. More importantly, further 

characterization of this regulatory system will reveal many 
of detailed mechanisms. As a result, these studies will help 
develop novel strategies for cancer treatment. Furthermore, 
lncRNAs may serve as biomarkers for diagnosis/prognosis 
as supported by profiling studies of clinical specimens. 
Finally, given their important role in metastasis, lncRNAs 
may also prove to be valuable targets for cancer therapy. In 
particular, ribonucleoprotein complexes through lncRNAs 
are critical to lncRNA-mediated metastasis, drugs that 
block or enhance such interactions may have a bright future.
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Notch pathway is a major determinant of cell fate, and research within the last 30 years has shown dysfunctions within this 
pathway in the majority of solid tumors and leukemias. The molecular mechanisms causing aberrant expression of Notch in cancer 
are still partially known. Mesotheliomas, breast, and cervical cancers are among the cancer types for which the dysregulation of 
Notch has been reported together with the association of simian virus 40 (SV40) or human papilloma virus (HPV) infections. In 
mesotheliomas and cervical cancer, there is clear evidence that these viruses cause and rely on dysregulation of the Notch pathway 
to promote and sustain cell transformation. The existence of a relationship in tumors between DNA viruses and Notch could have 
an impact on cancer therapy by implementing Notch inhibition to interfere with the growth of SV40- and HPV-positive cancers. In 
addition, since Notch links innate and acquired immunity and plays a key role in the regulation of the anti-viral response, targeting 
Notch in the presence of oncogenic viruses infections may help prevent the onset and progression of cancers associated with the 
exposure to these viruses.

Key words: Cancer; human papilloma virus; Notch; pathway; simian virus 40

Access this article online

Quick Response Code:
Website: 
www.jcmtjournal.com

DOI:  
10.4103/2394-4722.171982

This is an open access article distributed under the terms of the Creative 
Commons Attribution-NonCommercial-ShareAlike 3.0 License, which allows 
others to remix, tweak, and build upon the work non-commercially, as long as 
the author is credited and the new creations are licensed under the identical 
terms.

For reprints contact: service@oaepublish.com

How to cite this article: Clementz AG, Rizzo P, Martini F, Tognon M. 
Roles of dysregulated Notch pathway and small DNA tumor viruses in 
cancer initiation and progression. J Cancer Metastasis Treat 2016;2:11-23.

Received: 15-05-2015; Accepted: 26-11-2015

INTRODUCTION

Notch has been identified as a critical pathway aberrantly 
expressed in many types of solid tumors and leukemias. 
Dysregulation of Notch signaling is a result of many 
factors including interactions with viral proteins. In this 
short review, we took in consideration significant articles 
dealing with the dysregulation of the Notch pathway and/
or presence of oncogenic viruses, mainly simian virus 
40 (SV40) and human papilloma viruses (HPVs), in 
cancer. Indeed, the proteins encoded by Notch pathway 
genes and the viral oncoproteins of SV40 and HPV were 
found in some models of study, interconnected in the 
cell transformation in vitro and tumor initiation and 
progression in vivo.

BASICS OF NOTCH SIGNALING

Beginning in the early 20th century, the discovery of a new 

Type 1 transmembrane receptor came after the identification 
of a specific mutation in Drosophila melanogaster, which 
formed a Notch on the wing of the fly. This discovery 
led to the naming of “Notch” to the mutated gene.[1] 
In Drosophila, the Notch receptor was found to encode 
a 300 kDa single-pass transmembrane receptor. Later, 
Notch-like molecules were identified from Caenorhabditis 
elegans (LIN-12) to humans, which are highly conserved 
and play pivotal roles in development, stem cell renewal, 
and differentiation in postnatal tissues.[2] In mammalians, 
there are four Notch Type I transmembrane receptors 
(Notch 1, 2, 3, and 4) and five known ligands (delta-
like 1, 3, and 4 and Jagged 1, 2). Notch signaling relies 
on cell-cell contact to initiate its eventual signaling 
activation.[3] To be primed for mature Notch signaling 
activation, the protein is processed first in the trans-Golgi 
apparatus by furin-like convertase creating a heterodimer, 
which is shuttled to the cellular membrane and held 
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together by Ca2+ cations. The mature receptor is available 
to interact with its ligand, which subsequently stimulates 
through conformational changes a second proteolytic 
cleavage by tumor necrosis factor-α converting enzyme 
or a disintegrin and metalloprotease (10/17).[4] This in 
turn results in shedding of the extra-cellular portion 
of Notch, which through receptor-mediated endocytosis, 
propagates signaling events in neighboring cells. The 
final cleavage occurs within the membrane through 
an associated aspartyl protease known as the γ-secretase 
complex composed of presenilin, nicastrin, APH 1 and 
PEN2.[5] Intra-cellular Notch cleaved protein translocates 
to the nucleus where it binds with the transcription factor 
recombining binding protein-Jk or C-promoter-binding 
factor 1/suppressor of hairless/Lag1 (CSL)[6] and, after 
displacing co-repressors and recruiting co-activators such 
as p300, histone acetyl transferases, and mastermind-like 
protein 1 (MAML1), it activates downstream pathways 
[Figure 1].[7] The “canonical” Notch signaling is known 
to activate genes coding for transcriptional factors such 
as those belonging to the hairy/enhancer of split (Hes1-5), 
the hairy-related (Hrt), and the Hes1-5-Hrt with YRPW 
motif (Hey) families involved in inhibiting neuronal 
differentiation.[8] The “canonical” Notch pathway is a major 
determinant of cell proliferation and survival through the 
activation of genes controlling cell cycle progression such 
as cyclin D1[9] and genes belonging to the anti-apoptotic 
pathway nuclear factor kappa-light-chain-enhancer of 
activated B-cells (NF-κB).[10,11] Notch activation can also 
be attained in a “non-canonical” fashion initiated by a 

non-canonical ligand or may not require cleavage of 
the Notch receptor.[1] Among suggested mechanism of 
“non-canonical” Notch signaling are interactions of Notch 
with non-CSL transcription factors, such as β-catenin,[12] 
hypoxia-inducible factor-1 α, NF-κB,[13] and estrogen 
receptor α (ERα).[14] Anti-apoptotic activity independent 
of canonical functions has been associated with active 
Notch1, which signals via the kinase AKT to prevent 
the loss of mitochondrial function and consequent nuclear 
damage and requires mitochondrial remodeling proteins 
mitofusins-1 and 2.[15] Notch activity is finely regulated by 
interactions with other key proteins and pathways, among 
them p53,[16] ERα,[17,18] the epidermal growth factor B2 
(ErbB-2)[19] and the vascular endothelial growth factor 
receptors (VEGFRs),[20] the Wingless (Wnt)[21,22] and 
Hedgehog[23] signaling pathways. Recent genome-scale 
studies in D. melanogaster have revealed an even more 
complex network of genes that can affect Notch activity[24] 
consistent with decades of work showing that the highly 
conserved Notch pathway is extremely complex, and 
the output of its activation or its inhibition will result in 
differentiation, proliferation or increased survival based on 
the existing cellular context.

NOTCH SIGNALING PATHWAY IN TUMORS

Many reports have been published on the role of the 
Notch pathway in the development of the cardiovascular 
system,[25,26] in regulation of stem cells functions such as 
survival of cardiac progenitor cells,[27] the differentiation 

Figure 1: Schematic representation of the events leading to Notch signaling activation and the steps of this process affected by the oncogenic viruses simian virus 
40 and human papillomavirus. Notch precursor is cleaved in the Golgi apparatus by a furin-like convertase and then exposed on the cell membrane. Notch ligands 
Delta/Jagged bind Notch extra-cellular subunit. This causes a disintegrin and metalloprotease to clip the extra-cellular portion of Notch transmembrane generating 
an intermediate, cleaved by γ-secretase which releases active Notch. Active Notch enters the nucleus, where it causes the dissociation of silencing mediator of 
retinoic acid and thyroid hormone receptor corepressor complex from C-promoter-binding factor 1/suppressor of hairless/Lag1, and recruits mastermind-like 1 
coactivator complex, resulting in transcription of target genes. Simian virus 40 induces upregulation of the Notch pathway, whereas conflicting reports exist on the 
modulation of Notch by human papillomavirus (green arrow indicates up-regulation, red arrow indicates down-regulation or inhibitory binding)
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of insulin-secreting pancreatic cells[28] of inner ear 
hair cells,[29] and intestinal crypt and goblet cells.[30] 
Accordingly, the important role of the Notch pathway for 
normal tissues development has been proven by the 
identification of Notch mutations in human inherited 
diseases. Indeed, Notch alterations have been detected in: 
(1) Cerebral autosomal dominant arteriopathy, with sub-
cortical infarcts and leukoencephalopathy (a heritable 
arteriopathy that leads to damaged small blood vessels 
and irreversible dementia); (2) spondylocostal dysostosis 
(characterized by abnormal development of bones in the 
spine and ribs); (3) Alagille syndrome affecting the liver, 
heart, kidney, and other systems of the body;[31] (4) 
congenital heart diseases.[32] Similarly, in the last decade, 
it has been demonstrated that the Notch signaling pathway 
contributes to the regulation of the immune system by 
playing a role in multiple lineage decisions of developing 
lymphoid and myeloid cells.[33] Recent work has shown 
that Notch, through macrophage-dependent delta-like 
ligand 1 and 4 signaling, is critical in providing an anti-
viral response by linking innate and acquired immunity 
during influenza[34] and dengue[35] viral infections.

Notch has emerged as a potent oncogene when it was 
first shown that a subset of T-cell acute lymphoblastic 
leukemias (T-ALL) contained a chromosomal translocation, 
t(7;9), leading to abnormal expression of the Notch1 intra-
cellular domain,[36] which was later shown to be able to 
cause T-cell neoplasm in mice.[37] Later studies confirmed 
the existence of Notch1 mutation in 60% of human 
T-ALL.[38] In T-cell neoplasms, Notch1 represses p53,[38] 
induces c-myc,[39] and inhibits phosphatase and tensin 
homolog, a downregulator of the phosphatidylinositol 
3 kinase (PI3K)-AKT pathway involved in promoting 
cancer cell survival.[40] Recent work has shed light on 
the role of Notch in T-ALL showing that in these tumors 
aberrant Notch activity counteracts the tumor suppression 
function of the transcription factor IKZF1 (IKAROS).[41]

The major role played by Notch in breast cancer is also 
well established. Reports of an involvement of Notch in 
mammary gland development and neoplasia came from 
the observation of the Notch4/int3 gene as a common 
provirus integration site in mammary tumors of mice 
infected with mouse mammary tumor virus (MMTV),[42] 
followed by the report that transgenic female mice 
carrying Notch1 and 3 activating mutations (caused by 
the insertion of the MMTV) developed mammary gland 
tumors.[43] Notch has been found activated in ERα 
positive-, negative-, triple negative-breast cancer cell lines 
and breast cancer cell lines overexpressing the oncogene 
Her2/neu.[18,19,44] Dysregulation of Notch has been shown in 
human breast cancer biopsies[45-47] in which overexpression 
of Notch1 and one of its ligands, Jagged1 has been linked 
to poor prognosis and overall diminished survival.[48,49] Of 
interest, Notch2 overexpression was instead associated 
with increased survival in breast cancer patients,[49] 

suggesting a role for Notch2 as a tumor suppressor gene 
in these cancers. In agreement with this observation, 
active Notch2 induces reduction in tumor take and 
increased apoptosis in human MDA-MB-231 (ERα, Her2 
negative cell line) xenograft tumor growth.[50] The Notch 
pathway is a major determinant of breast cancer stem 
cells survival, and Notch activation in these cells has been 
linked to resistance to tamoxifen.[51,52] Consistently, Notch 
activation plays a role in tamoxifen resistance observed 
in protein kinase C-α overexpressing estrogen-responsive 
breast cancers[53] and in ErbB-2-positive breast tumors.[54]

Dysregulated expression of Notch proteins, ligands, 
and targets has been described in a multitude of solid 
tumors, including cervical, head and neck, endometrial, 
renal, lung, pancreatic, ovarian, prostate, esophageal, 
oral, hepatocellular and gastric carcinomas, osteosarcoma, 
mesothelioma melanoma, gliomas, medulloblastomas, and 
rhabdomyosarcoma.[8] Dysregulation of Notch signaling 
has been reported in some hematological malignancies, 
other than T-ALL, including Hodgkin lymphomas, 
anaplastic large-cell non-Hodgkin lymphomas, acute 
myeloid leukemias, and B-cell chronic lymphoid leukemias 
multiple myeloma (for the original articles on the subject 
the reader is referred to).[8]

Tumor angiogenesis is crucial for cancer growth and 
progression.[55] The Notch pathway promotes cancer 
growth not only by enhancing the survival of cancer 
cells and their progenitors but also by controlling tumor 
vascularization. Dll4/Notch1-mediated signaling modulates 
VEGF-A-driven angiogenesis by affecting the number of 
sprouts (new branches) on endothelial cells. This interplay 
between Dll4/Notch1/VEGFR determines the balance 
between the number of tip cells (leading and guiding the 
blood vessel sprout) and stalk cells (proliferating cells 
forming the vascular lumen).[24,56] Interference with tumor 
angiogenesis by inhibition of Dll4-mediated signaling 
has been effective in blocking cancer growth in animal 
models.[57] Recently, high levels of Jagged1 have also been 
shown to promote tumor angiogenesis by destabilizing the 
tip and stalk cell fates[58] and by regulating levels of 
VEGFR1, 2[59] and activate Notch3/Hey1 in tumor cells 
thus promoting proliferation, survival, and epithelial to 
mesenchymal transition.[59] Consistently, inhibition of 
experimental tumors growth has been obtained by blocking 
Jagged1-dependent Notch signaling.[60]

Notch inhibitors are currently under clinical investigation, 
in combination with existing therapies for the treatment 
of several types of cancers.[61] Considering the role of 
Notch in maintaining intestinal homeostasis, patients 
treated with Notch inhibitors require clinical monitoring 
of the gastrointestinal tract.[62] Furthermore, due to the 
effect of Notch in promoting angiogenesis and survival of 
cardiac progenitor cells, cancer patients with preexisting 
ischemic diseases should also be monitored for possible 
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cardiotoxicity linked to the use of Notch inhibitors.[63]

The mutations causing the activation of Notch signaling 
have been identified for T-ALLs;[38] however, little is 
known about the molecular mechanism involved in 
dysregulating Notch in other malignancies. Few activating 
mutations of the Notch pathway have been found in solid 
tumor patients, with most being observed in non-small 
cells lung[64] and head and neck cancers.[65] In breast and 
lung cancers, inactivation of Numb, a protein involved 
in Notch1 downregulation, has also been identified.[64,66] 
Rearrangements of the Notch gene families have been 
found in breast cancer.[67]

THE ROLE OF SMALL DNA TUMOR VIRUSES 
IN THE PATHOGENESIS OF CANCER

SV40
SV40[68] is a monkey virus, which was accidentally 
administered to humans, in the years 1955-1963, through 
contaminated poliovirus vaccines.[69,70] However, a more 
recent study indicates that some oral poliovirus vaccines 
were contaminated with infectious SV40 in sub-sequent 
years.[71] Early experiments both in vitro and in vivo 
classified SV40 as a transforming and oncogenic viral agent. 
These activities are due to SV40 large tumor antigen (Tag) 
and small tumor antigen (tag), which act as activated viral 
oncogenes.[69,70] These studies addressed a new wave of 
investigations into the potential of SV40 to induce cancer in 
humans. To date, hundreds of molecular and epidemiologic 
studies aimed at investigating whether SV40 infects 
humans, its potential mode of transmission and its putative 
role in human tumors have been carried out.[72-74]

SV40 was assigned to the family of Papovaviridae, an 
acronym proposed by Melnick[75] obtained by fusing the 
names of the 3 representative viruses papilloma, polyoma, 
and vacuolating agent. However, this nomenclature at 
present is considered obsolete. More recently, SV40 has 
been enclosed among polyomaviruses, together with 
the human polyomaviruses (HPyV), BK Polyomavirus 
(BKPyV), and JC polyomavirus (JCPyV). The virion is 
about 45 nm, an icosahedral particle, with a density of 1.34-
1.35 g/cm3. The viral genome is a circular, double-stranded 
DNA molecule. SV40 encodes for six main viral proteins: 
Two early non-structural polypeptides, Tag and tag, an 
agnoprotein, probably involved in the assembly of viral 
particles and processing of late messenger RNA (mRNA) 
and 3 capsid proteins, VP1, VP2 and VP3.[76-78] The early 
and late genes are transcribed on different DNA strands in 
a way that the transcription proceeds divergently from the 
regulatory region. This region contains the origin of DNA 
replication and binding sites for the transcription factors 
that control viral gene expression and terminates within 
DNA sequences containing the polyadenylation signals. 
Recently, a predicted late polarity pre-microRNA to the 
untranslated region 3’ of the polyadenylation cleavage site 

in the late pre-mRNA has also been detected.[79,80] SV40 
is phylogenetically, closely related to HPyV. There is 
evidence of similarity with respect to size (about 5.2 Kb), 
genome organization, and DNA sequence. The tags of 
SV40, BKPyV, and JCPyV strongly cross-react with the 
same antisera[81,82] while a less, strong cross-reactivity is 
observed in most structural antigenic determinants of 
the viral proteins, named VP1, 2 and 3. A genus-specific 
capsid antigen, located on viral peptide VP1, has been 
identified.[83] The DNA sequences of SV40 share 70% 
homology with BKPyV,[84] and 69% with JCPyV.[85] The 
greatest homology is found in the early region coding for 
the Tags and tags, whereas a lower homology is detected 
in the regulatory region.

Transformation of rodent and human cells by SV40 
is induced by the 2 oncoproteins, Tag and tag, which 
display multiple functions. The main activity of Tag 
for cell transformation[69] and tumorigenesis is to target 
key cellular proteins,[86-88] such as the tumor suppressor 
p53[89-91] and retinoblastoma protein (pRB) family 
proteins, inactivating their functions.[92-94] SV40 Tag may 
also lead to transformation by inducing mutations to the 
cellular genome[95] or numerical and structural alterations 
of chromosomes,[96,97] such as gaps, breaks, dicentric 
and ring chromosomes, chromatid exchanges, deletions, 
duplications, and translocations.[98] The principal role of 
the tag in transformation is to bind the catalytic (36 kDa) 
and regulatory (63 kDa) sub-units of protein phosphatase 
2A (PP2A),[69,86] inactivating their function. Moreover, 
tag interacts with the centrosome and blocks mitosis in 
human cells,[99] suggesting that it may disrupt cell cycle 
progression. Recently, it has been shown that in human 
mammary epithelial cells tag activates PI3K[100] an enzyme 
involved in pathways crucial for cell proliferation, and 
transformation through phosphorylation of the hydroxyl 
moiety present on the phosphatidylinositol inositol 
ring. Aberrant regulation of EGFR upstream from PI3K 
through mutations in EFGR can lead to cancer promotion 
in glioblastoma.[101,102] In addition, SV40 tag can enhance 
transcription from E2F-activated promoters of early 
growth response genes.[103,104] The process of rodent cell 
transformation induced by SV40 typically depends on the 
integration of the viral DNA into the host genome 
where it produces a high level of expression of the major 
viral oncogenic proteins, Tag, and tag. However, human 
cells experimentally transformed by SV40 harbor viral 
genomes in an episomal state in addition to integrated 
viral DNA. SV40 immortalized[105] and transformed 
human cells[106-108] can induce tumors when implanted 
subcutaneously in autologous hosts.[107] An SV40 Tag 
needs cooperation of the catalytic sub-unit of telomerase 
and the activated c-HRas oncogene, for the complete 
transformation of human cells, as shown in cotransfection 
experiment.[109] SV40 is highly oncogenic in rodents 
and when inoculated subcutaneously, intra-cerebrally, 
or intra-venously in newborn hamsters induces soft 
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tissue sarcomas, osteosarcomas, ependymomas and 
choroid plexus papillomas, and neoplasms of the 
hematopoietic system, such as lymphocytic leukemia, 
histiocytic lymphomas and rarely, and B-cell lymphomas, 
respectively.[87,110-112] Direct inoculation of SV40 into the 
pleural space induces malignant mesothelioma in 100% 
of the injected hamsters.[111] The oncogenic potential of 
SV40 is confirmed by the generation of transgenic mice in 
which polyomavirus large Tag expression is regulated by 
the native viral early promoter enhancer.[113] Furthermore, 
SV40-transgenic mice develop ependymomas and choroid 
plexus papillomas, as well as other neoplasms.[87,114-116] 
Many reports were published on SV40 sequences 
detected, at high prevalence in human cancers of the 
same histotypes induced by this small DNA tumor virus 
in experimental animals, that is, lymphoproliferative 
disorders, mesothelioma, and bone and brain tumors.[72,117,118] 
SV40 sequences were also detected at low prevalence in 
healthy subjects.[119-121]

Most of these studies were obtained by polymerase chain 
reaction techniques. More recently, investigations reported 
the detection at high prevalence of specific antibodies 
in serum samples from patients affected by malignant 
pleural mesothelioma,[122] glioblastoma multiforme,[123] 
osteosarcoma,[124] ocular melanoma,[125] and non-Hodgkin 
lymphoma,[126] suggesting an association of SV40 with 
these human cancers. Indeed, in serum samples from 
normal individuals[127-129] or patients affected by tumors, 
and[130,131]/other pathologies[132,133] unrelated to SV40, the 
prevalence of antibodies against SV40 is lower than that 
detected in human cancers found to be associated with 
SV40. It is worth noting that taken at all, the prevalence of 
SV40 sequences and the prevalence of specific antibodies 
against SV40 in these human tumors/normal tissues and 
sera, respectively, are very similar. This result indicates 
that SV40 is also a human virus, which infection occurs 
at low prevalence in normal individuals. Altogether, 
these data suggest that this small DNA tumor virus of 
monkey origin seems to be associated at high prevalence 
with specific human cancers. It is also possible that the 
immunologic data are due to the cross-reactivity with a 
new, still undetected, human polyomavirus closely related 
to SV40.

HPV
HPV infection is considered to be the main oncogenic 
agent for the onset of female genital tumors.[134] HPVs 
are non-enveloped small DNA tumor viruses, with a 
double-stranded genome of approximately 8.2 kb. HPVs 
are sub-divided into 2 classes such as low-risk, which 
are detected in mainly genital warts, and high-risk (HR), 
which are associated with invasive cervical cancer. HR 
HPV includes 15 types (16, 18, 31, 33, 35, 39, 45, 51, 
52, 56, 58, 59, 68, 73 and 82), whereas low-risk HPV 
includes 12 types (6, 11, 40, 42, 43, 44, 54, 61, 70, 72, 81 
and 108).[135] However, the oncogenic potential of HPV 

is mediated by the expression of the viral oncoproteins 
identified as E6 and E7. The role of HPV E6 and E7 
oncoproteins in HPV-associated cervical carcinogenesis 
is mainly due to their interaction with the cellular tumor 
suppressor p53 and members of the pRB family, 
respectively.[136-138] The mechanisms of action of HPV 
cause genetic instability and cell transformation resulting 
in cell cycle regulated escape and inhibition of apoptosis-
hallmarks of cancer initiation and progression.[139] Studies 
on the association between HPV and cervical neoplasia 
have indicated a strong link between these oncogenic 
virus types.[140]

Research demonstrates that only a fraction of HPV-positive 
women develops genital tumors.[141] Indeed, the majority of 
patients who are infected with HPV can clear these viral 
agents naturally within 1 year.[142] Persistent infection 
with HR HPV at a high viral load in cervical mucosa is 
considered the main cause of the initiation and progression 
of genital tumors[143] as it is a well-established cause of 
cervical cancer. In addition to E6 and E7 transformations, 
HR HPV oncogenic types 16, 18, 31, 33, 35, 45, 52, 58, 
and 66 are associated closely with > 95% of cases of 
squamous cell carcinoma of the cervix.[144] Moreover, 
only genotype HPV 16 accounts for > 55% of diagnosed 
tumors.[145] Although infection with HR HPV is the major 
risk factor associated with cervical cancer, some studies 
have reported a possible tumor-initiating and promoting 
role in cervical cancer for other DNA tumor viruses. Taken 
together, this interaction may synergize with HPV in a 
normal cell to initiate and progress a tumorigenic cell.[146]

ONCOGENIC DNA VIRUSES AND 
MODULATION OF THE NOTCH PATHWAY

As previously discussed, the Notch signaling pathway 
influences cell fate decisions, proliferation versus 
differentiation, and cell survival. Similarly, viruses in 
infected cells promote cell survival, promote or block cell 
cycling and employ a variety of mechanisms to evade 
innate cellular anti-viral responses to ensure their own 
survival and multiplication. In light of these similarities, 
it is not surprising that several viruses highjack the 
Notch pathway to ensure the completion of their own life 
cycles.[147]

The first report of an interaction between a virus and 
the Notch pathway came from studies showing that 
binding of Epstein-Barr virus (EBV) nuclear antigen 2 
(the transcriptional activator essential for EBV-driven 
B-cell immortalization) to responsive promoters requires 
the interaction with the nuclear effector of Notch signaling 
CSL.[148] More recently, also, the Kaposi’s sarcoma (KS)-
associated herpes virus replication and transcription 
activator protein (involved in controlling the switch from 
latency to lytic replication) has been found to activate lysis-
related gene by binding to CSL.[149] Studies using γ-secretase 
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inhibitors (GSI-I Z-Leu-Leu-Nle-CHO and LY-411, 575), 
small molecules which block Notch activation, resulted 
in apoptosis in KS cells and established KS cell tumors in 
mice, demonstrating the requirement for an active Notch 
signaling in KS.[150] Notch pathway interactions have also 
been shown with adenoviral oncoprotein 13S E1A, which 
binds to CSL, displaces associated corepressor complexes, 
and activates CSL-dependent gene expression.[151]

In agreement with reports of an association between SV40 
infection and human mesothelioma,[152] SV40 infection 
upregulates the expression of Notch1 in mesothelial 
cells.[153] SV40-mediated Notch1 induction is achieved at 
the transcriptional level; it requires both SV40 Tag and tag 
and tag-induced activation of the mitogen-activated protein 
kinase-extracellular-signal-regulated kinase pathway. Notch 
activation is necessary for the growth of SV40-transformed 
mesothelial cells, as treatment of these cells with a Notch 
inhibitor leads to G2/M cell cycle arrest.[153] Consistently, 
upregulation of Notch1 and ligands Jagged1 and 2 is 
maintained in SV40-transformed human mesothelial clones 
and SV40-positive mesotheliomas and derived cell lines.[153]

Other than in mesothelial cells, Notch1 expression and 
signaling has been linked to SV40-mediated transformation 
of primary astrocytes.[154] In both mesothelial cells and 
astrocytes, SV40-mediated activation of Notch signaling 
determines the survival of cells grown in suspension. Of 
interest, the archetypal (1 copy of enhancer sequence in 
the regulatory region) and the non-archetypal (2 copies of 
enhancer sequences in the regulatory region) SV40 strains 
are both able to transform astrocytes whether only the non-
archetypal strain can transform mesothelial cells. Differences 
in expression levels of Notch1 and its downstream effectors 
(c-Myc, Hey1, Hes1 and HeyL) appear to explain these 
differences in SV40-mediated transformation of primary 
astrocytes and mesothelial cells.[154]

SV40 tag, which forms a complex and inhibits PP2A 
activity, plays a critical role in the malignant transformation 
of human cells. Microarray analyses on human embryonic 
kidney cell lines overexpressing SV40 tag have identified 
induction of Dll1 and Jagged1 suggesting a role for SV40 
tag in the activation of the Notch pathway.[155] Of interest, 
in these cells, Notch signaling was found to be upregulated 
in association with Hedgehog and Wnt pathways but 
inhibition of Hedgehog and not of Notch interfered with 
cell survival suggesting that Notch signaling is not essential 
for survival in cells expressing SV40 tag.[155] A link between 
SV40 tag and Notch has been observed also in human 
bronchial epithelial cells. Specifically, Wang et al. have 
shown that miR-27a is upregulated in SV40 tag-transformed 
human bronchial epithelial cells (HBERST) following the 
interaction between tag and PP2A. In these cells, miR-
27a promotes cell cycle progression by downregulating 
Fbxw7, a regulator of ubiquitin-dependent proteolysis of a 
set of protein involved in cell cycle progression, including 

Notch1. Suppression of miR-27a expression in HBERST 
cells leads to cell cycle arrest in the G0-G1 phase.[156]

Both SV40 Tag and tag have been shown to induce the 
immortalization of mammary gland epithelial cells.[157,158] 
SV40 tag expression inhibits mammary gland differentiation 
during mid-pregnancy and about 10% of multiparous tag 
transgenic animals develop breast tumors with latencies 
ranging from 10 to 17 months, whereas expression of 
N-terminal truncated Tag molecules harboring the intact 
p53 and pRB binding region does not have this effect.[158] 
Expression of SV40 Tag in the epithelium of the mammary 
glands results in cancers which resemble the human disease 
and do not require hormone supplementation or pregnancy 
for insurgence.[157] Breast cancer has been associated 
to SV40 infection[159] and a specific gene signature in 
transgenic models of breast cancer intrinsic to the functions 
of the SV40 T/t-antigens has been identified which is 
associated with poor prognosis.[160] It is not known whether 
SV40 is involved in the dysregulation of Notch signaling 
observed in breast cancer.[19,152] Of interest, the Notch target 
gene cyclin D1 is overexpressed in the SV40 tag-positive 
mammary gland epithelial cells and in the breast tumor 
cells from SV40 tag-expressing mice.[157]

HPV is the most significant causative agent in the 
development of cervical cancer. Despite its presence in 
almost all cervical cancers, it is widely recognized that 
HPV by itself is unable to transform a normal cell to 
a cancerous one, and additional cellular mutations are 
required to supplement the HPV oncoproteins E6 and E7. 
The activation of the Notch signaling pathway induced by 
HPV infection has been proposed as one of the cellular 
changes that cooperate with the E6 and E7 proteins to 
cause cervical cancers.[161] This proposition is based on 
several studies showing overexpression of Notch signaling 
in HPV-cervical cancer or cell lines. Specifically, active 
Notch1 expression has been shown in high-grade cervical 
lesions and cancers[162,163] and progressively increasing up-
regulation of Notch3 expression with severity of disease 
as compared to normal cervix tissue has been reported 
in a set of 168 tissue biopsy samples comprising of 
tumor specimens, precancer, and non-neoplastic cervical 
tissues.[164] Noteworthy, in the same specimens, Notch1 
was found to be downregulated thus suggesting the 
existence of a complex interplay between Notch signaling 
and HPV in the context of the development of cervical 
carcinogenesis.[164] Upregulation of both Jagged1 and Hes1 
and downregulation of Manic Fringe, a negative regulator of 
Jagged1-Notch1 signaling, have been shown in squamous 
cell carcinoma of cervix compared to high-grade lesions 
and in late-passage, but not early-passage, HPV type 
16-positive human cervical low-grade lesion-derived cell 
line W12.[165] Overexpression of all Notch receptors, Hes1, 
and MAML1, the transcriptional co-activator originally 
identified by its role in Notch signaling, has been found in 
HeLa, SiHa, and CaSki, three other cell lines derived from 



            Journal of Cancer Metastasis and Treatment  ¦  Volume 2 ¦ Issue 1 ¦ January 15, 2016 ¦ 17

HPV-positive human cervical cancer.[166] Evidence in favor 
of an oncogenic role for Notch in cervical cancer comes 
from the observation that activated Notch1 synergizes 
with HPV16 E6 and E7 proteins in conferring apoptosis 
protection through the activation of the prosurvival PI3K-
protein kinase B/AKT (PI3K-PKB/AKT) pathway and in 
the transformation of the immortalized human keratinocytes 
HaCaT cell line.[167] Furthermore, in HaCat cells active 
Notch1, through the PI3K-PKB/AKT-dependent pathway, 
inhibits p53-induced apoptosis and sustains transformation 
by HPV 16 E6 and E7.[168] Consistently with the findings 
of high level of Jagged1 in cervical cancer, Jagged1 but 
not Dll1 expression correlates with the rapid induction of 
PI3K-mediated epithelial-mesenchymal transition both in 
HaCaT cells and in a human cervical tumor-derived cell 
line.[169] Microarray studies by the same authors show that 
Notch-PI3K oncogenic functions can be independent of 
CSL activation and rely instead on Deltex 1, an alternative 
Notch effector.[169] The anti-apoptotic role played by Notch 
in cervical cancer progression has also been revealed 
by immunohistochemistry conducted in cervical cancer 
specimens in which high levels of Jagged1, Hes1, and Cdk9 
were paralleled by nuclear translocation of both NF-κB p50 
and p65 and NF-κB target genes expression (IκB-α, B-cell 
lymphoma 2 and cyclin D1).[170] An active Notch pathway 
is necessary for the survival and the maintenance of the 
neoplastic phenotype of HPV-positive cervical cancer 
cell lines as demonstrated by experiments in which Notch 
signaling was inhibited by anti-sense Notch1 oligo,[46,171] 
by upregulation of Manic Fringe,[165] by small interfering 
RNA against Jagged1[165] or by inhibition of γ-secretase in 
combination with dominant negative MAML1, a regulator 
of crosstalk between the Notch and NF-κB pathways.[166]

Experimental evidence shows that as with SV40, HPV 
proteins have a direct effect on the activation of Notch 
signaling. Weijzen et al. have reported that transfection 
of mouse primary embryonic cells and human primary 
fibroblasts with HPV16 E6 and E7 upregulates Notch1 
not only transcriptionally but also post-translationally 
by upregulating presenilin-1, a protein involved in Notch 
processing.[46] Microarray analyses have revealed enhanced 
expression of Notch1 mRNA in HPV16 E6-expressing 
keratinocytes when NFX1-123 (a protein involved, together 
with E6, in binding and stabilization of mRNA coding for 
human telomerase reverse transcriptase, the catalytic sub-
unit of telomerase) was overexpressed. A moderate increase 
in Notch1 mRNA was seen with overexpression of NFX1-
123 alone, but with 16E6 coexpression the increase in 
Notch1 was enhanced.[172] A recent study by the same group 
has shown that the Notch canonical pathway genes Hes1 
and Hes5 were increased with overexpression of NFX1-123 
in 16E6 - expressing keratinocytes, and their expression 
was directly linked to the activation or blockade of the 
Notch1 receptor. Of interest, keratin 1 and keratin 10 were 
also increased in this model, but in contrast to Notch target 
genes, their upregulation was only indirectly associated 

with Notch1 receptor stimulation, and it did not lead to 
growth arrest, increased p21 (Waf1/CIP1), or decreased 
proliferative factor Ki67.[173]

Notch signaling pathway is a key determinant of 
keratinocyte growth arrest and differentiation.[174] and it 
has been recently shown that it promotes expression of 
differentiation markers acting together with the TAp63β 
isoform of the p63 transcription factor.[175] This evidence 
supports a role for Notch as putative tumor suppressor in 
HPV-associated tumorigenesis rather than an oncogene, as 
discussed so far. It is well established that Notch activity 
regulates tumor biology in a context-dependent manner and 
may act as an oncogene or a tumor-suppressor gene within 
the same tumor type. In human, esophageal keratinocytes 
overexpression of Notch1 induces senescence (induction 
of G0/G1 cell-cycle arrest, Rb dephosphorylation, flat 
and enlarged cell morphology, and senescence-associated 
beta-galactosidase activity) requiring both canonical CSL-
dependent transcriptional activity and the p16INK4A-Rb 
pathway. Loss of p16INK4A or the presence of HPVE6/E7 
oncogene products (which inactivate both the p53 and pRB) 
in these cells have been shown not only to prevent intra-
cellular Notch1 (N1IC) from inducing senescence, but also 
to facilitate N1IC-mediated anchorage-independent colony 
formation and xenograft tumor growth with increased cell 
proliferation and reduced squamous-cell differentiation.[176] 
These observations provide a possible molecular mechanism 
to explain and support the hypothesis of the oncogenic role 
on Notch in HPV-positive cervical cancer.

In agreement with a protective role of Notch against 
HPV-induced transformation, Talora et al. have reported 
that the expression of the endogenous Notch1 gene 
is markedly reduced in a panel of cervical carcinoma 
cells, whereas expression of Notch2 remains elevated, 
and Notch1 expression is reduced or absent in invasive 
cervical cancers.[177] The authors show that increased 
Notch1 signaling, but not Notch2, causes a dramatic down-
modulation of HPV-driven transcription of the E6/E7 
viral genes, through suppression of AP-1 activity by up-
regulation of the Fra-1 family member and decreased c-Fos 
expression. According to the authors, the downmodulation 
of Notch1 expression would play an important role in late 
stages of HPV-induced carcinogenesis.[177] In agreement 
with these observations, E6 protein from cutaneous HPVs 
of the β-genus, such as bovine papillomavirus Type 1 and 
β-HPV5 and 8, induces a repression of Notch transcriptional 
activation, which is dependent on an interaction with 
MAML1[178-180] and it has been shown to inhibit keratinocyte 
differentiation.[181]

Technical approaches (type of anti-body used) for Notch 
detection have been invoked to explain the differences in 
expression levels of Notch in HPV-positive cervical tumors 
linked to the different roles of Notch as an oncogene or tumor 
suppressor gene.[182] As previously discussed, the opposite 
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roles on Notch in the context of HPV-cervical cancer have 
also been attributed to the cellular context. Extremely high 
levels of Notch1 seem to adversely affect HPV E6 and E7 
expression and cellular proliferation whereas moderate 
levels of Notch1 and PI3K exhibit oncogenic properties 
that transform primary cells containing HPV16 E6 and E7 
proteins.[161] More recently, in SiHa cervical cancer cells, 
it was shown that moderate Notch activation contributed 
to increased viability and anchorage independent growth, 
whereas high-level Notch activation decreased anchorage 
independent growth. The shift in phenotypical outcome 
was correlated to altered AP-1 activity and complex 
composition.[183]

Interactions between the Notch pathway and HPV may 
play a role also in the progression of head and neck 
squamous cell carcinoma. Exome sequencing of head and 
neck squamous cell carcinoma have revealed inactivating 
mutations in Notch1[184] and recent work by Seiwert et 
al. has shown an enrichment in the frequency of Notch1 
mutations in HPV-positive compared to HPV-negative head 
and neck squamous cell carcinomas.[185]

CONCLUSION

Many reports indicate that dysregulated Notch pathway 
and oncogenic viruses may act together in the initiation and 
progression of different human tumors. More investigations 
are necessary to acquire new knowledge on the molecular 
mechanisms involved in the oncogenic process, which 
are regulated by oncogenic viruses-mediated Notch 
dysregulation [Figure 1]. These studies could lead to 
the identification of biomarkers or the development of 
targeted therapeutic approaches specific for Notch-
associated malignancies characterized by the presence of 
the oncogenic viruses. Furthermore, considering the role of 
Notch in the regulation of the host immune response against 
viral infections, a deeper understanding of the interactions 
between oncogenic viruses and the Notch pathway could 
lead to the targeting of Notch to prevent or reduce oncogenic 
virus infections and, possibly, onset of cancers associated 
with exposure to these viruses.
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Worldwide, colorectal cancer (CRC) is a leading cause of cancer death, primarily because of limited therapeutic options for those 
with advanced disease. The farnesoid X receptor (FXR) is a member of the nuclear receptor superfamily of ligand-activated 
transcription factors. Besides its prominent role in bile acid synthesis, and lipoprotein and glucose metabolism, recent data indicate 
that FXR also plays a key role in regulating intestinal cell proliferation and carcinogenesis. Here, we review the role of FXR as a 
tumor suppressor in CRC, with particular emphasis on the molecular mechanisms underlying FXR-dependent tumorigenesis and 
its regulation, FXR-bile acid relationships and FXR-targeted drugs as potential therapeutic agents.
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INTRODUCTION

Despite advances in screening and treatment, colorectal 
cancer (CRC) results in over 50,000 deaths yearly and 
may soon surpass lung cancer as the overall leading 
cause of cancer-related death in the USA alone.[1,2] Despite 
increased efforts to improve access and compliance, 
many people neglect CRC screening. In addition, 
the efficacy of colon cancer screening is limited by the 
limited sensitivity of tests, “miss” rates on colonoscopy 
and other factors. Chemoprevention using non-steroidal 
anti-inflammatory drugs is marginally effective[3,4] but 
limited by gastrointestinal (GI)[5] and cardiovascular[6] 
toxicity that led to the withdrawal of rofecoxib.[7] Non-
surgical treatments (e.g. chemotherapy and radiation) for 
advanced colon cancer have limited efficacy. Although 
the use of biologicals that target vascular endothelial 
growth factor and epidermal growth factor receptor 
(EGFR) (i.e. bevacizumab, cetuximab and panitumumab) 
may increase survival with advanced CRC by several 
months, these agents have a limited impact on 5-year 
survival, on the order of only 10%.[8-10] Moreover, their 
use is limited by off-target toxicity that commonly 
reduces patient tolerance; EGFR, which is expressed 
widely in non-intestinal epithelial cells (e.g. dermal 
epithelial cells),[11] causes  skin  reactions that may force 

discontinuation of treatment.

FARNESOID X RECEPTOR AND ITS LIGANDS

Farnesoid X receptor (FXR) [nuclear receptor subfamily 
1, group H, member 4 (NR1H4)] is a member of the 
nuclear receptor superfamily of ligand-activated transcription 
factors and acts as a bile acid sensor.[12-14] FXR regulates 
the expression of genes involved in bile acid synthesis, and 
cholesterol and triglyceride metabolism by binding to their 
promoters as a homo- or hetero-dimer with a common partner of 
nuclear receptors, retinoid X receptor. FXR agonists include 
naturally-occurring bile acids (e.g. chenodeoxycholic acid 
[CDCA; EC50 of 10-50 µmol/L]),[15] synthetic compounds 
GW4064 (EC50 of 15 nmol/L),[16] 6E-CDCA (EC50 of 
99 nmol/L),[17] WAY-362450 (EC50 of 4 nmol/L)[18] and 
fexaramine (EC50 of 25 nmol/L);[19] FXR antagonists include 
plant-derived guggulsterone[20] and synthetic AGN34.[21] The 
FXR agonist fexaramine is poorly absorbed following oral 
administration; thus, it acts as an intestine-restricted FXR 
agonist without systemic side-effects.[19] Oral administration 
of fexaramine results in serum levels that are an order of 
magnitude lower than those obtained following intraperitoneal 
injection of the drug, and it activates FXR target genes only 
in the GI tract.[19]
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FXR EXPRESSION AND REGULATION IN 
NORMAL INTESTINAL MUCOSA

FXR is expressed primarily in the GI tract, liver and 
kidney.[22,23] Modica et al.[24] showed that murine FXR 
(Nr1h4) is expressed at high levels in the small intestine 
and colon, whereas human FXR (NR1H4) is expressed at 
moderate levels in the colon. FXR expression is localized 
primarily to fully differentiated cells lining the intestinal 
epithelium of the ileum and colon.[24] In the Apcmin/+ 
murine model of CRC, FXR messenger RNA (mRNA) 
levels were down-regulated in tumor tissue compared with 
adjacent normal mucosa. Likewise, in patients with familial 
adenomatous polyposis (FAP) syndrome, FXR mRNA 
expression was decreased in normal and neoplastic tissues. 
In a human CRC cell line, HT-29 cells, restoring wild-type 
APC protein induced FXR expression, suggesting that 
APC may directly or indirectly regulate FXR expression.[24] 
FXR can also be regulated at the transcriptional level by 
the caudal-related homeobox 2.[25] Moreover, Bailey et 
al.[26] showed that DNA methylation and KRAS signaling 
silence FXR in human CRC. In approximately, 12% of 
human colon cancers and in several colon cancer cell lines, 
including SW620, FXR promoter methylation of a CpG 
island results in very low FXR expression.[26] Cabrerizo et 
al.[27] found FXR promoter methylation at two additional 
CpG islands (-358 and -1890 bp). Furthermore, functional 
analysis of the 5’-promoter region of the human FXR gene 
in HepG2 cells suggests that hepatic nuclear factor 1a may 
be a transcription factor for FXR.[28]

FXR IS AN INTESTINAL TUMOR SUPPRESSOR

In addition to its essential role in regulating lipid metabolism, 
emerging evidence supports a key role for FXR as an 
intestinal tumor suppressor. In two mouse models of CRC, 
Apcmin/+ and chronic colitis, Modica et al.[29] showed that 
FXR deficiency increased adenoma  size and number. In 
a xenograft model, they showed that FXR reactivation via 
adenoviral infection blocked tumor growth. Using Apcmin/+ 
and azoxymethane-induced mouse models of CRC, Maran 
et al.[30] confirmed that FXR was an intestinal tumor 
suppressor. Smith et al.[31] showed that activating FXR 
with sodium taurocholate markedly reduced adenoma 
formation in Apcmin/+ mice.

FXR is down-regulated drastically in colon tumors from 
both murine (Apcmin/+) and human FAP models of CRC.[24] 
FXR mRNA expression is reduced in colon adenomas 
and even more profoundly in colon adenocarcinomas.[32,33] 
Diminished FXR expression is associated with advanced 
CRC stage and an adverse prognosis.[26,33]

Colon cancer risk increases substantially with chronic 
intestinal inflammation as in inflammatory bowel 
disease, including both Crohn’s and ulcerative colitis 
(UC).[34,35] FXR activation decreases the production 

of pro-inflammatory cytokines, such as interleukin 
(IL) 1-beta, IL-2, IL-6, tumor necrosis factor-alpha and 
interferon-gamma, thereby reducing inflammation and 
intestinal permeability.[36] Torres et al.[37] showed that 
FXR expression was inversely correlated with neoplastic 
progression and the severity of colonic inflammation in 
UC. FXR expression is also reduced in colonic mucosa 
from patients with primary sclerosing cholangitis (PSC) 
and UC-associated neoplasia. Compared to patients with 
UC alone, those with PSC-UC have diminished FXR 
expression in the right colon suggesting they are at a higher 
risk of proximal colon neoplasia.[37]

FXR AND COLON CARCINOGENESIS

Although the above observations strongly implicate FXR 
as a tumor suppressor, the underlying mechanism 
is incompletely understood. No mutations have been 
identified in the FXR gene in CRC.[26] Several studies 
suggest the role of FXR in colon carcinogenesis is 
multifactorial. Modica et al.[29] showed the importance 
of Wnt signaling and apoptosis downstream of FXR. 
FXR promotes Wnt signaling with the expansion of basal 
proliferative intestinal cells, and a concomitant reduction 
in the apoptosis-competent apical epithelium. When FXR 
is activated in CRC cells, induction of apoptosis results 
in the removal of genetically altered tumor cells. The 
same investigators showed that FXR activation increased 
expression of several pro-apoptotic genes, including FAS, 
BAK1, P21, KLF4, FADD, CAS9 and P27. Maran et al.[30] 
showed that FXR deficiency increases intestinal cell 
proliferation, accompanied by up-regulation of cyclin 
D1 and IL-6. In addition, it was shown that sodium 
taurocholate inhibits intestinal tumorigenesis by activating 
FXR, leading to increased Shp expression and consequent 
down-regulation of cyclin D1.[31]

Several other potential mechanisms may account for FXR 
inhibition of intestinal tumor genesis. Peng et al.[38] showed 
that Src-mediated cross-talk between FXR and the EGFR 
inhibited human intestinal cell  proliferation in vitro and 
growth of human colon cancer xenografts in nude mice. 
Yang et al.[39] has showed that FXR is a transcription factor 
for microRNA-22, and also a tumor suppressor which 
silences cyclin A gene expression in colon cancer cells. In 
inflammation-associated intestinal neoplasia, activation of 
FXR is repressed by pro-inflammatory cytokines that activate 
intestinal nuclear factor-kB signaling;[40] the investigators 
concluded that FXR not only inhibits inflammation, but also is 
targeted by the inflammatory response, resulting in a vicious 
cycle where reduced FXR activity causes less repression of 
inflammation. Zhou et al.[41] also showed that activation of 
the PPARα-UGT axis repressed intestinal FXR-FGF15/19 
feed-back and exacerbates experimental colitis, thereby 
possibly promoting intestinal tumorigenesis. In mice, both 
PPARα knockout and treatment with recombinant FGF19 
strongly attenuated dextran sulfate sodium-induced colitis.[41]
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ROLE OF BILE ACIDS IN FXR-MEDIATED 
INHIBITION OF TUMORIGENESIS

Colon cancer is often linked to a Western diet, rich 
in carbohydrates and saturated fatty acids.[42-44] Subjects 
who consume a Western diet and patients with CRC 
have elevated levels of fecal secondary bile acids, 
mostly lithocholic acid (LCA) and deoxycholic acid 
(DCA), implicating bile acids as contributing factors 
in colon carcinogenesis.[45-48] Although controversial, 
cholecystectomy, which increases intestinal bile acid 
levels, may predispose persons to CRC.[49,50] Nonetheless, 
recent evidence suggests that FXR inhibits intestinal 
tumorigenesis through a bile acid-independent mechanism. 
Degirolamo et al.[51] showed that FXR deficiency, not 
elevated bile acid levels, mediated susceptibility to 
intestinal tumorigenesis. The tumor-promoting  activity of 
bile acids does not occur as a function of their ability to 
activate FXR in the intestines.[29,51] Raufman et al. showed 
that several bile acids, including DCA and LCA, promoted 
colon carcinogenesis and  cell  proliferation by interacting 
with M3 muscarinic receptors that are overexpressed in a 
majority of colon cancers  and human colon cancer cells 
through transactivation of EGFR.[52-55] Although the role 
of FXR as an intestinal tumor suppressor might not be 
directly mediated by bile acids, FXR activation can have 
tumor-suppressive effects by transcriptional induction 
of detoxifying enzymes that mediate  transformation and 
excretion of toxic bile acids.[51] Interestingly, FXR’s role 
in liver cancer (hepatocellular carcinoma) as a tumor 
suppressor may be mediated by bile acids.[56-59]

FUTURE DIRECTIONS

In addition to being a master regulator of bile acid 
synthesis, and glucose and fat metabolism, recent research 
data reveal a novel and important role for FXR as a tumor 
suppressor in intestinal carcinogenesis, cell proliferation 
and tumor growth. Because FXR is considerably down-
regulated in colon tumor cells, restoring or reactivating 
FXR expression may offer a therapeutic strategy. In 
addition, because normal intestinal epithelial cells express 
high levels of FXR, pharmacological FXR agonists 
might be effective chemopreventive agents, particularly 
in high-risk populations, including those with hereditary 
CRC (e.g. FAP and Lynch syndrome). To avoid systemic 
toxicity associated with FXR activation (e.g. 6E-CDCA 
can cause pruritus)[60] intestine-specific FXR agonists, like 
fexaramine may be especially useful.[19]
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Aim:  As  our  understanding  of  cancer  stem  cell  (CSC) biology improves, search for inhibitory agents of CSCs and metastatic CSCs  
(mCSCs)  positive  for  CXCR4  is  warranted.  Withaferin A (WA),  a  withanolide  extracted  from  the  medicinal  plant Withania somnifera, 
has been shown to exhibit anti-cancer effects through multiple mechanisms. Whether WA could selectively target CSCs,  mCSCs,  or  non-
CSCs  of  a  gastrointestinal  (GI)  carcinoma  tumor  remains  unclear.  Methods:  Side-population  (SP)  analysis, flow cytometric phenotyping 
and sorting, non-invasive imaging in conjunction with xenotransplantation, and immunohistology were used  in  this  investigation.  Results:  
Using  the  lymph  node  metastatic  GI  cancer  cell  line  UP-LN1,  consisting  of  CD44high/CD24low floating  (F)  and  CD44low/CD24high  
adherent  (A)  cell  subsets,  this  study  demonstrated  that  as  compared  with  parental  UP-LN1  cells or A  cells,  WA  preferentially  
reduced  F-cell  proliferation,  tumor  sphere  formation,  and  SP  cells  in  vitro  in  greater  effi ciencies  by apoptosis.  This  action  was  
mechanistically  mediated  via  the  down-regulation  of  CXCR4/CXCL12  and  STAT3/interleukin-6  axes, both  of  which  are  instrumental  
in  the  acquisition  of  metastatic  ability. Attenuation  of  interferon-γ-induced  CXCR4  expression  in  F cells by knockdown with siRNA 
or blocking with an anti-CXCR4 antibody, followed by Western blot analysis, showed signifi cantly reduced metastatic potential in vitro. The 
extent of in vitro anti-invasive effect of WA on the IFN-γ-treated F cells was signifi cantly greater than on the F cells without WA treatment, 
or F cells treated with control siRNA or with control IgG antibody. The observed in  vitro effects  of WA  on  the  CSC  and  mCSC  targeting  
were  validated  by  data  obtained  with  non-invasive  imaging  in  NOD/SCID mouse  xenotransplantation.  Conclusion:  WA  could  effi 
ciently  block  the  formation  of  both  CSCs  and  mCSCs  in  the  UP-LN1  cell line, suggesting that WA may be considered an effective 
therapeutic agent for this type of GI malignancies.
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INTRODUCTION

Distant metastasis represents one of the few most challenging 
aspects in cancer management. Cancer cells progress from 
the primary lesion site and gain the ability to spread to 

distant organs. It has been demonstrated both experimentally 
and clinically that the tumor microenvironment plays 
a pivotal role in tumor progression, particularly in the 
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acquisition of metastatic potential.[1] During the process 
of tumor metastasis, a cellular event termed epithelial-to-
mesenchymal transition (EMT), is initiated and is believed 
to be a prerequisite for tumor dissemination.[2] Accumulating 
evidence from neoplastic tissues indicates the presence of 
self-renewing, stem-like cells within tumors called cancer 
stem cells (CSCs) or tumor-initiating cells. CSCs, which 
constitute a small subpopulation of neoplastic cells within a 
tumor, are defined operationally by their ability to seed new 
tumors.[3] Recently, a seminal study has demonstrated that 
disseminating cancer cells require self-renewal capability, 
similar to that exhibited by stem cells and has indicated 
that the EMT process enriched the CSC population.[4] 
Collectively, these studies provided important evidence 
and insights into CSC biology. The existence of CSCs has 
been shown to contribute to many aspects of tumorigenesis, 
especially therapy resistance[5,6] and metastasis.[7] However, 
studying CSCs has been a great challenge due to their rarity 
and the accuracy of identification methods. Therefore, a 
reliable tumor cell model which replicates the physiological 
properties of CSCs and metastatic CSCs (mCSCs) becomes 
a valuable tool for the understanding of CSC biology.

The UP-LN1 lymph node metastatic cell line we have 
established previously exhibits CSC characteristics.[8,9] UP-
LN1 is a CEA-producing gastrointestinal (GI) carcinoma 
cell line which harbors a unique co-existence of 2 major 
naturally occurring cell populations, adherent (A) and 
floating (F) cells. Between the 2 subpopulations, the F cells 
were characterized to possess several CSC-like properties, 
including CD44high/CD24low phenotype, high expression 
of multiple drug resistance genes, and tumor-initiating ability 
in NOD/SCID mice with low cell numbers, depressed HLA 
class I expression,[9,10] and resistance to natural killer (NK)/
lymphokine activated killer (LAK)-mediated cytolysis, 
relative to CD44low/CD24high A cells.[9] In addition, F and 
A cells were found mutually convertible with F to A cells 
at a faster rate. It is also conceivable that F cells may be 
more easily separated from the primary lesion than A cells 
to enter the bloodstream as circulating tumor cells and then 
deposit and proliferate at the new site through extravasation 
and intravasation, as the initial step toward metastasis. This 
phenomenon appears not to be restricted to GI malignancies 
since a similar result was recently reported with other cancer 
types such as breast cancer recently.[11] Within the CSC cell 
population, there is an even smaller subset which could be 
become induced to CXCR4-positive mCSCs responsible 
for initiating metastatic activity in or migrate toward/invade 
a new microenvironment where a greater CXCL12 gradient 
is present.[9] Moreover, in response to interferon-γ (IFN-γ) 
or activated NK or LAK cells, the CXCR4-positive mCSCs 
could only be induced from CSCs, which were harbored in 
the highly tumorigenic CD44high/CD24low F subset. Thus, 
the UP-LN1 cell line represents an ideal in vitro model for 
studying CSCs and screening for effective anti-CSC and 
anti-mCSCs agents.

Withaferin A (WA), a cell-permeable steroidal lactone 
extracted from the Indian winter cherry, Withania somnifera, 
has been cited for its anti-cancer effects via multiple 
mechanisms.[12-16] For instance, WA has been shown to 
elicit oxidative stress reactive oxygen species (ROS) and 
mitochondrial dysfunction in leukemia cells leading to 
apoptosis.[14] In breast cancer, WA-induced apoptosis via 
the induction of Bim-s and Bim-L in estrogen-responsive 
MCF-7 cells and in triple-negative MDA-MB-231 
cells.[17] In another study, WA has been shown to exhibit 
anti-tumor and anti-angiogenesis activity by binding to 
the intermediate filaments vimentin and F-actin.[18] More 
importantly, WA at low dosages appeared to eliminate cells 
expressing breast CSC markers including CD44, CD24, 
CD34, CD117 and Oct 4, and to down-regulate Notch1, 
Hes1 and Hey1 expression,[19] suggesting the potential 
of WA as a CSC-targeting compound. Together, these 
findings provide the rationale to further explore the anti-
cancer effects of WA on the UP-LN1 cell line in terms of 
the mechanisms involved in blocking the formation of 
CSCs and/or mCSCs.

In this study, we also used side-population (SP) method[20,21] 
to enrich the CSC subpopulation from UP-LN1 cells, and 
then showed that F cells harbored the highest percentage of 
CSC-like cells with an elevated expression of few selected 
stemness-related genes. Subsequently, we demonstrated 
that WA treatment could inhibit the formation of tumor 
aggregates/spheres and induce apoptosis in F cells. More 
importantly, WA treatment could lead to the down-regulation 
of CXCR4/CXCL12 and STAT3/IL-6 axes, both being 
key members of a metastatic signaling pathway. Finally, 
using non-invasive bioluminescence imaging technique, 
we demonstrated that after treatment with WA, both the 
tumor burden and dissemination ability were significantly 
suppressed in NOD/SCID mice implanted with F cells.

METHODS

Chemicals and reagents

WA was purchased from Sigma-Aldrich (St. Louis, MO, 
USA), and its purity was > 95%. Primary monoclonal 
antibodies (mAbs) to Oct4, Sox2, c-Myc, Nanog, vimentin, 
Fas receptor, caspase-3, caspase-8, caspase-9, poly ADP-
ribose polymerase (PARP), Bcl-2, survivin, Akt, ERK, 
GRK3/2, STAT3, and β-actin were purchased from Cell 
Signaling Technology (Boston, MA, USA). Additional 
mAbs used were as follows: Mouse anti-human CXCL12 
(clone 79018, R and D Systems, Minneapolis, MN, USA), 
and CXCR4 (clone 15G5, R and D Systems, Minneapolis, 
MN, USA), Fluorescein isothiocyanate (FITC) or 
phycoerythrin-conjugated goat-antimouse IgG (Biolegend, 
San Diego, USA) were used as the secondary Ab for tracing 
the primary mAb. For multiple color-phenotyping, 5 × 105 

cells were directly incubated with FITC-conjugated mouse 
anti-human CD44 (clone G44-26, BD-Pharmingen, Franklin 
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Lake, NJ, USA), and allophycocyanin-conjugated mouse 
anti-human CD24 (clone ML10, Biolegend, San Diego, 
USA) mAbs according to the manufactural instructions. 
Labeled cells were then washed 3 times by phosphate-
buffered saline (PBS) plus 2% fetal bovine serum (FBS) 
followed by fixation with 1% paraformaldehyde. The fixed 
samples were then analyzed cytofluorometrically.

Cell line, subsets and culture conditions

The UP-LN1 cell line and its A and F subsets were used 
in this study. Unless specified, all the cell lines were 
maintained in the condition described previously.[8] For the 
separation of A cells, we discarded all floating cells in the 
culture supernatant and then harvested only the adherent 
cells by light trypsinization to set up new cultures for A 
cells. To obtain F cells, we only collected the floating 
cells in the culture supernatant of UP-LN1 culture for the 
subsequent culture passage. Each of these 2 protocols was 
used for the enrichment of A or F cells when subculturing 
for 10 consecutive rounds. To maintain the parental (P) UP-
LN1 cells (termed P cells), floating cells and trypsinized 
adherent cells were washed and pooled, then set up in a new 
culture. Trypan blue dye exclusion was used to determine 
cell viability. A and F cells were maintained in Roswell Park 
Memorial Institute (RPMI)-1640 medium supplemented 
with 10% FBS.

Characterization of UP-LN1 cells by SP analysis

To examine the existence of CSCs in the UP-LN1 
carcinoma cell line, the SP cells were isolated by flow 
cytometry and cell sorting techniques. SP cells have been 
shown to express an elevated level of ATP-binding cassette 
transporters (ABCG2), which enhance their ability to pump 
out Hoechst 33342 dye. This efflux activity of Hoechst dye 
is similar to many drug-resistant cancer cells and can be 
sorted by FACSAria flow cytometry. Therefore, we utilized 
SP analysis as one of the characteristics to demonstrate 
and analyze the population of cancer stem-like cells in our 
unique UP-LN1 cells. UP-LN1 cells were labeled with 2.5 
µg/mL Hoechst 33342 (Sigma-Aldrich, Chemie GmbH, 
Munich, Germany) for 30 min at 37 °C. The control cells 
were incubated in the presence of 50 µmol/L verapamil 
(Sigma-Aldrich, Chemie GmbH, Munich, Germany). 
Propidium iodine (PI) 1 µg/mL was added to identify dead 
cells. Analysis and sorting were performed on FACSAria 
flow cytometry (Becton Dickinson, San Jose, CA, USA), 
similar to that described by Patrawala et al.[20] After sorting, 
SP sphere cells of UP-LN1 were placed at a density of 1,000 
cells/mL under stem cell conditions by resuspension in 
tumor sphere medium consisting of serum-free HEScGRO 
medium, N2 supplement (Invitrogen, Carlsbad, CA, USA), 
10 ng/mL human recombinant bFGF (Invitrogen, Carlsbad, 
CA, USA), and 10 ng/mL EGF (Invitrogen, Carlsbad, CA, 
USA), followed by culturing in ultra-low attachment plates 
(Corning, NY, USA) for about 1 week.

Assessment of the growth of UP-LN1 cells and 
subsets following WA treatment

Sulforhodamine B (SRB) dye (Sigma-Aldrich, Chemie 
GmbH, Munich, Germany) was used to test the effects of 
selective inhibitors on cell growth and viability of SP cells. 
The WA was dissolved in dimethyl sulfoxide (DMSO) before 
diluting with growth medium to a final DMSO concentration 
of 0.05%. The P, A, and F cells were seeded into 96 well 
plates in growth medium at 3,000 cells/well. After 24 h, the 
medium was replaced with fresh growth medium containing 
the WA. The cells were incubated for another 48 h. The cells 
were fixed with trichloroacetic acid (TCA) by gently adding 
50 µL TCA (50%) to each well to a final TCA concentration 
of 10% with subsequent incubation for 1 h at 4 °C. The 
plates were then washed 5 times with tap water and air dried. 
The dried plates were stained with 100 µL of 0.4% (w/v) 
SRB prepared in 1% (v/v) acetic acid for 10 min at room 
temperature. The plates were rinsed quickly 4 times with 1% 
acetic acid to remove unbound dye and were then air dried 
until no moisture was visible. The bound dye was solubilized 
in 20 mmol/L Tris-base (100 µL/well) for 5 min on a shaker. 
Optical densities were read on a microplate reader (Molecular 
Devices, Sunnyvale, CA, USA) at 562 nm.

Apoptosis assay

Apoptosis was assessed by staining the cells with Annexin 
V-FITC (BD-Pharmingen, Franklin Lakes, NJ, USA), and 
PI and analyzing stained cells via flow cytometry. Briefly, 
the UP-LN1 P, A, and F cells (1 × 106 cells/mL) were grown in 
RPMI medium alone or in the same medium supplemented 
with either WA or DMSO. After 48 h, cells were washed 
twice with ice-cold PBS and then re-suspended in 100 µL 
binding buffer containing 2 µL of FITC-conjugated Annexin 
V and 2 µL of PI for 15 min. Following the incubation, 
without washing the cells with excess reagents, 400 µL 
binding buffer was added. Samples were then analyzed by 
flow cytometry. Data acquisition and analysis were done 
using CellQuest™ software (Becton Dickinson, San Jose, 
CA, USA).

Knockdown of CXCR4 by siRNA

UP-LN1 cells were transfected with Validated MISSION® 
siRNA (SASI_Hs01_00084886, Sigma-Aldrich Taiwan, 
Linkou, New Taipei City, China) according to the vendor’s 
instructions. Transfected cells were lyzed and subjected to 
both total RNA extraction and Western blot analysis 48 h 
post-transfection. CXCR4 expression was confirmed using 
Western blot and anti-CXCR4 antibody (SAB3500383, 
Sigma-Aldrich, China).

CDy1 immunofluorescence staining

UP-LN1 P, A, and F cells were cultured in a 60-mm 
culture dish for 24 h in the presence of 500 nmol/L 
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CDy1.[22] CDy1 was a generous gift from Dr. YT Chang, 
Laboratory of Bioimaging Probe Development, Singapore 
Bioimaging Consortium Agency for Science, Technology, 
and Research, Singapore through Dr. Gi-Min Lai (Wan-
Fan Hospital, Taipei, China). The cells were harvested by 
trypsin treatment, washed with PBS, and re-suspended in 
PBS. The cells were fixed with 4% paraformaldehyde for 
10 min, permeabilized with 0.1% Triton X-100/PBS for 10 
min, and blocked with 2% bovine serum albumin/PBS for 1 
h. After incubation in dark at room temperature for 15 min, 
the cells were rinsed with PBS. The fluorescence images 
of the cells were acquired using fluorescence microscope 
(Nikon, Lewisville, TX, USA). 

In vitro cell migration and invasion assays

A Boyden chamber system was used to measure the 
invasive ability of UP-LN1 cells. Briefly, UP-LN1 P, A, and 
F cells were harvested, washed with PBS, and re-suspended 
in a serum-free RPMI medium (5 × 104 cells/200 µL) in 
the presence or absence of WA. The cells were then seeded 
into the upper chambers of Matrigel-coated filter inserts. A 
serum-containing RPMI-1640 medium (500 µL) was added 
to the lower chambers. After incubating for 24 h at 37 °C, 
filter inserts were removed from the wells, the cells that 
had invaded were stained with PI, and fluorescence images 
were taken. The number of invaded cells was determined 
using Analytical Imaging Station Software Package 
(Imaging Research, ON, Canada). The migration assay was 
performed accordingly but with 8-µm pore polycarbonate 
filters, which were not coated with Matrigel.

Western blotting

UP-LN1 P, A, and F cells lysates were prepared using 
ReadyPrep Protein Extraction Kit (Bio-Rad, Hercules, 
CA, USA) according to the instructions provided. Total 
cell lysates (50 µg) were separated electrophoretically by 
a 10% polyacrylamide SDS-PAGE gel and transferred to a 
polyvinylidene fluoride membrane using the BioRad Mini 
Protean transfer system. The blots were then blocked with 
5% skim milk in PBST for 1 h and probed with primary 
antibodies overnight at 4 °C. All primary antibodies were 
purchased from cell signaling unless otherwise specified. 
The membranes were sequentially detected with an 
appropriate peroxidase-conjugated secondary antibody 
incubated at room temperature for 1 h. Blots were washed 
3 times with PBS. Signals were then detected using the 
enhanced chemiluminescence detection system and the 
BioSpectrum Imaging System (UVP, Upland, CA, USA).

In vivo evaluation of WA-mediated anti-UP-LN1 
F cell effects

All animal studies were performed strictly under the 
animal experimentation protocols approved by Taipei 
Medical University. UP-LN1 F cells were first modified to 
express dual reporter system, FUW-Luc-mCherry-Puro (a 

generous gift from Dr. Andrew Kung, Lurie family Imaging 
Center, Dana-Farber Cancer Institute, MA) according to 
an established protocol.[14] Imaging-ready UP-LN1 F cells 
were harvested and subcutaneously injected into the left 
flank for NOD/SCID mice (3 × 105 cells/mouse; 5 mice/
group). Tumor-bearing mice were then subdivided into 
control and WA-treated groups (10 mg/kg intraperitoneal 
injection [i.p.], 3 times a week). For intravenous (i.v.) tumor 
injection, 5.5 × 105 cells/mouse were injected, followed by 
WA i.p injection as described for subcutaneous (s.c.) tumor 
injected animals. For either the s.c. or i.v.-tumor injection 
group, WA treatment was initiated 2 weeks after tumor 
injection into the animals. Tumor burden was then non-
invasively assessed based on bioluminescence intensity for 
6 weeks using IVIS200 system (Caliper Life Sciences Inc., 
Hopkinton, MA, USA). Tumor autopsies were obtained at 
the end of the experimental period by humanely sacrificing 
the animals for pathological and immunohistological 
analyses. All experiments were conducted in accordance 
with the Guide for the Care and Use of Laboratory Animals 
of the National Health Research Institutes of Taiwan and 
following the Institutional Animal Care and Use Committee 
protocol authorized by Taipei Medical University.

Histology and immunohistochemical staining

Tumor tissues were fixed in 10% formalin and embedded 
in paraffin. Serial sections of the embedded specimens 
were deparaffinized and then rehydrated in a gradient 
fashion and stained with hematoxylin and eosin. For 
immunohistochemical staining, the deparaffinized slides 
were subjected to antigen retrieval and probed with anti-
CXCR4 (1:100), anti-caspase-3 (1:200), anti-PARP (1:100) 
antibodies, or isotype IgG control. Slides were washed 
and incubated with biotinylated link universal antiserum, 
followed by horseradish peroxidase-streptavidin conjugate 
(LSAB 1 kit). The slides were rinsed, and the color was 
developed using 3,3-diaminobenzidine hydrochloride as a 
chromogen. Finally, sections were rinsed in distilled water, 
counterstained with Mayer’s hematoxylin, and mounted 
with DPX mounting medium for evaluation. Pictures were 
captured with a Photometrics CoolSnap CF color camera 
(Nikon, Lewisville, TX, USA).

Statistical analysis

Each experiment was performed in triplicate. The results 
were expressed as means ± standard deviation. The 
significant difference between control and experimental 
groups was analyzed using t-test (*P < 0.05; **P < 0.01).

RESULTS

F subset of UP-LN1 cells are enriched with 
cancer stem cells

We utilized the SP method to compare and analyze the 
percentage of F cells in the UP-LN1 cell line. In the 
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absence and presence of verapamil, the percentage of SP 
cells in each group was calculated. Results of SP analysis 
from 1 of 3 independent experiments showed that parental 
(P) UP-LN1 cells contained an intermediate of 2.93% SP 
cells, A cells contained the least among the three groups at 
1.07%, and F cells contained the highest of 4.20% [Figure 
1a, upper frame]. The results show Hoechst 33342 dye 
exclusion was verapamil-sensitive; they suggest that F cells 
contained the highest proportion of CSCs in UP-LN1, and 
A cells contained the least. Quantitative results based on 
the 3 experiments reveal the statistical differences between 
F versus A and between F versus P cells in terms of the 
percentage of SP cells as follows: F > A with P < 0.01, and 
F > P with P < 0.05 [Figure 1a, lower frame]. To reinforce 
our SP data, an embryonic stem cell specific fluorescent dye 
CDy1[22] was used to stain UP-LN1 cells. The red fluorescent 
signal was strongly associated with F cells as compared to A 
cells [arrowheads, Figure 1b]. Notably, red fluorescence was 
significantly stronger in F cell aggregates [arrowheads, Figure 
1b]. To add support to F cells identity as potential CSCs, we 
examined the expression of stemness gene signatures such 
as Nanog, Oct4, Sox2, and c-Myc in the UP-LN1 cell line. F 
cells exhibited the highest expression level of these stemness 

genes followed by P and A cells [Figure 1c], establishing F 
cells as the major subpopulation containing the CSCs and 
their CSC niche of the UP-LN1 cell line.

WA reduces SP and cell aggregates in UP-LN1 cells

We next sought to examine the potential CSC inhibitory 
effect of WA. Our cytofluorometric data demonstrated 
that WA reduced the percentage of SP cells in UP-LN1 
in a dose-dependent manner [Figure 2a]. The ability of 
WA to affect UP-LN1 viability was then tested on F and 
A cells. The viability of SP in A cells was affected least 
among the three groups. WA preferentially targeted F cells 
in a dose-dependent fashion [Figure 2b]. Since F cells 
spontaneously formed grape-like cell aggregates, they are a 
close representation of the so-called tumor spheres or CSCs 
reported. WA treatment also prevented the formation of 
F-cell aggregates [Figure 2c]. At 10 µmol/L, WA reduced 
F-cell aggregates by approximately 80%.

WA preferentially induces apoptosis in F cells

Since WA has been shown to induce apoptosis in cervical 

Figure 1: Characterization of cancer stem-like properties of UP-LN1 cells. (a) The side-population method was employed to compare and analyze the 
percentage of potential stem cell-like cells in UP-LN1 cells. With the absence and presence of verapamil, the percentage of side-population cells was 
calculated. In the upper frame, based on representative results of one experiment, parental (P) contained an intermediate of 2.93% side-population cells, 
adherent (A) cells contained the least among the three groups at 1.07%, and floating (F) cells contained the highest percentage at 4.20%. The quantitative 
results shown in the lower frame reveal that the percentage of side-population in F cells is significantly higher than that in A and P cells with P < 0.01 and P 
< 0.05, respectively; (b) to support our side-population data, an embryonic stem cell-specific fluorescent dye CDy1 was used to stain UP-LN1 cells. The red 
fluorescent signal was strongly associated with F cells as compared to A cells (arrowheads). Notably, red fluorescence was signifi cantly stronger in F-cell 
aggregates (arrows); (c) when examined by Western blot analysis, F cells were found to express a significantly higher level of stemness genes (including 
Nanog, c-Myc, Oct4, and Sox2) than P and A cells. Note that the relative densities in the expression of each stemness gene among F, P, and A cells are also 
shown by fold difference in this figure
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cancer cells,[16] we wished to determine if it exerted a 
similar function in UP-LN1 cells. Using Annexin V as an 
apoptotic indicator, we demonstrated that WA promoted 
apoptosis in P, F, and A cells in a dose-dependent manner 
[Figure 3a-c, respectively]. When analyzed quantitatively, 
WA appeared to preferentially target F cells and triggered 
apoptosis to a higher extent in F cells than in P and A cells 
[Figure 3b]. This observation corroborates the preference 
of WA in suppressing the formation of F-cell aggregates 
in the aforementioned section. In addition, Western blot 
analysis of cell lysates obtained from WA-treated F cells 
indicated an increased expression in some pro-apoptotic 
molecules including caspase-3, -8, -9 and PARP at higher 
concentrations [≥ 5 µmol/L, Figure 3c]. The remaining 
pro-apoptotic molecule, Fas receptor, and anti-apoptotic 
molecules such as Bcl-2 and survivin were clearly down-
regulated in a dose-dependent manner.

WA treatment suppresses two major metastasis 
signaling pathways (STAT3 and CXCR4) in F cells

The presence of IFN-γ in tumor microenvironment or 
NK/LAK culture conditioned medium has been reported 
to promote the metastatic ability of cancer cells through 
the modulation of CXCR4 expression in cancer cells.[9,23] 
We wished to determine if WA treatment could overcome 
metastatic potential induced by IFN-γ in the CSC-like 

F-cell population. It was observed that the addition 
of IFN-γ increased the invasive ability in all 3 cell 
populations of the UP-LN1 cell line, with F cells at the 
highest efficiency.[9] In the presence of WA, IFN-γ-induced 
invasion was significantly suppressed, particularly in the 
F-cell population [Figure 4a]. We subsequently examined 
the 2 major signaling axes involved in cellular trafficking, 
namely CXCR4 and STAT3.[24,25] Using cytofluorometric 
analysis, we demonstrated, as shown previously,[9] that the 
surface expression of CXCR4 was elevated in the presence 
of IFN-γ at concentrations as low as 10 U/mL, in terms 
of increased percentage of CXCR4-positive cells. Notably, 
each positive cell bore a relatively constant number of 
CXCR4 receptor sites, as revealed by a constant value 
of mean fluorescence intensity. The addition of a low 
concentration of WA (2.5 µmol/L) reduced the percentage 
of CXCR4-positive cells [Figure 4b], and with the addition 
of this agent at a higher concentration (5 µmol/L), CXCR4-
positive cells could hardly be detected.

Next, we examined STAT3 and several key signaling 
pathways involved in cancer metastasis using Western 
blot analysis. WA treatment suppressed the expression of 
Akt/ ERK, CXCR4, STAT3, and GRK3/2 in F cells with or 
without the induction of mCSCs by IFN-γ treatment [Figure 4c]. 
A note of explanation is needed regarding the appearance 
of CXCR4 bands in the absence of IFN-γ added, which is 

Figure 2: Withaferin A reduced side-population and cell aggregates in UP-LN1 cells. (a) Withaferin A reduced the percentage of side-population cells in UP-
LN1 in a dose-dependent manner as indicated by our cytofluorometric analysis. The reduction of side-population cells in different populations of UP-LN1 cells 
was plotted against the concentration of withaferin A (right panel); (b) sulforhodamine B viability assay indicated that withaferin A targeted floating (F) cells 
most effectively and also in a dose-dependent manner as compared with adherent (A) or parental (P) cells. The difference between F and A cells is signifi cant 
(P < 0.01), and so is the difference between F and P cells (P < 0.01) at each of the three withaferin A dose levels (5, 10, 25 μmol/L) tested; (c) microscopic 
analysis of F cells under the influence of withaferin A demonstrated a significant reduction in the formation of F-cell aggregates or spheres. At 10 μmol/L, 
withaferin A reduced F-cell aggregates by approximately 80%
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contradictory to the results obtained cytofluorometrically. 
This was most likely due to the fact that in Western 
blotting, both surface and cytoplasmic CXCR4 molecules 
were detected, whereas in the cytofluorometric results, 
only the surface CXCR4 molecules were seen. Moreover, 
the inhibitory effect on the phosphorylation of STAT3 was 
readily noted at the highest concentration of WA (5 μmol/L) 
used. Collectively, we concluded that WA blocked the 

formation of IFN-γ-mediated induction of mCSCs through 
the inhibition of both STAT3 and CXCR4 pathways.

Time course study of inhibition of IFN-γ-
enhanced CXCR4 expression in F cells by WA

Vimentin is known to affect the mobility and invasiveness 
of cancer cells.[26] Increasing evidence also indicates that the 

Figure 3: Withaferin A induced apoptosis in floating (F) cells. (a) Using cytofluorometric technique and Annexin V as an apoptotic indicator, we demonstrated 
that withaferin A promoted apoptosis in parental (P), F and adherent (A) cells in a dose-dependent manner; (b) quantitative representation of withaferin A-induced 
apoptosis. Withaferin A appeared to trigger apoptosis to a higher extent in F cells than in P cells (P < 0.01) or in A cells (P < 0.01); (c) immunoblots of total cell 
lysates obtained from withaferin A-treated F cells showed an increased expression of pro-apoptotic molecules such as caspase-3, -8, -9, and poly ADP-ribose 
polymerase at higher concentrations of withaferin A (5-10 μmol/L), except Fas receptor. On the other hand, anti-apoptotic molecules, survivin, and Bcl-2 were 
clearly down-regulated when the two higher concentrations of withaferin A were used

Figure 4: Withaferin A suppressed metastatic potential via modulating signaling pathways participating in invasive tumor activity. (a) Withaferin A treatment was 
able to suppress interferon-γ-induced invasive ability in both parental (P) and to floating (F) cells; (b) withaferin A treatment also suppressed the expression of 
CXCR4 expression even under the stimulation of interferon-γ. The difference between F cells treated with 2.5 μmol/L withaferin A and F cells without withaferin 
A treatment is significant (P < 0.01) regardless of whether or not interferon-γ (10 U/mL) was used to stimulate F cells; (c) Western blot analysis of withaferin 
A-mediated suppression in invasive ability in F cells. Several major signaling pathways including Akt, ERK, CXCR4, GRK3/2 and STAT3, all of which are 
known to participate in cell mobility, appeared to be down-regulated by withaferin A treatment in a dose-dependent manner
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expression of vimentin is closely associated with CSCs and 
EMT positive circulating tumor cells.[27,28] In addition, we 
have shown that IFN-γ induces surface CXCR4 expression 
on the F but not A subset of the UP-LN1 cell line, while the 
same treatment decreases cytoplasmic expression of CXCL12 
in the F, but not the A, subset.[9] No changes were found in 
the expression of CXCR4 and CXCL12 in A cells.[9] These 
findings prompted us also to look into the possible correlation 
between vimentin, CXCL12, and CXCR4 expression by F 
cells pretreated with 10 U/mL IFN-γ for 48 h, followed by 
incubation with 5 µmol/L WA for indicated time periods in 
vitro. In Figure 4c, we showed that WA could exhibit a direct 
inhibitory effect on IFN-γ-mediated enhancement of surface 
CXCR4 expression in F cells in Western blot analysis. The 
expression of both CXCL12 and vimentin was inhibited in a 
similar manner as early as 12 h after WA treatment, although 
the extent of inhibition for CXCL12 was not as obvious as 
that for CXCR4 or vimentin [Figure 5a].

Effect of inhibition of CXCR4 expression on in 
vitro invasion of IFN-γ-treated F cells

IFN-γ-induced surface CXCR4 expression on F cells 
was blocked by anti-CXCR4 mAb, and cell invasion was 
examined by in vitro assay. IFN-γ-treated F cell invasion 
was clearly much reduced when compared to the control 
IgG group or the untreated group, each with P < 0.01 [Figure 
5b]. Similarly, when the expression of CXCR4 was knocked 
down by CXCR4 siRNA treatment, the invasion of IFN-γ-
treated F cells was again significantly reduced as compared 
with either the control siRNA group or the untreated group, 
each with P < 0.01 [Figure 5c and d]. Taken together, we 
herein clearly demonstrated that the extent of attenuation 
patterns of IFN-γ-induced CXCR4 expression in F cells 
following WA treatment was similar to that following 
blocking by anti-CXCR4 [Figure 5b] or that following 
knockdown of CXCR4 by CXCR4 siRNA [Figure 5c and d]. 
The observed attenuation of CXCR4 expression by F cells 
seemed to be accompanied by a decrease in vimentin and 

Figure 5: Inhibition of the CXCL12/CXCR4 axis expression by withaferin A in F cells which were pretreated with interferon-γ (10 U/mL for 24 h). (a) Time-
dependent inhibition of CXCR4, CXCL12, and vimentin expression by withaferin A. Interferon-γ pretreated floating (F) cells were treated with 5 μmol/L 
withaferin A for various lengths of time as indicated, and the expression of each protein was measured by Western blot analysis; (b) suppression of cellular 
invasion by interferon-γ pretreated F cells by neutralizing anti-CXCR4 antibody. Interferon-γ pretreated F cells were incubated with 5 μg/mL control IgG, 5 μg/
mL anti-CXCR4 antibody, or 5 μmol/L withaferin A for 24 h. Asterisks denote a statistically significant difference between anti-CXCR4 antibody treatment and 
control IgG treatment (P < 0.01); (c) knockdown of CXCR4 expression by CXCR4-siRNA. Interferon-γ pretreated F cells were transfected with control-siRNA 
or CXCR4-siRNA, and the expression of CXCR4 and vimentin were measured by Western blot analysis; (d) suppression of cellular invasion by interferon-γ 
pretreated F cells by treatment with CXCR4-siRNA. Interferon-γ pretreated F cells were transfected with control-siRNA or CXCR4-siRNA. Interferon-γ 
pretreated F cells were then harvested, and incubated in a chamber for 24 h. Asterisks denote a statistically significant (P < 0.01) difference between CXCR4-
siRNA treatment and control-siRNA treatment
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CXCL12 expression. The similarity in the response profile 
between vimentin and CXCR4 expression is striking.

In vivo validation of WA-mediated suppression 
of tumor growth and metastasis

Finally, we wished to validate the anti-cancer effects 
using tumor-bearing mouse model. F cells expressing dual 
luciferase reporter (enhanced green fluorescent protein and 
firefly luciferase, L2G) were subcutaneously injected into 
NOD/SCID mice for in vivo validation of WA-mediated anti-
cancer effects. Tumor burden and spreading were monitored 
using the bioluminescent imaging technique. Tumor burden 
was significantly larger in the control group than in the 
WA-treated group [left panel, Figure 6a], reflected by the 
change in bioluminescent intensity. Importantly, anterior 
spreading of tumor cells was evident in the control animals 
starting from week 3, while WA-treated animals exhibited 
suppressed and restricted bioluminescent signal at the 
primary lesion site [left panel, Figure 6a]. Tumor burden was 
quantitatively measured as fold changes in bioluminescent 
intensity and plotted against time [right panel, Figure 6a]. 
In another model, when F cells were intravenously injected, 
they appeared to localize to the abdominal region of the 
animals, and WA treatment appeared to prevent the spreading 
of the F cells [Figure 6b]. Subcutaneous tumor biopsies were 
obtained for immunohistochemical analysis. Immunostaining 

of CXCR4 was significantly less intense in the tumor sections 
from WA-treated mice than in control samples [Figure 6c]. In 
contrast, caspase-3, -8, -9 and PARP staining was markedly 
higher in the WA-treated xenografted tumor samples. These 
in vivo observations, while preliminary, corroborated our in 
vitro data (induction of apoptosis), suggesting that WA could 
indeed suppress metastatic propensity and induce apoptosis.

DISCUSSION

CSCs, which are a small subpopulation of tumor cells, are 
characterized by their tumor-initiating/self-renewal capacities 
and the ability to generate bulk populations of non-tumorigenic 
progenies through differentiation. CSCs have been identified 
in many human malignancies, and their abundance in clinical 
specimens has been correlated with disease progression.[3] 
Importantly, clinical cancer progression driven by CSCs may 
contribute to the failure of both conventional and targeted 
therapies.[4] CSC is targeted by a novel fluorescent dye, 
CDy1, which has specific affinity for pluripotent stem cells.[22] 
Suspended F cells spontaneously formed tumor aggregates or 
spheres under normal culture conditions and gave rise to A 
cells with a greater differentiated phenotype, which have been 
shown to be more sensitive to the conventional therapeutic 
modalities, such as chemotherapy and/or radiotherapy. The 
dynamic phenotypic transition between F and A cells closely 
resembles CSC physiology, thereby representing an ideal in 

Figure 6: In vivo validation of withaferin A-mediated anti-cancer effects. (a) Representative bioluminescence images of control and withaferin A-treatment 
mice subcutaneously inoculated with floating (F) cells. Withaferin A treatment was initiated 2 weeks post-tumor implantation to allow tumor establishment. 
Note, inoculated F cells were found to start disseminating anteriorly during week 3-4 as compared to localized signal found in withaferin A-treated mice (left 
panels). The bioluminescent intensity was significantly lower in withaferin A-treated group than in the control group. The data were quantitatively represented 
by the fold change in bioluminescence intensity over time (right panel); (b) systematic injection of F cells mimicking metastatic model. Representative images 
of F cell-inoculated mice (via tail vein injection) demonstrated that withaferin A treatment given 2 weeks after intervenous tumor injection not only suppressed 
tumor growth but also controlled the spread of F cells; (c) immunohistochemical analysis of tumor samples harvested from both control and withaferin A-treated 
animals (from subcutaneous tumor samples). Representative sections of the tumor samples were stained with CXCR4, caspase-3, and poly ADP-ribose 
polymerase antibodies. Samples treated with withaferin A demonstrated decreased CXCR4 immunostaining, while increased caspase-3 and poly ADP-ribose 
polymerase immunostaining as compared with the control samples (×200)
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vitro model. Therapeutic approaches represent translational 
strategies, which could improve the clinical outcome for 
patients with malignancies that are currently refractory 
to conventional treatments.[4,5] However, developing such 
an agent or strategy has been hindered by the lack of an 
experimental CSC cell model, which could be maintained 
with relative ease and replicate most of the clinical CSC 
characteristics.

Previously, we identified the UP-LN1 cell line which 
was characterized by a co-existence of 2 unique cell 
populations.[8,9] The CD44high/CD24low F cells attracted our 
attention particularly due to their phenotypic and cellular 
resemblance of CSCs in the form of tumor spheres. Using 
SP methods, we demonstrated that F cell population was 
enriched with CSCs with clearly elevated levels of stemness 
markers including Nanog, c-Myc, Oct4 and Sox2 noted, 
as compared with the CD44low/CD24high A-cell population 
[Figure 1a].

Having established this CSC cell model,[9] we intended 
to examine WA as a potential anti-CSC and anti-mCSC 
agent. WA has been indicated for its anti-cancer effects by 
modulating multiple molecular pathways, predominantly 
through the induction of intracellular oxidative stress.[12,13,17,29] 
WA dose-dependently reduced the percentage of SP cells in 
A, F, and parental UP-LN1 cells [Figure 2a]. Interestingly, F 
cells appeared to be more sensitive to WA treatment than A 
and parental cells [Figure 2b]. In addition, we demonstrated 
that WA promoted apoptosis in F cells in a dose-dependent 
manner as evidenced by both cytofluorometric [Figure 
3a and b] and Western blot [Figure 3c] analyses via up-
regulating caspases-3, -8 and -9, as well as PARP, which 
are collectively a family of proteins involved in a number 
of cellular processes, such as DNA repair and programmed 
cell death. It has been suggested that CSCs were more 
sensitive to ROS-induced apoptosis.[26,27] F cells were found 
to contain a lower intracellular glutathione (GSH) level 
(data not shown), which could partially explain why WA 
eliminated F cells more efficiently. On the other hand, A cells 
are in general more sensitive to killing by chemotherapeutic 
drugs and NK/LAK cells.[8,9]

In addition to promotion of apoptosis in F cells, WA 
appeared to be potent in suppressing the metastatic potential 
of F cells. As we observed in our previous study,[9] we have 
also demonstrated here that the migratory/invasive ability 
of UP-LN1 cells could be stimulated by low levels of IFN-γ 
via an increase in only the percentage of F cells expressing 
CXCR4, while the number of CXCR4 density on a per-cell 
basis remained relatively constant [Figure 4b]. This study 
showed that WA suppressed IFN-γ-induced invasiveness 
in the UP-LN1 parental, A and F cells in a dose-dependent 
manner [Figure 4a], with the greatest effect on F cells, the 
intermediate effect on parental cells, and least effect on A 
cells. The WA-mediated effect was found to be through 
down-regulation of CXCR4 and vimentin expression 
[Figure 4b]. This finding suggests that the increase in the 

number of CXCR4-positive F cells, also known as mCSCs, 
played a pivotal role in lymph node metastasis of some types 
of GI cancer, including UP-LN1.[8,9,30] This observation 
was further supported by a recent study where the positive 
CXCR4 expression was shown to be significantly associated 
with lymph node metastases (P = 0.028) and higher stages 
III/ IV (P = 0.047) in gastric cancer.[27] In addition, several 
other major metastasis-associated pathways such as Akt/ 
ERK, GRK3/2, and STAT3 could also be attenuated by 
the addition of WA [Figure 4c]. Interestingly, GRK3/2 
expression, in particular, has been shown to form complexes 
with CXCR4 and/or FAK in human primary monocyte-
macrophages and to play a part in their trafficking, upon 
the stimulus by inflammatory cytokines such as IL-4 and 
IL-13.[30] Equally important, it has been demonstrated in 
small cell lung cancer where the activation of CXCR4/
CXCL12 axis leads to the activation of the JAK/STAT3 
pathway.[31-34] STAT3 has been found and deposit and 
proliferate at the new site constitutively activated as a result 
of carcinogenesis in different cancer types, and aberrant 
STAT3 signaling has been implicated as an important 
process in malignant transformation[35-37] and induction of 
angiogenesis.[37] Activation of CXCR4 and STAT3 has been 
linked to tumor progression in different cell types, such 
as hematopoietic progenitor cells[38] and small cell lung 
carcinoma lines[39] with high mobility. Interestingly, STAT3 
activation was shown to allow a crosstalk between tumor 
cells and dendritic cells which forms an immunosuppressive 
microenvironment favorable for tumor survival and 
perpetuation.[40] Thus, the observation that WA treatment 
negatively regulated the CXCR4/CXCL12 chemotactic 
axis and molecules involved in IFN-γ-stimulated F cells, 
leading to making more CXCR4-positive mCSCs in cell 
numbers but not in increasing the number of CXCR4 sites 
on a per-cell basis, provides support for using WA as a 
potent anti-metastasis agent. The extent of the inhibitory 
effect of WA on invasiveness of IFN-γ-treated F cells was 
as great as that achieved by IFN-γ-mediated induction of 
CXCR4 in F cells attenuated by neutralizing anti-CXCR4 
antibody [Figure 5b], or by knocking down the CXCR4 
expression using siRNA [Figure 5c]. It should be pointed out 
that IFN-γ is not the only agent or means known to induce 
mCSCs,[9] since other agents/methods such as HGF[41] and 
hypoxia conditions[42] have also been reported to be able to 
do the same. Interestingly, the fluctuations of vimentin and 
CXCR4 expression in the experiments stated above were 
very similar, suggesting the importance of these 2 molecules 
in the appearance of EMT phenotype during the process of 
cancer migration and invasion.[26,27] Interestingly, a recent 
study by Bargagna-Mohan et al. indicated that WA acted as a 
tumor inhibitor, as well as the antiangiogenic agent through 
targeting the intermediate filament protein vimentin.[18]

Based on our own current findings and those by others,[13,15,17,19] 
the apoptotic process triggered by WA works through 
multiple mechanisms. They involved the mitochondrial 
pathway and associated Bcl-2 down-regulation, caspase-8, 
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-9 and -3 activations, DNA fragmentation, and the inhibition 
of both CXCR4/CXCL12 and STAT3/IL-6 pathways. To 
our knowledge, WA inhibition of IFN-γ-induced mCSCs via 
CXCR4/CXCL12 axis is reported herein for the first time. In 
addition, WA exerts the anti-angiogenic effect by targeting 
and binding vimentin, and WA cytotoxicity requires early 
ROS production and GSH depletion, and the inhibition of 
ROS increase resulting in complete suppression of a series 
of cellular events.[18] Collectively, these results strongly 
support the therapeutic potential of WA against different 
types of human solid tumors including GI malignancies.

Finally, we evaluated the anti-human cancer effects of 
WA in a xenograft mouse model. Using bioluminescent 
imaging technique,[14] we demonstrated that WA not only 
significantly suppressed the proliferation of F cells but also 
dissemination [Figure 6a]. A similar observation was made 
when F cells were injected intravenously [Figure 6b] that 
WA suppressed the dissemination of F cells around the 
abdominal region of the animals. Investigations on a larger 
panel of cancers or tumor cell lines similarly exhibiting the 
features of A and F subsets are warranted to confirm our 
current conclusion.

It is now considered that the CSC phenotype is more fluid 
than previously envisioned and is strongly modulated by the 
tumor microenvironment. This concept has been referred 
to as the dynamic CSC model.[42,43] Our data imply that 
UP-LN1 cells represent a micro-niche where the dynamic 
transitions between adherent cells (A cells, with the more 
differentiated status) and floating cells (F cells, with the 
undifferentiated CSC phenotype) occur, and may closely 
replicate the pathophysiological characteristics of CSCs in 
vivo. Accordingly, we believe that this unique cell line is 
valuable for the further study of the biology of CSCs and 
mCSCs and drug screening. Using our unique UP-LN1 
cell model, we have provided experimental evidence that 
WA is a potent CSC- and an mCSC-targeting agent which 
preferentially promotes apoptosis in F cells and suppresses 
tumorigenic (CSCs) and metastatic (mCSCs) activities. 
It achieves the latter through the metastasis-associated 
signaling pathways, notably of CXCR4/CXCL12 and 
STAT3/IL-6. Therefore, we propose that WA is considered 
for clinical trials in patients with a subset of GI-cancer like 
UP-LN1 exhibiting grape-like tumor spheres.
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Hepatocellular carcinoma (HCC) is the most common malignant tumor of the liver. The most frequent sites of metastases are lungs, 
regional lymph nodes, adrenals and bones. However, an isolated sternal metastasis from HCC as an initial presentation has been 
rarely reported. A 45-year-old man presented with a progressively increasing mass over the anterior chest wall. On investigations, 
it was found to be arising from the sternum. Histopathology was suggestive of metastatic HCC, later confirmed by the presence 
of a 9 cm × 7 cm mass in the liver on abdominal computed tomography scan and a significantly elevated serum alpha fetoprotein 
level. Thus, metastasis from HCC should be included in the differential diagnosis of anterior chest wall mass and rapidly growing 
osseous metastases at unusual sites, even in the absence of signs of liver disease.
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INTRODUCTION

Hepatocellular carcinoma (HCC) is the most common 
primary malignant tumor of the liver. It commonly occurs 
in the 6th and 7th decades of life in the western countries 
whereas in Asia it is more common in the 4th and 5th 
decades. Chronic viral hepatitis, particularly hepatitis B, has 
been the most common etiological factor.[1] Hematogenous 
extra-hepatic metastases are commonly seen in lungs, 
lymph nodes, kidneys, adrenals, and bones. Though bone 
metastasis may occur in around 10% cases with HCC, the 
most frequent sites are vertebrae and pelvis, rarely sternum 
or ribs.[2] However, isolated sternal metastasis as the initial 
presentation of HCC has been rarely reported. We hereby 
report a case of a 45-year-old man who presented with 
progressively increasing anterior chest wall swelling, which 
was diagnosed to be sternal metastasis from incidentally 
diagnosed HCC.

CASE REPORT

A 45-year-old male presented to our hospital with chief 
complaints of progressively increasing swelling over 
the anterior chest wall, associated with mild pain for 

2-3 months. There was no history of fever, jaundice, 
abdominal pain, loss of appetite and weight. Personal and 
family history was not significant.

On examination, there was an 8 cm × 6 cm mass 
over the sternum, immobile and firm with no local rise of 
temperature. The overlying skin was tense, with dilated 
veins over the mass [Figure 1]. The remainder of the 
physical examination was unremarkable.

Routine blood investigations including hemogram and 
renal function tests were normal. However, liver function 
tests were altered, showing increased transaminases and 
alkaline phosphatase [Table 1]. Human immunodeficiency 
virus and hepatitis C virus were negative. However, the 
patient was found to be hepatitis B surface antigen-positive.

Fine needle aspiration cytology (FNAC) from the mass 
showed cellular smears highly suspicious of malignancy. 
Hence, computed tomography (CT) of thorax was done 
which revealed a 67 mm × 47 mm expansile, osteolytic 
lesion with destruction and markedly enhancing soft 
tissues involving the manubrium, suggestive of malignant 
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infiltration. Both lung fields were clear, and there was no 
mediastinal adenopathy. Trucut biopsy showed moderate 
to large-sized polygonal cells with abundant eosinophilic 
cytoplasm and pleomorphic nuclei with a few cells 
showing characteristic inclusion bodies suggestive of 
metastatic carcinoma likely from an HCC [Figure 2].

Further, CT scan of the abdomen revealed a 9 cm × 7 cm 
heterogeneously enhancing mass in the arterial phase in 
segment VIII and IV of the liver with early washout in the 
venous phase, suggestive of HCC [Figure 3]. Serum alpha 
fetoprotein (AFP) was greatly elevated at 34,300 ng/dL. In view 
of raised AFP, characteristic liver mass and biopsy of sternal 
mass, the diagnosis of HCC with sternal metastasis was 
confirmed. The patient was treated with local radiotherapy 
to sternal metastasis (20 Gray, divided into 10 fractions) 
and was started on entecavir, 0.5 mg daily for hepatitis B 
and sorafenib, 400 mg daily for HCC. One month after the 
start of treatment, there was a mild reduction in the size of 
the sternal mass. The patient is currently under follow-up.

DISCUSSION

HCC is the most common primary malignant tumor 
of the liver and is one of the most frequently occurring 
malignancies in Asia. The incidence exceeds 30 cases 
in 100,000 people per year in the East Asian region.[3] 
The course of clinically apparent disease is generally 
very rapid, and, if untreated, most patients die within 3-6 
months after diagnosis. HCC shows both intra-hepatic 
and extra-hepatic metastasis, with intra-hepatic metastases 
occurring more frequently. Extra-hepatic metastasis has 
been reported in 18% of cases.[4] The mode of extra-
hepatic spread is generally hematogenous, less commonly 
via lymphatics or direct spread. The most common sites 
of extra-hepatic involvement are lungs, lymph nodes, 
adrenals, and bones.[4] Bony metastasis has been reported 
in 3-10% of cases.[5] The most common bones involved 
are vertebrae, pelvis, ribs, long bones, skull and, very 
rarely, sternum.[6] Further, bony metastases in HCC are 

generally multiple. An isolated bony metastasis as an 
initial presentation of HCC, as in our case, is rarely 
seen.[7]

Table 1: Routine blood investigations
Investigation Value
Hemoglobin (g/dL) 13
Total leukocyte count (×109/L) 9.2
Platelet count (×109/L) 260
Serum creatinine (mg/dL) 0.6
Blood urea level (mg/dL) 22
Serum bilirubin (mg/dL) 1.0
SGOT (mg/dL) 125
SGPT (mg/dL) 168
Alkaline phosphatase (U) 360
HIV Negative
HBsAg Positive
HCV Negative
Serum AFP (ng/dL) 34,300

SGOT: serum glutamic-oxaloacetic transaminase; SGPT: serum 
glutamic pyruvic transaminase; HCV: hepatitis C virus; HIV: 
human immunodeficiency virus; AFP: alpha fetoprotein; HBsAg: 
hepatitis B surface antigen

Figure 1: Prominent sternal mass on presentation

Figure 2: Hematoxylin and Eosin staining section (×40)  showing moderate-
to-large sized polygonal cells with abundant eosinophilic cytoplasm, 
pleomorphic nuclei, with few cells showing characteristic inclusion bodies 
(black arrow)

Figure 3: Computed tomography scan of abdomen showing heterogeneous 
enhancing mass in segment VIII and IV in liver in the arterial phase
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HCC bony metastases are characteristically osteolytic 
and hypervascular and thus may rupture spontaneously, 
causing hemorrhage. Chen et al.[7] reported a case of a life-
threatening hemorrhage from sternal metastasis from HCC. 
Similarly, Huang et al.[8] have reported a case of intractable 
bleeding from an isolated mandibular metastasis, which 
was controlled by palliative radiotherapy.

Very rarely, bony metastases from an unknown primary 
HCC have been reported. The exact mechanism is not 
known, but various theories have been postulated such 
as metastasis from micro HCC, which is later destroyed 
by the immune system, spontaneous regression of HCC, 
or HCC developing in ectopic liver tissue.[9] The etiology 
of HCC in our case was chronic Hepatitis B infection. 
In view of the raised AFP, a large liver mass and a 
characteristic osteolytic lesion in sternum with biopsy 
suggestive of HCC, the diagnosis was confirmed and an 
FNAC from the hepatic mass was not required.

Sorafenib is one of the first-line drugs used in the treatment 
of advanced metastatic HCC. Sorafenib is a tyrosine 
kinase inhibitor which inhibits cell growth in a dose- and 
time-dependent manner by altering the expression of genes 
involved in angiogenesis, apoptosis, and transcriptional 
regulation.[10] Various other treatment modalities have been 
reported for bone metastasis such as chemoembolization as 
for a primary HCC, systemic chemotherapy, radiotherapy 
or surgical resection.[6] Unfortunately, prognosis remains 
poor. Median survival for HCC with bone metastasis is 
reported to be 6.2 months.[6]

To conclude, we here report an unusual presentation of 
HCC as an isolated sternal mass. A high index of suspicion 
is required to accurately diagnose the disease at this point. 
Thus, authors have recommended that metastatic HCC 

should be included in the list of differential diagnosis of 
progressively growing bony lesions at unusual sites, even 
in the absence of signs of liver disease.
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The myeloid extramedullary tumor is a solid tumor formed by infiltration of immature myeloid cells in various tissues of the 
body. This tumor is also identified as chloroma or myeloid sarcoma (MS). MS is a manifestation of acute myeloid leukemia 
(AML) occurring at presentation or during treatment or relapse. MS is associated with multiple chromosomal abnormalities and 
molecular mutations since patients with these disorders bear a high potential for MS manifestation. There is a high incidence of 
extramedullary infiltration (EMI) in AML. AML patients with EMI have a worse prognosis than patients without it. Hematopoietic 
stem cells and leukemic stem cells reside in a special bone marrow microenvironment called niche, which is essential for their 
normal functions. Cancers are exploited dysfunctional cell-cell and matrix-cell interactions, which convert a normal niche into a 
neoplastic niche. This study summarizes the current knowledge on the molecular and cellular characteristics of AML with EMI 
and extramedullary niches in AML patients.
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INTRODUCTION

Acute myeloid leukemia (AML) is an aggressive 
myeloid neoplasm characterized by maturation arrest of 
myelopoiesis leading to an accumulation of myeloblasts 
in the blood and bone marrow (BM).[1] AML is a complex 
and heterogeneous disease strongly associated with genetic 
and epigenetic changes in the hematopoietic progenitors.[2] 
These changes lead to disruption of several signaling 
pathways that result in increased proliferation, survival and 
accumulation of leukemic cells.[3]

Normal hematopoietic stem cells (HSCs) reside in a 
specialized area of the BM microenvironment known as 
niche, which regulates their survival and function. Two 
distinct niches exist in the BM: Vascular and endosteal/ 
osteoblastic niche. The vascular niche is localized in close 
proximity to the osteoblastic niche, at the inner surface of 
bone cavity with abundant bone-forming osteoblasts. The 
vascular niche is composed of sinusoidal endothelial cells 

lining blood vessels, and it promotes the proliferation and 
differentiation of short-term HSCs. The endosteal niche 
includes osteoblasts, osteoclasts, glial non-myelinating 
Schwann cells and regulatory T-cells, and it is located in the 
endosteum. The vascular niche contains CXCL12-abundant 
reticular cells, nestin-positive mesenchymal stem cells 
and leptin receptor-positive cells.[4] HSC niches are present 
in different tissues during development, first in the aorta-
gonad-mesonephros (AGM) region and yolk sac, then in the 
placenta, fetal liver, spleen and BM. After birth, the BM is 
the primary site of HSC maintenance and hematopoiesis, 
but the niche can shift to extramedullary sites in response to 
hematopoietic stress.[5]

AML may present with extramedullary-AML at initial 
diagnosis or in relapse. Myeloid sarcoma (MS) is defined 
as an extramedullary mass composed of myeloid blasts 
occurring in anatomic sites other than BM.[6] Extramedullary 
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infiltration (EMI) is fairly common in AML patients. In 
addition, MS has been observed in all age groups, and may 
occur anywhere in the body. The most common tissues 
include soft tissues, bone, peritoneum, lymph nodes and 
gastrointestinal tract. Other occasional sites include male 
and female urogenital system and central nervous system 
(CNS).[7] Moreover, several studies have found a worse 
prognosis in cases of acute leukemia with EMI, which 
may be explained by a poor response to chemotherapy 
and disease relapse.[8] Evaluation of the cellular and 
molecular structures of extramedullary niches, as well 
as the migration and homing of leukemic cells, may help 
in designing diagnostic and therapeutic techniques and 
preventing relapse. However, there is still little information 
in this regard. The aim of this study was to investigate the 
characteristics of leukemic cells and the changes in their 
microenvironment that promote to EMI.

GENETIC AND MOLECULAR FEATURES 
OF EXTRAMEDULLARY INFILTRATION 
IN AML

Extramedullary leukemia (EML) is also called MS, 
granulocyte sarcoma and chloroma. In the WHO 
classification, MS is an important subgroup of myeloid 
neoplasia and acute leukemia. MS may occur simultaneously 
with, before or after the diagnosis of AML.[9] Genetic 
mutations and molecular aberrations are an important tool 
for the evaluation of acute leukemia and assessment 
of prognosis. However, there is very limited information 
on the role of genetic mutations in MS.[10] Although the 
overall incidence of MS in AML has been reported at 
1.4-9%, it is particularly high in some subtypes of AML, 
reaching 18-24% in AML patients with t(8:21) and 25% 
in pediatric AML.[11] Other genetic abnormalities diagnosed 
in EML patients include t(15:17), t(9:11), t(1:11), t(8:17), 
del(16q), del(5q), del(20q), monosomy 7, trisomy 4 and 
trisomy 8.[12] Moreover, according to the French-American-
British classification, some AML types are associated with 
EML, including M4 and M5 monocytic leukemias and the 
M2 subtype.[13]

The t(8:21) has been reported as the most common 
cytogenetic abnormality associated with EML, occurring 
both at presentation and upon relapse, and is associated 
with orbital involvement in infants.[10] Inv(16) is another 
abnormality associated with EML; it is rarer than t(8:21). 
According to studies, the bowel may be a target organ 
in men with inv(16) while breast and ovary tend to develop 
EML in female patients with inv(16).[14] AML with trisomy 
8 is found in nearly 5% of AML cases with a genetic  
abnormality. According to a study, trisomy or tetrasomy of 
chromosome 8 is observed in 35-65% of AML cases with 
leukemia cutis as a type of MS. Although confirmation 
of this relationship requires further evaluation, based on 
numerous reports, we can suggest that trisomy 8 is a risk 
factor for skin infiltration in AML.[15]

Acute promyelocytic leukemia (APL) is another subtype 
of AML defined as having a translocation between 
chromosomes 15 and 17 and generation of promyelocytic 
leukemia/retinoic acid receptor alpha fusion protein.[16] 
This fusion protein causes a block at the promyelocytic 
differentiation stage.[17] APL can occur in extramedullary 
form, and EMI is responsible for 3-8% of cases in relapse. 
The most common target tissues are CNS and skin.[18] 
Some studies indicate a relationship between 11q23 
mixed-lineage leukemia rearrangement (MLLr) and EML. 
According to some studies, the involvement in this type 
of cytogenetic abnormalities has been limited to chest and 
uterus.[19,20] Furthermore, another study suggests a link 
between MLLr and lymph node involvement.[21] More 
studies are needed to confirm these observations.

Molecular abnormalities associated with EML have not 
been systematically defined; however, a well-documented 
molecular abnormality is a mutation in the nucleophosmin 
(NPM-1) gene.[12] Nucleolar phosphoprotein or NPM-1 is 
localized in nuclear foci and is a multifunctional protein 
expressed in various cells.[22] NPM-1 gene mutation is the 
most common molecular genetic abnormality in AML, 
particularly AML with normal karyotype.[23] NPM-1 is 
mutated in almost 15% of cases of MS.[24] In a survey 
conducted on 89 AML patients, 15 patients (18%) had 
extramedullary manifestation at diagnosis, and 13 of them 
(87%) had mutated NPM-1.[25]

FMS-related tyrosine kinase 3-internal tandem duplication 
(FLT3-ITD) mutation is observed in 28-34% of cases 
of AML with normal cytogenetics. It plays an important 
role in cell proliferation, survival and differentiation of 
hematopoietic progenitor cells.[26] Some studies have 
found an association between FLT3-ITD mutation and 
EML, so that in one study, 15% of MS patients have this 
mutation.[27,28]

CD56, a neural cell-adhesion molecule, is expressed in 
normal, natural killer cells. Aberrant expression of CD56 
in AML blasts, particularly AML with translocation t(8:21) 
correlates with a worse prognosis than CD56-negative 
cases.[29] An association has been described between the 
expression of CD56 and EMI, especially in lymph nodes 
(lymphadenopathy).[21,30,31] CD56 gene is in the 11q23.1 
locus.[32] Due to this fact and to the connection between 
11q23 mutation and EMI, MLLr is likely associated with 
aberrant expression of CD56 in EMI. Some case reports 
and studies support this hypothesis.[20,21,33]

Minimal residual disease (MRD) assessment is an important 
feature of therapy management, especially in cases whose 
recurrence risk is high. There is not much information on 
MRD in MS patients, and only one study has evaluated 
the correlation between continuous detection of AML1-
MTG8 chimeric  transcripts in BM and peripheral blood, 
and extramedullary relapse in t(8:21) AML.[34]
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Available information indicates that the prognosis of EML is 
poor with short overall survival.[11] In an evaluation, the 
5-year survival rate for patients with MS was 21%. Patients 
treated with chemotherapy showed longer survival than 
untreated patients.[35] Although the mortality rate of acute 
leukemia patients has been reduced with the emergence of 
new therapies, many patients still suffer from refractory 
disease or relapse, and EMI is one of the main causes of 
poor prognosis in these patients.[8]

EXTRAMEDULLARY NICHE IN AML

During development, HSCs are initially present in AGM and 
then migrate into the fetal liver and embryonic bone, which 
remains the only active site of hematopoiesis in adult life. 
Movement and homing of HSCs in the BM is associated 
with CXCL12 chemokine and its receptor CXCR4.[36] Cancer 
subverts cell-cell and matrix-cell interactions and converts 
the normal niche to a neoplastic one.[37]

ITD-FLT3 mutation, which is common in AML and MS 
patients, leads to deregulation of CXCR4 in AML leukemic 
cells since CXCR4 signaling is markedly decreased in 
patients with ITD-FLT3 compared with patients without it. 
It is thought that this mutation facilitates the infiltration of 
leukemic cells into visceral organs by reducing the homing of 
leukemic cells.[38] Infiltration of leukemic cells in other organs 
is likely associated with chemokine receptor expression and 
different adhesion molecules. For example, NCAM1 or 
CD56, which is associated with a high incidence of MS, is 
highly expressed in the breast, testicular tissue, ovary and 
gut. This molecule is responsible for homing of leukemic 
cells in these tissues.[11] Moreover, AML blasts isolated from 
skin show a group of specific chemokine receptors including 
CCR5, CXCR4, CXCR7, and CX3CR1 compared with 
AML blasts isolated from blood and BM. These cytokine-
cytokine receptor interactions enable homing and survival of 
AML blasts in skin [Figure 1].[39]

Expression of matrix metalloproteases may contribute to 
the increased incidence of EMI in some subtypes of AML. 
For example, in SHI-1 cells, a highly invasive human acute 
monocytic leukemia cell line, there is a high expression 
level of matrix metalloproteinase 2 (MMP-2), membrane-
type 1 MMP and tissue inhibitor of metalloproteinase, 
which facilitate cell invasion.[40] Moreover, it has been 
suggested that the specific binding of MMP-9 via its 
procatalytic domain to leukocyte surface I domains of 
beta-2 integrins is essential for precellular proteolysis and 
migration of AML-derived cells[41] [Table 1].

MICRORNAS’ SIGNIFICANCE IN 
EXTRAMEDULLARY AML

MicroRNAs (miRNAs) are small, 18-25 nucleotide non-
coding RNA molecules, which regulate gene expression 
by hybridizing to their complementary messenger RNA. 
Each miRNA has the potential to regulate several different 
transcripts through partially complementary target 
sequences. miRNAs participate in cell differentiation, 
proliferation and carcinogenesis.[56] Several studies have 
shown that miRNAs play key roles in normal hematopoiesis 
and various hematological malignancies. Different miRNAs 
are also known in myelopoiesis and myeloid neoplasias 
like AML.[57] Functional studies have shown that miRNAs 
play an important role in the pathogenesis of AML as either 
oncogenes or tumor suppressors. It has also been shown that 
distinct miRNA expression signatures are associated with 
response to chemotherapy and clinical outcomes.[58] Based 
on our literature and database searches, there has been no 
study describing miRNA signatures in MS. However, some 
studies show a link between miRNAs and mutation-induced 
MS. MiR-100 is aberrantly expressed in a number of cancer 
cells, including AML cells. Increased expression of miR-100 
in AML is associated with maturation block. In vitro studies 
indicate that increased expression of miR-100 in AML cells 
inhibits retinoblastoma 1 serine phosphates  from human 
chromosome 3 and causes the release of E2F in addition to 
increased levels of phosphorylated retinoblastoma. These 
events induced proliferation and inhibited the differentiation 
of granulocyte/monocyte cells.[59] In a study performed on 
106 pediatric AML patients, it showed that this miRNA was 
associated with AML with extramedullary manifestation.[60]

High expression level of miR-10 family is associated 
with AML with mutated NPM-1.[25,61] Furthermore, 
miR-424 in AML patients with NPM-1 mutation was 
down-modulated.[62] In AML patients with the FLT3-ITD 
mutation, miR-451 and miR-144 were down-regulated 
while miR-155 was overexpressed.[63] As previously 
mentioned, NPM-1 and FLT3-ITD mutations, as well as 
some other cytogenetic abnormalities, are associated with 
increased risk of EMI.[25,27,28] In summary, deregulated 
miRNAs in these disorders can be considered as candidate 
markers for future studies in MS patients [Table 2].

Figure 1: Extramedullary infiltration formation process in acute myeloid leukemia. 
(A) Within deregulation of LSCs located in BM, cell links with niche will be cut, 
and then they will enter into the circulation via BM sinusoids; (B) disseminated 
LSCs circulate in blood vessels and based on their special characteristics, enter 
specific tissue, like skin; (C) leukemic cells, along with new, distinct niche, initiate 
new tumor in metastatic tissue. The exact molecular and cellular characteristics 
have not been defined completely. SDF-1: stromal cell-derived factor 1; BM: 
bone marrow; LSC: leukemic stem cells; HSC: hematopoietic stem cell; CAR cell: 
CXCL12-abundant reticular cell
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Table 1: Evaluation of AML patients with extramedullary infiltration
Age 
(years), sex

Cytogenetics Molecular 
test

CD markers Extramedullary 
site

Subtype Prognosis References

51, female 46XX 
(50%)/45XX del 
(5)(q13q33), -7, 
add (15)(q22), 
-18

WT1+ MPO+, CD3-, 
CD20-, TdT-

Genital area AML with 
multi-
lineage 

dysplasia

Poor [42]

16, female PML-RAR at 
(15;17)

CD13+(85%), 
CD15+, CD33+, 
CD117+, CD34±, 
HLA-DR-

Right humerus, 
right proximal 
femur and distal 
tibia

APL [43]

19, male 11q23

(MLL-AF10) 
rearrangement, 
low-level

FLT3 
inhibition

HLA-DR+, 
CD4+, CD11c+, 
CD13+, CD15+, 
CD33+, CD117+, 
CD56+, CD45±

Pulmonary M5 [44]

42, female t (8;21)-RUNX1- 
RUNX1T1

FLT3-ITD MPO+, CD34+, 
Ki67 (60-70%)

Auditory canal M2 Second 
morphologic 
CR

[45]

29, female 47, XX, +8, t 
(9;11) (p22; q23)

MLL-AF9 
fusion gene

CD117+, CD33+, 
CD38+, CD15+, 
CD64+, CD4+, 
CD56+

Left and right 
breast

M4 CR [20]

28, female No overt 
cytogenetic 
aberration was 
shown

MLL-AF9 
fusion gene

CD117+, CD13+, 
CD33+, CD34+, 
CD38+, MPO+, 
HLA-DR+

Left breast M4 CR [20]

12, female t (9;11)(p22;q23) MLL gene 
rearrangement

CD45+, CD33+, 
CD4+,

alpha-1-
antitrypsin+, 
muramidase+

Intra-abdominal 
and presacral

M5 CR [46]

15, female HLA-DR+, 
CD33+, CD15+, 
CD4+, CD11c+, 
CD11b+, CD9+, 
CD7+, CD56+, 
CD14+

Abdomen M5a Poor [47]

3-month, 
female

normal female 
karyotype - 
t(9;11) (p22; q23)

MLL gene 
rearrangement

CD45+, CD33+, 
CD117+, CD4+, 
CD1a+

Skin M5 CR [47]

10, male 45, X,-Y, del (2)
(p21), t(8;21)
(q22;q22)

CD13+, CD34+, 
CD33+, MPO+, 
HLA-DR+

Appendix M2 CR [48]

38, female t(6;21) CD13+, CD33+, 
CD34+, CD15+, 
CD117+, CD64+, 
CD65+, MPO+, 
CD56+

Gastric M4 Poor [33]

57, male 47, XY, +8, 
t(9;11) (p22; q23)

11q23, 
tetrasomy 8

CD4+, CD13+, 
CD16+, CD33+, 
CD56+ and

HLA-DR+

Forearm and thigh M5a No relapse 
during 
chemotherapy

[33]

69, female MPO+, CD43+ Eye M1 Poor [49]
47, male t(8;17), t(17;17) CD33+, CD34+, 

CD117+
Pancreas M2 [50]

1, male t(15:17) PML-RARA CD33+, CD65+, 
MPO+

Mandible APL [51]

13, female 47, XX, +21 and 
46, del (x)(q22)

CD45+, CD117+, 
CD34+, CD43+, 
CD68+

Cardiac M5 Poor [52]

                                                                                                                                                                                                   
                                                                                                                                                                                                  Contd...
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CONCLUSION

EMI is a relatively common manifestation of AML, 
with increased incidence in specific subtypes.[7] Despite 
advances in the diagnosis and treatment of myeloid 
leukemias, there is insufficient information on the diagnosis, 
treatment and pathogenesis of EML.[38] Molecular and 
cellular studies of EML cases, as well as evaluation of the 
differences between AML patients with and without EMI, 
have revealed some features of EML. Elucidating the 
relationship between genetic abnormalities and sites prone 
to infiltration may contribute to the prevention and early 
detection of EML in target tissues. In many cases, MS is 
misdiagnosed at first, with the most common alternative 
diagnoses being lymphoma, melanoma, extramedullary 
hematopoiesis and inflammation. Given the aggressive 
nature of MS, early diagnosis with sensitive and specific 
tests is vital to these patients.[9] Available information 
suggests that ITD-FLT3 mutations, which are prevalent 
in patients with EML, may play an important role in the 
pathogenesis of disease. Therefore, ITD-FLT3 mutation 
scan should be evaluated as a diagnostic and prognostic 
factor in patients. Moreover, NPM-1 mutation, which also 
has a high prevalence in EML, should be evaluated as a 
prognostic test.

According to case report studies, common CD markers in 
EML include CD13, CD33, CD34, CD117, myeloperoxidase 
(MPO), CD56 and CD68; these should be considered in 
immunophenotype assessment of the disease [Table 1]. In 
a study conducted on MS patients, similar results were 
indicated, and CD68/KP1 was the most common positive 

marker in 100% of patients. Other markers, in order of 
positive frequency, were: MPO (83.6%), CD117 (80.4%), 
CD99 (54.3%), CD68/ PG-M1 (51%), CD34 (43.4%), 
terminal deoxynucleotidyl transferase (31.5%), CD56 (13%), 
CD61 (2.2%), CD30 (2.2%) and CD4 (1.1%).[70] These data 
can be useful to develop a diagnostic immunophenotyping 
panel for MS patients. Allogeneic hematopoietic stem cell 
transplantation (HSCT) is increasingly used as treatment 
procedure for AML patients, but there are no standard 
procedures for EML therapy. Furthermore, HSCT not only 
is not an effective procedure for EML, but it can also 
increase the risk of EML relapse in AML patients.[71] Studies 
reviewed in this article suggest that cases of AML that have 
blasts with relatively specific characteristics have a high-
risk for non-hematopoietic tissue infiltration. These features 
may be very helpful in distinguishing patients susceptible 
to EMI. Further studies are needed to develop diagnostic 
and therapeutic standards for patients with EMI as well as 
sensitive and specific prognostic biomarkers.
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Table 1: Contd...
Age (years), 
sex

Cytogenetics Molecular 
test

CD markers Extramedullary 
site

Subtype Prognosis References

59, male 46, XY, dup (1) (q21; q32) in 
2/20 cells and 46, XY 18/20 cell

FLT3-ITD 
mutation

CD34+, MPO+, CD25+ Epidural M2 [53]

64, male Trisomy 8 CD45+, CD68+ (KP-1), 
CD4+, CD56+

Skin M5 [15]

24, male 46, XY and t (8;21) (q22; q22) MPO+, CD56+ Stomach M2 [54]
47, female Deletion 17q21 CD43+, CD68+, CD56- Eye M4 Poor [55]
MPO: myeloperoxidase; AML: acute myeloid leukemia; APL: acute promeylocytic leukemia; CR: complete remission; FLT3-ITD: FMS-
related tyrosine kinase 3-internal tandem duplication; MLL: mixed-lineage leukemia; PML-RARA: promyelocytic leukemia/retinoic acid 
receptor alpha; HLA-DR: human leukocyte antigens-DR; TdT: terminal deoxynucleotidyl transferase

Table 2: MiR changes in AML with abnormalities associated with prevalence of myeloid sarcoma
Abnormality Down-regulate Up-regulate References
11q23, MLL 
rearrangement

miR-34b, miR-15a, miR-29a, miR-29c, miR-372, 
miR-30a, miR-29b, miR-30e, miR-196a, mir196b 
let-7f, miR-102, miR-331, miR-299, miR-193

miR-326, miR-219, miR-194, miR-301, 
miR-324, miR-339, miR-99b, miR-328, miR150, 
miR-17-92 cluster

[64-66]

FlT3-ITD miR-451, miR-144 miR-155 (3.1-fold), miR-10a (2.5-fold) and
miR-10b (2.27-fold)

[63,65]

NPM-1 miR-424 miR-10 [61,62]
APL miR-181b miR-15a, miR-15b, miR-16-1, let-7a-3, let-7c, 

let-7d, miR-223, miR-342 and miR-107, miR125b
[67,68]

+8 AML miR-496, miR-493 miR-34b, miR370, miR107, miR-342-3p, miR-96 [69]
AML: acute myeloid leukemia; APL: acute promyelocytic leukemia; NPM-1: nucleophosmin-1; MLL: mixed-lineage leukemia
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Urinary  bladder  cancer  (UBC)  is  a  heterogeneous  disease  with  highly  variable  clinical  outcomes  and  responses  to chemotherapy. 
Despite some advances in the molecular understanding of UBC, this knowledge still has not been translated to the clinic in terms of 
improvements in the prognosis and treatment of patients. Suitable urinary bladder tumor models representative of the human disease in 
terms of histology and behavior are needed to study factors involved in tumor initiation, progression and metastasis. Further,  accurate  model  
systems would facilitate identification of new therapeutic targets and predictive markers that could lead to optimization of existing therapies 
and development of new ones. Many established cancer cell lines derived from human urinary bladder tumors representing different grades 
and stages have been used as experimental models for UBC study. These cell lines reflect some of the genetic and morphologic alterations 
observed in human urothelial carcinoma and serve as simplified models to study the behavior of cancer cells in vitro. However, their 
translational potential is limited due to the artificial conditions, in which the cells are maintained, grown and tested. Animal models offer 
a more complex and realistic model for the establishment, development, and progression of tumors as well as to evaluate new therapeutic 
approaches. Over the years, the authors' group has worked with several UBC cell lines, established and characterized chemically induced 
UBC models, and patient-derived xenografts models. In this study, the authors will provide a summary of the UBC models developed by 
their group, analyze their translational potential and weaknesses, and define areas that remain to be explored.
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INTRODUCTION

Urinary bladder cancer (UBC) is a heterogeneous disease 
in terms of histopathology and clinical behavior. Around 
70% of the patients are diagnosed with non-muscle-invasive 
bladder cancer (NMIBC) that often recur and, in about 10-
30% of the cases progress to invasive disease despite local 
therapy. The remaining 30% are muscle-invasive bladder 
cancer (MIBC) at presentation and are associated with 
high risk of metastasis and progression even after radical 
surgery and systemic treatment.[1] The necessity of lifelong 

urveillance, repeated relapses, and chemoresistance makes 
UBC the malignancy with the highest lifetime treatment 
cost per patient.[2] Patient treatment and surveillance are 
typically based on tumor histopathological features, such 
as histologic type, differentiation degree and anatomical 
extent of the disease. However, it is still challenging to 
predict the risk of recurrence and progression for individual 
patients and to identify which patients will significantly 
benefit from adjuvant and/or neoadjuvant chemotherapy. 
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Recently, several candidate molecular biomarkers have 
been discovered and could be used to subdivide urinary 
bladder tumors in clinically relevant subsets, aiding the 
prognosis, and treatment selection for patients.[3] Further 
analytical and clinical validation is required to integrate 
these markers into the clinical practice.

Several risk factors and genetic pathways have been 
implicated in the development of UBC. Low grade, non-
invasive tumors are associated with fibroblast growth factor 
receptor 3 (FGFR3) and Harvey rat sarcoma viral oncogene 
homolog (HRAS) overexpression and/or mutations whereas 
carcinoma in situ (CIS) and high-grade/invasive UBC are 
associated with tumor protein p53 (TP53), retinoblastoma 
1 (RB1), and phosphatase and tensin homolog (PTEN) 
mutations and/or loss.[4] Chemical and environmental 
exposure including aromatic amides, aniline dyes, nitrites 
and nitrates, and tobacco smoking as well as frequent 
cystitis and Schistosoma haematobium infections are also 
associated with UBC etiology.[5]

Malignant UBC consists of heterogeneous mass of 
interconnected cells containing tumor cells in different 
phases of the cell cycle, cancer stem cells subpopulations, 
supporting stromal cells and vasculature. Several tumor 
models have been used in basic science studies and 
clinical trials to increase our understanding of molecular 
mechanisms underlying tumor initiation, progression, 
metastasis and chemoresistance; yet none of these models 
can adequately mimic the clonal origin, histopathology, 
progression, and clinical behavior of human tumors. 
Therefore, a combinatorial approach based on multiple 
model systems studying specific aspects of this highly 
complex disease is required. Several models have 
been used in the study of UBC, ranging from cell lines 
(including cancer cell lines from human or non-human 
origin, immortalized and transformed cells, and grown 
in monolayer or three-dimensional systems) to animal 
models (including carcinogen-induced tumor models, 
xenografts, and genetically engineered mice). Here, we 
discuss the translational potential and applications of these 
models with particular emphasis on chemically induced 
UBC models, patient-derived xenografts (PDXs) models, 
and human bladder cancer cell lines.

CHEMICALLY INDUCED UBC

Chemically induced bladder cancer models induced 
by organo-specific bladder carcinogens were initially 
explored in the 1960s and were of the first models 
used to evaluate chemotherapy for UBC.[6,7] In these 
models, carcinogenesis of the urothelium occurs after 
repeated exposure to carcinogens such as N-butyl-N-
(4-hydroxybutyl) nitrosamine (BBN), N-[4-(5-nitro-2-
furyl)-2-thiazolyl]-formamide (FANFT), and N-methyl-
N-nitrosourea mimicking the environmental exposure 
known to be the leading cause of bladder cancer in 

humans. The carcinogens can be delivered systemically, 
by gavage or in the drinking water, or locally, by injection 
or via instillation. The tumor subtype and the time needed 
for tumorigenesis depend on the carcinogen used, animal 
species and strains and the treatment regimen. Because 
these models use immunocompetent animals and are highly 
reproducible, they can be used to study the mechanisms 
involved in pathogenesis of bladder cancer and are suitable 
for studies on interactions between host immune system 
and the tumor. In addition, several rodent bladder cancer 
cell lines derived from carcinogen-induced bladder tumors 
were established and made available for in vitro and in vivo 
studies. These include rat bladder tumor cell lines such as 
Nara bladder tumor II and AY-27 derived from BBN-induced 
bladder tumors in Wistar rats, and Fischer 344 rats exposed 
to FANFT, respectively. The murine bladder tumor-2 murine 
bladder cancer cell line, derived from an FANFT-induced 
bladder tumor in C3H mice, has also been widely used.[8-10] 
Rodents are exceptionally suited for these types of studies 
because rats and mice do not develop spontaneous urinary 
bladder tumors under normal conditions.[11]  The occurrence 
of non-neoplastic urothelial lesions, such as inflammation 
and hyperplasia, is also uncommon in these species.[12]

In our studies, C3H/He mice were exposed to BBN, a 
complete genotoxic carcinogen metabolically derived 
from a compound found in tobacco smoke. Exposure to 
BBN in the drinking water induced the development 
of hyperplasia, dysplasia, low and high-grade papillary 
UBC, CIS, and MIBC in the urothelium of exposed 
rodents.[13] The grade of cell atypia and extent of tumor 
invasion increased with increasing doses of carcinogen 
and extended period of exposure.[12] Similar exposure 
to BBN resulted in papillary tumors in Fischer 344 
rats.[13] The broad spectrum of lesions mimics the major 
pathogenic mechanisms found in human urinary bladder 
carcinogenesis: pre-neoplastic lesions occur before in situ 
and muscle-invasive tumors, following different genetic 
pathways. These lesions are characterized by 3 different 
variables with recognized relationship to the natural 
history of UBC and patient outcome as DNA content, 
p53 alterations, and proliferative index measured by 
Ki-67 protein expression. DNA ploidy was evaluated by 
calculating the 5c exceeding rate, defined as the percentage 
of cells with values above 5 n. Alterations in these 
markers were detected even in non-malignant histological 
lesions but were more frequent in urothelial tumors with 
higher malignant and aggressive potential namely CIS, 
high-grade papillary and muscle-invasive tumors as shown 
in Figure 1.[13] This abnormal biological profile represents a 
high level of genetic instability underlying the urothelium 
carcinogenesis process. This phenomenon is well known 
in human UBC, especially when CIS is present. The CIS 
surrounding normal-appearing urothelium shows a high 
frequency of abnormal DNA content, p53 mutated protein 
expression, and a high proliferative status.[11,14]
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Our studies revealed histopathological and biological 
similarities between the rodent urothelium carcinogenesis 
process and the corresponding process in humans.[11] The 
more aggressive lesions identified in rats showed a 
higher rate of DNA aneuploidy, p53 immunoexpression, 
and Ki-67 labeling index. This biological profile was 
also observed in early stage human tumors, suggesting 
that the rat model is more suitable to study the papillary 
pathway or NMIBC. These results are in agreement with 
William et al., who purport that rodent (rat) tumors provide 
an accurate mechanistic model for the study of genes 
putatively involved in invasive and metastatic UBC.[15]  
The main limitations of these models are the cost, long 
experimental protocol and the difficulty to monitor UBC 
development during the experimental protocol.

PATIENT-DERIVED UBC XENOGRAFT 
MODEL

PDX tumor models are primarily obtained by implanting 
human-derived tumor cells into immunocompromised 
mice. The tumors growing in these animals derive 
directly from patient tumor samples with minimal 
manipulation and recapitulate the biological characteristics 
of the human tumor of origin. Figure 2 presents a 
schematic representation of a study design to establish 
a direct tumor xenograft model from human samples. The 
expansion cohort enables the amplification of tumor tissue 
to establish a treatment cohort.

Tumors grown in these mice can also be stored by slow 
freezing in appropriate medium to replicate the model later. 
These models retain the cellular structure and molecular 
markers of the original tumors and have high predictive 

power.[16-18] PDX are suitable to evaluate the effectiveness 
of anticancer drugs, providing not only an investigational 
platform but a potential therapeutic decision-making tool 
based on the expression profile of individual tumors and 
their responsiveness to individual therapies.[19]

As a proof of concept, our group established and 
characterized a patient-derived UBC xenograft model to 
evaluate tumors expressing translational modifications of 
cell surface proteins in vivo. A freshly collected sample 
of human MIBC was fragmented and subcutaneously 
engrafted into male nude mice and expanded until the third 
passage. Histology and immunohistochemistry of tumor 
markers [p53, p63, Ki-67, CK20 and sialyl-Tn (sTn)] 
were used to evaluate tumor phenotype maintenance.[20] 
According to our results, the model recapitulated the 
histological and molecular nature of the primary tumor, 
including the expression of the cell-surface antigen sTn, 
a protein post-translational modification associated with 
motility and invasive capacity of UBC cells.[21]

The main limitations of this model are the long latency 
period before tumor growth begins and low take rate, 
especially in the first passage. The stroma and blood supply 
are provided by the host, and the tumor is not growing in 
the organ of origin. The artificial tumor microenvironment 
may explain the rare occurrence of tumor metastasis 
observed in these subcutaneous models.[22] The absence of 
host immune system is also an important factor to consider, 
as it influences tumor behavior.[23] We were unsuccessful in 
establishing PDX in nude rats with none of the 7 implanted 
tumors grafting during a 12 months period. The explanation 
for this results remains to be elucidated.

Figure 1: Urological lesions identified in rats exposed to BBN. (1) Hematoxylin and eosin stain; (2) respective molecular alterations. a: 
Hyp; b: Dysp; c: LGP urothelial carcinoma; d: HGP urothelial carcinoma; e: CIS; f: INV. BBN: N-butyl-N-(4-hydroxybutyl) nitrosamine; 
Hyp: hyperplasia; Dysp: dysplasia; LGP: low grade papillary; HGP: high grade papillary; CIS: carcinoma in situ; INV: invasive urothelial 
carcinoma; 5cER: 5c exceeding rate
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Subrenal capsule xenografting of primary bladder tumor 
in mice has been recently described with higher tumor 
take rates and retention of the genetic and morphological 
characteristics of the primary tumor.[24] Both subcutaneous 
and subcapsular renal sites are not the orthotopic location 
for bladder cancer growth; however, the latter seems to be a 
more favorable environment for PDX survival and growth 
as is also observed for other cancer.[25,26] The use of PDXs 
mice is feasible and allows a higher predictive power than 
other animal models.[27,28] Because of this, PDX will be an 
increasingly valuable tool in the evaluation of human tumor 
response to traditional and new chemotherapeutic drugs.

UBC CELL LINES

Cell lines established from tumors and adapted to 
proliferate in culture have been extensively used in 
cancer research and their use has significantly improved 
our knowledge of cancer biology. Cancer cell lines have 
an important role in the study of the biological effects 
of genetic alterations in different tumor subtypes, in the 
identification and characterization of genes involved 
in cancer initiation and progression, and drug testing. 
In vitro assays using panels of cell lines are used as 
first line models in the preclinical development of new 
drugs to discover, validate, and evaluate the potential 
of new therapeutic agents.[29] Gene expression can be 
manipulated in cell culture to introduce gain- or loss-
of-function mutations to evaluate the biological effect 
on cell survival and proliferation, both in vitro and in 
vivo through the use of xenografts or syngeneic models. 
For more than a half-century, tumor cell lines served as 
a foundation for cancer research since they are easy to 
use and cost-effective. Within the bladder cancer field, 

available cell lines represent different bladder cancer 
subtypes and varying degrees of genetic complexity 
depending on the sample of origin. However, continuous 
passages and culture of cells in vitro selects the cells better 
adapted to in vitro culture, reducing the heterogeneity, 
and promoting the acquisition of new mutations. Several 
human bladder cancer cell lines have been established 
and used over the years for multiple purposes. As a result 
of these studies, genomic and pharmacological profiles 
of 28 human bladder cancer cell lines are now available 
in the Cancer Cell Line Encyclopedia (https://www.
broadinstitute.org/software/cprg/?q=node/11).[30]

Our in vitro studies on UBC were based on three different 
human cancer cell lines: 5637, T24 and HT1376. These 
cell lines have been widely used to evaluate efficacy of 
anticancer drugs. Although significant heterogeneity and 
complexity were detected between them, their genomic 
profiles exhibited a similar pattern to human UBC.[31] 
The NMIBC cell line 5637 and the two MIBC cell lines 
T24 and HT1376 cover the most frequent subtypes of 
UBC; T24 represents an FGFR3/Cyclin D1 subtype, 
while 5637 and HT1376 represent the E2F3/RB1 
pathway mutational profile, with the former representing 
a less aggressive phenotype and the later bearing more 
invasive and metastatic properties.[31] Figure 3 shows 
the karyogram of HT1376 cell line that presented a 
near-tetraploid karyotype with complex arrangements in 
several chromosomes.

We have used the cell lines 5637, T24, and HT1376 
to evaluate the effect of everolimus and temsirolimus 
[sirolimus analogs and mammalian target of rapamycin 
(mTOR) inhibitors] in UBC cells. mTOR signaling was 
found to play an important role in cell growth, survival, 
proliferation, and angiogenesis in eukaryotic cells and its 
dysregulation was detected in many cancer, including in 
UBC, where it is believed to have potential for prognostic 
information and targeted therapy.[32-34] Therapies targeting 
mTOR are already used in the clinics to treat renal cell 
carcinoma and mantle cell lymphoma.[35] Their potential 
application to the treatment of other cancer is studied, 
particularly in combinational strategies, to overcome 
resistance and enhance efficacy of standard therapies. 
According to our studies, sirolimus analogs exert a slight 
interference on proliferation, apoptosis, and autophagy  
in these cancer cell lines. The NMIBC cell line 5637 was 
the most sensitive to mTOR inhibitor treatment alone.[36,37] 
Considering other preclinical studies where sensitivity to 
mTOR inhibitors has been associated with PTEN loss,[38] 
we expected that the UBC cell lines 5637 and HT1376  
(both of which harbor deletion of PTEN), would respond 
well to sirolimus analogs. However, only 5637 was 
sensitive to monotherapy. More recently, in patients with 
MIBC treated with everolimus, PTEN loss was associated 
with resistance to treatment with the unhampered 
feedback loop driving PI3K/Akt activation suggesting 

Figure 2: Schematic representation of the study design to 
establish a patient-derived tumor xenograft model. The original 
tumor and tumors grown in mice can be analyzed and compared 
using fresh or Formalin-fixed, paraffin-embedded tumor samples 
for histology and immunoexpression of specific markers. FFPE: 
Formalin-fixed, paraffin-embedded
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that the use of both PI3K and mTOR inhibitors would 
be beneficial in these cases.[39] We further evaluated the 
combined effect of mTOR inhibitors with gemcitabine 
and cisplatin, which are currently used in the treatment 
of MIBC. The combined therapy resulted in enhanced 
inhibition of cell proliferation, increased apoptosis and 
autophagy, especially in 5637 and HT1376 cell lines, 
when compared with gemcitabine or cisplatin alone. In 
contrast, in the T24 cell line, the addition of everolimus 
or temsirolimus to cisplatin did not increase the efficacy 
of the latter one but, when combined to gemcitabine 
resulted in enhanced cell proliferation inhibition.[40-43] 
This evidence supports the role of complex tumor 
signaling pathways in tumor behavior and response to 
chemotherapy and  highlights the diverse and sometimes 
controversial results observed in preclinical studies.

To some extent, the cell lines used in our investigation 
reflect the tumor heterogeneity and its response to 
anticancer drugs. Knowing the limitations of this study 
material, the use of cell lines can be a very important 
starting point, indicating new research opportunities. 
However, evidence from in vitro studies must be further 
confirmed using more realistic and complex models such 
as xenografts.

In addition to in vitro assays, human cell lines have 
been widely used to establish xenograft models in mice. 
In this model, tumor cells are implanted  either under 
the skin (heterotopic) or in the bladder (orthotopic). In 
orthotopic models, the tumor arises within the bladder 
of the recipient host allowing the study of tumor cells 
behavior in the normal host tissue microenvironment. 
Single cell suspensions of bladder cancer cell lines 
can be inoculated by intravesical instillation or direct 
injection into the bladder wall to establish xenografts or 
syngeneic models, if using human cell lines or mouse/
rat cell lines in the corresponding background strain, 

respectively.[10,44] To achieve reliable tumor take after 
transurethral implantation of tumor cells, the host bladder 
is usually submitted to catheterization with chemical 
pre-treatment or mechanical traumatization. Although 
widely used, these methods are often associated with 
adverse reactions in some study animals and can lead to 
uncontrolled tumor growth in adjacent organs. On the 
other hand, the injection of tumor cells into the bladder 
wall frequently relies on laparotomy and mobilization 
of the bladder, also a morbidity-associated procedure. 
More recently, ultrasound guided percutaneous 
implantation of cells between the urothelium and lamina 
propria have been reported with the benefit of accurate 
cell delivery and a minimally invasive procedure.[45]  
Bladder palpation and urine inspection are the initial 
approaches to identify growing tumors, followed by 
imaging techniques such as ultrasound, magnetic 
resonance imaging and bioluminescence.[45,46] Inclusion 
of fluorescent or luciferase reporter genes in tumor cells 
prior to implantation enables in vivo imaging of tumors 
and metastases, and this method has been validated in 
mouse orthotopic models with promising results.[47]

CONCLUSION

UBC is a complex disease with both genetic and 
environmental factors playing a role in tumor initiation, 
progression, and metastasis. In addition to the models 
used by our group, many more have been developed and 
are available to study the molecular biology, behavior, 
and chemosensitivity of UBC.

Most murine orthotopic UBC models can be obtained by 
three ways such as induced by a chemical carcinogen, 
implantation of human UBC cells in immunocompromised 
mice, or implantation of murine UBC cells in 
immunocompetent mice (allograft or syngeneic models). 
The model characteristics will depend on the site of 

Figure 3: Karyogram of HT1376 with GTL banding. The chromosomes with changes are marked within square with letters that represent 
partial metaphases with GTL and FISH subtelomeric probes. GTL: giemsa trypsin leishman banding; FISH: fluorescent in situ hibridization
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tumor cell implantation and the origin of implanted cells: 
traditional cell lines, primary cell culture, patient-derived 
tumor fragments, or tumor cells suspension. These 
factors influence tumor heterogeneity and the ability to 
model human tumor identity and behavior.[48] Moreover, 
a greater understanding of UBC molecular biology has 
enabled the development of genetically engineered 
mouse models that recapitulate genetic abnormalities 
of human tumors and allow the study of individually 
altered genes in tumor behavior and response to therapy 
in vivo. These models are created by knock out or knock 
in of genes involved in transformation or malignancy 
such as HRAS, EGFR, TP53, PTEN, or RB as reviewed 
elsewhere.[49] These models provide a useful platform to 
study genetic events associated with tumor development 
and progression without losing tumor microenvironment 
and the immune system of the host. However, they can 
fail to reproduce tumor heterogeneity and the genetic 
complexity of human tumors, which influence tumor 
progression and metastasis. More recently, animal 
models with functional immune systems are gaining 
attention as a platform to test emerging immunotherapies 
such as anti-programmed death ligand-1.[50]

Despite the numerous existing UBC models, some 
mechanisms underlying the pathophysiology of these 
tumors remains unknown, such as in the case of 
Schistosome-related UBC. This is mainly due to the lack 
of a tractable animal model. Hsieh et al. have developed 
a mouse model of S. haematobium urinary tract infection 
after microinjection of purified S. haematobium eggs into 
the urothelial bladder wall.[51] This model recapitulates 
several aspects of human urothelial schistosomiasis 
however, the development of infection-associated UBC 
was not reported and remains to be explored.
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Aim: The main aim of the present study was to evaluate the overall survival (OS) and time to treatment failure (TTF) in a cohort of 
relapsed/refractory diffuse large B-cell lymphomas (DLBCLs) not eligible for high-dose therapy (HDT) treated with gemcitabine 
in association with dexamethasone, cisplatin and rituximab (GDP-R) protocol. The secondary aim was to identify the  prognostic 
factors impacting OS and TTF. Methods: The authors retrospectively analyzed 45 patients with refractory/relapsed DLBCLs 
treated with GDP-R. Results: Overall response rate (ORR) was 48.8%; complete response 15/45 (33.3%), partial response 7/45 
(15.5%). Response was influenced by the number of previous therapies administered and International Prognostic Index (IPI) 
value. Although no significant impact occurred with regard to OS, patients pre-treated with 2 or < 2 chemotherapeutic regimens 
had better ORR (P = 0.014) and a longer TTF (P = 0.029 in multivariate Cox model). IPI value also influenced TTF. Patients with < 
2 IPI value had significantly more prolonged TTF than the other ones (P = 0.048 in multivariate Cox model). Treatment was well-
tolerated, with the majority of patients treated on out-patient modality. GDP-R regimen represents a valid treatment for aggressive 
relapsed/refractory B-cell lymphoma not eligible for HDT thanks to its efficacy and good toxic profile. Conclusion: The number 
of previous chemotherapeutic regimens and IPI value select those who benefit more from this treatment.
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INTRODUCTION

Diffuse large B-cell lymphomas (DLBCLs) are quite often 
curable with intensive combination chemotherapy. Despite 
the improvement of outcome with chemoimmunotherapy, 
30-40% of patients relapse after the first-line treatment, and 
the rate of the second complete remission is lower than 
30%.[1-3] Management of these cases is not well-established. 
High-dose therapy (HDT) with hematological stem-cell 
support is the standard treatment for chemosensitive 
patients. Induction salvage therapies are usually based 
on platinum and etoposide: R-DHAP (rituximab, 
dexamethasone, cytosine arabinoside, and cisplatin) and 
R-ESHAP (rituximab, etoposide, methylprednisone, 
Ara-C, and cisplatin) are generally used,[4] but they are 
often characterized by poor responsiveness and significant 
toxicity. Gemcitabine, an antimetabolite drug, has shown 

significant activity in heavily pre-treated patients with NHL 
even after autologous stem cell transplantation (ASCT). Its 
favorable toxicity profile allows its use in combination 
regimens with other cytotoxic drugs and anti-CD20-
targeted therapy with an overall response rate (ORR) of 
50-60% in different phase II studies.[5-9] In the present 
retrospective study, we described the experience of our 
institution about the use of gemcitabine in association 
with cisplatin, dexamethasone, and rituximab (GDP-R), 
in relapsed/refractory DLBCLs not eligible for (HDT) 
with hematological stem cell support. The principal aims 
of this study were to evaluate the overall survival (OS) 
and treatment failure (TTF) and the prognostic factors 
impacting OS and TTF.



                                                                                         Journal of Cancer Metastasis and Treatment  ¦  Volume 2 ¦ Issue 2 ¦ February 29, 2016 ¦60

METHODS

Patients
From February 2006 to July 2014, 45 relapsed/
refractory DLBCLs patients treated with GDP-R at our 
Institution entered into the study. Eligibility criteria 
were men or women aged > 18 years; documentation 
of unresponsiveness disease according to the Cheson 
criteria,[10] after one or more chemotherapeutic regimens; 
absence of renal, hepatic, and respiratory failure; no 
evidence of active infections; HIV-negativity; at least one 
site of measurable disease; and written informed consent. 
In particular, of a total of 45 studied patients, 37 (82%) 
relapsed after achieving an initial complete response (CR), 
while the remaining 8 patients (18%) were primary non-
responders (primary refractory disease). Patient evaluation 
included a full history and clinical examination, complete 
serum biochemistry with dosage of lactate dehydrogenase 
(LDH) and β2-microglubulin, peripheral blood and bone 
marrow immunophenotyping, bone marrow biopsy, bone 
marrow molecular analysis, chest and abdomen and pelvic 
computed tomographic scan, serology for HIV, hepatitis-B 
virus and hepatitis-C virus. The age range of the cohort was 
23-84 years. The number of previous therapies (NPTs) was 
also evaluated in this series. The first-line chemotherapy 
was R-CHOP (n = 35), R-DHAP (n = 2), and hyper-CVAD 
(n = 8). Most cases (27/45) received less than two previous 
chemotherapies; 20/45 cases had bone marrow involvement 
documented by biopsy (stage IV).

Treatment
GDP-R regimen consisted of gemcitabine (1,000 mg/m2) 
intravenous (IV) on the days 1 and 8; cisplatin (75 mg/m2) 
IV on the day 1; rituximab 375 mg/m2 IV on the day 2; 
oral dexamethasone 40 mg on the days 1-4; this regimen 
was given every 3 weeks for a total of four courses. The 
standard anti-emetic regimen including ondansetron and 
dexamethasone was provided prior to chemotherapy. 
Chemotherapy was delayed on day 8 until recovery for 
a maximum of 3 weeks if the neutrophil count was < 0.5 
× 109/L and/or the platelet count was < 50 × 109/L or if 
the patient showed grade 3/4 non-hematological toxicity 
(except for nausea, vomiting, and alopecia). The dose 
of cisplatin was reduced by 50% in the event of grade 
2 neurological toxicity or grade 1 renal toxicity. In the 
event of febrile neutropenia, grade 4 thrombocytopenia 
or more than grade 3 non-hematological toxicity (except 
alopecia), treatment with 75% of the dose was given. 
Patient’s disease was evaluated for response 1 month 
after  the end of treatment, and then every 3 months 
during the first 2 years and every 6 months for further 
3 years. International Workshop NHL response criteria 
were used to assess the response to treatment.[10] The 
toxicity was estimated and graded according to the 
National Cancer Institute Common Toxicity Criteria 
version 3.0 grading system. Side-effects were described 
in the overall population and in each of 2 subsets that 

were divided according to the International Prognostic 
Index (IPI) value and numbers of chemotherapeutic 
regimens as prognostic factors referred to OS and TTF.

Statistical analysis
Before performing survival analysis, an exploration phase 
was carried out. Categorical data were described by frequency 
and percentage, whereas continuous data by mean, median, 
and range.

Complete and partial response to chemotherapy
CR and partial response (CR and PR, respectively, according 
to the Cheson criteria) in patients with more than 2 or 2 
or < 2 chemotherapeutic regimens were assessed by using 
the Fisher exact test.

Survival analysis
The survival was expressed as mean, median, and range. The 
endpoints studied included TTF (defined as the time from the 
beginning of treatment to further disease progression, relapse, 
or death) and OS (defined as the time from diagnosis to the 
last follow-up). Six variables (risk factors) were assessed in 
TTF and OS univariate  and multivariate survival analysis: 
sex (male, female); age (≤ 65, >65); LDH (≤ 300, >300); 
stage (I-II, III-IV); IPI: (≤ 2, >2); and NPT (≤ 2, >2).

The results of the Cox regression were expressed using 
both the hazard ratios with its related confidence interval 
and related P value.

Survival curves were calculated using the Kaplan-Meier 
method and the log-rank test was used to evaluate the 
differences between curves. Univariate survival analysis 
was performed including each risk factor in a Cox 
regression model. All variables significantly influencing 
survival in the univariate analysis were analyzed together 
in a Cox regression model as multivariate analysis, with 
the aim of studying the independent contribution of each 
risk factor in explaining survivorship. Furthermore, the 
proportional hazard is always verified by using of log(-
log) curves. The results of the Cox regression were 
expressed by hazard ratios with its related confidence 
interval and related P value calculated by Wald test. 
Regression coefficients (B) were also calculated. Statistics 
was applied to the overall population (n = 45) and to each 
of the two subsets that were obtained after all patients 
were divided according to whether the IPI value was ≤ 2 
or > 2 and the number of chemotherapeutic regimens was 
≤ 2 or > 2 (27 vs. 18 pts, respectively). The cut-off value 
for the number of previous chemotherapies and IPI was 
determined by a preliminary investigation considering the 
available data from the study.

Differences were considered significant at P < 0.05.

Analyses were performed using the SPSS 21 technology.
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RESULTS

The principal clinical characteristics of patients are shown 
in Table 1. All studied patients had received 2 previous 
chemotherapeutic programs as median (range: 1-5). All 
cases were evaluable for response. ORR was 48.8%: CR 
15/45 (33.3%); PR 7/45 (15.5%). At the time of this analysis, 
after a median follow-up of 22 months (range: 5-148), 4/22 
responsive patients relapsed with a median duration of 
response of 10.5 months (range: 4-15). With a median follow-
up of 57 months, the 2-year TTF and OS rates were 43% 
and 70%, respectively. No significant difference occurred 
with regard the OS in the 2 subsets divided according to the 
IPI value and numbers of chemotherapeutic regimens (P 
= 0.823 and P = 0.389, respectively) [Table 2]. Response 
was influenced by the NPTs. Of 45 patients, 27 were pre-
treated with 2 or less than 2 chemotherapeutic regimens and 
12 achieved CR, 5 PR, and 10 a stable/progressive disease 
(SD/PD), with an ORR of 17/27 (63%). The remaining 18 
patients were pre-treated with more than 2 chemotherapeutic 
regimens. Three cases of them obtained a CR, one a PR, and 
the 14 remaining an SD/PD with an ORR of 4/18 (22%). 
Thus, patients pre-treated with 2 or < 2 chemotherapeutic 
regimens had better ORR (P = 0.014, Fisher exact test). TTF 

median time was 22.2 months for patients pre-treated with 
2 or < 2 chemotherapeutic regimens and 2.7 months for the 
other ones [Figure 1] [P = 0.029 in multivariate analysis; 
Table 3]. Even IPI value was able to influence TTF: patients 
with IPI ≤ 2 had significantly more prolonged TTF than the 
other ones [P = 0.048 in multivariate analysis; Table 3].

Toxicity
No serious adverse event was observed. The treatment 
was generally well-tolerated, with the majority of patients 
treated on out-patient modality. Neutropenia grades 2, 3, 
and 4 were, respectively, reported in 8.9%, 4.4%, and 2.2% 
of cases; whereas thrombocytopenia grades 2 and 3 were 
reported in 4.4% and 8.8% of patients, respectively. No febrile 
neutropenia was observed. Grade 2 neurotoxicity occurred 
in 2.2%, but no grade 3/4 neurotoxicity was reported. In 6 
patients, creatinine levels (which not overcame 176 μmol/L) 
increased during treatment. Hospitalization was necessary in 
1 case. As to toxicity not significant difference occurred in 
each subset of patients and it was not affected by the number 
of previous treatments. In fact, among 27 patients pre-treated 
with 2 or < 2 chemotherapeutic regimens, we recorded 8 
cases of hematological toxicity (29%) and in the remaining 18 
patients treated with more than 2 chemotherapeutic regimens, 
we recorded 5 hematological toxicity (28%) (P = ns).

DISCUSSION

About 40-60% of elderly patients with DLBCL will be 
refractory or will experience relapse during their clinical 
course.[11] These and other patients are not eligible for 
ASCT due to old age, or important comorbidities and 
management of this population is not yet standardized. 
Many current regimens, such as DHAP, ICE, ESHAP, 
show an ORR between 39% and 69%, but remarkable 
side-effects are frequent.[3,4] Therefore, these regimens 
are not feasible for this subset of refractory/relapsed 
DLBCLs. Gemcitabine is a drug classified as a 

Table 1: Principal clinical characteristics of patients
Number %

Sex
  Female 20 44
  Male 25 56
Age
  ≤ 65 years 36 80
  > 65 years 9 20
LDH
  ≤ 300 UI/L 18 40
  > 300 UI/L 27 60
Stage
  I 2 4
  II 12 26
  III 11 25
  IV 20 45
IPI
  0 2 4
  1 9 20
  2 16 36
  3 15 34
  4 1 2
  5 0 0
  Not available 2 4
NPT
  1 9 20
  2 18 40
  3 13 29
  4 4 9
  5 1 2

NPT: number of previous treatments; LDH: lactate dehydrogenase; 
IPI: international prognostic index

Figure 1: Time to treatment failure curves according to the number of 
previous chemotherapeutic regiments

Months
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nucleoside analog. It is a competitive substrate with 
deoxycytidine for incorporation into DNA, and in 
this way, it inhibits DNA replication and repair. It is a 
derivative of cytidine and even if it is similar to cytosine 
arabinoside, it can be absorbed by cells faster, more 
effectively phosphorylated, and it remains in cells for a 
longer of time. Gemcitabine inhibits the DNA synthesis 
by preventing the activity of ribonucleotide reductase, 
and this conduces to a reduction of the concentration of 
intracellular nucleotide pool. In this way, gemcitabine 
has more antitumor activities and a lighter bone marrow 
inhibition than higher dosage of cytosine arabinoside.[5,6] 
As far as we know, one previous study[12] only has 
been conducted using the same GDP-R regimen of 
chemoimmunotherapy in patients with refractory/relapsed 
DLBCLs as in our report. In this study, in 50 successive 
patients, the 2-year OS and progression-free survival 
were 70% and 48%, respectively. Hence, both these 
end-points was the same or similar to those we have 
reported in our study. ORR was 72% and grade III-IV 
neutropenia and thrombocytopenia occurred in 34% 
and 40% of patients. However, the schedule adopted by 
the investigators in this study was different than in ours. 
In fact, cisplatin was given at 25 mg/m2 IV on the days 
1-3 instead of 75 mg/m2 on the day 1 and rituximab was 
delivered on the day 1 instead of on the day 2. These 
slight differences could have affected both ORR and 
toxicity that were higher than in our study. Moreover, 
another previous study evaluated the efficacy of GDP 
regimen given with the same schedule as in our study 
but not including rituximab.[13] In this study, the ORR 
was 58.3% for assessable patients, and the 1-year OS 
rate was 41.7%.

This last value is much lower than that we have reported at 
2-year in our study (70%) and suggests that the addition 
of rituximab to GDP regimen significantly increases its 
efficacy. However, an occurrence rate for grade III/IV 
leukopenia of 37.5% and 25% for thrombocytopenia 
was found. These rates are higher than those we have 
observed in our study and the reason is not clear. In 
our study, 45 patients with aggressive refractory/relapsed 
DLBCLs not eligible for ASCT were treated with GDP-R 
achieving an ORR of 48.8% with a median duration of 
response of 13.59 months (range: 2.13-58.6 months). 
Moreover, GDP-R resulted safe: no febrile neutropenia 
was recorded; grade-4 neutropenia was registered 
in one patient, and two patients developed grade-2 
neurotoxicity. These data confirm GDP-R therapy is a 
reasonable option for refractory/relapsed DLBCLs in 
patients who are not eligible for ASCT. In particular, 
patients pre-treated with 2 or < 2 lines of therapy had a 
better ORR than that of ones (63% vs. 22%) receiving 
more than 2 lines before GDP-R, with a median TTF of 
22.2 months vs. 2.7 months (P = 0.029 in multivariate 
Cox model). Even IPI influenced TTF with a median of 
17.3 months for patients with IPI value less or equal to 
2 and 3.4 months for patients with IPI > 2 (P = 0.048 
in multivariate Cox model). These data suggest that 
exposition to numerous different chemotherapeutic 
regimens selects chemoresistant neoplastic cells that 
are difficult to be eradicated. Moreover, they suggest 
that within the entire population of patients with 
refractory/relapsed DLBCLs not eligible for ASCT the 
number of previous chemotherapeutic regimens and 
IPI value select those who benefit more from GDP-R 
treatment. It is likely that the disease was intrinsically 
more aggressive in patients with higher IPI index and 
in those who required multiple chemo-treatments. In 
fact, tumor phenotype and its biological aggressiveness 
are different in any cancer. In the multivariate analyses, 
among the evaluated prognostic factors, the number 
of previous chemo-treatments and IPI index were 
significant variables for TTF. This finding suggests 
that the number of previous chemo-treatments and IPI 
are independent prognostic factors. Moreover, tumor 
phenotype can change during the progression of the 
disease due to genetic instability of cancer cells. This 
could account for the lack of a significant correlation 
between the number of previous chemo-treatments 
or IPI and OS. In fact, prognostic factors other than 
the number of previous chemo-treatments and IPI 
and inherent to tumor phenotype can prevail with the 
progression of the disease.

In conclusion, the shown results, even if based on a 
retrospective monocentric study and a small sample 
size, evidence that for patients with relapsed/refractory 
DLBCL, who cannot benefit from HDT and GDP-R is a 
reliable and well-tolerated therapeutic choice.

Table 2: OS risk factors
Univariate analysis

P HR IC 95%
Sex 0.555 1.31 0.53-3.24
Age 0.289 1.74 0.62-4.85
LDH 0.271 1.80 0.63-5.12
Stage 0.863 0.91 0.32-2.62
IPI 0.823 1.15 0.34-3.92
NPT 0.389 1.40 0.60-3.76
NPT: number of previous treatments; LDH: lactate dehydrogenase; 
IPI: international prognostic index; OS: overall survival

Table 3: TTF risk factors
Univariate analysis Multivariate analysis
P HR IC 95% B P HR IC 95%

Sex 0.551 1.28 0.57-2.87
Age 0.536 1.37 0.51-3.66
LDH 0.290 1.59 0.67-3.76
Stage 0.243 1.80 0.67-4.85
IPI 0.041 2.82 1.01-7.87 1.29 0.048 3.65 1.24-10.7
NPT 0.019 2.59 1.17-5.74 1.15 0.029 3.17 1.12-8.95

NPT: number of previous treatments; LDH: lactate dehydrogenase; 
IPI: international prognostic index; TTF: time to treatment failure
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Case Report
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Cancer-related fatigue (CRF) is a common polysymptomatic syndrome with no standard therapy. The authors present the case of a prostate 
cancer patient in whom, during hormone therapy, disabling CRF and urinary incontinence occurred. CRF was assessed according to the 
brief fatigue inventory (BFI). The patient received duloxetine, 60 mg daily, due to its impact on both CRF and incontinence. After 2 months, 
the BFI score decreased (from 9 to 2) and urinary incontinence resolved. After duloxetine discontinuation, the patient maintained a low BFI 
score. The authors conclude that, as a serotonin-noradrenaline reuptake inhibitor, duloxetine could be active on prostate CRF, especially 
with associated urinary symptoms. Therefore, a pilot placebo-controlled trial with duloxetine to treat prostate CRF may be worthwhile.
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INTRODUCTION

According to National Comprehensive Cancer Network 
guidelines, cancer-related fatigue (CRF) is a distressing, 
persistent, subjective sense of physical, emotional and 
cognitive tiredness due to cancer and/or its treatments, 
which is not proportional to real daily living activity.[1]  
Diagnosis of CRF depends on the administration of multi-
dimensional scales, albeit to date the superiority of one 
scale compared to the others is not yet well defined.[2]

Generally, 60-90% of all cancer patients under specific 
treatment and 30-75% of cancer survivors present CRF.[3] 
It has been reported that about 74% of prostate cancer 
patients experience fatigue.[4] This association is due, in 
part, to the impact that androgen deprivation, the mainstay 
of pharmacological prostate cancer treatment, has on the 
pathophysiological mechanism of CRF.[5]

Most prostate cancer patients receive hormone therapy  
(HT) during their lifetime since it is used for localized 
disease, as neoadjuvant/adjuvant to radiotherapy or 
surgery, or for biochemical relapse following radical local 
treatment. Furthermore, HT often constitutes the sole 

treatment for localized disease in patients unsuitable for 
curative therapy or for metastatic disease. At early stages, 
17% of patients undergoing HT complain about severe 
fatigue.[6] In patients receiving both radiotherapy and HT, 
the prevalence of chronic fatigue is about 39%.[7]

CRF is a complex, polysymptomatic syndrome caused 
by direct and/or indirect effects of neoplastic lesions, 
supportive care management, comorbidities and related 
medications, and environmental and psycho-emotional 
aspects. Although CRF patho-physiology is still not 
completely understood, each of these above mentioned 
factors can cooperate to lead to an abnormal production 
and use of adenosine triphosphate, an increase in pro-
inflammatory cytokines, adhesion molecule and acute 
phase proteins. These metabolic changes are responsible 
for sleep-wake rhythm disorders and alterations of central 
nervous system mediators (corticotropin-releasing hormone 
increase, serotonin release and dopamine decrease).[8]

In one study, only 9% of patients with CRF were treated, 
and the rate of success was quite low.[9] At present, no 
satisfactory standard therapy for CRF is available.[10] 
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Corticosteroids can be useful but are not devoid of 
major side effects. Some evidence supports the use of 
methylphenidate over placebo, but its use is limited by 
side effects, and it should be administrated only under 
expert supervision. One placebo-controlled trial on 
methylphenidate in prostate cancer showed a small benefit. 
However, 37.5% of treated subjects dropped out for severe 
drug-related adverse events. Secondly, the sample size was 
quite small, and statistical analysis was not corrected for 
multiple comparisons.[11]

Also, erythropoietin may be effective but a specific dose for 
routine practice in CRF cannot be recommended. The aim 
of treatment should be to use the minimum required dose 
for the shortest duration.[12] This is due to the theoretical 
increase in the risk of thromboembolic side effects with 
higher doses and protracted treatment with erythropoietin 
and possible cancer stimulation.[10]

In some trials, antidepressants and psychostimulant drugs 
showed a small little clinical benefit.[13] Here, we report a case 
of CRF treated with duloxetine. Duloxetine is a serotonin-
noradrenergic reuptake inhibitor, commonly used as an 
antidepressant. It has been recently approved for neuropathic 
pain, chronic fatigue syndrome (at the dose range of 30-60 mg 
daily), fibromyalgia and it is also recommended for urinary 
incontinence in Europe (40-80 mg daily).[14-16]

CASE REPORT

A 74-year-old man presented to our clinic complaining of 
more than 6 months of fatigue, which was exacerbated by 
activity and not relieved by rest. The patient had a history 
of advanced prostate cancer 3 years before, he underwent 
a radical prostatectomy (Gleason score 4 + 4, pT3bN0; 
prostate-specific antigen (PSA) 21.1 ng/mL) followed by 
adjuvant radiotherapy. Following treatment, only mild 
urinary incontinence was noted. Two years later, he had a 
biochemical relapse, with a PSA doubling time < 6 months 
for which he started on daily bicalutamide, 50 mg and 
monthly luteinizing hormone-releasing hormone agonist. 
After starting medical therapy, a progressive and significant 
PSA normalization was observed. However, 6 months 
later, he complained for recurrent moments of sadness, 
loss of interest in daily activities, insomnia, concentration 
problems and worsening urinary incontinence (from mild 
to moderate).

On physical examination, he was not pale or jaundiced, 
afebrile with normal heart rate and blood pressure. Heart, 
lung, abdominal and musculoskeletal examinations were 
normal. No hepatomegaly, gynecomastia or neurological 
signs were present. Eastern Cooperative Oncology Group 
performance status was 0-1. Laboratory tests, including 
a complete blood count and electrolytes, showed mild 
anemia (hemoglobin 11.7 g/dL) and elevated transaminase 
levels (alanine transaminase 83 U/L, aspartate transaminase 

51 U/L) while thyroid, hepatic and renal function were 
normal. Serological tests for hepatitis B virus, hepatitis 
C virus, human immunodeficiency virus, Epstein-
Barr virus and cytomegalovirus were negative. Chest 
radiography, abdominal ultrasound, electrocardiography and 
echocardiography were all normal.

Diagnosis of CRF was established as a diagnosis of 
exclusion. CRF was assessed according to the Brief 
Fatigue Inventory (BFI),[17] and a score of 9 (BFI range, 
0-10) was found.

Considering both the urinary incontinence and depression 
symptoms, we prescribed duloxetine at a starting daily dose 
of 30 mg and then, as per drug schedule, after 2 weeks, the 
dose was increased to 60 mg. Duloxetine was chosen due to 
its efficacy against urinary incontinence at a similar dose 
(dose range, 40-80 mg daily).

After 2 months of treatment at the dose of 60 mg, the BFI 
score was decreased to 2, urinary incontinence completely 
resolved, and the patient returned to regular activities. 
There were no side effects. Duloxetine was continued at 
the same dose for a further 2 months and then was 
withdrawn because of alcoholism relapse, a disorder that 
the patient and his relatives had omitted in medical history. 
After duloxetine discontinuation, the patient reported a 
moderate CRF worsening over 6 months. However, 4 
months later, he maintained a 5 points-lower BFI score 
than the initial one. At the same time, he was referred 
to our alcohol abuse center with a progressive reduction 
of heavy-drinking days in a 6-month timeline follow-back.

DISCUSSION

CRF is a major problem in prostate cancer management, 
according to several studies, the prevalence of CRF 
regardless of intensity is about 74%.[4] There is no 
“gold standard” treatment currently recommended, and 
the commonly given therapies are poorly successful. 
Only 2 drugs have shown some activity against CRF: 
methylphenidate and erythropoietin, although their regular 
use do have caveats.[10]

Our patient, who was not receiving chemotherapy, 
showed mild anemia, thus not presenting an indication for 
erythropoietin. Some data show that CRF can disappear 
spontaneously 6-8 weeks after the end of HT, but our patient 
was receiving HT, and was to be continued until progression 
or unacceptable toxicity, so that a medical withdrawal was 
not indicated. Although the timing and modality of treatment 
of PSA-only recurrence after radical prostatectomy and 
radiotherapy remains controversial, our patient had high-
risk disease deserving first-line treatment.[18]

In CRF pathophysiology, a relevant impairment of 
neurotransmitter (serotoninergic, noradrenergic and 
dopaminergic) systems is present. The use of different 
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psychoactive drugs increasing neurotransmitter 
concentrations shows an effect in CRF treatment. The 
poor outcome of serotonergic drugs, as paroxetine and 
sertraline, on fatigue in randomized controlled trials 
could be due to their selective action on the serotonin 
reuptake.[13,16,19] Nevertheless, it is worth mentioning that 
a recent study stressed the role of tryptophan (a serotonin 
precursor) depletion in developing CRF and found a 
correlation between the higher degree of fatigue and 
lower tryptophan concentrations. Thus, a drug that acts 
on more than one mechanism could be appropriate.[13]

Modafinil, a non-amphetamine psychostimulant, reduces 
CRF intensity.[12] Although the precise mechanism of 
modafinil action has not been elucidated, it seems to 
rely on the interaction of adrenergic and dopaminergic 
transmission in prefrontal cortices.[20] Also, methylphenidate 
could facilitate excitatory synaptic signaling, mainly 
through strengthening catecholaminergic synaptic 
transmission. As a blocker of dopamine and norepinephrine 
transporters, it increases both extracellular dopamine and 
norepinephrine.[21,22]

Considering these data, the use of a drug like duloxetine, 
that has a pleiotropic action on these pathways, has some 
rationale in the treatment of CRF. Moreover, in our case, 
further benefit was derived from its activity on urinary 
incontinence, thus promoting the patient’s sense of well-
being and, therefore, ameliorating his quality of life and 
increasing his compliance with physical therapy (mild 
exercise, daily walking), which has a therapeutic role in 
CRF and in social life.

In conclusion, a pilot placebo-controlled trial using 
duloxetine seems worthwhile since it acts on fatigue, 
urinary symptoms and depression, all often occurring 
in a complex and multidimensional disease as prostate 
cancer CRF.
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Cervical cancer is the most common malignancy in Indian women. It usually spreads locally or via regional lymphatics to retroperitoneal 
lymph nodes and hematogenous spread is rare. The occurrence of skeletal muscle metastases is a very rare event and only a few cases 
have been reported in literature. The authors present an unusual case of cervical carcinoma in a patient that presented with skeletal muscle 
metastasis 1 year after the treatment.
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INTRODUCTION

Metastasis of carcinoma cervix to skeletal muscles is a rare 
occurrence. Muscles are highly resistant to primary and 
metastatic cancer due to their high contractile activity, local 
changes in pH, oxygenation, accumulation of metabolites, 
blood flow, and local temperature.[1] Psoas, iliopsoas, 
paraspinal muscles, and proximal musculature of the upper 
and lower limbs, represent the most frequently involved 
sites. Malignancies known to metastasize frequently to 
the muscle are melanoma, kidney, lung, thyroid cancer, 
lymphoma, leukemia and colon cancer.[2] We report a 
case of carcinoma cervix with metastasis to paraspinal 
and intercostal skeletal muscle as the initial sign of 
dissemination.

CASE REPORT

A post-menopausal female, married for 45 years with two 
children, presented with a complaint of white discharge 

per vagina for 3 months. On local examination, cervix 
was completely destroyed by a proliferative growth 
involving both the right and left fornix and the lower third 
of the vagina. Both the right and left parametrium were 
indurated to the lateral pelvic wall. Ultrasonography of the 
abdomen was suggestive of 8.6 cm × 5.3 cm large solid 
heterogeneous mass with scattered calcification in the 
cervical region. Histopathology from the growth revealed 
moderately differentiated squamous cell carcinoma. 
Metastatic workup did not show any metastatic lesion in 
liver or lungs. Thus, a diagnosis of carcinoma cervix IIIb 
(Federation of Gynecology and Obstetrics stage) was made. 
Then, the patient was planned for concurrent chemotherapy 
and radiotherapy. She was given radical radiotherapy to 
the whole pelvis with external beam radiotherapy to a dose 
of 60 Gy/30 over a period of 6 weeks. She also received 
6 cycles of weekly cisplatin concurrently (30 mg/m2 
intravenous). Intracavitary boost was  not  given as both the 
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fornices were flushed, and vagina was small and conical. 
The patient remained locoregionally controlled for 1 year, 
after which she presented with complaints of swelling in 
the left side of the back along with pain. On examination, 
a large tender swelling was seen on left paraspinal 
region, size around 8 cm × 4 cm, hard and fixed. Vaginal 
examination performed at the time showed growth over 
cervix extending to involve upper 2/3 of the vagina, and 
both the parametrium were involved. Contrast-enhanced 
computed tomography (CT)-thorax revealed a huge mass 
in the left paraspinal muscles, involving the vertebrae along 
with multiple lung secondaries [Figure 1]. Fine-needle 
aspiration cytology (FNAC) from back mass revealed 
metastatic squamous cell carcinoma [Figure 2]. The patient 
was advised for palliative local radiotherapy to vertebra 
followed by chemotherapy, but patient declined treatment 
and went home and succumbed to the disease.

DISCUSSION

The incidence of metastasis to skeletal muscles is < 1% of 
all hematogenous metastasis despite the fact that the muscles 
represent 50% of total body mass in a person.[2] Cancer cell 
survival is found more in denervated muscle, which is unable 
to contract rather than those stimulated one.[3]

Skeletal muscle involvement from cervical cancer is very 
rare.[4] Since 2008, only 10 cases with muscle metastasis 
from cervical cancer have been reported in literature. 
Deleted the third mention of the fact that the most common 
site of muscle metastasis is psoas.[5,6] Various imaging 
modalities have been used to identify metastasis to muscle, 
but none of them are specific in differentiating carcinomas, 
sarcomas and other muscle disorders. CT scans show 
muscle metastasis as muscle enlargement but cannot specify 
this as malignant. Magnetic resonance imaging (MRI) in 
metastatic lesions show low to intermediate intensity on T1-
weighted images, high intensity on T2-weighted images, 

and enhancement on gadolinium.[7] Our patient declined an 
MRI scan. Differentiation between a primary sarcoma and 
metastatic carcinoma is difficult without a biopsy/FNAC.[8] The 
FNAC was done, which showed metastasis from squamous 
cell carcinoma in the muscles. Primary squamous cell 
carcinoma in muscle is not recognized, and thus we have 
concluded that this is a metastasis from the past diagnosis 
of cervical cancer.

The outcome of the patients with skeletal metastasis is 
usually poor mostly due to diffuse metastasis and a lack 
of consensus on treatment options. When exercised, 
treatment options include radiotherapy, chemotherapy, 
and surgery according to the site number and extension 
of the lesion. In the case of a solitary skeletal muscle 
metastasis, metastasectomy has been performed, followed 
by radiotherapy.[4] The general consideration of skeletal 
muscle metastasis usually requires chemotherapy, in 
particular, the platinum-taxane combination is often chosen 
because of high response rate documented with this regimen 
as compared to cisplatin alone.[10] Palliative radiotherapy or 
combined radiotherapy and chemotherapy are effective in 
controlling pain and size of the metastatic lesion.[9] 

A reason for the prevalence (I have changed incidence to 
prevalence) of skeletal muscle metastasis in cervix cancer 
being low may be due to difficulty in differentiating 
malignant from benign lesions. Thus, in a patient with the 
previous history of cancer presenting with soft tissue mass, 
skeletal muscle metastasis should be considered and should 
be confirmed with imaging modalities and FNAC/biopsy. 
On confirmation palliative chemotherapy with or without 
local radiotherapy for pain should be given.

Muscular pain or weakness or just a palpable mass in a 
patient with a history of cervical cancer should always raise  
the suspicion of the metastatic  muscular disease even after 
many years of locally controlled disease.
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Figure 1: Contrast enhanced computed tomography-thorax showing skeletal 
muscle metastasis in the paraspinal and intercostal muscles invading the 
vertebra (red arrow) and lung metastasis (white arrow)

Figure 2: Fine-needle aspiration cytology from skeletal muscle mass 
showing nests of pleomorphic squamous cells (bold arrowhead)
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Modern brain tumor surgery stands in the pillar of maximum safe resection. Tumor borders are always challenging, especially 
infiltration zones in malignant brain tumors. Novel technologies are designed for a better delineation and to increase the extent 
of resection (EOR) in brain tumor surgery, such as: cortical and sub-cortical mapping strategies with somatosensory-evoked 
potentials, awake stimulation mapping and cortical/sub-cortical stimulation for motor pathways, important for resection in eloquent 
areas; intra-operative imaging as functional and intra-operative magnetic resonance imaging, diffusion tensor imaging and intra-
operative ultrasound are important for the tumor borders and to achieve the gross total resection; neurochemical navigation 
methods as 5-aminolevulinic and sodium fluorescein are important for the non-contrast-enhanced tumor border; future methods 
can be achieved with augmented reality surgery, new intra-operative chemical markers, and visualization methods. Nevertheless 
all these techniques seem to be promising, the real challenge in the future will be held in how to apply them and how they really 
affect the prognosis of the patients. Also, new concepts in tumor genetics will provide knowledge for the tumor behavior and 
will guide resection. Despite all limitations, the increasing importance of safe EOR shows the possible benefits of the novel 
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INTRODUCTION

Neurosurgery went through several changes over the past 
50 years; technology has been applied to all fields, since the 
introduction of microscope and the microsurgical technique 
by Yasargil, until endoscopes, minimally invasive spine 
surgery and functional neurosurgery with deep brain 
stimulation implants. As we see, the neurosurgery has two 
important arms in this modern era: the equipment and the 
surgical expertise.

New imaging technologies are applied to other two 
different manners, pre-surgical moment and intra-operative 
imaging.[1]

Modern neurosurgery lives a paradigm of concepts. 
Although there are insufficient proves of the real benefits 
and impacts of the aggressive image-guided neurosurgery,[2] 
evidences show the importance of gross total resection 
(GTR) in the quality of treatment and the effectiveness 
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increase of adjuvant therapy.[3-5]

Neuroimaging has been playing an important role in 
neurosurgery in the last century and technology has come 
to provide details in neuroanatomy, neurological function, 
metabolic and metabolism, which augments the ability to 
increase the extent of resection (EOR) while simultaneously, 
minimizes the risk of damage in eloquent brain.[1]

Increasing evidences show the importance of GTR 
for glioblastoma multiforme (GBM’s) and adjuvant 
radiochemotherapy and demonstrate a 2-8 months survival 
benefit in patients with GTR compared to sub-total 
resection.[3-5] Nevertheless, after a first impact, the focus 
has changed from just increasing the EOR, to increase the 
quality of life and safe resection; the tumor relationship 
critical anatomic structures and eloquent areas have become 
the center of the discussion.

Nowadays, molecular genetics came to open further 
discussions about tumor behavior, such as isocitrate 
dehydrogenase mutations (IDH) 1/2, 1p19q codeletion, 
PTEN deletions, MGMT mutation, telomerase reverse 
transciptase (TERTp) mutation, EGFR and TP53.[6-8] The 
IDH 1 and 2, were first described in GBM’s, nevertheless 
further research showed that it was more expressive in grade 
II-III diffuse gliomas (about 70%). IDH 1/2 mutations are 
important biomarkers for diffuse gliomas, because they 
behave less aggressively and a better prognosis, than other 
IDH mutations (IDH wild-types), with a positive predictive 
value (PPV) for better progression-free survival and overall 
survival.[6] The 1p/19q codeletion is found in almost 70% 
of histologically oligodendrogliomas, thus have an indolent 
progression and might be the molecular defi nition of 
oligodendroglial lineage. Also, these low-grade gliomas 
(LGG) tend to respond well for chemotherapy, thus have 
better prognosis. The MGMT is an enzyme, which repairs 
the DNA and interferes  in temozolamide  effect. Mutations 
in the MGMT have been correlated with improved 
prognosis and improved survival rate.[6,7] On the other hand  
the ATRX/TP53 mutations might be the objective genetical 
markers of the artrocytic lineage.[6,7]

In GBM’s the most common aberrations are found in the 
chromosomes 7 and 10, where the PTEN and EGFR are 
located. Aberrations on the PTEN and EGFR amplifications 
are found in 80% and 30-40%, respectively, both of 
them strongly related to poor prognosis and aggressive 
progression, which reinforces the idea that these tumors 
with PTEN and/or EGFR amplifications are IDH-wild 
type tumors.[6,7] Finally, studies points for the association 
of promoter region of the TERTp mutation and poor 
prognosis.[8] A recent research was published comparing the 
TERTp mutation, 1p19q codeletion and IDH mutation in 
Grade II-III and GBM’s with interesting findings.[8] TERTp 
mutation only, was found in 347 patients with GBM’s, 
compared to the TERT and IDH group with 11 patients, IDH 

mutation only group with 32 patients and triple negative 
group with 80 patients. This data shows that almost 75% of 
the patients with GBM have only TERT mutation and have 
a correlation with aggressive behavior type of gliomas. 
Also, patients with Grade II-III with TERT mutation only 
(59 patients), had an aggressive course and were associated 
with poor survival, which suggest the need of early adjuvant 
therapies and special follow-up. Also only IDH mutation, 
was associated with lowest age of diagnosis (37 years) and 
the highest rates were found in the only TERT mutation 
group (59 years), between all the gliomas. This study opens 
for further research between the association of TERTp and 
other previously discussed mutations.[8]

The genetic studies and imaging findings have become 
allies in the understanding of tumor behavior; nevertheless 
have also pointed questions on the efficiency of the surgical 
techniques to improve patient prognosis and the natural 
history of these tumors.

METHODS

A literature search of the Ovid Medline and PubMed 
databases for the period January 1980 to September 2015 
was conducted using the following key words: brain tumor, 
borders, technology, neuronavigation, intra-operative, 
fluorescein, novel. Main novel technologies were selected 
by their relevance and were analyzed by categories.

RESULTS

Neurosurgery has rapidly changed in the past years due 
to new technologies and new different possible surgical 
approaches. These changes have modified neurosurgical 
concepts, from an aggressive vision to a safe EOR with 
good function. Since the beginning of the microsurgical 
era, the surgical planning has improved from an anatomy-
planned surgery to an optimal non-visible tumor borders 
resection.[1,2]

Several technologies were introduced in the intra-operative 
field such as functional monitoring with cortical and sub-
cortical mapping, imaging technologies as neuronavigation, 
intra-operative magnetic resonance imaging (iMRI),  
intraoperative ultrassound (iUS), chemical biomarkers as 
5-aminolevulinic acid (5-ALA), and sodium fluorescence.[2]

Some of these advances were possible not only for the 
technology, but also due to anesthetic advances and better 
neurofunctional knowledge.[9,10]

Nevertheless, even with the standard care in neurosurgery, 
the 2-year survival rate in GBM’s still is about 38.4% and 
the 5-year rate is below 5%.[11-13] Also, past reports have 
shown that even with hemispherectomies, patients could 
not be cured.[14,15] Even though, the surgical technology has 
improved the past years, there are no consistent evidences 
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of improving survival rate.[2]

In this point we have two arms, the technologies to improve 
resection and to increase the knowledge of tumor nature. By 
now it is clear that just improving resection won’t provide 
the best result, but better understanding of the different 
diseases and tumor natures, will provide direction for 
optimal resections and better outcomes.

Awake craniotomy
Anesthetic advances permitted safer awake craniotomies 
to obtain brain mapping and better neurosurgical borders. 
However, it has a series of challenges to be analyzed 
before such as integration of different types of knowledge, 
imaging, multidisciplinary team, cooperation from several 
clinics sectors, application of protocols, application of 
specific technical adjustments, and a multidisciplinary 
approach. The integration of the pre-operative functional 
MRI (fMRI) and neuropsychological tests are the key for a 
good planning and patient selection. Not all tumor patients 
should undergo awake craniotomy, but patients with lesions 
close relationship with eloquent areas, in special for motor 
and speech.[16,17] Talacchi et al. stated that intra-operative 
complication can vary from anesthetic (inadequate or 
excessive sedation, pain, nausea, vomiting); respiratory 
(oxygen saturation < 90%, increased CO2, hypoventilation 
< 8 breaths/min, airway obstruction); hemodynamic (hyper- 
or hypotension, tachy- or bradycardia); and neurological 
(convulsions, brain swelling, new neurological deficit). 
From these complications, hyper- and hypotension are 
the most frequent in awake surgery (11% and 56%, 
respectively).[16,17]

The main purpose of awake surgery is the monitoring of 
speech and motor pathways. This way, the physical pre-
operative imaging/clinical examinations and intra-operative 
positive tests are important. Patients with aphasias and 
language disturbance seen at the physical examination, have 
higher risk of post-operative neurological deterioration. 
Intra-operative positive  tests for stimulation in motor areas 
have also higher risk of motor deterioration, probably due 
to the proximity of the tumor lesion to the cortical tracts.[16]

Shinoura et al. studied motor worsening after 102 motor 
areas glioma surgery; they have encountered motor 
worsening immediately after surgery and after 1 month 
were related to awake surgery failure and intra-operative 
complications. The main causes of failure of awake surgery 
are severe somnolence, epilepsy, air embolism, no wake up 
and motor neglect.[18]

In order to analyze the hemisphere dominance, the 
Edinburgh, Wada or fMRI (with verb generation tasks) can 
be done. Also, multiple tests are applied to the language 
task with visual object naming tests such as the  Boston 
naming test, Snodgrass and Vanderwart Test, DO80, and 
Aachner Aphasia Test. They are done to map the dominant 

hemisphere and localization of speech areas. The pre-motor 
areas of the face are always tested to identify possible 
motor causes of the aphasia. Even with all protocols, 
intra-operative positive sites errors can range from 4.6% 
to 22%.[16] The counting test is used to document a speech 
arrest during electrocortical stimulation and also auditory 
naming, verb generation and reading are commonly used 
tests. Additional tests can be applied such as calculation, 
visuospatial functions, working memory, visual pathways, 
eye movements, and writing.[16,17]

One important point is that function can be found at the 
edge of high-grade gliomas and also within the tumor in 
low-grades, so it has to be analyzed for a safe EOR.[19,20]

Awake surgery has been used for some time, but new 
tests and anesthetic evolution have permitted a better 
understanding of functional areas and also the mapping of 
complex brain areas.

Cortical and sub-cortical mapping
During the past years, the increase importance of the EOR 
and the relationship with increased overall survivalhas 
made the neurosurgeons push to the limits of the glioma 
surgeries, even in eloquent areas. Nevertheless, without 
intra-operative monitoring, morbidity increasing became 
fact. The objective of increasing overall survival with good 
functional status made the neuronavigation era a reality.[1,21]

As imaging has increased its accuracy over the past years, 
neuroanatomy studies have shown a better knowledge of 
the sub-cortical tracts and the new mapping technologies 
have shown the real cortical and functional mapping, which 
most of the times can be changed by the lesion.[9,22]

Intra-operative monitoring has been studied by several 
different methods, using somatosensory-evoked potentials 
(SSEP), awake stimulation, and cortical/sub-cortical direct 
motor stimulation. SSEP uses sub-dural electrodes to evoke 
potentials of gyri and to localize the central core (pre-central 
and post-central gyri) [Figure 1]. Awake stimulation is a 

Figure 1: Direct electrical stimulation with and somatosensory-evoked 
potentials in motor/sensory areas



            Journal of Cancer Metastasis and Treatment ¦ Volume 2 ¦ March 11, 2016 ¦ 73

good approach for the language function and its multiple  
association areas, which could be more complex and even 
specific for different languages/cultures. Language function 
is the most complex and superior level function, with 
multiple localizations and spread connective areas. The 
exact language-related cortical area is not mathematical 
and is individual related, especially in patients with intra-
cranial lesions. Patients with intra-cranial tumors can have 
very atypical language areas related to their brain mapping 
conformation and compliance to the tumor.[22] The key for 
brain surgery of the dominant hemisphere is the central core 
and language function, which has become possible.[22,23]

Brain mapping usually needs large craniotomies and longer 
time of surgical/anesthetic exposure, but provides multiple 
functional areas.[23,24] Li et al. analyzed 91 cases of brain 
functional area glioma surgery under direct electrical 
stimulation (DES) and noticed that the most commonly 
observed areas of counting interruption were distributed on 
the posterior part of the left anterior central gyrus (47.7%), 
the operculum of the left inferior frontal gyrus (24.4%), the 
triangular part of the left inferior frontal gyrus (12.8%), and 
even the posterior part of the superior frontal gyri (4.7%). 
After surgery, 46% had no post-operative dysfunction, 
42.9% a brief language dysfunction, 29.7% limb movement 
disorder, and 1 case had a permanent disability; this shows 
that DES is a non-invasive accurate method.[22] Another 
positive point of DES is the mapping of the sub-cortical 
areas because it does not have influences on brain shift or 
other positioning errors.[22]

Even though fMRI is satisfying for motor/sensitivity areas, 
its sensitivity is only of 59-100% and specificity of 0-97% 
for language areas.[22]

De Witt Hamer et al. reviewed and made a meta-analysis 
of surgical situations of 8,091 glioma cases and found 
that the rate of long-term severe neurological dysfunction 
sub-sequent to DES was 3.4%, while the long-term severe  
disability rate of patients that underwent surgery without 
DES was 8.2%. In addition, for the patients undergoing 

DES, the overall resection rate and the rate of involvement 
of the language functional area in the resection were 
significantly increased.[23]

Event thought DES is a relative novel technology, is also an 
important research method for higher cognitive functions, 
such as music, calculation, memory, complex speech 
processes, hemispheric ignorance, perception, visual 
pathways and more.[25-29]

Neuronavigation and  intra-operative magnetic 
resonance imaging
Magnetic resonance has changed the course of anatomical 
marks in neurosurgery; since its beginning in the early 80’s, 
the pursuit of high field technologies for better images has 
become a challenge.[9]

In the neuronavigation era, planning surgery has become not 
only a decision on craniotomies and different approaches, 
but also a way to prevent and predict the final surgery 
with minimal injuries. This way, fMRI, positron emission 
tomography (PET), and diffusion tensor imaging (DTI) are 
important technologies.[1]

PET utilizes H2
15O as a blood tracer to measure flow 

or (18F)-fluorodeoxglucose uptake to measure cerebral 
metabolism.[30]

fMRI measures blood oxygen level dependency changes 
due to alterations in the ratio of the oxyhaemoglobin 
and deoxyhaemoglobin in the most metabolically active 
regions[30] [Figure 2].

Another image technology is the DTI, which visualizes the 
fiber tracts with the thermally driven motion, or diffusion of 
water and molecules through fibers.[31,32]

DTI and fMRI allow neurosurgeons to have functional/
eloquent areas and sub-cortical fibers related to the lesions 
in their pre-operative planning; therefore, functional 

Figure 2: Functional magnetic resonance imaging and glioma: Red spots of the functional areas for the speech test near/between the tumor
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neuronavigation has become part of the clinical decision-
making, surgical approach, and EOR[33] [Figure 3].

Nevertheless, the functional neuronavigation has not shown 
its clinical utility due to a lack of high evidence studies. Wu 
et al. carried out the only randomized controlled trial with 
an established protocol in functional neuronavigation and 
demonstrated a reduced post-operative motor deterioration, 
a higher Karnofsky Performance Scale, and an increased 
overall survival in study patients.[33]

One of the worst problems in neuronavigation is the brain 
shift; it is the change of tissue/lesion during surgery due 
to cerebrospinal fluid drainage, tumor resection, and brain 
swelling; with estimated to be around 1 cm after opening 
the dura,[34] and more than 1 cm after initial resection of 
tumor. Therefore, the iMRI technology has come to solve 
this problem and also increase the EOR. The first iMRI was 
performed in 1994; it presented several benefits and showed 
that a considerable part of patients had resectable residual 
tumor.

In special for LGG treatment, iMRI has led to favorable 
results in several studies. Reports show 30-60% of return to 
surgery after initial resection with iMRI.[35-38]

Even though iMRI is an interesting method, nowadays there 
is only one randomized controlled trial comparingiMRI 
to conventional surgery; the trial found that iMRI was 
associated with higher rate of complete resection (96% 
vs. 68%) and increased progression-free survival without 
additional morbidity.[5,39] Kubben et al. held a systematic 
review and showed just an evidence level II of iMRI 
being more effective than conventional neuronavigation in 
increasing EOR, quality of life or prolonging survival after 
GBM resection.[38,39]

In practical analysis, iMRI has some issues for global 
implementation regarding costs and time. This method 
requires special implementation; most of the times not 

only the equipment, but also revision of the local of 
implementation, making it a high cost technology.[40,41] 
In addition, the time for image acquiring and the need 
of stop the surgery for it, prolong time of surgery and 
anesthesia.[42-44]

Roder et al. studied retrospectively 117 patients after 
conventional surgery, after 5-ALA, and after iMRI they 
found that mean  residual tumor volume after iMRI-assisted 
surgery (0.5 [0.0e4.7] cm3) was significantly smaller 
compared to the residual tumor volume after 5-ALA-
guided surgery (1.9 [0.0-13.2] cm3; P = 0.022), which 
was significantly smaller than in conventional surgery 
(4.7 [0.0-30.6] cm3; P = 0.007). Total resections were 
significantly more common in iMRI (74%) than in 5-ALA-
assisted (46%, P = 0.05) or conventional surgery (13%, P 
= 0.03). Also, the iMRI time of surgery was significantly 
higher compared to pre-iMRI period (213 vs. 354 min). 
Improvement of the EOR using iMRI was safely achievable 
and post-operative morbidities were comparable between 
cohorts. Total resections increased 6 months progression 
free survival from 32% to 45%. In follow-up analysis, the 
neuronavigation had new or worsened neurological deficits 
at 3 months in 18.2% of patients, compared to 45.5% of the 
control group. Non-neurological complications were present 
in both groups, 31.8% in the control group and 30.4% in the 
neuronavigation group. Also, the progression-free survival 
and survival ratewasbetter in the neuronavigation/iMRI 
groups vs. control groups.[2]

Despite it is a retrospective study with a short period of 
time and limited patients in different chronologic times, 
the great outcomes and promising results should open for 
new prospective studies.[42] Further, the quality of iMRI 
images remains an issue; pre-operative MRI images are 
usually acquired by high-fields MRI with DTI and fMRI 
as a surgery plan, though intra-operative images are usually 
low-field MRI with worse definitions without DTI and 
fMRI; thereby the surgery plan for critical and eloquent 
areas is difficult and questionable after tumor resection 
and brain shift. Also, studies related to contrast dosage/
timing and the local of resection have been done. The main 
challenge is to differentiate tumor border from blood brain 
barrier brakes and surgical tissue changes, which also have 
contrast-enchanted borders.[43,44] The Cochrane review point 
for different patients’ baselines with heterogeneous lesions 
and the current studies do not provide quality  evidences of 
benefits. Also, there is no standard protocol for its use and 
most of the time it is used in single centers.[2]

Intra-operative ultrasound
Intra-operative ultrasound is a dynamic method that can 
provide dynamic images with brain shift corrections and 
also the correlation between the tumor and normal brain, 
just as the tumor vascular nutrition and borders. In the past 
decades, the iUS increased the quality of images, from 
poor-quality images to three-dimensional (3D) imaging 

Figure 3: Tractography magnetic resonance imaging. In blue: the white 
fibers tracts. In red: tumor
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technology.[45-47]

Intra-operative ultrasound is more effective with 
heterogeneous lesions, with cystic compartments, and 
lesions with different echogenicity from the cortex, 
important in deep lesions, more than 1 cm from the cortex. 
Several reports support the use of iUS with good results 
such as good visualization of tumor borders with 3D iUS in 
88% of patients and had led to an EOR in 55%,[48] numbers 
compared to the use of iMRI and 5-ALA.[49,50]

Therefore, the use of US contrast in brain tumor surgery, 
called intra-operative contrast-enhanced US (ICEUS), 
is to determine better tumor visualization and also 
vascularization, is in study.[51] The contrast agents containing 
microbubbles hit by low-acoustic power US waves resonate  
with a specific  value that can be read by a US algorithm for 
contrast.[52,53] There is a good correlation between the pre-
operative MRI and iUS and can reach a small difference 
of 2 mm with the advantage of being intra-operative and 
dynamic [Figure 4]. Nevertheless, neither iUS nor ICEUS 
can provide good borders for all LGG because of the similar 
echogenicity between the tumor and normal tissue.[51] 
Differently from the contrast-MRI, the ICEUS depends 
on intra-vascular micro bubbles resonance, which will 
not provide the interstitial aspects. Fluorescence-guided 
surgery such as the use of 5-ALA can highlight tumor 
borders, but only in high-grade gliomas. Compared with 
5-ALA and iMRI, the iUS has the advantage of providing 
borders images not only for high grade gliomas, but also for 
other types of tumor such as metastasis, meningeomas and 
some LGG, and the relationship to normal/vascular tissue 
with the non-stop surgery advantage.[51]

Fewer studies have shown the capability of the iUS and 
MRI;[48] further studies are needed to evaluate the real 
aspect of the ICEUS and the use of combined  methods with 
hybrid probe with MRI neuronavigation and iUS.

Fluorescence guidance
Even though intra-operative image guidance has evolved 

the past decades, the interface between tumor borders, 
remaining tumor cells, and normal tissue is challenging. 

Despite several substances have been studied, there are 
two major promising fluorescences: 5-ALA and sodium 
fluorescein.

The administration of 5-ALA leads to differential 
accumulation of protoporphyrin in the malignant tissues, 
via heme-biosyntheses pathway.[54,55]

The 5-ALA administration has proved to increase the 
GTR of glioblastomas (65% vs. 36%; P < 0.0001), smaller 
volume of the residual tumor (medians 0 cm3 vs. 0.7 cm3; P 
< 0.0001), and better progression-free survival in 6 months 
after intervention (41% vs. 21%: P = 0.0003) [Figure 5]. 
Recently, such beneficial results were corroborated by 
the assessment of 251 eligible cases from 18 clinics; they 
demonstrated greater proportions of complete resections of 
malignant gliomas with the use of 5-ALA (67% vs. 45%; 
P = 0.000) and progression-free survivors in 6 months 
after removal of glioblastoma (69% vs. 48%; P = 0.002), 
which corroborated with previous studies.[54,56,57] Studies of 
fluorescence guidance combined with neuronavigation and 
brain mapping shows rates up to 98% of GTR in selected 
cases.[58,59] In addition, the fluorescence guidance may reach 
beyond contrast-enhanced tumor borders and infiltrative 
zones that might be shown in the fluid attenuation inversion 
recovery (FLAIR) sequences of MRI.[42] Although 5-ALA 
might be promising, it has some issues to be considered. 
First, we have to consider its high sensitivity and a low-
specificity, in special the non-high intensity pigmentations 
areas of fluorescein such as in tumor border and the 
hyperpigmentation in non-tumoral areas (necrosis, fibrosis, 
astrocytes infiltration) and also other non-glial lesios 
as lymphoma and metastasis. Furthermore, the absence 
of tissue fluorescence is common in LGG due to its 
relatively unruptured blood-brain-barrier and other intrinsic 
mechanisms of fast elimination of the drug; this makes it 
useless for LGG surgery.[1,60-63] Moreover, the studies with 

Figure 4: Contrast-enhanced magnetic resonance imaging and intra-
operative ultrasound/contrast-enhanced US: High  grade lesion can be 
compared, between the technologies. iUS an be used for the localization for 
most of the  lesion,  but with better results with cystic/heterogeneous tumors. 
Contrast-enhanced US has good visualization in vascularized tumors and 
give intra-operative vascular aspects. Images from Prada et al.[51] Figure 5: Aminolevulinic acid: the use of 5-aminolevulinic acid in high grade 

glioma. The tumor has the pink aspect and the normal brain in dark blue
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fluorescence guidance have not studied the tumor genes and 
the good results could be genetically related. Further studies 
are needed to direct correlate the genetically aggressive 
tumors and the use of 5-ALA.

Another substance used for guidance is the sodium 
fluorescence, which accumulates in high neovascularization  
areas, also seen in high-grade lesions. Recent studies point 
to an increase of EOR and GTR, but without increasing of 
the overall survival rate.[64] After review, 5-ALA had 91% 
sensitivity, 59% specificity, 85%  PPV, and 71% negative 
predictive value for histopathological identification of 
malignant glioma.[65] Future objectives in fluorescence 
guidance may lead to better microscopic visualization 
methods for the fluorescein such as filters, special masks 
or lens.[66]

Current evidences
The Cochrane group has reviewed all the reports of 
image-guided surgery for brain tumor resection and 
found some issues. Most of the studies are not controlled 
and randomized; also patients’ baselines and tumor 
aspects were heterogeneous in most of the groups and the 
resecability of them was different between intervention 
and control groups.[2] Despite limitations and low quality 
of evidence, the analyses from the classical reports from 
Senft 2011, Stummer 2006 and Wu 2007 showed a trend 
for better results.[2] Complete tumor resection was achieved 
with iMRI in 23/24 (96%) of participants in the intervention 
arm group compared with 17/25 (68%) of participants in 
the control arm (relative risk [RR] for incomplete resection 
0.13, 95% confidence interval [CI]: 0.02-0.96, low quality 
evidence).[2]

Using 5-ALA, complete resection was performed in 90/139 
(65%) of the intervention arm vs. 47/131 (36%) of the 
control arm (RR for incomplete resection 0.55, 95% CI: 
0.42-0.71, low quality evidence). Finally, neuronavigation 
with DTI was achieved among the 85 participants with 
high-grade glioma and complete tumour resections were 
achieved in 32/42 in the DTI arm vs. 14/43 in the control 
arm (RR for incomplete resection 0.35, 95% CI: 0.20-0.63, 
very low quality evidence). Among 129 participants with 
LGG, complete tumor resections were achieved in 40/61 
in  the DTI arm vs. 42/68 in the control arm (no significant 
difference).[2] In survival analysis, the 5-ALA groups had 
a median survival of 15.2 months (95% CI: 12.9-17.5) in 
intervention group and control with 13.5 months (95% 
CI: 12.0-14.7). The neuronavigation-DTI arm was 21.2 
months (95% CI: 14.1-28.3) vs. 14.0 months (95% CI: 10.2-
17.8). Only in World Health Organization grade IV tumors  
analysis, neuronavigation-DTI arm was 19.3 months (95% 
CI: 15.2-23.5) vs. 11.1 months (95% CI: 7.3-15.2) in the 
control arm.[2] In time to progression, the median time  in 
iMRI group was 226 days (95% CI: 0.0-454) vs. 154 days 
(95% CI: 60-248) in control. With 5-ALA, it was 5.1 
months (95% CI: 3.4-6.0) vs. 3.6 months (3.2-4.4 months) 

in control.[2] It is clear that the group analysis was not 
homogeneous and it might be due to a lack of protocols and 
a standardized approach to all lesions. Furthermore, there is 
need for standardization of reports for a systematic-review 
analysis and for future trends. Even though, the theorical 
benefits of the novel techniques should impulse more 
randomized, controlled trials with better baselines.

Future technologies
Neuronavigation has become more popular and the 
localization of tumors has come to practice with the 
navigation instrument and the monitor. Even  though, what 
if we had the images seen in the surgical field continuously, 
without navigators? The augmented reality has come to 
time with the objective of sending information to surgical 
field without monitors.

Augmented reality technique has four steps: virtual image 
creation; real environment; projection and registration. 
Thus, image can be seen in the surgical field and the virtual 
interface can be used. The augmented reality is important 
in planning surgery and having the lesion visible in the skin 
since the beginning of the surgery. The augmented reality 
can be applied not only to the surgical field to prepare a 
better surgical incision and approach, but also to the 
surgical view in the microscope, which is important when 
the surgeon cannot take his or her eyes/instruments  from  
the  microscopic field.[67,68]

Moreover, the augmented reality could also include other 
parameters such as fiber tracts or important structures that 
should not be approached. As an innovation in neurosurgical 
surgery, there are few studies but promising applications.[67]

Also other interesting concept is the regional vs. global 
DTI biomarkers for glioblastoma. Most of this lesions are 
heterogeneous with multiple histological features and can 
lead to different degrees of malignancy, thus biopsies can be 
different in multiple areas. DTI is routinely used to locate 
high-grade areas, but the development of a sensitive and 
specific biomarker, remains an issue. Also, the role of DTI-
derived tensor metrics in normal brain and infiltrated brain 
is important for the distinction of tumor infiltration in non-
contrast-enhanced areas. As the GBM been considered as a 
whole brain disease, DTI analysis of the whole brain might 
be more interesting than studying just the lesion areas. 
Roldán-Valadéz et al. showed that relative anisotropy, axial 
diffusivity (AD), Cl (linear tensor), Cs (spherical tensor),  
were  important for regional DTI tumor analysis.[69] Also, 
Cortez-Conradis pointed for AD, Cl, Cs and introduced the 
whole brain concept. The advantages of whole brain DTI 
analysis are: Decrease of bias associated with the analysis 
of just one region of interest; the tumor and edema regions 
are included; lesions not perceived by the radiologist’s eye 
on conventional sequences would be included in a global 
assessment; it may avoid problems associated with partial 
volume effects, and inaccurate image coregistrations.[70] 
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Furthermore, these biomarkers could also been applied for 
other tumors and even other neurological diseases, without 
any contrast addition and increase of costs.[69,70]

For high-grade lesions with increased neo-vascularization, 
there was a report with use of indocyanine green (ICG) 
for detection of tumor borders. It is classically used by 
ophthalmologists for retinal vasculature and more recently 
for vascular neurosurgeries for aneurysms and arterio-
venous malformations; however, for surgical borders for 
high-grade gliomas, it is a novel technique.[71] Eyüpoglu et 
al. reported the ability of demonstrating the hypervascular 
areas with ICG that were not visible with the 5-ALA use. 
This technique was called dual intra-operative visualization 
approach (DIVA) with the initial approach using 5-ALA; 
after all initial tumor was resected, ICG was administered 
for visualization of remaining hypervascularization areas, 
with good initial results. Further studies are needed, but 
DIVA technique could be an interesting approach for further 
resection of non-fluorescein areas.[72]

One of the most difficult tasks in glioma surgery is the 
low-grade lesion. Most of the low-grades have similar 
density, echogenicity, and macroscopic aspect. Despite the 
neuronavigation progression, there are few MRI methods 
for low-grade tumor visualization, and most of the times the 
lesion is not contrast-enhanced and there is just the FLAIR 
sequence for tumor borders.[73] Ramakrishna et al. showed 
improvement of overall survival with aggressive resection 
of FLAIR tumor limits, not only in the first attempt, but 
also in reoperation, regardless of patient age, pathology, 
chemotherapy, and radiation.[74]

The 5-ALA for LGGs is usually reported as non-visible, but 
it is not true for all of them. Valdés showed that 5/12 patients 
had at least 1 instance of visible fluorescence during surgery 
and 45% of the non-visible fluorescence had a higher and 
detectable concentration of PpIX in the tumor tissue after 
the 5-ALA administration. With this idea, other researches 
were made to accurate the visibility of the fluorescein, 
or guide the elevated concentration in tissue with special 
probes of light visualization or high-resolution microscopic 
techniques, but with few results by this date.[75]

CONCLUSION

Evidences of the correlation between tumor removal 
and increase of survival rate have an impulse in novel 
technologies for safe resection and EOR. The uses of iMRI, 
DTI, PET, iUS, and fluorescence guidance have come to 
establish the neuronavigation era in neurosurgery.

Also, there is an increasing  importance of the tumor genetics 
and behavior, which will provide crucial information and 
will guide tumor resection and adjuvant treatment. Despite 
all limitations of each technology and the lack of clear 
evidences, it is clear that this neurosurgeon/technology 

interface has come tighter and promising. However, the best 
result will come with the integration between technology 
for resection and tumor nature knowledge.
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INTRODUCTION

Tumors of the central nervous system include a broad range 
of neoplasms that arise from different cell lineages. The 
most common variants in adult and pediatric populations 
are malignant gliomas and MB, respectively.

Glioblastoma (GBM) is a highly aggressive tumor that 
arises from different glial cell types. Based on WHO 
classification, GBM is a grade IV astrocytoma that either 
develops de novo (primary GBM) or gradually from lower 
grade astrocytomas (secondary GBM).[1] Due to limited 
therapy options, the median survival is a dismal 15 months 
with standard of care, which includes surgical resection, 
temozolomide chemotherapy and radiation.[2]

Medulloblastomas are embryonal tumors that originate 
from fetal tissue due to aberrant developmental signaling.[3] 
By using treatment protocols that combine chemotherapy, 
surgery and cranio-spinal radiotherapy, 70-80% of patients 
can be cured, albeit with debilitating long term side effects.[4]

Advances in molecular biology have led to remarkable 
insights into the understanding of the underlying molecular 
pathogenesis of malignant gliomas and MB and have 
revealed specific pathways and signaling networks that 
promote tumorigenesis in these malignancies.[5,6] These 
frequently feature aberrant receptor tyrosine kinase (RTK) 
signaling via the PI3K/AKT/mTOR (PAM) pathway.
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The PAM signaling axis integrates extracellular signals via 
RTK and G protein-coupled receptors and regulates a host 
of intracellular functions, such as cell cycle, metabolism, 
migration and apoptosis.[7-9] Phosphatidylinositol 
3-kinase (PI3K) phosphorylates the 3’-hydroxyl group 
of phosphatidylinositol, producing second messengers 
that recruit cytoplasmic proteins to the membrane. These 
include various modulators of small GTPase activity, TEC 
family tyrosine kinases and members of the AGC protein 
kinase family like AKT (also known as Protein Kinase B, 
PKB).[10] The serine-threonine kinase mTOR, a regulator 

of translation and protein synthesis, is activated by AKT 
signaling.

Since many hallmarks of malignancy are controlled by 
PAM signaling, genetic and epigenetic alterations in 
various components of this pathway are frequent events 
in central nervous system (CNS) cancers. These include 
gain-of-function mutations and amplifications in genes 
encoding RTKs such as epidermal growth factor receptor 
(EGFR), loss-of-function mutations of the phosphatase and 
tensin homolog deleted on the chromosome 10 (PTEN) 

Figure 1: PAM-signaling network and effector functions associated with metastasis: In GB and MB, aberrant PAM signaling can promote tumor progression by 
over- inducing angiogenesis, EMT, cell migration and invasion, and also by inhibiting loss of adhesion associated apoptosis. PAM: PI3K/AKT/mTOR; VEGF: 
vascular endothelial growth factor; PDGFR: platelet derived growth factor receptor; IGF-1: insulin-like growth factor-1; IGFR: insulin-like growth factor receptor; 
NFκB = nuclear factor kappa-light-chain-enhancer of activated B cells; HIF-1α: hypoxia inducible factor 1α; PTEN: phosphatase and tensin homolog deleted 
on chromosome 10; PI3Ks: Phosphatidylinositol-3-kinases; MEK: mitogen-activated ERK kinase; EGFR: epidermal growth factor receptor; ERK: extracellular-
signal regulated kinase

Table 1: Stage of clinical development of PAM pathway inhibitors for brain tumors[138]

Inhibitor Target Stage of clinical development for brain tumors
SF-1126 (RGDS-conjugated
LY294002 prodrug)

Pan-PI3K Phase I

PX-866 Pan-PI3K Phase II
Pictilisib (GDC-0941) Pan-PI3K Phase II
LY294002 Dual PI3K/mTOR Preclinical
Wortmannin Dual PI3K/mTOR Preclinical
Dactolisib (NVP-BEZ235) Dual PI3K/mTOR Phase II
Perifosine (KRX-0401) Akt Phase II
KP-372-1 Akt Preclinical
KP-372-2 Akt Preclinical
A-443654 Akt Preclinical
Bevacizumab (Avastin) VEGF-A Phase III
Aflibercept VEGF and placental growth factor Phase I
Cediranib (AZD2171) VEGFR, Flt1/4, PDGFR, FGFR1, c-KIT Phase I
Cabozantinib (XL-184) c-MET and VEGFR2 Phase I
SGX-523 c-MET Phase I
Osthole IGF-1/IGF-1R and calcium channel blocker Preclinical

PAM: PI3K/AKT/mTOR; VEGF: vascular endothelial growth factor; PDGFR: platelet derived growth factor receptor; FGFR: fibroblast 
growth factor receptor; IGF-1: insulin-like growth factor-1
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tumor suppressor gene, and oncogenic mutations in various 
PI3K isoforms that lead to a constitutively activated 
pathway.[11,12] Aberrant PAM signaling also favors essential 
steps for cell invasion and metastasis in CNS malignancies 
[Figure 1]. The implications of aberrant PAM signaling in 
angiogenesis, epithelial to mesenchymal transition (EMT) 
and immune response modulation is currently under intense 
investigation.[13-15] Components of the PAM pathway are 
therefore being considered as potential drug targets [Table 
1] to inhibit the often fatal events of metastasis and cell 
invasion.[16-18]

ANGIOGENESIS

Angiogenesis is a process consisting of the generation of 
blood vessels and is essential for the growth of tumor mass 
beyond 1mm in diameter.[19] This process allows tumors 
to become invasive by supporting them with nutrients and 
oxygen. Tumor and host cells synthesize and secrete pro-
angiogenic factors, such as vascular endothelial growth 
factor (VEGF), that activate quiescent endothelial cells 
and induce the formation of new blood vessels from pre-
existing vascular structures.[20]

The PAM pathway plays a critical role in this 
neovascularization process by controlling the hypoxia-
inducible factor 1-alpha (HIF-1α) mediated expression and 
secretion of VEGF.[21,22] In cancer cells, VEGF stimulation 
can be mediated by chronic stimulation by growth factors, 
such as insulin-like growth factor-1 (IGF-1); constitutive 
activation of PI3K; or constitutive activation of AKT due to 
inactivation of PTEN.[23,24] The important role of the PAM 
pathway in angiogenesis has been confirmed in various 
malignancies where inhibition of pan-PI3K by LY294002 
and downregulation of p110α (or recently, PI3KC2α) were 
shown to block tumor vascularization.[15,22,25] In myeloid 
cells, PI3Kϒ was reported to be involved in the activation 
of integrin α4β1, leading to myeloid cell invasion into 
tumors and, in turn, to tumor angiogenesis.[26]

In GBM, the most aggressive glioma subtype, the PAM 
pathway also plays a crucial role in the induction of 
invasion, angiogenesis and the expression of VEGF in 
cells.[24,27]  Therefore, new small molecule inhibitors 
targeting PI3K enzymes are being tested in this CNS 
malignancy. These include the PI3K inhibitors SF1126 (a 
RGDS-conjugated LY294002 prodrug) and PX-866, and 
the dual PI3K/mTOR inhibitor NVP-BEZ235.[28-30] These 
compounds were shown to induce a substantial inhibition 
of the expression of VEGF, thus reducing the invasive and 
angiogenic capabilities of GBM cells. In fact, PX-866 has 
recently entered phase II studies in patients with recurrent 
GBM. Unfortunately, preliminary results of this trial have 
shown a low overall response rate.[31]

The combined inhibition of VEGF and vascular endothelial 
growth factor receptor (VEGF/VEGFR) is currently thought 

to be an effective way to control GBM growth.[32-34] Examples 
of VEGF/VEGFR inhibitors are bevacizumab, already in 
phase III trial,[35] and aflibercept, a VEGF/VEGFR inhibitor 
that also targets placental growth factor.[36] Unfortunately, 
long-term treatment with aflibercept was reported to induce 
an invasive phenotype of GBM.[37,38]

In addition, RTK inhibitors such as cediranib (an inhibitor of 
VEGFR, platelet-derived growth factor receptor, fibroblast 
growth factor receptor 1, and v-kit Hardy-Zuckerman 4 
feline sarcoma viral oncogene homolog), have also been 
used with promising results.[39,40] Inhibitors of c-MET such 
as cabozantinib are also being considered, and have been 
reported to induce a significant increase in overall survival 
of mice bearing GBM xenografts.[41]

However, anti-angiogenic therapies targeting VEGF/
VEGFR have had less of an effect than expected.[42] This 
could be because, in highly vascularized tissues like 
the lung and brain, tumors can often proliferate around 
existing vessels and hijack them, a process called vessel co-
option.[43,44] These pre-existing blood vessels circumvent the 
need to generate new tumor vasculature, and may explain 
the inefficacy of anti-proliferative therapies in GBM, the 
most vascularized tumor in humans.[38]

Autophagy is an evolutionarily conserved, catabolic 
process that maintains cellular biosynthesis through the 
degradation and recycling of proteins and organelles to 
support metabolism and survival during starvation. This 
process has been shown to have a complex relationship 
with angiogenesis induction in various malignancies. 
While some studies have reported that autophagy inhibits 
angiogenesis,[45,46] other studies have found that induction 
of autophagy promoted cancer and its inhibition prevented 
angiogenesis.[47,48] This illustrates the dual role that 
autophagy plays in cancer, acting as a pro-survival or pro-
death mechanism depending on the tumor type and stage.[49]

Autophagy is induced by different cellular stress-mediated 
signaling pathways, the inputs of which are integrated by 
the protein kinase mammalian target of rapamycin (mTOR). 
The mTOR complex 1 (mTORC1) is a negative regulator 
of autophagy and a downstream target of the PI3K/AKT 
pathway.[50] Anti-cancer agents that target this pathway are 
able to induce autophagy, which has a cytoprotective role as 
well as an anti-angiogenic potential similar to the action of 
the dual PI3K-mTOR inhibitor NVP-BEZ235.[51-53]

High-grade gliomas have been reported to have lower 
expression of autophagy-related proteins than low-grade 
gliomas.[54] The amplification of EGFR, which is often 
found in these tumors, is known to suppress autophagy.[55] 
The progression of astrocytic tumors is associated with a 
decrease in autophagic capacity.[56] In most of these CNS 
malignancies, the modulation of autophagy sensitizes 
tumor cells to standard chemotherapy and radiotherapy 
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induced cell death.

EMT, CELL INVASION AND MOTILITY

EMT is a biological process that allows immobile epithelial 
cells to acquire a mobile mesenchymal phenotype, becoming 
detached and invasive. It was initially described in the 
context of embryonic differentiation.[57] In tumor cells, this 
process, together with the induction of neo-angiogenesis, 
initiates cancer metastasis, inducing enhanced migratory 
properties, invasiveness and resistance to apoptosis.[58,59]

During EMT, a variety of transcription factors are 
upregulated in metastatic cells, such as Snail, Slug, 
Twist and Zeb ½.[60] Snail can be activated by a number 
of  pathways, including hypoxia, HIF-1, HIF-2, Notch, 
nuclear factor kappa-light-chain-enhancer of activated 
B cells (NF-kB), and transforming growth factor beta 
(TGF-β), a pro-apoptotic factor. Snail up-regulates AKT 
phosphorylation and Bcl-Xl, countering the induction of 
apoptosis,[61] and down-regulates cyclin D2, inhibiting cell 
cycle progression.[62]

Twist, which promotes loss of E-cadherin mediated cell-
cell adhesion and cell motility,[63] has been linked to the 
PI3K/AKT pathway in various malignancies. This link 
is established by the AKT2 isoform, a Twist-mediated 
transcriptional regulator that activates Twist, constituting 
a positive feedback loop that promotes EMT.[64,65] Twist 
also maintains hyper-activation of the PI3K/AKT pathway 
in breast cancer cells, through its transcriptional target 
TGF-β2.[65]

AKT hyper-activation and PIK3CA knock-in can promote 
EMT in various human cancers.[61-66] The association 
between EMT and PI3K activation has also been reported 
in ERα-negative endometrial carcinomas.[67]

Twist overexpression has also been correlated with the 
induction of tumor cell invasion in GBM.[68] However, these 
malignancies usually do not metastasize out of the CNS, 
mainly due to their rapid relapse rate and poor prognosis.[69] 
Even so, there are reports describing GBM metastasis[70] 

involving the spread of GBM cells out the CNS through 
cerebrospinal fluid, blood or lymphatic vessels.[71,72]

Medulloblastoma, on the other hand, has a high tendency 
to disseminate to the spinal cord and leptomeninges of the 
cerebellum and forebrain. These tumors are classified into 
4 molecular subgroups: wingless (WNT), sonic hedgehog 
(SHH), group 3 and group 4.[73] Group 3, characterized 
by cMYC amplification, is associated with metastatic 
disease.[74]

The PI3K/AKT pathway is activated in 50% of GBMs. In 
the case of MB, there are a number of studies concerning 
alterations in this pathway.[6,75,76] This pathway appears to 
facilitate an invasive phenotype of GBM and MB, especially 

in terms of motility and resistance to stress.[77]

The class IA PI3K isoform p110α is the most relevant 
PI3K isoform affecting cell growth and survival. The gene 
encoding this isoform, PIK3CA, is usually mutated in GBM 
(27%).[78] In this malignancy, PIK3CA mutated form plays 
a main role in cell growth under anchorage-independent 
conditions. In MB, however, this PI3K isoform is typically 
overexpressed,[79] promoting cell proliferation, for example, 
through the regulation of the leukemia inhibitory factor 
receptor α (LIFR α).[80] The inhibition of p110α impairs 
cancer cell growth, migration, and survival in these CNS 
malignancies.[16,79]

Other class IA PI3K isoforms are also overexpressed in 
brain tumors, such as p110δ, which has been reported to 
be overexpressed at the mRNA level in primary GBM, 
controlling migration in these cells.[81,82] The isoform 
p110ϒ, which is overexpressed in primary MB, contributes 
to cisplatin resistance and has emerged as a novel target 
for combinatorial treatments.[83] The class II PI3K isoform 
PI3KC2β, which is overexpressed in a variety of cancers, 
acts as a modulator of cell migration, survival and 
proliferation in leukemia and brain tumors.[84] The highly 
specific pan-PI3K inhibitor GDC-0941 has recently been 
shown to have anti-migratory, anti-proliferative and pro-
apoptotic effects in MB cell lines, showing synergy with 
the standard chemotherapeutic drug etoposide and good 
clinical tolerability.[85]

Other elements of the PI3K/AKT pathway are also being 
considered as potential targets to inhibit cell proliferation 
and migration in GBM and MB. One example is AKT, 
which usually shows high levels of phosphorylation in these 
brain tumors.[86] Its inhibition by KP-372-1, KP-372-2, 
A-443654, or perifosine, was reported to inhibit cell growth 
and induce radio-sensitizing effects in GBM and MB.[87-89] 

Clinical trials of perifosine in GBM patients are ongoing.[90]

PTEN is a tumor suppressor usually mutated and inactivated 
in GBM, with an inverse correlation between its expression 
and glioma grade.[91] In MB, PTEN is rarely mutated but 
frequently downregulated, by promoter hypermethylation 
and/or allelic losses, inducing AKT activation.[86]

PTEN, together with the MAPK signaling pathway, has a 
primary role in the regulation of G1/S cell cycle checkpoint-
defective astrocytoma invasion, and its deletion increases 
migration, invasion and resistance to apoptosis in GBM 
cell lines.[92] PTEN controls integrin-dependent migration 
through the regulation of Src family kinase activation, in 
a PI3K/AKT-independent manner.[93] The re-expression of 
PTEN in GBM cell lines increases the cellular content and 
activity of the p53 tumor suppressor protein inducing cell 
cycle arrest and increasing the sensitivity of the tumor cells 
to various chemotherapeutic agents such as etoposide.[94]

Upstream regulators of EMT induction, such as insulin-like 
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growth Factor-1 receptor (IGF-1R), c-MET and the CXCR4 
receptor, have been proposed as potential targets to inhibit 
GBM or MB invasion.

IGF-1R is typically overexpressed in malignant GBM,[95] 
and its activation by IGF-1 contributes to Snail and 
Twist expression though PI3K/AKT signaling pathway 
activation.[96,97] Therefore, IGF-1R tyrosine kinase 
inhibitors or IGF-1 inhibitors, such as osthole, have been 
used to inhibit GBM proliferation, migration and EMT.[97,98] 
In a recent study of 218 cases of human GBM, IGF-1R 
overexpression was reported as an independent prognostic 
factor associated with shorter survival time and a less 
favorable response to temozolomide.[99]

C-MET expression levels correlate with tumor grade in CNS 
malignancies,[100] and its activation also mediates EMT-
promoting signals in cancer cells via class IA PI3K.[101,102] In 
MB, c-MET signaling is deregulated, thus inducing tumor 
growth and an anaplastic histology.[103] The use of c-MET 
kinase inhibitors, such as SGX523, suppressed tumor 
growth in GBM cell lines.[104] This inhibition blocked the 
EMT induced by VEGF ablation in a GBM mouse model[105] 
and induced an effective decrease in MB cell migration and 
invasion.[106,107]

Stromal cell derived factor (SDF-1) or CXCL2 and its 
chemokine receptor CXCR4 can induce EMT in GBM via 
activation of PI3K/AKT and extracellular-signal-regulated 
kinases (ERK) pathways, and its inhibition suppressed 
EMT in glioma cell lines by upregulating E-cadherin.[108]

However, single agents targeting the PAM pathway have 
been reported to be an inefficient approach in MB and to 
increase invasion in the surviving fraction of GBM.[109] 
Therefore, new therapeutic approaches should be based 
on increasing the therapeutic window by targeting two 
different routes, namely the PAM and ERK pathways, 
or on combining PAM inhibitors with chemotherapeutic 
agents.[110]

MicroRNAs have also been shown to play an important 
role in various CNS malignancies, and miR-142-5p and 
miR-25 are upregulated in all of them.[111] In MB, miR-21 
suppression inhibited tumor migration.[112] MiR-183 has a 
pro-tumorigenic effect in the MYC-driven MB subgroup 
through the inhibition of apoptosis, deregulation of the 
mTOR pathway and modulation of cell motility and 
migration.[113]

During the EMT process, malignant cells start to intravasate 
into the surrounding blood vessels in order to migrate to 
other parts of the body. To accomplish this, the extracellular 
matrix and basement membrane of blood vessels have to 
be degraded by matrix metalloproteases (MMP).[114] The 
most relevant metalloproteases in this invasive process are 
MMP-2 and MMP-9.[115]

One of the upstream pathways controlling MMP production 
is the PI3K/AKT pathway.[116] As a consequence, drugs like 
wortmannin, a drug that inhibits the secretion of MMP-
2, blocks GBM invasion through the down-regulation of 
the PI3K/AKT/NF-kB signaling pathway.[117] Since Snail 
induces MMP-9 expression, EMT seems to be necessary 
for intravasation of lymph vessels in GBM and other 
cancers.[119]

PI3KS IN INFLAMMATION/
MICROENVIRONMENT

The process of inflammation has been extensively 
linked to tumor progression, as it can stimulate immune 
suppression, angiogenesis and tumor metastasis.[119,120] In 
response to tumor-derived growth factors and chemokines, 
inflammatory cells of the immune system are recruited to the 
tumor microenvironment. There, cells normally involved 
in chronic inflammation, such as mast cells, granulocytes 
and monocytes, provide the tumor with angiogenic factors, 
enzymes for extracellular matrix (EM) remodeling and 
growth factors to create a favorable milieu for expansion 
and dissemination.[121,122] 

Members of the class I PI3K family have also been 
implicated in tumor-associated inflammatory responses. 
In myeloid cells, p110γ can be activated via tumor-derived 
chemoattractants, such as IL-6, Il-8, TNF-α and CSF-1. 
Upon activation, p110γ promotes extravasation into the 
tumor microenvironment (TME) via integrin α4β1 and 
promotes inflammation-associated tumor progression.[26,123] 
This is in line with other reports indicating a crucial role of 
p110y for immune cell chemotaxis, as well as for chronic 
inflammation.[124]

Microglial cells are resident macrophages of the CNS. 
Depending on the signaling context, these cells possess a 
dual role in tumor biology. By secreting cytokines like IL-
6, IL-10 and immune suppressive molecules, gliomas can 
polarize microglia into tumor supporting M2 phenotypes that 
participate in matrix remodeling and cell invasion.[125-127] In 
a recent study, PAM signaling was upregulated in microglial 
cells that were exposed to glioma derived factors, indicating 
that PAM signaling is needed to force microglial cells into 
a tumor supportive M2 state.[128] This result was supported 
by a report showing that mTOR inhibition with rapamycin 
polarizes microglia cells to express a tumor suppressive 
M1 phenotype.[129] To date, the exact molecular mechanism 
by which PI3K signaling contributes to M2-polarization 
of microglia is still unknown and should be the subject of 
further investigation.

The tumor microenvironment of MB is also being 
investigated. A recent study associated the SHH-MB subtype 
with high infiltration of tumor associated macrophages 
(TAM) and strong expression of the inflammatory genes 
CSF1R and CD163.[130] It has been shown that PI3K binding 
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to CSF1R stimulates spreading and motility in macrophages 
and their enhancement of tumor cell invasion.[131] Inhibition 
of p110δ impairs CSF-1 induced macrophage spreading 
and their invasive capacity.[132] Hence, it may be worth 
investigating whether selective inhibition of PI3Ks in the 
SHH-MB subtype impairs TAM-driven tumor invasiveness. 
The CD163 gene is a surface marker that is strongly 
expressed by tumor promoting M2 macrophages, but it 
is not clear whether or not MB cells polarize surrounding 
TAM via PI3K to enhance tumor invasion.

CLINICAL TRIALS OF KINASE 
INHIBITORS IN GLIOBLASTOMA

Oncogenic kinase signaling (e.g. via the PAM pathway) 
is crucial in GBM and hence attractive for targeted 
therapy.[133,134] Unfortunately, the overall response rate 
of GBMs to kinase inhibitors in clinical trials has been 
poor so far.[135] One reason for these disappointing results 
may be inadequate trial design. Systematic flaws such as 
small sample sizes, absent control groups and unverified 
drug activity have been reported in the past.[135] Therefore, 
various changes in study design have been proposed to 
improve the reliability of the results. Clinical trials enriched 
for patients with an aberrant kinase target are likely to give 
a better picture of the overall performance of a particular 
inhibitor.[136] In addition, the importance of monitoring target 
inhibition and negative feedback has been shown in a phase 
I trial in PTEN-deficient glioblastomas.[137] To improve the 
results of clinical trials using kinase inhibitors, it appears 
necessary to set higher requirements for preclinical models 
and to verify efficacy in a broader spectrum of GBM models 
in order to address each model’s shortcomings. Given the 
fact that kinase signaling pathways are often dysregulated 
in parallel, it may also prove worthwhile to evaluate 
combinations of different kinase inhibitors.

CONCLUSION

Aberrant PAM signaling can promote crucial metastatic 
events such as angiogenesis, EMT, and modulation of 
immune cells in both MB and GBM. Targeting the PAM 
network may be a useful way to inhibit these often fatal 
events. Understanding the molecular mechanisms and 
the context by which different components of the PAM 
pathway contribute to tumor progression is a prerequisite 
for the design of novel treatment strategies. Some of these 
mechanisms, such as the interaction between malignant 
CNS cells and TME, have only recently become the focus 
of investigation and are still incompletely understood. 
Further studies are necessary to elucidate these 
mechanisms and to determine which components of the 
PAM pathway should be targeted to inhibit the metastasis 
of CNS malignancies.

Financial support and sponsorship
Work in the author’s laboratory is supported by grants 

from the European Union FP7 (ASSET, project number: 
259348 and LUNGTARGET, project number: 259770), 
the Swiss National Science Foundation (Grant 31003A-
146464), the Fondation FORCE, the Novartis Stiftung für 
Medizinisch-Biologische Forschung, the Jubiläumsstiftung 
der Schweizerischen Mobiliar Genossenschaft, the Stiftung 
zur Krebsbekämpfung, the Huggenberger-Bischoff Stiftung 
zur Krebsforschung, the UniBern Forschungsstiftung, the 
Stiftung für klinisch-experimentelle Tumorforschung, 
Bern and the Berner Stiftung für krebskranke Kinder und 
Jugendliche.

Conflicts of interest
There are no conflicts of interest.

REFERENCES

1. Louis DN, Ohgaki H, Wiestler OD, Cavenee WK, Burger PC, Jouvet 
A, Scheithauer BW, Kleihues P. The 2007 WHO classification 
of tumours of the central nervous system. Acta Neuropathol 
2007;114:97-109.

2. Johnson DR, O’Neill BP. Glioblastoma survival in the United States 
before and during the temozolomide era. J Neurooncol 2012;107:359-64.

3. Grimmer MR, Weiss WA. Childhood tumors of the nervous system as 
disorders of normal development. Curr Opin Pediatr 2006;18:634-8.

4. Gajjar AJ, Robinson GW. Medulloblastoma-translating discoveries 
from the bench to the bedside. Nat Rev Clin Oncol 2014;11:714-22.

5. Cancer Genome Atlas Research Network. Comprehensive genomic 
characterization defines human glioblastoma genes and core 
pathways. Nature 2008;455:1061-8.

6. Northcott PA, Shih DJ, Peacock J, Garzia L, Morrissy AS, Zichner 
T, Stütz AM, Korshunov A, Reimand J, Schumacher SE, Beroukhim 
R, Ellison DW, Marshall CR, Lionel AC, Mack S, Dubuc A, Yao Y, 
Ramaswamy V, Luu B, Rolider A, Cavalli FM, Wang X, Remke M, 
Wu X, Chiu RY, Chu A, Chuah E, Corbett RD, Hoad GR, Jackman 
SD, Li Y, Lo A, Mungall KL, Nip KM, Qian JQ, Raymond AG, 
Thiessen NT, Varhol RJ, Birol I, Moore RA, Mungall AJ, Holt R, 
Kawauchi D, Roussel MF, Kool M, Jones DT, Witt H, Fernandez-L 
A, Kenney AM, Wechsler-Reya RJ, Dirks P, Aviv T, Grajkowska 
WA, Perek-Polnik M, Haberler CC, Delattre O, Reynaud SS, Doz FF, 
Pernet-Fattet SS, Cho BK, Kim SK, Wang KC, Scheurlen W, Eberhart 
CG, Fèvre-Montange M, Jouvet A, Pollack IF, Fan X, Muraszko KM, 
Gillespie GY, Di Rocco C, Massimi L, Michiels EM, Kloosterhof 
NK, French PJ, Kros JM, Olson JM, Ellenbogen RG, Zitterbart K, 
Kren L, Thompson RC, Cooper MK, Lach B, McLendon RE, Bigner 
DD, Fontebasso A, Albrecht S, Jabado N, Lindsey JC, Bailey S, 
Gupta N, Weiss WA, Bognár L, Klekner A, Van Meter TE, Kumabe 
T, Tominaga T, Elbabaa SK, Leonard JR, Rubin JB, Liau LM, Van 
Meir EG, Fouladi M, Nakamura H, Cinalli G, Garami M, Hauser 
P, Saad AG, Iolascon A, Jung S, Carlotti CG, Vibhakar R, Ra YS, 
Robinson S, Zollo M, Faria CC, Chan JA, Levy ML, Sorensen PH, 
Meyerson M, Pomeroy SL, Cho YJ, Bader GD, Tabori U, Hawkins 
CE, Bouffet E, Scherer SW, Rutka JT, Malkin D, Clifford SC, Jones 
SJ, Korbel JO, Pfister SM, Marra MA, Taylor MD. Subgroup-specific 
structural variation across 1,000 medulloblastoma genomes. Nature 
2012;488:49-56.

7. Engelman JA, Luo J, Cantley LC. The evolution of phosphatidylinositol 
3-kinases as regulators of growth and metabolism. Nat Rev Genet 
2006;7:606-19.

8. Cantley LC. The phosphoinositide 3-kinase pathway. Science 
2002;296:1655-7.

9. Vanhaesebroeck B, Leevers SJ, Panayotou G, Waterfield MD. 
Phosphoinositide 3-kinases: a conserved family of signal transducers. 
Trends Biochem Sci 1997.22:267-72.

10. Lemmon MA. Membrane recognition by phospholipid-binding 



                                                                                                           Journal of Cancer Metastasis and Treatment ¦ Volume 2 ¦ March 11, 2016 ¦86

domains. Nat Rev Mol Cell Biol 2008;9:99-111.
11. Hatanpaa KJ, Burma S, Zhao D, Habib AA. Epidermal growth factor 

receptor in glioma: signal transduction, neuropathology, imaging, 
and radioresistance. Neoplasia 2010;12:675-84.

12. Quayle SN, Lee JY, Cheung LW, Ding L, Wiedemeyer R, Dewan 
RW, Huang-Hobbs E, Zhuang L, Wilson RK, Ligon KL, Mills 
GB, Cantley LC, Chin L. Somatic mutations of PIK3R1 promote 
gliomagenesis. PloS one 2012;7:e49466.

13. Castellino RC, Barwick BG, Schniederjan M, Buss MC, Becher 
O, Hambardzumyan D, Macdonald TJ, Brat DJ, Durden DL. 
Heterozygosity for Pten promotes tumorigenesis in a mouse model 
of medulloblastoma. PloS one 2010;5:e10849.

14. Zhao D, Besser AH, Wander SA, Sun J, Zhou W, Wang B, Ince 
T, Durante MA, Guo W, Mills G, Theodorescu D, Slingerland 
J. Cytoplasmic p27 promotes epithelial-mesenchymal transition 
and tumor metastasis via STAT3-mediated Twist1 upregulation. 
Oncogene 2015;34:5447-59.

15. Yoshioka K, Yoshida K, Cui H, Wakayama T, Takuwa N, Okamoto Y, 
Du W, Qi X, Asanuma K, Sugihara K, Aki S, Miyazawa H, Biswas 
K, Nagakura C, Ueno M, Iseki S, Schwartz RJ, Okamoto H, Sasaki T, 
Matsui O, Asano M, Adams RH, Takakura N, Takuwa Y. Endothelial 
PI3K-C2alpha, a class II PI3K, has an essential role in angiogenesis 
and vascular barrier function. Nat Med 2012;18:1560-9.

16. Holand K, Boller D, Hagel C, Dolski S, Treszl A, Pardo OE, 
Cwiek P, Salm F, Leni Z, Shepherd PR, Styp-Rekowska B, Djonov 
V, von Bueren AO, Frei K, Arcaro A. Targeting class IA PI3K 
isoforms selectively impairs cell growth, survival, and migration in 
glioblastoma. PloS one 2014;9:e94132.

17. Huse JT, Holland EC. Targeting brain cancer: advances in the 
molecular pathology of malignant glioma and medulloblastoma. Nat 
Rev Cancer 2010;10:319-31.

18. Dimitrova V, Arcaro A. Targeting the PI3K/AKT/mTOR signaling 
pathway in medulloblastoma. Curr Mol Med 2015;15:82-93.

19. Nagy JA, Dvorak HF. Heterogeneity of the tumor vasculature: the 
need for new tumor blood vessel type-specific targets. Clin Exp 
Metastasis 2012;29:657-62.

20. Schmid MC, Varner JA. Myeloid cell trafficking and tumor 
angiogenesis. Cancer Lett 2007;250:1-8.

21. Zhong H, Chiles K, Feldser D, Laughner E, Hanrahan C, 
Georgescu MM, Simons JW, Semenza GL. Modulation of hypoxia-
inducible factor 1alpha expression by the epidermal growth factor/
phosphatidylinositol 3-kinase/PTEN/AKT/FRAP pathway in human 
prostate cancer cells: implications for tumor angiogenesis and 
therapeutics. Cancer Res 2000;60:1541-5.

22. Xia C, Meng Q, Cao Z, Shi X, Jiang BH. Regulation of angiogenesis 
and tumor growth by p110 alpha and AKT1 via VEGF expression. J 
Cell Physiol 2006;209:56-66.

23. Brazil DP, Park J, Hemmings BA. PKB binding proteins. Getting in 
on the Akt. Cell 2002;111:293-303.

24. Galetic I, Andjelkovic M, Meier R, Brodbeck D, Park J, Hemmings 
BA. Mechanism of protein kinase B activation by insulin/insulin-like 
growth factor-1 revealed by specific inhibitors of phosphoinositide 
3-kinase-significance for diabetes and cancer. Pharmacol Ther 
1999;82:409-25.

25. Hu L, Hofmann J, Jaffe RB. Phosphatidylinositol 3-kinase mediates 
angiogenesis and vascular permeability associated with ovarian 
carcinoma. Clin Cancer Res 2005;11:8208-12.

26. Schmid MC, Avraamides CJ, Dippold HC, Franco I, Foubert P, 
Ellies LG, Acevedo LM, Manglicmot JR, Song X, Wrasidlo W, 
Blair SL, Ginsberg MH, Cheresh DA, Hirsch E, Field SJ, Varner 
JA. Receptor tyrosine kinases and TLR/IL1Rs unexpectedly activate 
myeloid cell PI3kgamma, a single convergent point promoting tumor 
inflammation and progression. Cancer cell 2011;19:715-27.

27. Semenza GL. HIF-1 and tumor progression: pathophysiology and 
therapeutics. Trends Mol Med 2002;8:S62-7.

28. Su JD, Mayo LD, Donner DB, Durden DL. PTEN and 
phosphatidylinositol 3’-kinase inhibitors up-regulate p53 and block 
tumor-induced angiogenesis: evidence for an effect on the tumor and 

endothelial compartment. Cancer Res 2003;63:3585-92.
29. Garlich JR, De P, Dey N, Su JD, Peng X, Miller A, Murali R, Lu Y, 

Mills GB, Kundra V, Shu HK, Peng Q, Durden DL. A vascular targeted 
pan phosphoinositide 3-kinase inhibitor prodrug, SF1126, with 
antitumor and antiangiogenic activity. Cancer Res 2008;68:206-15.

30. Koul D, Shen R, Kim YW, Kondo Y, Lu Y, Bankson J, Ronen SM, 
Kirkpatrick DL, Powis G, Yung WK. Cellular and in vivo activity of 
a novel PI3K inhibitor, PX-866, against human glioblastoma. Neuro 
Oncol 2010;12:559-69.

31. Pitz MW, Eisenhauer EA, MacNeil MV, Thiessen B, Easaw JC, 
Macdonald DR, Eisenstat DD, Kakumanu AS, Salim M, Chalchal 
H, Squire J, Tsao MS, Kamel-Reid S, Banerji S, Tu D, Powers J, 
Hausman DF, Mason WP. Phase II study of PX-866 in recurrent 
glioblastoma. Neuro Oncol 2015;17:1270-4.

32. Sharma PS, Sharma R, Tyagi T. VEGF/VEGFR pathway inhibitors 
as anti-angiogenic agents: present and future. Curr Cancer Drug 
Targets 2011;11:624-53.

33. Reardon DA, Turner S, Peters KB, Desjardins A, Gururangan 
S, Sampson JH, McLendon RE, Herndon JE 2nd, Jones LW, 
Kirkpatrick JP, Friedman AH, Vredenburgh JJ, Bigner DD, Friedman 
HS. A review of VEGF/VEGFR-targeted therapeutics for recurrent 
glioblastoma. J Natl Compr Canc Netw 2011;9:414-27.

34. Kuczynski EA, Patten SG, Coomber BL. VEGFR2 expression and 
TGF-beta signaling in initial and recurrent high-grade human glioma. 
Oncology 2011;81:126-34.

35. Chinot OL, de La Motte Rouge T, Moore N, Zeaiter A, Das A, 
Phillips H, Modrusan Z, Cloughesy T. AVAglio: Phase 3 trial 
of bevacizumab plus temozolomide and radiotherapy in newly 
diagnosed glioblastoma multiforme. Adv Ther 2011;28:334-40.

36. Van Meir EG, Hadjipanayis CG, Norden AD, Shu HK, Wen PY, 
Olson JJ. Exciting new advances in neuro-oncology: the avenue to a 
cure for malignant glioma. CA Cancer J Clin 2010;60:166-93.

37. Hardee ME, Zagzag D. Mechanisms of glioma-associated 
neovascularization. Am J Pathol 2012;181:1126-41.

38. Takano S, Yamashita T, Ohneda O. Molecular therapeutic targets for 
glioma angiogenesis. J Oncol 2010;2010:351908.

39. di Tomaso E, Snuderl M, Kamoun WS, Duda DG, Auluck PK, 
Fazlollahi L, Andronesi OC, Frosch MP, Wen PY, Plotkin SR, Hedley-
Whyte ET, Sorensen AG, Batchelor TT, Jain RK. Glioblastoma 
recurrence after cediranib therapy in patients: lack of “rebound” 
revascularization as mode of escape. Cancer Res 2011;71:19-28.

40. Gerstner ER, Chen PJ, Wen PY, Jain RK, Batchelor TT, Sorensen 
G. Infiltrative patterns of glioblastoma spread detected via diffusion 
MRI after treatment with cediranib. Neuro Oncol 2010;12:466-72.

41. Navis AC, Bourgonje A, Wesseling P, Wright A, Hendriks W, Verrijp 
K, van der Laak JA, Heerschap A, Leenders WP. Effects of dual 
targeting of tumor cells and stroma in human glioblastoma xenografts 
with a tyrosine kinase inhibitor against c-MET and VEGFR2. PloS 
one 2013;8:e58262.

42. Bridges E, Harris AL. Vascular-promoting therapy reduced tumor 
growth and progression by improving chemotherapy efficacy. Cancer 
cell 2015;27:7-9.

43. Donnem T, Hu J, Ferguson M, Adighibe O, Snell C, Harris AL, 
Gatter KC, Pezzella F. Vessel co-option in primary human tumors 
and metastases: an obstacle to effective anti-angiogenic treatment? 
Cancer Med 2013;2:427-36.

44. Qian CN. Hijacking the vasculature in ccRCC-co-option, remodelling 
and angiogenesis. Nat Rev Urol 2013;10:300-4.

45. Nguyen TM, Subramanian IV, Kelekar A, Ramakrishnan S. Kringle 
5 of human plasminogen, an angiogenesis inhibitor, induces 
both autophagy and apoptotic death in endothelial cells. Blood 
2007;109:4793-802.

46. Ramakrishnan S, Nguyen TM, Subramanian IV, Kelekar A. 
Autophagy and angiogenesis inhibition. Autophagy 2007;3:512-5.

47. Du J, Teng RJ, Guan T, Eis A, Kaul S, Konduri GG, Shi Y. Role of 
autophagy in angiogenesis in aortic endothelial cells. Am J Physiol 
Cell Physiol 2012;302:C383-91.

48. Shen W, Tian C, Chen H, Yang Y, Zhu D, Gao P, Liu J. Oxidative 



            Journal of Cancer Metastasis and Treatment ¦ Volume 2 ¦ March 11, 2016 ¦ 87

stress mediates chemerin-induced autophagy in endothelial cells. 
Free Radic Biol Med 2013;55:73-82.

49. Brech A, Ahlquist T, Lothe RA, Stenmark H. Autophagy in tumour 
suppression and promotion. Mol Oncol 2009;3:366-75.

50. Manning BD, Cantley LC. AKT/PKB signaling: navigating 
downstream. Cell 2007;129:1261-74.

51. Bhandarkar SS, Arbiser JL. Curcumin as an inhibitor of angiogenesis. 
Adv Exp Med Biol 2007;595:185-95.

52. Igura K, Ohta T, Kuroda Y, Kaji K. Resveratrol and quercetin inhibit 
angiogenesis in vitro. Cancer Lett 2001;171:11-6.

53. Lau DH, Xue L, Young LJ, Burke PA, Cheung AT. Paclitaxel (Taxol): 
an inhibitor of angiogenesis in a highly vascularized transgenic breast 
cancer. Cancer Biother Radiopharm 1999;14:31-6.

54. Pirtoli L, Cevenini G, Tini P, Vannini M, Oliveri G, Marsili S, 
Mourmouras V, Rubino G, Miracco C. The prognostic role of Beclin 1 
protein expression in high-grade gliomas. Autophagy 2009;5:930-6.

55. Weihua Z, Tsan R, Huang WC, Wu Q, Chiu CH, Fidler IJ, Hung MC. 
Survival of cancer cells is maintained by EGFR independent of its 
kinase activity. Cancer cell 2008;13:385-93.

56. Huang X, Bai HM, Chen L, Li B, Lu YC. Reduced expression of 
LC3B-II and Beclin 1 in glioblastoma multiforme indicates a down-
regulated autophagic capacity that relates to the progression of 
astrocytic tumors. J Clin Neurosci 2010;17:1515-9.

57. Micalizzi DS, Farabaugh SM, Ford HL. Epithelial-mesenchymal 
transition in cancer: parallels between normal development and tumor 
progression. J Mammary Gland Biol Neoplasia 2010;15:117-34.

58. Kalluri R, Neilson EG. Epithelial-mesenchymal transition and its 
implications for fibrosis. J Clin Invest 2003;112:1776-84.

59. Kalluri R, Weinberg RA. The basics of epithelial-mesenchymal 
transition. J Clin Invest 2009;119:1420-8.

60. Boutet A, Esteban MA, Maxwell PH, Nieto MA. Reactivation of 
Snail genes in renal fibrosis and carcinomas: a process of reversed 
embryogenesis? Cell cycle 2007;6:638-42.

61. Grille SJ, Bellacosa A, Upson J, Klein-Szanto AJ, van Roy F, Lee-
Kwon W, Donowitz M, Tsichlis PN, Larue L. The protein kinase Akt 
induces epithelial mesenchymal transition and promotes enhanced 
motility and invasiveness of squamous cell carcinoma lines. Cancer 
Res 2003;63:2172-8.

62. Vega S, Morales AV, Ocana OH, Valdes F, Fabregat I, Nieto MA. 
Snail blocks the cell cycle and confers resistance to cell death. Genes 
Dev 2004;18:1131-43.

63. Yang J, Mani SA, Donaher JL, Ramaswamy S, Itzykson RA, Come 
C, Savagner P, Gitelman I, Richardson A, Weinberg RA. Twist, a 
master regulator of morphogenesis, plays an essential role in tumor 
metastasis. Cell 2004;117:927-39.

64. Cheng GZ, Zhang W, Wang LH. Regulation of cancer cell survival, 
migration, and invasion by Twist: AKT2 comes to interplay. Cancer 
Res 2008;68:957-60.

65. Xue G, Restuccia DF, Lan Q, Hynx D, Dirnhofer S, Hess D, Rüegg 
C, Hemmings BA. Akt/PKB-mediated phosphorylation of Twist1 
promotes tumor metastasis via mediating cross-talk between PI3K/
Akt and TGF-beta signaling axes. Cancer Discov 2012;2:248-59.

66. Wallin JJ, Guan J, Edgar KA, Zhou W, Francis R, Torres AC, Haverty 
PM, Eastham-Anderson J, Arena S, Bardelli A, Griffin S, Goodall 
JE, Grimshaw KM, Hoeflich KP, Torrance C, Belvin M, Friedman 
LS. Active PI3K pathway causes an invasive phenotype which can 
be reversed or promoted by blocking the pathway at divergent nodes. 
PloS one 2012;7:e36402.

67. Wik E, Raeder MB, Krakstad C, Trovik J, Birkeland E, Hoivik EA, Mjos 
S, Werner HM, Mannelqvist M, Stefansson IM, Oyan AM, Kalland 
KH, Akslen LA, Salvesen HB. Lack of estrogen receptor-alpha is 
associated with epithelial-mesenchymal transition and PI3K alterations 
in endometrial carcinoma. Clin Cancer Res 2013;19:1094-105.

68. Elias MC, Tozer KR, Silber JR, Mikheeva S, Deng M, Morrison 
RS, Manning TC, Silbergeld DL, Glackin CA, Reh TA, Rostomily 
RC. TWIST is expressed in human gliomas and promotes invasion. 
Neoplasia 2005;7:824-37.

69. Dunn GP, Bruce AT, Ikeda H, Old LJ, Schreiber RD. Cancer 

immunoediting: from immunosurveillance to tumor escape. Nat 
Immunol 2002;3:991-8.

70. Shahideh M, Fallah A, Munoz DG, Loch Macdonald R. Systematic 
review of primary intracranial glioblastoma multiforme with 
symptomatic spinal metastases, with two illustrative patients. J Clin 
Neurosci 2012;19:1080-6.

71. Lawton CD, Nagasawa DT, Yang I, Fessler RG, Smith ZA. 
Leptomeningeal spinal metastases from glioblastoma multiforme: 
treatment and management of an uncommon manifestation of 
disease. J Neurosurg Spine 2012;17:438-48.

72. Kalokhe G, Grimm SA, Chandler JP, Helenowski I, Rademaker A, 
Raizer JJ. Metastatic glioblastoma: case presentations and a review 
of the literature. J Neurooncol 2012;107:21-7.

73. Taylor MD, Northcott PA, Korshunov A, Remke M, Cho YJ, Clifford 
SC, Eberhart CG, Parsons DW, Rutkowski S, Gajjar A, Ellison 
DW, Lichter P, Gilbertson RJ, Pomeroy SL, Kool M, Pfister SM. 
Molecular subgroups of medulloblastoma: the current consensus. 
Acta Neuropathol 2012;123:465-72.

74. Gajjar A, Bowers DC, Karajannis MA, Leary S, Witt H, Gottardo 
NG. Pediatric Brain Tumors: Innovative Genomic Information Is 
Transforming the Diagnostic and Clinical Landscape. J Clin Oncol 
2015;33:2986-98.

75. Robinson G, Parker M, Kranenburg TA, Lu C, Chen X, Ding L, 
Phoenix TN, Hedlund E, Wei L, Zhu X, Chalhoub N, Baker SJ, 
Huether R, Kriwacki R, Curley N, Thiruvenkatam R, Wang J, Wu G, 
Rusch M, Hong X, Becksfort J, Gupta P, Ma J, Easton J, Vadodaria B, 
Onar-Thomas A, Lin T, Li S, Pounds S, Paugh S, Zhao D, Kawauchi 
D, Roussel MF, Finkelstein D, Ellison DW, Lau CC, Bouffet E, 
Hassall T, Gururangan S, Cohn R, Fulton RS, Fulton LL, Dooling 
DJ, Ochoa K, Gajjar A, Mardis ER, Wilson RK, Downing JR, 
Zhang J, Gilbertson RJ. Novel mutations target distinct subgroups of 
medulloblastoma. Nature 2012;488:43-8.

76. Blom T, Roselli A, Hayry V, Tynninen O, Wartiovaara K, Korja 
M, Nordfors K, Haapasalo H, Nupponen NN. Amplification and 
overexpression of KIT, PDGFRA, and VEGFR2 in medulloblastomas 
and primitive neuroectodermal tumors. J Neurooncol 2010;97:217-24.

77. Holand K, Salm F, Arcaro A. The phosphoinositide 3-kinase 
signaling pathway as a therapeutic target in grade IV brain tumors. 
Curr Cancer Drug Targets 2011;11:894-918.

78. Hartmann C, Bartels G, Gehlhaar C, Holtkamp N, von Deimling A. 
PIK3CA mutations in glioblastoma multiforme. Acta Neuropathol 
2005;109:639-42.

79. Guerreiro AS, Fattet S, Fischer B, Shalaby T, Jackson SP, 
Schoenwaelder SM, Grotzer MA, Delattre O, Arcaro A. Targeting 
the PI3K p110alpha isoform inhibits medulloblastoma proliferation, 
chemoresistance, and migration. Clin Cancer Res 2008;14:6761-9.

80. Salm F, Dimitrova V, von Bueren AO, Cwiek P, Rehrauer H, 
Djonov V, Anderle P, Arcaro A. The Phosphoinositide 3-Kinase 
p110alpha Isoform Regulates Leukemia Inhibitory Factor Receptor 
Expression via c-Myc and miR-125b to Promote Cell Proliferation in 
Medulloblastoma. PloS one 2015;10:e0123958.

81. Mueller W, Mizoguchi M, Silen E, D’Amore K, Nutt CL, Louis DN. 
Mutations of the PIK3CA gene are rare in human glioblastoma. Acta 
Neuropathol 2005;109:654-5.

82. Luk SK, Piekorz RP, Nurnberg B, Tony To SS. The catalytic 
phosphoinositol 3-kinase isoform p110delta is required for glioma 
cell migration and invasion. Eur J Cancer 2012;48:149-57.

83. Guerreiro AS, Fattet S, Kulesza DW, Atamer A, Elsing AN, Shalaby 
T, Jackson SP, Schoenwaelder SM, Grotzer MA, Delattre O, Arcaro 
A. A sensitized RNA interference screen identifies a novel role for the 
PI3K p110gamma isoform in medulloblastoma cell proliferation and 
chemoresistance. Mol Cancer Res 2011;9:925-35.

84. Boller D, Doepfner KT, De Laurentiis A, Guerreiro AS, Marinov M, 
Shalaby T, Depledge P, Robson A, Saghir N, Hayakawa M, Kaizawa 
H, Koizumi T, Ohishi T, Fattet S, Delattre O, Schweri-Olac A, 
Höland K, Grotzer MA, Frei K, Spertini O, Waterfield MD, Arcaro 
A. Targeting PI3KC2beta impairs proliferation and survival in acute 
leukemia, brain tumours and neuroendocrine tumours. Anticancer 



                                                                                                           Journal of Cancer Metastasis and Treatment ¦ Volume 2 ¦ March 11, 2016 ¦88

Res 2012;32:3015-27.
85. Ehrhardt M, Craveiro RB, Holst MI, Pietsch T, Dilloo D. The PI3K 

inhibitor GDC-0941 displays promising in vitro and in vivo efficacy 
for targeted medulloblastoma therapy. Oncotarget 2015;6:802-13.

86. Hartmann W, Digon-Sontgerath B, Koch A, Waha A, Endl E, Dani 
I, Denkhaus D, Goodyer CG, Sörensen N, Wiestler OD, Pietsch 
T. Phosphatidylinositol 3’-kinase/AKT signaling is activated in 
medulloblastoma cell proliferation and is associated with reduced 
expression of PTEN. Clin Cancer Res 2006;12:3019-27.

87. Koul D, Shen R, Bergh S, Sheng X, Shishodia S, Lafortune TA, Lu Y, 
de Groot JF, Mills GB, Yung WK. Inhibition of Akt survival pathway 
by a small-molecule inhibitor in human glioblastoma. Mol Cancer 
Ther 2006;5:637-44.

88. Gallia GL, Tyler BM, Hann CL, Siu IM, Giranda VL, Vescovi AL, 
Brem H, Riggins GJ. Inhibition of Akt inhibits growth of glioblastoma 
and glioblastoma stem-like cells. Mol Cancer Ther 2009;8:386-93.

89. Kumar A, Fillmore HL, Kadian R, Broaddus WC, Tye GW, Van 
Meter TE. The alkylphospholipid perifosine induces apoptosis and 
p21-mediated cell cycle arrest in medulloblastoma. Mol Cancer Res 
2009;7:1813-21.

90. Becher OJ, Hambardzumyan D, Walker TR, Helmy K, Nazarian J, 
Albrecht S, Hiner RL, Gall S, Huse JT, Jabado N, MacDonald TJ, 
Holland EC. Preclinical evaluation of radiation and perifosine in a 
genetically and histologically accurate model of brainstem glioma. 
Cancer Res 2010;70:2548-57.

91. Knobbe CB, Reifenberger G. Genetic alterations and aberrant 
expression of genes related to the phosphatidyl-inositol-3’-kinase/
protein kinase B (Akt) signal transduction pathway in glioblastomas. 
Brain Pathol 2003;13:507-18.

92. Vitucci M, Karpinich NO, Bash RE, Werneke AM, Schmid RS, 
White KK, McNeill RS, Huff B, Wang S, Van Dyke T, Miller CR. 
Cooperativity between MAPK and PI3K signaling activation is required 
for glioblastoma pathogenesis. Neuro Oncol 2013;15:1317-29.

93. Dey N, Crosswell HE, De P, Parsons R, Peng Q, Su JD, Durden DL. 
The protein phosphatase activity of PTEN regulates SRC family 
kinases and controls glioma migration. Cancer Res 2008;68:1862-71.

94. Mayo LD, Dixon JE, Durden DL, Tonks NK, Donner DB. PTEN 
protects p53 from Mdm2 and sensitizes cancer cells to chemotherapy. 
J Biol Chem 2002;277:5484-9.

95. Merrill MJ, Edwards NA. Insulin-like growth factor-I receptors in 
human glial tumors. J Clin Endocrinol Metab 1990;71:199-209.

96. Sinha S, Koul N, Dixit D, Sharma V, Sen E. IGF-1 induced HIF-
1alpha-TLR9 cross talk regulates inflammatory responses in glioma. 
Cell Signal 2011;23:1869-75.

97. Lin YC, Lin JC, Hung CM, Chen Y, Liu LC, Chang TC, Kao JY, Ho 
CT, Way TD. Osthole inhibits insulin-like growth factor-1-induced 
epithelial to mesenchymal transition via the inhibition of PI3K/Akt 
signaling pathway in human brain cancer cells. J Agric Food Chem 
2014;62:5061-71.

98. Yin S, Girnita A, Stromberg T, Khan Z, Andersson S, Zheng 
H, Ericsson C, Axelson M, Nistér M, Larsson O, Ekström TJ, 
Girnita L. Targeting the insulin-like growth factor-1 receptor by 
picropodophyllin as a treatment option for glioblastoma. Neuro 
Oncol 2010;12:19-27.

99. Maris C, D’Haene N, Trepant AL, Le Mercier M, Sauvage S, 
Allard J, Rorive S, Demetter P, Decaestecker C, Salmon I. IGF-IR: 
a new prognostic biomarker for human glioblastoma. Br J Cancer 
2015 ;113:729-37.

100. Kong DS, Song SY, Kim DH, Joo KM, Yoo JS, Dong SM, Suh YL, 
Lee JI, Park K, Kim JH, Nam DH. Prognostic significance of c-Met 
expression in glioblastomas. Cancer 2009;115:140-8.

101. Fixman ED, Fournier TM, Kamikura DM, Naujokas MA, Park 
M. Pathways downstream of Shc and Grb2 are required for 
cell transformation by the tpr-Met oncoprotein. J Biol Chem 
1996;271:13116-22.

102. Graziani A, Gramaglia D, Cantley LC, Comoglio PM. 1991. The 
tyrosine-phosphorylated hepatocyte growth factor/scatter factor 
receptor associates with phosphatidylinositol 3-kinase. J Biol Chem 

1991;266:22087-90.
103. Li Y, Lal B, Kwon S, Fan X, Saldanha U, Reznik TE, Kuchner EB, 

Eberhart C, Laterra J, Abounader R. The scatter factor/hepatocyte 
growth factor: c-met pathway in human embryonal central nervous 
system tumor malignancy. Cancer Res 2005;65:9355-62.

104. Martens T, Schmidt NO, Eckerich C, Fillbrandt R, Merchant M, 
Schwall R, Westphal M, Lamszus K. A novel one-armed anti-c-
Met antibody inhibits glioblastoma growth in vivo. Clin Cancer Res 
2006;12:6144-52.

105. Lu KV, Chang JP, Parachoniak CA, Pandika MM, Aghi MK, Meyronet 
D, Isachenko N, Fouse SD, Phillips JJ, Cheresh DA, Park M, Bergers 
G. VEGF inhibits tumor cell invasion and mesenchymal transition 
through a MET/VEGFR2 complex. Cancer cell 2012;22:21-35.

106. Kongkham PN, Onvani S, Smith CA, Rutka JT. Inhibition of the 
MET Receptor Tyrosine Kinase as a Novel Therapeutic Strategy in 
Medulloblastoma. Transl Oncol 2010;3:336-43.

107. Faria CC, Golbourn BJ, Dubuc AM, Remke M, Diaz RJ, Agnihotri 
S, Luck A, Sabha N, Olsen S, Wu X, Garzia L, Ramaswamy V, Mack 
SC, Wang X3 Leadley M, Reynaud D, Ermini L, Post M, Northcott 
PA, Pfister SM, Croul SE, Kool M, Korshunov A, Smith CA, Taylor 
MD, Rutka JT. Foretinib is effective therapy for metastatic sonic 
hedgehog medulloblastoma. Cancer Res 2015;75:134-46.

108. Lv B, Yang X, Lv S, Wang L, Fan K, Shi R, Wang F, Song H, Ma X, 
Tan X, Xu K, Xie J, Wang G, Feng M, Zhang L. CXCR4 Signaling 
Induced Epithelial-Mesenchymal Transition by PI3K/AKT and ERK 
Pathways in Glioblastoma. Mol Neurobiol 2015;52:1263-8.

109. Kil WJ, Tofilon PJ, Camphausen K. Post-radiation increase in VEGF 
enhances glioma cell motility in vitro. Radiat Oncol 2012;7:25.

110. Westhoff MA, Karpel-Massler G, Bruhl O, Enzenmuller S, La Ferla-
Bruhl K, Siegelin MD, Nonnenmacher L, Debatin KM. A critical 
evaluation of PI3K inhibition in Glioblastoma and Neuroblastoma 
therapy. Mol Cell Ther 2014;2:32.

111. Birks DK, Barton VN, Donson AM, Handler MH, Vibhakar R, 
Foreman NK. Survey of MicroRNA expression in pediatric brain 
tumors. Pediatr Blood Cancer 2011;56:211-6.

112. Pang JC, Kwok WK, Chen Z, Ng HK. Oncogenic role of microRNAs 
in brain tumors. Acta Neuropathol 2009;117:599-611.

113. Weeraratne SD, Amani V, Teider N, Pierre-Francois J, Winter D, 
Kye MJ, Sengupta S, Archer T, Remke M, Bai AH, Warren P, Pfister 
SM, Steen JA, Pomeroy SL, Cho YJ. Pleiotropic effects of miR-
183~96~182 converge to regulate cell survival, proliferation and 
migration in medulloblastoma. Acta Neuropathol 2012;123:539-52.

114. Stamenkovic I. Matrix metalloproteinases in tumor invasion and 
metastasis. Semin Cancer Biol 2000;10:415-33.

115. Vu TH, Werb Z. Matrix metalloproteinases: effectors of development 
and normal physiology. Genes Dev 2000;14:2123-33.

116. Chen JS, Wang Q, Fu XH, Huang XH, Chen XL, Cao LQ, Chen 
LZ, Tan HX, Li W, Bi J, Zhang LJ. Involvement of PI3K/PTEN/
AKT/mTOR pathway in invasion and metastasis in hepatocellular 
carcinoma: Association with MMP-9. Hepatol Res 2009;39:177-86.

117. Jiao Y, Li H, Liu Y, Guo A, Xu X, Qu X, Wang S, Zhao J, Li Y, Cao Y. 
Resveratrol Inhibits the Invasion of Glioblastoma-Initiating Cells via 
Down-Regulation of the PI3K/Akt/NF-kappaB Signaling Pathway. 
Nutrients 2015 ;7:4383-402.

118. Greenspoon JN, Sharieff W, Hirte H, Overholt A, Devillers R, 
Gunnarsson T, Whitton A. Fractionated stereotactic radiosurgery 
with concurrent temozolomide chemotherapy for locally recurrent 
glioblastoma multiforme: a prospective cohort study. Onco Targets 
Ther 2014;7:485-90.

119. Kim S, Takahashi H, Lin WW, Descargues P, Grivennikov S, Kim Y, 
Luo JL, Karin M. Carcinoma-produced factors activate myeloid cells 
through TLR2 to stimulate metastasis. Nature 2009;457:102-6.

120. Du R, Lu KV, Petritsch C, Liu P, Ganss R, Passegué E, Song H, 
Vandenberg S, Johnson RS, Werb Z, Bergers G. HIF1alpha induces 
the recruitment of bone marrow-derived vascular modulatory cells to 
regulate tumor angiogenesis and invasion. Cancer cell 2008;13:206-20.

121. Mantovani A, Allavena P, Sica A, Balkwill F. Cancer-related 
inflammation. Nature 2008;454:436-44.



            Journal of Cancer Metastasis and Treatment ¦ Volume 2 ¦ March 11, 2016 ¦ 89

122. Coussens LM. Zitvogel L, Palucka AK. Neutralizing tumor-
promoting chronic inflammation: A magic bullet? (vol 339, pg 286, 
2013). Science 2013;339:286-91.

123. Schmid MC, Franco I, Kang SW, Hirsch E, Quilliam LA, Varner JA. 
PI3-kinase gamma promotes Rap1a-mediated activation of myeloid 
cell integrin alpha4beta1, leading to tumor inflammation and growth. 
PloS one 2013;8:e60226.

124. Rommel C, Camps M, Ji H. PI3K delta and PI3K gamma: partners 
in crime in inflammation in rheumatoid arthritis and beyond? Nature 
reviews. Immunology 2007;7:191-201.

125. Kettenmann H, Hanisch UK, Noda M, Verkhratsky A. Physiology of 
microglia. Physiol Rev 2011;91:461-553.

126. Wei J, Gabrusiewicz K, Heimberger A. The controversial 
role of microglia in malignant gliomas. Clin Dev Immunol 
2013;2013:285246.

127. Markovic DS, Vinnakota K, Chirasani S, Synowitz M, Raguet H, 
Stock K, Sliwa M, Lehmann S, Kälin R, van Rooijen N, Holmbeck 
K, Heppner FL, Kiwit J, Matyash V, Lehnardt S, Kaminska B, Glass 
R, Kettenmann H. Gliomas induce and exploit microglial MT1-
MMP expression for tumor expansion. Proc Natl Acad Sci U S A 
2009;106:12530-5.

128. Ellert-Miklaszewska A, Dabrowski M, Lipko M, Sliwa M, Maleszewska 
M, Kaminska B. Molecular definition of the pro-tumorigenic phenotype 
of glioma-activated microglia. Glia 2013;61:1178-90.

129. Lisi L, Laudati E, Navarra P, Dello Russo C. The mTOR kinase 
inhibitors polarize glioma-activated microglia to express a M1 
phenotype. J Neuroinflammation 2014;11:125.

130. Margol AS, Robison NJ, Gnanachandran J, Hung LT, Kennedy RJ, 
Vali M, Dhall G, Finlay JL, Erdreich-Epstein A, Krieger MD, Drissi R, 

Fouladi M, Gilles FH, Judkins AR, Sposto R, Asgharzadeh S. Tumor-
associated macrophages in SHH subgroup of medulloblastomas. Clin 
Cancer Res 2015;21:1457-65.

131. Sampaio NG, Yu W, Cox D, Wyckoff J, Condeelis J, Stanley ER, 
Pixley FJ. Phosphorylation of CSF-1R Y721 mediates its association 
with PI3K to regulate macrophage motility and enhancement of 
tumor cell invasion. J Cell Sci 2011;124:2021-31.

132. Mouchemore KA, Sampaio NG, Murrey MW, Stanley ER, Lannutti 
BJ, Pixley FJ. Specific inhibition of PI3K p110delta inhibits CSF-
1-induced macrophage spreading and invasive capacity. FEBS J 
2013;280:5228-36.

133. Carrasco-Garcia E, Saceda M, Martinez-Lacaci I. Role of receptor 
tyrosine kinases and their ligands in glioblastoma. Cells 2014;3:199-235.

134. Chi AS, Wen PY. Inhibiting kinases in malignant gliomas. Expert 
Opin Ther Targets 2007;11:473-96.

135. De Witt Hamer PC. Small molecule kinase inhibitors in glioblastoma: 
a systematic review of clinical studies. Neuro Oncol 2010;12:304-16.

136. Arteaga CL, Baselga J. Tyrosine kinase inhibitors: why does the 
current process of clinical development not apply to them? Cancer 
cell 2004;5:525-31.

137. Cloughesy TF, Yoshimoto K, Nghiemphu P, Brown K, Dang J, Zhu 
S, Hsueh T, Chen Y, Wang W, Youngkin D, Liau L, Martin N, Becker 
D, Bergsneider M, Lai A, Green R, Oglesby T, Koleto M, Trent J, 
Horvath S, Mischel PS, Mellinghoff IK, Sawyers CL. Antitumor 
activity of rapamycin in a Phase I trial for patients with recurrent 
PTEN-deficient glioblastoma. PLoS Med 2008;5:e8.

138. Trail data from ClinicalTrails.gov [Interent]. New York: U.S. National 
Institutes of Health. Available from: https://clinicaltrials.gov/.



                                                                                      ©2016 Journal of Cancer Metastasis and Treatment ¦ Published by OAE Publishing Inc.90

A B S T R A C T

Topic: Brain tumor cell invasion and metastasis: anatomical, biological and clinical considerations

Brain infiltration by cancer cells: different roads to the same target?
Mayra Paolillo, Sergio Schinelli
Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy.

Correspondence to: Dr. Mayra Paolillo, Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy. E-mail: mayra.paolillo@unipv.it

Brain infiltration by cancer cells is a complex process in which metastatic cells detached from the primary tumor must firstly 
survive in the blood flow, cross the blood brain barrier (BBB) and finally colonize a foreign  microenvironment. The cells that 
successfully bypass the cellular barriers surrounding capillaries, proliferate to form micrometastasis and trigger the angiogenetic 
process. Different molecular mechanisms have been proposed to explain the metastatic behaviour of solid tumors that infiltrate 
brain tissue; in this review the most recent findings concerning mechanisms and genes potentially involved in brain metastasis, 
that differ according to primary tumor types, will be discussed. The three tumors that more frequently develop brain metastasis, 
lung cancer, breast cancer and melanoma, will be considered and, in addition, the role of BBB and the process of endothelial to 
mesenchymal transition in cancer metastasis will be briefly described.

Key words: Brain metastasis; breast; epithelial-mesenchymal transition; lung; melanoma; micro-RNA

Access this article online

Quick Response Code:
Website: 
www.jcmtjournal.com

DOI:  
10.4103/2394-4722.172661

This is an open access article distributed under the terms of the Creative 
Commons Attribution-NonCommercial-ShareAlike 3.0 License, which allows 
others to remix, tweak, and build upon the work non-commercially, as long as 
the author is credited and the new creations are licensed under the identical 
terms.

For reprints contact: service@oaepublish.com

How to cite this article: Paolillo M, Schinelli S. Brain infiltration by 
cancer cells: different roads to the same target? J Cancer Metastasis 
Treat 2016;2:90-100.

Received: 10-10-2015; Accepted: 30-11-2015.

INTRODUCTION

The prognosis for cancer patients is strictly dependent on 
the metastatic behaviour of the tumor. Each tumor displays 
preferential sites were metastases more frequently develop 
and patients survival depends upon the possibility to perform 
surgery followed by oncological therapy and radiotherapy. 
Indeed, these approaches are usually sufficient to eradicate 
local oligometastases but unfortunately the picture is 
different in the case of brain metastases (BM), which are 
frequently associated with a poor prognosis.[1] In the case 
of BM, stereotaxic radiosurgery is a useful tool to reduce 
local recurrence and achieve the same level of local control 
of whole-brain radiation therapy, with fewer side effects and 
comparable outcomes.[2]

BM affect up to 40% of metastatic cancer patients[1] and the 

tumors that most often spread to the brain are lung cancer 
(30-50% of patients) and breast cancer (10-30% of patients), 
with melanoma ranking at the 3rd place (6-10% of patients).[3] 
In many cases, the poor life expectancy associated with BM 
is due to other widespread metastasis but this is not true for 
melanoma patiens, who very early display BM that make 
unsuccessful further therapeutic efforts.[4]

Without treatment, median survival for a patient with BM is 
estimated to be about 3 months for a single lesion, although life 
expectancy has recently increased due to enhanced diagnostic 
tools that may even detect very tiny neoplastic formations.[4]

Cancer cells traveling through the bloodstream eventually 
colonize a vascular place, by adhering to endothelial cells, or 
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cross the brain barrier to begin the process that leads to the niche 
formation in the brain parenchyma. Thereafter cancer cells 
grow and invade the brain tissues by different mechanisms, 
such as expansive growth, multicellular migration and 
individual cell migration.[5]

On the other side, the host tissue re-organizes its structure 
and vasculature recruiting stromal cells, such as fibroblasts, 
endothelial cells and tumor-associated macrophages, that 
sustain the tumor growth by producing and releasing extra-
cellular matrix (ECM) proteins, cytokines and growth factors.[6]

METASTASIS FORMATION: EPITHELIAL-
MESENCHYMAL TRANSITION

The epithelial to mesenchimal transition (EMT), identified 
as one of the earliest steps of solid tumor progression, is 
associated with tumor growth, invasion, metastasis and 
contributes to the conversion of tumors from low- to high-
grade malignancy.[7] In epithelium-derived carcinoma, the 
EMT program induces a series of functional and structural 
changes aimed at the formation of tumor cells that will be 
able to invade surrounding tissues and lead to metastases 
formation. Invasion is a key step to progression toward 
a malignant phenotype and occurs when tumor cells 
translocate from the relatively constrained initial neoplastic 
mass into neighbouring host  tissues. To accomplish  this  
task, cancer cells must somehow detach from the primary  
tumor and migrate through the ECM, opening up the 
opportunity to penetrate the basal membrane surrounding 
a blood or lymphatic vessel, travel throughout the body via 
the circulatory system, and colonize distant sites to form 
metastatic foci. EMT is acknowledged to confer to cancer  
cells the molcular features  required  for these tasks. During 
EMT, in fact, epithelial cells undergo a developmental 
switch that results in decreased adhesion and loss of cell 
polarity, increased proliferation, motility and invasiveness; 
these changes are associated with  the downregulation of 
epithelial cell surface markers and cytoskeleton components 
(E-cadherin, zonula occludens-1, claudins, occludins, 
cytokeratins) and the upregulation of mesenchymal markers 
(vimentin and α-smooth muscle actin) together with ECM 
components (collagens and fibronectin).[8] Although the 
molecular changes that occur in cancer cells during EMT 
have been extensively documented, the molecular switches 
that turn on EMT still represent an open question and a 
crucial challenge because the possibility to inhibit this 
process could be of great impotance in reducing metastatic 
spread. In vitro and in vivo model systems have identified 
several transduction pathways that lead to EMT and EMT-
like phenotypes, many of which connect EMT to the ECM 
and the microenvironment surrounding tumors.[9]

Among these pathways, integrins and transforming growth 
factor-beta (TGF-β) work synergistically to drive tumor 
cells towards EMT.[9-11] TGF-β, in fact, is secreted as 
inactive precursor in a complex with 2 peptides, latency 

associated peptide (LAP) and latent TGF-β-binding  protein 
(LTBP). Its activation requires the dissociation from the 
complex, that may also be achieved by several integrins. 
The LAP peptides bound to TGF-β1 and TGF-β3 contain 
an Arginine-Glycine-Aspartate (RGD) motif that can be 
recognized by the RGD-binding integrins (αvβ3, αvβ5, 
α5β1); this binding activates a driving force that leads to 
breaking of LAPs and LTBP binding to TGF-β and releases 
the active form of TGF-β.[10,12] Integrin inhibitors with 
different molecular structures have been studied and are 
in clinical trials as anti-angiogenic agents or in support of 
other anti-cancer therapies, therefore integrin antagonists 
could represent a valuable and near-at-hand tool to inhibit 
the integrin dependent TGF-β activation and eventually 
reduce metastatic spread.[13]

Lung, breast cancer and melanoma are tumors that display 
the EMT phenotype,[14,15] and in lung cancer, the expression 
of markers of this transition has been associated with 
prognosis.[16-18] This link between EMT and malignancy is 
further supported by the finding that, in other cancer types, 
EMT markers are overexpressed in 40% of tissue samples 
and are associated with vascular invasion and advanced 
clinical stage.[19]

Once in the brain tissue, during reimplantation, the 
circulating tumor cells have been shown to undergo a 
mesenchimal to epithelial transition, thus reversing the 
EMT, to reacquire some of the original epithelial features 
necessary to survive in the new environment.[20]

The knowledge of EMT mechanisms could clearly be an 
invaluable tool in defining molecular markers predicting 
tumors metastatic behaviour and prognosis and in 
identifying targets for new molecules that could inhibit the 
EMT process.

THE ROLE OF MICRO-RNAS

A number of recent studies has identified micro-RNAs 
(miRNAs) as key regulators of cancer cells survival and 
metastatic spread. Indeed, approximately 30% of human 
genes are likely to be regulated by miRNAs[21] and miRNAs 
have been shown to regulate a variety of biological 
processes, including cell proliferation, cell differentiation 
and cell death.[22] In this section miRNA involved in 
metastases, though with different molecular mechanisms 
are described.

miRNAs are an endogenous, highly conserved class of 
non-coding 20-24 nucleotides small RNAs that regulate 
gene expression at post-transcriptional level by binding 
to 3’-UTR of target mRNAs, thus leading to inhibition 
of mRNA translation and degradation.[23] Several reports 
have elucidated the role of certain miRNAs as a class of 
oncogenes or tumor suppressors, depending upon their 
targeted genes.[24] In addition, several studies have reported  
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that miRNAs genomic locations are frequently associated 
to genomic regions involved in cancer. It has been 
calculated that about 50% of known miRNAs are located 
inside or close to fragile sites in minimal regions of loss 
of heterozygocity, regions of amplifications and common 
breakpoints associated with cancer.[25,26]

These studies indicate that miRNAs represent key players in 
cancer development and moreover, accumulating evidence 
demonstrates that miRNAs can also influence multiple steps 
of metastasis such as EMT, tumor cell migration, invasion 
and colonization.[27]

The miR-200 family (miR-200a, miR-200b, miR-200c, 
miR-141 and miR-429) and miR-205 were the first group 
of miRNAs found downregulated in various tumors that 
underwent EMT progression. Members of the miR-200 
family inhibit the EMT process by positively regulating 
E-cadherin expression through direct  targeting of ZEB1 
and ZEB2, transcriptional repressors of E-cadherin. 
Furthermore, expression of the miR-200 family in 
mammary carcinoma cells induced mesenchymal-epithelial 
transition by up-regulating E-cadherin expression and 
inhibited migration of these tumor cells,[28] thus suggesting 
that downregulation of these miRNAs may be an important 
step in tumour progression.

miR-145 was found downregulated in several tumor types 
including breast, gastric, lung, ovary, prostate cancer 
and esophageal squamous cell carcinoma and notably, 
accumulating evidence indicates that the processing of 
miR-145 is also involved in cancer metastasis.[22,29] In breast 
cancer, miR-145 suppress breast cancer cell line invasion 
and metastasis by targeting mucin-1, a glycoprotein that 
can help tumor cells to escape immunosurveillance;[30] in 
addition, miR-145-dependent regulation of 3’UTR of the 
JAM-A and fascin decreased motility and invasiveness of 
MDA-MB-231, MCF-7 and other breast cancer cells.[31]

miRNA analysis could also be intrumental for prognostic 
purposes: in a retrospective study on 256 melanoma patients, 
divided into three cohorts, four miRNAs (miR-150-5p, miR-
15b-5p, miR-16-5p and miR-374b-3p) were identified as a 
prognostic signature that, in combination with stage, was  
able to distinguish primary melanomas that metastasized 
to the brain from non-brain metastatic primary tumors.[32] 
Although at the present time the biological significance of 
these miRNAs disregulation may be difficult to understand, 
nevertheless the notion, togheter with classical staging 
parameters, could be of great importance to clinicians to set 
specific therapeutic strategies.

Interestingly, miRNA can also modulate gene expression 
in adjacent cells within the microenvironment and even in 
distant cells, since miRNAs have been detected in the blood 
and in other body fluids;[33] indeed, circulating miRNAs, 
extra-cellular vesicles-and exosomes-associated miRNA 

are extensively studied as potential biomarkers in different 
cancer types.[34]

Exosomes are 40-100 nm vesicles secreted by a wide range 
of mammalian cell types, including cancer cells.[35] miRNAs 
shuttled by exosomes involved in cancer metastases have 
been found to be implicated in angiogenesis and tumor 
niche formation.[36,37]

Recently, an interesting study reported a new and 
unexpected mechanism by which a miRNA contributes to 
metastatic spread in the brain; the miR-181c contained in 
cancer-derived extra-cellular vescicles, carrying proteins 
and miRNAs, promotes the destruction of blood brain 
barrier (BBB) through delocalization of actin fibres via the 
downregulation of 3-phosphoinositide-dependent protein 
kinase-1 in vitro and in vivo.[38] The breakdown of BBB 
triggered by miR-181c can easily open the way to brain 
parenchyma to circulating cancer cells.

A very recent study has demonstrated that miRNAs 
contained in exosomes released by human and mouse tumors 
that metastasize to lung, liver or brain, like breast cancer, 
trigger cellular changes in target organs by promoting the 
formation of tumoral niche and organ-specific invasion. 
The organ sites where tumor derived exosomes take contact 
and release their content is related to integrins expressed 
on the exosomes surface: α6β4 preferentially interacts with 
lung cells, αvβ5 mediates exosomes delivery to liver.[39]

These new findings suggest that the exosome miRNAs 
content and integrin expression can be useful to predict the 
tendency of primary tumors to metastasize and to determine 
the preferential organ sites of future metastases; in addition, 
this evidence highlights the role of integrins as potential 
valuable targets to inhibit exosomes interactions with 
metastatic sites.

CROSSING THE BBB

The key step during BM formation is the migration of cancer 
cells through BBB. Anatomically, the BBB is formed by 
brain microvascular endothelial cells (BMVECs), that form 
tight junctions without pores, and perivascular elements 
including pericytes, astrocytes, oligogendrocytes and the 
basement membrane. This complex structure represents 
a physical barrier for cells and molecules, selected on the 
basis of their molecular weight and charge. In addition, 
this barrier regulates the diffusion processes and the brain 
parenchyma homoeostasis by highly selective transport 
mechanisms mediating flux of solutes and molecules and by 
a metabolic barrier consisting of highly specific enzymes.[40]

Tumor cells recognize and bind to components of the 
vascular membrane, thereby initiating extra-vasation and 
promoting the formation of the tumoral niche that will 
host the new neoplastic formation. The brain vascular 
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endothelium is therefore very important in counteracting 
cell extra-vasation but, nevertheless, cancer cells adopt 
different strategies to overcome this obstacle. Although 
the exact molecular mechanisms that trigger BM are still 
poorly understood, increasing evidence are shedding new 
light on the processes underlying the ability of cancer cells 
to cross the BBB.

In a transendothelial migration model, highly metastatic 
melanoma cells migration has ben found to be mediated by 
interaction of the α4β1 integrin with its ligand vascular cell 
adhesion molecule-1 (VCAM-1) on the surface of activated 
endothelial cells. VCAM-1 is expressed by endothelial cells 
only upon activation by inflammatory stimuli like TNF-α 
or interferon-γ, suggesting that highly metastatic melanoma 
cells preferentially leave the blood vessels at sites of 
inflammation.[41]

In a very similar experimental model, the matrix metallo-
proteinase 1 (MMP1) was found to play a critical  role in 
BBB penetration; in parallel experiments cyclooxygenase-2 
(COX2)-mediated prostaglandin synthesis promotes 
proliferation of tumor initiating cells by activating 
tumor-associated astrocytes followed by secretion of the 
chemokine CCL7.[42]

The process of transendothelial migration of melanoma 
cells has been further investigated by other in vitro studies 
showing that the ability of these cells to cross the BBB is 
related to melanotransferrin expression levels on the cell 
surface, to the fibrinolytic system and to serine proteases 
released by melanoma cells.[43-45]

This accumulating evidence indicates that inflammatory 
stimuli cotribute to the formation of breaches in BBB and of 
a suitable surrounding in the brain parenchyma for cancer 
cells.

However, in contrast with these findings, other in vivo 
studies suggest that trasendothelial cancer cells migration 
does not necessarily imply a damage to vascular endothelial 
cells: metastatic breast cancer cells, in mice, were found 
to cross the endothelium in correspondence of sites where 
the vessel wall shows discontinuity sites without causing 
apoptosis or hypoxia in endothelial cells.[46]

Another interesting in vivo study demonstrated by 
multiphoton laser scanning microscopy that in the mouse 
brain the essential steps in melanoma and lung cancer 
metastasis formation were first the arrest at vascular branch 
points and after extra-vasation, perivascular growth in close 
contacts to microvessels.[47]

In this scenario, the interactions of metastatic tumor 
cells with BMVECs appear to be regulated by a number 
of effectors and mediators and represent a key step of 
metastasis formation; however, the cellular mechanisms 
that lead to BBB extra-vasation appear to be strictly related 

to cancer cells features and therefore linked to the primary 
tumour characteristics.[48]

Two very recent studies have demonstrated  that meningeal 
lymphatic vessels are present in mouse central nervous 
system (CNS) and display all the classical features of 
lymphatic vessels.[49,50] These findings have highlighted a 
new path for cerebrospinal fluid flux and for immune cells 
leak, opening interesting avenues for future researches on 
BM formation.

LUNG CANCER

Lung cancer is the leading cause of cancer-related deaths 
worldwide and is characterized by rapid progression 
and metastases to brain that develop within months of 
diagnosis and simultaneously affect different organs 
besides the brain.[51] Lung cancer is classfied into two 
broad histological sub-types: Non-small-cell  lung cancer 
(NSCLC),  representing  about 85% of diagnoses, and 
SCLC, accounting for the remaining 15%;  NSCLC is 
further classified into adenocarcinoma, squamous-cell 
carcinoma, and large-cell carcinoma.[52] SCLC and NSLC 
are traditionally considered as different cancer types 
but increasing evidence supports the notion that the two 
histological sub-types can coexist. This mixed histology 
reinforces the hypothesis of common mutated precursors 
for the two cancer types thus complicating prognosis and 
therapy.[52]

Although several mechanisms concerning lung cancer cells 
survival strategies have been elucidated, the early molecular 
processes leading to BM are still poorly understood.

In SCLC patients BM are associated with poor prognosis. 
Previous evidence indicated that attachment to brain 
microvasculature represented the first step for tumor 
cell extra-vasation and growth.[53] In particular, it was 
demonstrated that the interaction of SCLC cells with 
human BMVECs triggers the disassembly of tight junctions 
between brain endothelial cells and contributes to SCLC 
cells transendothelial migration,[54,55] thus suggesting that 
brain microvasculature and mechanisms that regulate 
cell-cell adhesion are likely to play an important role in 
SCLC metastasis to brain. An intriguing mechanism was 
highlighted in a study reporting that the interaction of 
SCLC cells with BMVECs induces tumor cells to secrete 
annexin A1 into tumor metastastic microenvironment. The 
secreted annexin A1, previously reported to be upregulated 
in human lung cancer and to be related to poor prognosis, 
in turn promoted SCLC cells adhesion to brain endothelium 
and transendothelial migration.[56,57]

Other studies have shown that SCLC cells are abundantly 
surrounded by ECM components, including collagen 
IV, tenascin, fibronectin and laminin; high expression of 
these components is associated with a poor prognosis.[58]  
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Adhesion of SCLC cells to the ECM components requires 
β1-integrins, whose activation results in suppression of 
chemotherapy-induced apoptosis by stimulation of the  
PI3K-dependent pathway.[59] Thus, ECM via β1 integrin-
mediated PI3K activation confers to SCLC resistance to 
apoptosis, allowing SCLC cells to survive even in presence 
of DNA damage.

Taken together, this evidence indicates that adhesion 
processes play important roles in SCLC cells survival 
strategies  linked to metastasis and furthermore suggest that 
interference with adhesion molecules or receptors could be 
an interesting topic for future researches.

Approximately 40% of all NSCLC patients suffer from BM. 
The prognosis of patients with BM of NSCLC is remarkably 
poor, with a median survival time of 1-2 months for 
untreated patients and 6 months for those receiving surgery, 
radiotherapy and chemotherapy.[60] While SCLC metastatic 
brain tumors do not respond to systemic chemotherapy 
and poorly respond to molecularly targeted therapies,[58] 
NSCLC patients frequently display activating epidermal 
growth factor receptor (EGFR) mutations.[61] Complete and 
partial response rates to tyrosine kinase inhibitors have been 
recorded in clinical studies with gefitinib and erlotinib[62,63] 
and these treatments improved overall survival (OS) rates. 
However, other genes or genetic alterations have been 
reported to be involved in BM of lung cancer.

An interesting study performed by microarray in lung 
adenocarcinoma and squamous cell carcinoma samples has 
shown different expression profiles of EMT-related genes 
in primary tumors compared to tumor-derived BM.[64] 
In particular, BM had signifi cantly lower integrin αvβ6 
and N-cadherin expression than the primary tumors, thus 
supporting the hypothesis that the disseminated tumor cells, 
deriving from primary tumors with marked mesenchymal 
features, once inside the brain, undergo the reverse process 
of EMT called mesenchymal-to-epithelial transation.

Gene expression profiles of miRNAs in lung cancer, 
aimed at identifying molecular markers as predictor of 
patient survival, identified several miRNAs targeting genes 
involved in crucial pathways such as the EGFR- and KRas-
dependent pathways.[65,66]

miR-145, a miRNA involved in metastatic spread in 
several cancer types and discussed above, has been found 
to be downregulated in the BM compared to primary lung 
adenocarcinoma samples and its upregulation in lung 
adenocarcinoma cells suppresses proliferation of tumor 
cells.

The mechanism by which miR-145 causes these latter 
effects was hypothesized to be the targeting c-Myc, EGFR 
and NUDT1;[67] however, in vitro invasion assays did not 
confirm that upregulation of miR-145 was implied in lung 
adenocarcinoma cancer cell migration and invasion.

The miR-145 expression levels were not significantly 
different between primary lung adenocarcinoma samples 
with and without lymph node involvement[67] and recent 
studies have found a downregulation of miR-145 expression 
in lung cancer primary tumors and BM. Silencing of miR-
145 was found to contribute to BM via downregulation of 
the fascin homolog 1 (FSCN1) protein, an actin-binding 
protein involved in cell migration, and upregulation of 
miR-145 target protein, such as EGFR, OCT-4, MUC-1, 
c-MY,[68,69] that are involved in cell proliferation and survival.

miR-328 has been associated with NSCLC BM and 
mediates NSCLC migration. In patients with BM, the 
elevated expression of miR-328 in both primary and brain 
metastatic NSCLC samples suggests that this miRNA may 
be involved in driving the access of metastatic cells to the 
brain. In agreement with this finding, in vitro miR-328 over-
expression in A549 and H1703 cells was shown to increase 
cell migration.[70]

Another class of RNAs termed long non-coding RNAs 
(lncRNAs) appear to play a role in lung cancer metastasis 
spread. lncRNAs are a class of non-protein coding 
transcripts, longer than 200 nucleotides, associated with 
the progression of cancer. Some members of the lncRNAs 
family are involved in metastases formation such as the 
metastasis-associated lung adenocarcinoma transcript 1 
(MALAT1), HOX anti-sense intergenic RNA, and anti-
sense non-coding RNA in the INK4 locus.[71] In lung cancer 
cells MALAT-1 was found to enhance cell motility by 
modulating the expression of motility-related genes[72] and 
to promote lung cancer BM by inducing EMT in both in 
vitro and in vivo NSCLC models.[72]

Another documented mechanism involved in BM 
formation is represented by integrin receptors activation. 
Several studies that have investigated αvβ3, αvβ5 and αvβ6 
expression in BM and corresponding primary tumors[73,74] 
found that αvβ3 activation strongly promotes metastatic 
growth in the brain by inducing endothelial cell proliferation 
and network formation.[75]

Interestingly, a recent study performed on formalin fixed 
paraffin-embedded human primary NSCLC and BM 
specimen showed that expression of αvβ3, αvβ5 and αvβ6 
integrins is associated with pathological parameters such 
as enhanced tumor cell proliferation index and increased 
hypoxia-inducing factor (HIF-1a) expression. Moreover, 
αvβ3 and αvβ5 were mainly expressed on proliferating 
endothelium of sprouting vessels, in agreement with 
previous observations that have hypothesized their 
involvement in neoangiogenesis.[76]

Among factors that stimulate vascular proliferation and 
vessel formation, MMP have been shown to promote 
endothelial cell migration and induce vascular endothelial 
growth factor (VEGF) release, leading to development of 
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angiogenic vasculature.[77] In agreement with these findings, 
in lung carcinoma BM a correlation between MMP2 and 
angiogenesis was also found.[78] In this study tumors 
expressing MMP2 display a more proliferating vasculature 
at the tumor-brain interface compared to MMP2-negative 
tumors, suggesting that MMP2 expression may be a key 
player in this process by enhancing both invasion and 
vascularization.

Fibroblast growth factor receptor 1 (FGFR1) signaling has 
repeatedly been described as a critical permissive factor for 
distant spread of cancer cells through induction of EMT, 
interaction with neural cell adhesion molecule neural 
cell adhesion molecule and N-cadherin or upregulation 
of osteopontin and matrix metalloproteases.[79] FGFR1 
amplifications are common in squamous cell carcinoma and 
rare in adenocarcinoma of the lung but a recent study found 
enrichment of FGFR1 amplifications, not related to patients 
survival, in BM of NSCLC and adenocarcinomas (5-fold 
more frequent than in primary tumors) suggesting a specific 
role of FGFR1 in metastasis formation.[79]

In order to identify new molecular features associated to 
BM formation, chromosomal copy number alterations 
in NSCLC samples was performed; selectively amplified 
regions of primary lung adenocarcinomas (5q35, 10q23 and 
17q23-24) were identifi ed as signifi cantly associated with 
the development of early BM within 3 months after first 
diagnosis of primary tumors. Interestingly, those  regions 
were found to contain putative metastasis promoting 
genes, such as NeurL1B, ACTA2, FAS and ICAM2,[80] but 
the biological significance  of  these amplifi cations still 
remains to be elucidated.

BREAST CANCER

Breast cancer types are routinely classified on the basis of 
clinical parameters (age, lymph node status, tumor size, 
histological grade) and pathological markers that usually 
direct clinicians for the therapy [estrogen receptor (ER), 
progesterone receptor (PR), human epidermal growth factor 
receptor 2 (HER2)]. During the last 15 years, 5 sub-types of 
breast cancer have been identified, on the basis of molecular 
markers: luminal A, luminal B, HER2-enriched, basal-like 
and claudin-low.[81]

In patients with breast cancer BM are less common than 
bone or visceral metastases and frequently represent a late 
event; nevertheless, up to 16% of metastatic breast cancer 
patients develop clinically significant BM while autopsy 
studies showed that up to 30% of patients actually develop 
brain disease.[3,82]

Several risk factors have been associated with the 
development of BM in patients with metastatic breast 
cancer, particularly the young age (35 or younger), HER2-
enriched sub-type and triple-negative breast cancer (ER−, 

PR−, HER2−).[83] Patients with HER2-positive metastatic 
breast tumors are 2-4 times more likely to develop CNS 
tumors than patients with HER2-negative disease[82] and 
patients with triple negative breast cancer and basal like 
breast cancer (BLBC) also appear to be at a high risk for 
developing BM.[84]

The HER2/neu gene is amplified in 20-25% of primary 
breast cancer cases; however, gene expression profiles can 
vary between the primary tumor and metastatic formations 
and therefore it could not be correct to assume that the HER2 
status of the metastatic tumor reflects that of the primary 
tumor.[85] Biopsies of metastases could provide essential 
informations in the case of HER2 expression discordance, 
thus redirecting therapeutic strategies by clinicians. It was 
found that loss of HER2-positive status in metastatic tumors 
from patients with primary HER2-positive breast cancer is 
related to therapeutic treatments with chemotherapy with or 
without trastuzumab and in addition, patients with HER2 
discordance between their primary and metastatic tumors 
have shorter OS.[85]

Another study found that 243 genes were up or down-
regulated in brain metastatic cell lines, compared to the  
primary tumor derived cell line[86] and that the expression 
of 17 genes was correlated with brain relapse. Interestingly, 
the expression of these 17 genes in breast tumors was not 
associated with relapse to bones, liver or lymph nodes and 
the association with brain relapse was significant within ER-
tumours and in  patients who received no adjuvant therapy. 
A sub-set of these 17 genes that includes prostaglandin-
synthesizing enzyme COX2, collagenase-1 (MMP1), 
angiopoietin-like 4, LTBP1 and FSCN1, the putative 
metastasis suppressor retinoic acid receptor responder three 
and heparin-binding EG plays fundamental roles in cell 
extra-vasation and invasion and in general, in supporting 
cancer cells migration and survival.[87-91]

Among the genes upregulated in breast cancer BM, an 
important role is also played by the α2,6-sialyltransferase 
(ST6GALNAC5) because its mRNA levels were found to 
be notably higher in brain metastatic cells than in parental, 
primary tumor derived cell lines.[86] Sialyltransferases 
are a family of at least 18 different intra-cellular Golgi 
membrane-bound glycosyltransferases that catalyse the 
addition of sialic acid to gangliosides and glycoproteins. 
Cell-surface sialylation has been implicated in cell-cell 
interactions[92] and metastatic cells overexpressing the 
ST6GALNAC5 messenger, compared to the parental 
cell lines, showa more marked adhesive behaviour to 
monolayers of human primary brain endothelial cells. 
Conversely, ST6GALNAC5-knockdown decreased the 
brain metastatic activity of BM derived cells.[86]

Another gene implicated in BM is hexokinase 2 (HK2). 
HK2 is one of four members of the HK family that includes 
HK1, HK2, HK3 and Glucokinase, enzymes involved 
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in glycolysis by phosphorylating glucose to produce 
glucose-6-phosphate. A microarray study, comparing gene 
expression profiles of BM and primary breast tumors, found 
an overexpression of HK2 in BM.[93] HK2 is overexpressed 
in several cancer types, compared to normal tissues, and its 
overexpression is generally related to a poor prognosis;[94] its 
upregulation in BM suggests that it could be instrumental for 
cell growth under conditions of limited nutrient availability.

Also, in a recent work 86 matched BM and primary tumors 
were analyzed by whole-exome sequencing and the authors 
found that metastatic samples, though showing common 
features with the primary counterpart, display alterations 
particularly related to PI3K/AKT/mTOR, CDK, and 
HER2/EGFR cascade.[95]

Another gene that appears to have a role in the metastatic 
behaviour of breast cancer is the Forkhead-box 
transcription factor C1 (FOXC1), essential for mesoderm 
tissue development and highly expressed in the basal-
like (BLBC) and in the triple-negative breast cancer. 
Overexpression of FOXC1 in BLBC cells and in MCF-7 
cell line increases cell proliferation, migration, invasion 
and anchorage-independent growth of MCF-7 cells in 
soft agar.[96] The mechanism underlying FOXC1-mediated 
invasive behaviour is the induction of MMP7 expression 
in breast cancer cells and interestingly, both FOXC1 and 
MMP7 are overexpressed in BLBC samples, suggesting a 
possible new molecular target for BLBC therapy.[97]

Finally, an analysis of circulating tumor cells (CTCs) from 
breast cancer patients demonstrated that CTCs, circulating 
as single cells or as clusters bound to platelets, express EMT 
markers such as TGF-β and FOXC1, thus supporting the 
role of EMT in metastasic cells and indicating  FOXC1 as a 
reliable peripheral marker of breast cancer dissemination.[98]

MELANOMA

Malignant melanoma is a frequently lethal malignant 
tumor that accounts for 4% of all skin cancers but it is 
responsible for 80% of skin-cancer deaths.[99] BM are a 
frequent complication in melanoma patients, and unlike in 
other solid tumors, arise independently from other visceral 
metastasis. Many melanoma patients are cured after 
excision of the primary tumor but, in some cases, a disease 
recurrence appears in different sites as metastatic lesions[100] 
suggesting that melanoma cells had already spread before 
excision of the primary tumor.

Melanomas are classified into four major sub-types 
according to their histological features: lentigo maligna 
melanoma, superficial spreading melanoma, acral 
lentiginous melanoma and nodular melanoma.[101] A series 
of parameters are usually taken into account for patient 
prognosis: tumor thickness, tumor location, histological 
sub-type and ulceration. Melanoma classifi cation based on 

genetic analysis are instrumental for prognosis and targeted 
therapy;[102] for example, mutations of BRAF, particularly 
the V600E and V600K mutations, have been identified both 
in benign melanocytic proliferations  and in all stages of 
metastatic melanoma, with the frequency of 36-45% BRAF 
mutations in primary melanomas and 42-55% in metastatic 
melanomas. The presence of a BRAF mutation in patients 
with primary melanoma appears to be related to the OS and 
to a worse prognosis compared to patients who lack the 
mutation.[103] Nearly 50% of melanoma BM display V600 
BRAF mutation[104] and the analysis of BRAF alterations in 
melanoma BM is of critical in the selection of patients for 
targeted therapy with specific inhibitors.

In a very recent and extensive study the Cancer Genome 
Atlas program performed a systematic characterization of 
333 cutaneous melanomas at the DNA, RNA and protein 
levels with the specifi c goal to create a catalog of somatic 
alterations with important and potential implications for 
prognosis and therapy.[105]

The first step of metastasis formation, before detachment 
from the primary tumor, is supposed to be represented by 
EMT. During this step cancer melanocytes change their 
adhesion properties and modify their gene expression 
profiles that results in changes in the amount of integrins 
and cadherins at protein levels,[106] associated to an increased 
expression of EMT markers such as SNA1 (Snail and 
twist), Wnt, Notch, SPARC and Hedgehog.[107] Early-stage 
melanocytes express CDH5/non-epithelial cadherin[107,108] 
that  leads to the loss of epithelial adhesion properties and 
to gain of mesenchimal progenitor cells features.

Melanoma metastatic cells are driven to lymph or 
blood vessels by concentration gradients of cytokines, 
chemokines, and growth factors.[109] Like in other metastatic 
tumors, in the bloodstream most cancer cells undergo 
anoikis but a sub-set acquires some genetic modifications 
that confer survival advantages such as anoikis resistance. 
Deregulated activation of the PI3K/Akt pathway, in 
particular the increased phosphorylation of  Akt3, confers 
resistance to anoikis to melanoma cancer cells and like in 
other metastatic tumors, loss of phosphatase and tensin 
homologue contributes to the Akt pathway deregulation 
related to the tumor malignancy.[110,111]

The circulating melanoma cancer cells that have acquired 
the ability to survive in the circulatory system may also 
form microaggregates with platelets or leucocytes and 
travel protected in bloodstream.[15] These microemboli, 
once finding a niche in very small size capillaries, promote 
extra-vasation in tissues displaying the appropriate feature 
such as brain parenchyma.

It has been found that extra-vasation of melanoma 
circulating cells is prompted by interleukin-8 (IL-8) 
secretion by melanoma cells and IL-8 summons neutrophils 
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to establish a connection between neutofils and molecular 
cocrystals through interaction of ICAM-1 protein and β2 
integrin.[112] Subsequently, the neutrophil-melanoma cell 
complex binds to endothelial cells of capillaries to promote 
brain tissue invasion and metastasis growth.

Neoangiogenesis, prompted by VEGF release and increase 
in levels of HIF-1a, is another necessary step for the 
tumor growth that regulates tumor cell-microenvironment 
interactions.[112]

Finally, in the brain, astrocytes forming and surrounding the 
tumoral niche may play a protective role towards the tumor 
cells growth, including melanoma BM, by priming reactive 
astrocytosis or protecting tumor cells from cytotoxicity 
induced by chemotherapeutic drugs.[113]

CONCLUSION

The emerging picture depicted here appears quite 
complicated and the genes, with the related cellular 
mechanisms, that have been found to be involved in 
BM carry out a number of different but still interrelated 
functions. In addition, a plethora of different cell types 
like platelets, leukocytes, endothelial cells and astrocytes 
cooperate all together to sustain the survival of metastatic 
cells in the blood flow and in the brain parenchyma.

However, although the intrinsic complexity of BM appears 
to be a daunting task, recent findings may boost the efforts 
in the field. The development and refinement of existing 
in vitro three-dimension models of BBB, traditionally 
employed in the screening of drugs or molecule designed 
to cross the BBB, could be used as a novel approach to 
investigate the genotype and phenotype of cancer cells that 
migrate through artifi cial BBBs.[114,115]

Also, the previous mentioned breakthrough discovery of 
the presence of lymphatic vessels in the brain could open 
an avenue of cutting edge experimental approaches in the 
study of CTCs and BM.
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INTRODUCTION

Gliomas are the most frequent and aggressive tumors of 
the central nervous system (CNS) and current treatments 
have not improved their prognosis. In children and 
adolescents, tumors of the CNS are the most common and 
lethal;[1] and glioblastoma multiforme (GBM) is the most 
frequent malignant primary brain tumor.[2-5] Gliomas are 
the main neuroepithelial tumors of the CNS that originate 
from mature or precursor ectodermal-derived glial cells. 
The World Health Organization (WHO) has classified 
gliomas on 4 grades from I to IV (GI-GIV) according to the 
histological dedifferentiation and the expression of the KI-
67 protein, which indicates the rate of proliferation. WHO-
GI gliomas are considered as benign tumors, since the 
malignant features are only present on low-grade (WHO-
GII) and high-grade (WHO-GIII and -GIV) gliomas; in this 
respect, WHO classification correlates with the prognosis 
of the patient, regardless of multimodal therapeutic 
treatments;[6,7] the 5-year life span rates after diagnosis are 
50%, 30% and 5% for WHO-GII, -GIII and -GIV glioma 
patients, respectively.[8]

Tumors of glial origin are considered gliomas and are divided 
into: astrocytoma, oligodendroglioma, ependymoma, 
mixed gliomas and not otherwise specified.[2,3] On the other 
hand, The Cancer Genome Atlas (TCGA) designed a sub-
classification of GBM based on their molecular signature 
[Table 1], which comprises: classical, mesenchymal, 
proneural and neural tumors.[8,9] Classical GBM are tumors 
that present high expression of the epidermal growth 
factor receptor (EGFR) and absence of tumor suppressor 
proteins such as p16 and p14. In mesenchymal GBM, 
the phosphatase and tensin homolog (PTEN) gene is 
mutated and loss of its activity leads to activation of the 
serine-threonine protein kinase (AKT) survival pathway. 
Additionally, this subtype expresses chitinase 3-like-1 
and MET transcripts characteristics of mesenchymal cells 
and shows low expression of the transcript for the tumor 
suppressor protein neurofibromin 1. On the other hand, 
proneural GBM expresses oligodendrocyte transcripts 
NK2 homeobox 2 and oligodendrocyte transcription factor 
(OLIG2), as well as high levels of platelet-derived growth 
factor (PDGF) receptor, alpha polypeptide, and mutations 
of the dehydrogenase 1 and/or P53 genes. The neural GBM 
is the most dedifferentiated subtype because it expresses 
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neuronal markers such as: negative regulatory factor 
(NEFK), γ-aminobutyric acid A receptor A, synaptotagmin 
1 and the symporter K+: Cl- (SLC12A5).[8,9] The variability 
of the molecular signature of GBM suggests that the 
characterization of gliomas must be analyzed to devise 
specific treatments.

CLINICAL MANAGEMENT OF GLIOMAS

Advanced anaplasia in high-grade gliomas difficults the 
complete surgical resection of the tumor; as a consequence, 
tumor recurrences are unavoidable. On the other hand, 
postoperative radiotherapy has been the standard treatment 
for GBM. However, the survival after radiation is low and 
overall survival remains poor.[10-12]

Concomitant and adjuvant chemotherapy for high grade 
gliomas include alkylating agents that damage DNA, such 
as: carmustine, procarbazine, lomustine, vincristine and 
temozolamide (TMZ). Recently, it has been reported that 
both bevacizumab and cediranib prevent angiogenesis 
by inhibiting the vascular endothelial growth factor 
(VEGF) signaling pathway.[11-13] Moreover, TMZ is the 
drug of choice for the treatment of high-grade glioma. 
TMZ alkylates guanine, inducing the methylation of gene 
promoters and leading to apoptosis, when the mismatch 
repair system is intact.[14,15] This drug is well tolerated by 
most patients, furthermore it has a favorable safety profile 

that is associated with only mild side-effects compared 
with nitrosoureas.[10,16] The addition of chemotherapy 
to standard postoperative radiotherapy improves in 2.5 
months the median survival relative to postoperative 
radiotherapy alone.[10-12] To enhance the effect of TMZ it has 
been proposed the use of lipid-based nanoparticles, which 
cross the blood brain barrier more efficiently causing an 
increment of brain levels of TMZ and reducing the adverse 
effects in other organs such as the heart and kidneys.[16-18] 
Despite the above GBMs that express high levels of O6-
methylguanine DNA methyltransferase (MGMT) protein 
are resistant to TMZ chemotherapy.[19-22] Small molecule 
inhibitors of MGMT exist, but their use in combination 
with TMZ is limited due to toxicity to peripheral organs.[23] 
Furthermore, the mutation in the mutS homolog (MSH) 
6 mismatch repair gene facilitates resistance to TMZ and 
recurrence of GBM.[14] Until now, the surgical approach is 
still the most effective measure to treat gliomas, followed 
by radiotherapy and chemotherapy; however the clinical 
prognosis of the patients remains very poor. Therefore, new 
strategies and therapeutic agents should be investigated, 
based on the molecular characteristics of gliomas.

MOLECULAR APPROACH AGAINST 
MULTI-RESISTANT GLIOMAS

Resistance to various treatments and the recurrence of 
tumors has been attributed to the presence of a subpopulation 

Table 1: Subclassification of GBM based on their molecular signature[9]

GBM 
subclassification

 Genes altered Signal pathway Status Physiological activity

Classical CDKN2A (p14/p16) RB Homozygote deletion Cell cycle: G1/S transition
EGFR EGF/TNF-α Overexpression and 

mutations
Cell Cycle

NESTIN Overexpression Neural stemness
NOTCH3, JAG1, LENG NOTCH

SMO, GAS1, GLI2 SHH
Mesenchymal NF1 AKT Deletion and/or mutation Survival and proliferation 

pathwaysPTEN Mutation
TRADD, RELB, NFRSF1A NF-Kβ/TNF superfamily Overexpression Cell stress response

CH3IL1, MET Expression Mesenchymal transtion
Proneural PDGFRA PDGF Overpression and 

mutation
Cell cycle and angiogenesis,

IDH1 Mutation cytoplasmic NADPH 
production

PIK3CA/PIK3R1 AKT Mutation Survival and proliferation 
pathways

P53 P53 Mutation Cell cycle: G1/S transition

CDKN1A (p21) Low expression
DCX, DLL3, ASCL1, TCF4 SOX Overexpression CNS cell fate determination

NKX2-2
OLIG2

Neural NEFL Expression Neuronal markers
GABRA1 GABA

SYT1
SLC12A5
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of cells in gliomas with properties of stem cells, known as 
glioma-initiating cells (GICs). These cells express neural 
stem cell markers such as NESTIN, OLIG2, sex determining 
region Y-box 2 (SOX2) and fucosyltransferase 4.[20,24,25] 
The classification of GICs is based on the expression of 
prominin-1 (CD133); the CD133+ GICs are more invasive 
than those that do not express the antigen, and constitute 
3-29% of the glioma mass.[26,27] Also, GICs from secondary 
cultures conserve the characteristics of the original tumor, 
even after several passages.[28] Self-renewal, aggressiveness 
and stemness of GICs are associated with the expression of 
Cyclin E and proteins of the family of inhibitor of DNA-
binding/differentiation proteins, increased activity of 
several signaling pathways including: transforming growth 
factor (TGF)-β; protein kinase A and jagged-NOTCH;[26,29] 
as well as the activation of the receptors for PDGF, epidermal 
growth factor (EGF) and fibroblast growth factor (FGF).[26] 
Surprisingly, CD133+ GICs also contribute to malignant 
transformation of the adjacent normal glial cells through 
paracrine activity of PDGF-α and stimulate angiogenesis by 
activation of the NOTCH signaling pathway on endothelial 
tissue.[26,28,30]

It is noteworthy that CD133+ GICs are predisposed to 
become resistant to chemo- and radiotherapy with respect 
to non-GICs cells, implicating the activation of extracellular 
signal-regulated kinases 1 and 2 (ERK1/2).[20,31,32] In this 
context, the use of classical therapies against gliomas, 
facilitate the selection of multi-resistant GICs, leading 
to the formation of more aggressive tumors, resistant to 
chemo- and radiotherapy.[33] Moreover, in vitro and in vivo 
studies have shown that with the adequate stimulus, GICs 
differentiate to either neuronal or astrocytic cells, however 
many of these responses are deregulated in gliomas.[31]

Currently, the analysis of protein expression and of the 
transcriptome, including micro-RNAs (miRNAs), has helped 
to uncover molecular markers involved in the susceptibility 
or resistance to treatments. Indeed, differential expression 
patterns of miRNAs have been reported in high-grade 
gliomas.[34] Even now, the association of miRNAs with the 
methylation of the MGMT promoter is still controversial 
since miRNAs are not considered as direct epigenetic 
regulators.[21,35] However, overexpression of miR-222, 
-145 and -132 is related with TMZ resistance coupled with 
MGMT promoter methylation.[35] Additionally, miR-181b 
and -181c are downregulated in patients that responded to 
radiotherapy and concomitant TMZ.[36] However, sensibility 
to chemotherapy is not only dependent of the presence of 
MGMT.[37,38]

Screening of molecular changes after radiotherapy showed 
overexpression of miR-1, -125a, -144, -150, -151-5p, 
-221/22, -425 and -1285.[39-42] The ectopic expression of 
miR-1, -125a, -150 and -425 increases cell survival and 
confers radioresistance through the induction of the cell-
cycle.[39] On the other hand, TGF-α and -β, and the EGFR 

also contribute to radioresistance in classical-GBM.[43] Thus, 
inhibiting TGF-β has been proposed as a treatment since 
it induces radiosensitivity in gliomas through decreasing 
the expression of miR-1 and -125a.[23,39,44] Additionally, 
miR-221/222 downregulate PTEN, leading to activation 
of proteins that promote cell proliferation or prevent cell 
death, such as: AKT, B-cell lymphoma 2 (Bcl-2), Cyclin-D, 
matrix metallopeptidase 2 and 9,[41,45,46] Interestingly, 
the phosphorylation of AKT is the main mechanism for 
developing radioresistance, regardless of the activity of 
its negative regulator PTEN.[40,41] In summary, molecular 
analysis could help to reconsider whether conventional 
treatments are suitable, or therapeutic modifications should 
be adapted to the requirements of the patient.

GROWTH-ARREST-SPECIFIC 1

The balance between proliferation or growth arrest is 
regulated by several extrinsic and intrinsic factors. Cells 
can exit the cell cycle and enter in the non-proliferative 
phase, known as the G0 phase. Particularly, in the this 
phase six genes named growth-arrest-specific (Gas) genes 
are expressed, from 1 to 6.[47] The gas1 transcript is the 
most abundant in NIH3T3 cells arrested in the G0 phase by 
deprivation of serum or high cell density.[47-49] Gas1 induces 
growth arrest by inhibiting DNA synthesis in NIH3T3 cells 
when it is ectopically expressed.[49]

TRANSCRIPTIONAL AND 
TRANSLATIONAL REGULATION

Human and mouse gas1 genes are located in the long arms 
of chromosome 9 (9q21.3-q22)[50,51] and chromosome 13[52] 
respectively, with 77.04% of homology between them. 
Gas1 is an intronless gene, suggesting that it probably 
originated from a retrotransposon.[53]

There are few studies about the regulation of the gas1 gene, 
however it has been reported that Menin and Myb-like 
(coded by the men1 and dmp1 genes respectively), induce the 
transcriptional repression of gas1.[54,55] Also, c-Myc and Src 
repress gas1 transcription, since they facilitate re-entering to the 
cell cycle.[56,57] c-Myc protein requires the Myc-Box2 domain 
to be present on the N-terminus to repress the transcription of 
gas1. Furthermore, the basic Helix-loop-Helix leucine zipper 
domain located at the C-terminus of c-Myc is also necessary 
to induce the transcriptional repression of gas1, perhaps 
together with an accessory protein not yet identified.[56,58] 
Both c-Myc and Src are key components for the proliferation, 
growth, and survival of glioma cells. The expression of c-Myc 
closely correlates both with cellular dedifferentiation and the 
grade of malignancy,[59-61] since its activity induces the 
transcripcion of cyclin D1 and repression of the p21WAF1/

CIP1 cyclin-dependent kinase inhibitor.[62] Interestingly, the 
histone chaperone, Facilitate Chromatin Transcription 
protein complex (FACT) increases the transcription of Myc, 
a recent report showed that the downregulation or inhibition 
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of FACT decreased the formation of metastasis and delayed 
tumor growth, it also proved to be an excellent cytotoxic 
adjuvant.[63] Thus, these data suggest that the inhibition 
both of FACT and Myc, could increase the anti-tumoral 
effect of Gas1. Moreover, transgenic mice that express 
Src under the transcriptional control of the glial fibrillary 
acidic protein develop hypervascularized glioblastomas 
with morphological and molecular characteristics of human 
GBM.[64,65]

On the other hand, estrogens like estradiol, induce their 
biological effects through binding to intra-cellular hormone-
specific estrogen receptors (ERα and ERβ), and this binding 
produces a conformational change in the receptors, causing 
the activation of their transcriptional domains. Specifically, 
estradiol reduced the levels of gas1 mRNA, however it is 
not yet known whether the gas1 promoter has an estrogen 
response element.[66] 

Little is known about the transcription factors that up-
regulate gas1. For example the transcription factor Tbox5 
increases the activity of the mouse gas1 promoter.[67]  
Moreover, microarray experiments indicate that gas1 
could be a retinoic acid responsive gene.[68,69] Since both 
retinoic receptors and Gas1 are expressed during embryonic 
development,[70-74] we insinuate that retinoic acid may 
induce the expression of Gas1 to promote exit from the cell 
cycle and initiate the differentiation process.

Four miRNAs have been reported to interact with the 
human gas1 transcript: miR-34a-5p, -148a-3p, -130b-5p 
and -183-5p.[75,76] Only miR-34a, derived from the 5’ arm 
of the pre-miRNA sequence (miR-34a-5p), has been shown 
to downregulate the translation of Gas1 when the miRNA 
interacts with nucleotides located at position 812-832 from 
the 3’ untranslated region of gas1, preventing the activity 
of Gas1 on the phosphatidylinositol 3-kinase (PI3K)-
AKT dependent cell survival pathway.[77,78] In fact, the 
repression of gas1 by miR-34a-5p promotes cell survival 
and proliferation, preventing apoptosis by reducing the 
cleavage of Caspase-3 on papillary thyroid carcinoma cell 
cultures.[77]

GAS1 PROTEIN STRUCTURE AND 
EXPRESSION

The nucleotide sequence of the gas1 of both the human 
and mouse genes reveals an open reading frame of 345 
and 384 amino acids, respectively.[49] The proteins encoded 
by these genes undergo post-translational modifications 
in the endoplasmic reticulum consisting of an N-linked 
glycosylation, signal peptide cleavage and addition of a 
glycosylphosphatidylinositol (GPI) group at the C-terminal. 
The mature form of the Gas1 protein has a molecular mass 
of about 37 kDa and is anchored to the outer cell membrane 
by a GPI molecule.[49,51,79] The region of Gas1 from amino 
acid 182 to amino acid 234 is essential to induce growth 

arrest whereas neither the GPI nor the C-terminal domain 
are necessary for this function.[80]

We previously showed that Gas1 possesses significant 
structural homology with the glial cell-derived neurotrophic 
factor (GDNF) family of receptors (GFRαs). Gas1 has two 
domains, called D-N and D-C, which have high similarity to 
the D2 and D3 domains of the GFRαs. These domains have 
cysteines that participate in the formation of five disulfide 
bridges.[81,82] It is noteworthy to mention that Gas1 binds 
to RET in either the presence or the absence of GDNF.[82] 
Based on the above information we and other research 
groups showed that Gas1 inhibits the signaling pathway 
induced by GDNF, an aspect that we will discuss later.

Interestingly, it has been reported that a soluble form 
of Gas1 inhibits the proliferation of mesangial cells. 
Disintegrin and metalloproteinase (ADAM) 10 and 17 are 
responsible of cleaving the Gas1 GPI anchor.[83,84] In glioma 
cells, ADAM17 increases the shedding of soluble VEGF 
and activates the EGFR-PI3K-AKT pathway, contributing 
to invasiveness, and angiogenesis.[85] For its part, ADAM10 
promotes glioma cell migration by cleaving the adhesion 
molecule N-cadherin from the cell surface.[86] On the other 
hand, we constructed a lentiviral vector that produce a 
soluble and secretable form of Gas1 (tGas1), lacking the 
GPI consensus sequence. tGas1 induces cell arrest and 
apoptosis of GBM cells and inhibit glioma tumor growth in 
vivo.[87,88] This soluble form of Gas1 acts in both autocrine 
and paracrine manners. However, previous data suggests 
that the full form of Gas1 (with GPI) can have paracrine 
effects, since the GPI anchor of Gas1 could be cleaved by 
ADAM 10 and 17 in gliomas.

Gas1 is expressed during the early stages of development 
in the primitive streak, somites, heart, limb, otic vesicle, 
kidney, lung, muscle, gonads, brain and placenta.[51,70,72,73] Its 
expression is fundamental during embryonic development 
since Gas1 knockout (K.O.) mice die immediately after 
birth.[89-91] The K.O. mice develop several defects including 
decreased cell proliferation in cerebellum, morphological 
alterations in the gastrointestinal tract and microform 
holoprosencephaly associated with multiple craniofacial 
defects.[72,89-93] The defects in Gas1-/- mice, are associated 
with the loss of the signaling induced by Sonic hedgehog 
(Shh). Interestingly, some patients with holoproscencephaly 
present mutations in the Gas1 gene with or without additional 
mutations on the Shh gene.[93,94] During development, Gas1 
has both negative and positive effects on cell proliferation, 
for example: in the limbs, Gas1 promotes the death of the 
interdigital tissue;[95] whereas it promotes proliferation of 
granular cell progenitors in the cerebellum.[96]

Previous studies using in situ hybridization showed the 
expression of the gas1 gene in the brain of adult mice 
(http://www.brain-map.org/; www.genepaint.org; www.
stjudebgem.org). Additionally, we reported that Gas1 is 
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mainly found in neurons and in a more restricted manner in 
glial cells in different regions of the CNS of adult mice.[97] 
Furthermore, the expression of Gas1 decreases when 
neural stem cells are differentiated to a glial phenotype.[98] 
However, the role of Gas1 in glial cells is unknown in the 
adult CNS. In hippocampal neurons, Gas1 induces cell death 
after excitotoxic insults, inhibiting the signaling induced by 
GDNF.[99,100] Nevertheless, during cerebellar development 
Gas1 induces the proliferation of cerebellar granule neuron 
progenitors in a Shh-dependent manner.[71,96]

Gas1 PROMOTES Shh SIGNALING

Shh is a secreted and diffusible morphogen implicated in 
the development of tissues and organs, including the CNS. 
The receptor for Shh is Patched (Ptc) which constitutively 
inhibits Smoothened [Smo; Figure 1]. The binding of 
Shh-Ptc produces the disinhibition of Smo and allows 
its signaling.[101] Downstream, Gli1, 2 and 3 proteins 
activate the transcription of genes such as N-myc, cyclin 
D and bcl-2 which promote cell proliferation. On the other 
hand, there are evidences of the interaction between Gas1 
with Shh, and Indian hedgehog.[70] This interaction was 
originally interpreted as antagonistic, however recently it 
has been shown that Gas1 promotes Shh signaling during 
the development of the neural tube and cerebellum [Figure 
1].[89,96,102-104] Ptc and Gli are highly expressed in gliomas 

and are considered oncogenes.[105,106] Therefore this would 
suggest that Gas1 could enhance the effect of Shh, inducing 
the proliferation of glioma and neuroblastoma cells, 
however we showed that Gas1 inhibits cell proliferation 
of glioma cells even in the presence of the Shh molecular 
machinery,[107,108] which suggest that in tumors Gas1 inhibits 
the GDNF signaling pathway.

GAS1 INHIBITS THE SIGNALING 
INDUCED BY GDNF AND ARTEMIN

The GDNF family of ligands (GFLs), GDNF, neurturin 
(NRTN), artemin (ARTN) and persephin (PSPN), belong 
to a distant branch of the TGF-β superfamily.[109] GFLs 
play a pivotal role in the differentiation and maintenance 
of both the central and the peripheral nervous system. 
The cellular responses to GFLs are mediated by a 
multicomponent receptor complex composed by GPI 
anchored co-receptors (GFRα1-4) and as ligand binding 
component the Ret receptor which is a tyrosine kinase. 
The co-receptors provide specificity for the binding of the 
ligand to the receptor complex; GDNF preferentially binds 
to GFRα1, NRTN to GFRα2, ARTN to GFRα3 and PSPN 
to GFRα4. Although there are promiscuity of the ligand-
receptor interactions.[109]

The binding of GDNF to GFRα-1 induces the recruitment 

Figure 1: Graphic description of the interaction and effects of Gas1 with different intracellular pathways. Black arrows indicate positive regulation or 
activation; red cut-ending lines indicate negative regulation. Black dotted arrows show the interaction of Gas1 with GFLs signaling pathway, whereas 
red dotted lines indicate the disruption of mechanisms of phosphorylation caused by Gas1
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of two RET proteins on lipid rafts.[109] Like other receptor 
tyrosine kinases, RET can activate various signaling 
pathways including ERK, PI3K/AKT, the p38 mitogen 
activated protein kinase and the c-Jun N-terminal kinase 
(JNK) pathways.[109,110] AKT is constitutively expressed 
in GBM cells and its activation induces uncontrolled 
growth, resistance to apoptosis, and enhanced tumor 
invasiveness,[111] by inactivating pro-apoptotic proteins 
as BAD and procaspase-9 [Figure 1], as well as the 
transcription factor forkhead box O (FOXO).[111] Thus, the 
inhibition of AKT is an important therapeutic target for the 
treatment of gliomas. The activation of AKT is regulated 
by PI3K, a member of the intracellular lipid kinase family, 
which catalyzes the generation of phosphatidylinositol-
3,4,5-triphosphate (PIP3) from phosphatidylinositol-4,5-
triphosphate (PIP2).[112] PIP3 recruits AKT to the plasma 
membrane where it is phosphorylated in Thr308 by 
phosphoinositide dependent kinase 1 and in Ser473 by 
PDK2, which results in the full activation of AKT.[113] On 
the other hand, the activation of the PI3K/AKT signaling 
pathway is reduced when PIP3 is dephosphorylated 
and converted to PIP2 by the activity of PTEN.[114] In 
neuroblastoma and glioma cells, Gas1 blocks cell cycle 
progression, inhibits proliferation and induces cell death by 
inhibiting the GDNF/AKT pathway.[107,108,115,116] We showed 
that Gas1 prevents the phosphorylation of Ret Tyr1062 and 
reduces the activation of AKT [Figure 1]. This leads to the 
translocation of BAD to the mitochondria and the release 
of cytochrome-C to the cytosol which in turn induces 
the activation of Caspases 9 and 3.[107,108,115-118] Recently 
Wang and et al.[100] demonstrated that Gas1 promotes 
excitotoxicity in dopaminergic neurons by inhibiting the 
GDNF signaling pathway.

AKT phosphorylates, activates, or inhibits a number 

of proteins that regulate several processes related with 
cell survival.[114,119] First, AKT has anti-apoptotic effects 
through the phosphorylation and inhibition of pro-
apoptotic proteins, such as BAD, MDM2 and members of 
the FOX family. Second, AKT promotes the progression 
of the cell cycle by blocking the degradation of cyclin D 
and inactivating the inhibitors of the cell cycle p21 and 
p27. Finally, AKT activates the mammalian target of 
rapamycin (mTOR) kinase by inhibiting a complex formed 
by the tumor suppressor proteins tuberous sclerosis 1 
and 2. In turn mTOR increases protein synthesis and cell 
proliferation.[114,119]

Additionality, we found that Gas1 inhibits cell growth 
through a RET-independent mechanism. Gas1 decreases 
the viability of MDA-MB-231 human breast cancer 
cells, interfering with the interaction between ARTN 
and GFRα3, leading to a decrement of the activation of 
ERK1/2.[120] In turn, the activation of the ERK pathway 
is triggered by a wide variety of receptor tyrosine kinases 
activated by growth factors and cytokines. ERK1/2 is 
activated by the small G protein Ras-Raf family members 
(Raf-1, A-Raf, B-Raf) followed by MEK1/2. ERK1/2 
controls either cell survival or apoptosis by regulating the 
activity of anti- and pro-apoptotic transcription factors.[121] 
The phosphorylations of ERK 1/2 promote cell survival 
by enhancing the transcription and activity of the anti-
apoptotic molecules Bcl-2, myeloid cell leukemia 1 and 
B-cell lymphoma-extra large.[122] Alternatively, ERK1/2 
downregulate the expression and inhibit the activity 
of the pro-apoptotic protein Bcl2-interacting mediator. 
Moreover, under conditions of oxidative stress, ERK has 
pro-apoptotic effects;[123] however this process it is not well 
understood yet.

Figure 2: Pathways activated in gliomas and corresponding targets of Gas1
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POTENTIAL THERAPEUTIC EFFECT 
OF GAS1 FOR THE TREATMENT OF 
GLIOMAS

Several studies suggest that GAS1 is a tumor suppressor 
and that its downregulation facilitates the uncontrolled 
growth of several types of cancer cells.[107,108,115-118,124,125] It is 
worth noting that the downregulation of GAS1 is associated 
with the progression of thyroid and prostate cancer and with 
a poor prognosis of survival.[126,127] Additionally the loss 
of GAS1 increases the metastasis of breast, prostate and 
gastric cancers.[124,128] On the other hand, GAS1 has been 
proposed as a molecular marker for prostate cancer.[129] 
The mechanisms that regulate the expression of GAS1 in 
gliomas have not been identified yet; however these tumors 
express several transcription factors that negatively regulate 
GAS1 such as c-Myc and v-Src.[56,57]

We previously showed that GAS1 induces apoptosis 
and inhibits cell growth in glioma cell lines and human 
glioma primary cultures of low and high grade.[87,88,107,116-118] 
Furthermore, we demonstrated that GAS1 decreased the 
proliferation and induced apoptosis through the inhibition 
of AKT as well as the induction of apoptosis mediated 
by caspase 3, independently of the activity of p53 in C6 
glioma cells and U373 human astrocytoma cells.[87,88,116-118] 
Interestingly, GAS1 produces death of glioma cells even 
in the presence of the molecular machinery of Shh,[92] 
suggesting that it acts through the GDNF pathway [Figure 2].

Gas1 binds to Ret in a manner independent of the presence 
of GDNF.[82] On the other hand, the expression and activity 
of GDNF and its receptor GFRα1 are increased by their 
soluble forms in gliomas.[130-133] Based on the above, we 
developed a lentiviral vector in which the expression of 
tGAS1 is inducible.[87,88] This soluble form of GAS1 acts 
both in autocrine and paracrine manners in GBM cells and 
inhibits glioma tumor growth in vivo. Subsequent to this 
study, we used neural stem cells as a vehicle to deliver 
tGAS1 into intracranial gliomas, since they have innate 
tropism towards tumors. We found that tGAS1 decreased 
tumor growth and increased the overall health and survival 
of nude mice implanted with GBM.[88]

There is evidence indicating that GAS1 is a metastasis 
suppressor in mouse 67NR breast cancer cells and B16-F0 
melanoma cells.[128] Extracranial metastasis is a rare 
manifestation of GBM, this is probably due to the shortened 
survival of patients, that will not allow glioblastoma 
cells generate metastasis.[134] On the other hand, gliomas 
overexpress ERK1/2 and GDNF, molecules that promote 
migration and invasiveness of gliomas into the brain 
parenchyma.[104] There is evidence that GAS1 inhibits the 
migration of breast cancer cells by blocking ERK in a 
RET-independent manner.[120] Moreover, GAS1 decreased 
tumor vascularization in a breast cancer model.[120] All these 
suggest that GAS1 can be an important molecule to counter 

the migration of glioma cells. Additionally, GAS1 has a RGD 
domain which is essential for the binding and blockade of 
some integrins that promote the migration and invasiveness 
of gliomas.[49,135] It has been found that RGD-integrin 
antagonists can inhibit cell adhesion and angiogenesis.[135] 
On the other hand, it has been reported that integrin α5β1 
(in the absence of attachment to fibronectin) decreased the 
proliferation of HT29 colon carcinoma cells by inducing 
the transcription of GAS1.[136] Until now, however, there is 
no evidence of a relationship between the RGD domain of 
GAS1 and cell migration [Figure 2].

The recurrence of gliomas that occurs after surgical 
resection, is attributed to the presence of GIC´s. 
Alternatively the activation of ERK is involved with the 
maintenance of the expression of MGMT and resistance 
to TMZ of GBM-GICs.[32] As previously mentioned GAS1 
inhibits the activation of ERK1/2, thus it may promote the 
elimination of the GIC´s population [Figure 2]. It is relevant 
that the overexpression of GAS1 in human adenocarcinoma 
cells (A549) increases their sensibility to cisplatin, 
which inhibits proliferation and induces cell cycle arrest 
and apoptosis.[137,138] Also, the downregulation of GAS1 
promotes resistance to epirubicin in human gastric cancer 
by regulating drug efflux and apoptosis.[139] On the other 
hand, it was reported that GAS1 could be an important 
biomarker for the prognosis of gastric cancer patients, since 
it was found that reduced or negative GAS1 expression 
is associated with shorter survival time and worse patient 
prognosis.[124] In conclusion, current data suggest that 
GAS1 is a potential adjuvant for the treatment of gliomas 
and other tumors. The use of GAS1 with current treatments 
may improve their efficacy.
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Topic: Brain tumor cell invasion and metastasis: anatomical, biological and clinical considerations

Tailored nanocarriers and bioconjugates for combating glioblastoma and 
other brain tumors
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Worldwide, the incidence of primary brain tumors is on the rise. Unfortunately, noninvasive drug therapy is hampered by poor access 
of most drugs to the brain due to the insurmountable blood-brain barrier (BBB). Nanotechnology holds great promise for noninvasive 
therapy of severe brain diseases. Furthermore, recent bioconjugation strategies have enabled the invasion of the BBB via tailored-designed 
bioconjugates either with targeting moieties or alterations in the physicochemical and/or the pharmacokinetic parameters of central 
nervous system (CNS) active pharmaceutical ingredients. Multifunctional systems and new entities are being developed to target brain 
cells and tumor cells to resist the progression of brain tumors. Direct conjugation of an FDA-approved drug with a targeting moiety, 
diagnostic moiety, or pharmacokinetic-modifying moiety represents another current approach in combating brain tumors and metastases. 
Finally, genetic engineering, stem cells, and vaccinations are innovative nontraditional approaches described in different patents for the 
management of brain tumors and metastases. This review summarizes the recent technologies and patent applications in the past five years 
for the noninvasive treatment of glioblastoma and other brain tumors. Till now, there has been no optimal strategy to deliver therapeutic 
agents to the CNS for the treatment of brain tumors and metastases. Intensive research efforts are ongoing to bring novel CNS delivery 
systems to potential clinical application.
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INTRODUCTION

The central nervous system (CNS) was first described in the 
Edwin Smith papyrus about 3,600 years ago.[1,2] Tumors and 
cancer were described in this papyrus, as well as in the Ebers 
papyrus, dating back to 1,300 BC.[1-3] Hippocrates, the father 
of Western Medicine, was the first to use the terminology 

“karkinos,” a Greek word for “crab/cancer,” because he noted 
that these tumors had tentacles reminiscent of the legs of a crab.[4] 

According to GLOBOCAN 2012, the number of new cases 
diagnosed with brain tumors were 256,000 for both sexes, out of 
14.1 million total cancer cases.[5] The incidence of brain tumors 
is higher in men than in women.[5] The highest incidence rates 
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occur in people between 65 and 79 years of age.[5]

This review provides an overview of the management of primary 
brain tumors, especially glioblastoma multiforme. The huge 
surge in the development of novel strategies for management 
of primary brain tumors in the past 5 years will be demonstrated 
in this review article via recent published patents. Table 1 
enumerates patents on brain drug delivery and treatment of brain 
tumors between 2010 and 2015 [supplement material Table 1]. 
This part of the review will focus on recent patents and studies 
using nanoparticles and bioconjugates in brain tumor treatment 
and diagnosis.

TYPES OF BRAIN TUMORS

Primary brain tumors originate within brain tissue. They are 
classified according to the type of originating tissue [Figure 1]. 
The most common primary brain tumors are gliomas, pituitary 
adenomas, and vestibular and primitive neuroectodermal 
tumors.[6,7] Gliomas are tumors that begin in the glial tissue. 
Gliomas include glioblastomas, astrocytomas, schwannomas, 
oligodendrogliomas, and others.[8] 

The most common malignant brain tumor is glioblastoma 
multiforme (GBM, 81% of malignant CNS tumors), which is 
usually associated with poor prognosis.[9-11] GBM is classified 
as a subtype of astrocytoma. GBM is classified as grade IV/V 
according to the WHO.[11] With regard to treatment, GBM and 

grade III brain tumors are managed similarly. 

Any intracranial tumor, regardless of the degree of malignancy, 
can potentially invade or displace critical brain areas, resulting in 
neurologic compromises.[12] The most common complications 
are seizures, peritumoral edema, venous thromboembolism, 
fatigue, and cognitive dysfunction.[11-13]

GBM, is usually described in two different clinical forms, 
primary and secondary.[14] Primary GBM is the most common 
form (about 95%); it typically arises de novo, within 3-6 months, 

in older patients. On the other hand, secondary GBM arises 
from prior low-grade astrocytomas over 10-15 years in younger 
patients.[13] Both types respond similarly to treatment.[13]

Figure 1: Most common types of brain tumors[6-8]

Figure 2: Diagram illustrating the difference between BBB and BBTB. 
BBB: blood brain barrier; BBTB: blood brain tumor barrier
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THE BLOOD-BRAIN BARRIER: THE BRAIN’S 
PROTECTION SYSTEM

The blood-brain barrier (BBB) represents a diffusion barrier 
system that protects the brain. BBB maintains the brain’s 
homeostasis by controlling the influx of blood components into 
the brain.[15-17] The BBB is mainly formed by brain capillary 
endothelial cells (BCEC), in addition to other cell types such as 
pericytes, astrocytes, and neuronal cells that play an important 
role in its function.[17] BCEC’s tight junction prevents paracellular 
transport of small and large water-soluble compounds from the 
circulation to the brain, except for some very small or gaseous 
molecules such as water and carbon dioxide [Figure 2].[15,17-20] 

In addition to physical barriers, several functional barriers 
contribute to the restrictive nature of BBB, creating major 
obstacles to effective drug delivery into the CNS.[21] Besides tight 
junctions, a group of efflux transporters [such as P-glycoprotein 
(Pgp), breast cancer resistance protein, and multidrug resistance-
associated proteins] are expressed on the brain tissue and 
collectively cause rapid efflux of large groups of lipophilic drugs 
from the CNS.[22,23] Also, the presence of numerous degradative 
enzymes in the BBB creates another functional barrier.[17,24,25]

The functioning and organization of the BBB can be altered 
under pathological conditions, such as in the case of tumors. 
In such a case, the barrier is called the blood-brain tumor 
barrier (BBTB).[19] In low-grade gliomas, BBTB resembles 
BBB, while in high-grade gliomas, BBTB becomes disrupted 
and “leaky,” characterized by major alterations of the normal 
vascular function manifested by contrast-enhanced MRI by 
Dhermain et al.[19,26] However, the magnitude of this disruption 
is unlikely sufficient to allow drug penetration in therapeutically 
meaningful quantities, and thus BBTB remains a major obstacle 
for brain drug delivery.[27,28]

BRAIN DRUG DELIVERY

Although BBB is difficult to bypass, inventions in the area 
of brain delivery in the last five years have shown promising 
progress and well-established techniques. There are two general 
strategies adopted to facilitate crossing the blood-brain barrier: 
invasive techniques and noninvasive techniques.[29] Invasive 
techniques rely primarily on disrupting the BBB’s integrity by 
direct intracranial drug delivery through intracerebroventricular, 
intracerebral, or intrathecal administration, use of osmotic 
pumps, or biochemical means.[29] All these approaches are 
severely limited by poor distribution into brain parenchyma.[30]

Noninvasive methods include drug modification through 
transformation of the drug into lipophilic analogues or 
prodrugs or through chemical drug delivery, carrier-mediated 
drug delivery, receptor/vector-mediated drug delivery, and 
intranasal drug delivery.[29,31] The noninvasive techniques 
depend on either pharmacologic strategies (lipid-based 
systems), or physiologic-based strategies (nutrient or receptor-
mediated systems).[31] These techniques will be the focus of the 

next sections of this review.

Receptor mediated transcytosis
Receptor-mediated transcytosis facilitates trans-BBB transport 
of various macromolecules after initial binding of a targeting 
ligand to a receptor expressed on the brain endothelial cells.[32,33] 
Transferrin receptor (TfR), insulin receptor, low-density 
lipoprotein receptor (LDLr), acetylcholine receptor, glutathione 
transporter, and diphtheria toxin receptor are examples of 
receptors of interest.[34] Several ligands have been studied and 
utilized to shuttle nanoparticles, antibodies, and drugs across 
the BBB and into the brain cells.[35] For instance, the LDL 
receptor family can be targeted via aprotinin, ApoE3 mimetic, 
angiopep-2, and p97 (melanotransferrin).[36-38]

Angiopep-2, a 19-amino-acid peptide, is one of the promising 
vectors designed to target the LDLr-related protein to mediate 
transcytosis across the BBB.[39] Angiochem Inc., in partnership 
with Geron Inc., developed ANG1005 (also known as GRN 
1005), an Angiopep-2-PTX conjugate for treating primary 
(glioblastoma) and metastatic brain tumors. ANG1005 showed 
promise in many preclinical studies and was well tolerated in 
phase I clinical studies.[32,40] However, phase II clinical trials 
utilizing ANG1005 are either terminated or ongoing but not 
actively recruiting participants, and Geron has announced that 
it discontinued development of GRN1005 (NCT014880583, 
NCT01967810, NCT02048059).[41] Other Angiopep drug 
conjugates include ANG1007 (angiopep-2-doxorubicin),[42] 
ANG1009 (angiopep-2-dimethylglycine etoposide), and 
ANG4043 (angipep 2-trastuzumab). ANG4043 is a novel brain-
penetrant peptide-mAb conjugate that is effective against HER2-
positive intracranial tumors in mice, an angiopep anti-HER 2 
mab conjugate. Applications of angiopep as brain targeting 
moiety are still under intensive research. [43-47]

Pieter Gaillard, in a patent for “to-BBB technologies BV,” 
suggested delivery of drugs to cells and across the blood-
brain barrier by targeting them to endogenous internalizing 
uptake receptors for glutathione on the capillaries of the brain, 
without modifying or disrupting the normal function of the 
neuroprotective BBB.[48] In another set of patents, Gaillard 
and his to-BBB technologies BV group used diphtheria toxin 
receptor ligand to control the blood-brain barrier vascular 
permeability and deliver lipopolysaccharide-sensitive nucleic 
acids and polypeptides across the BBB.[49,50]

Dickerson et al.[51] developed agents that modulate calcitonin-
gene related peptide (CGRP) signaling. This represents a novel 
target for cancer, particularly glioma and breast cancer, since 
CGRP stimulates cell replication and growth. In another patent, 
Furness et al.[52] invented a method for detecting calcitonin 
receptor in brain cells of the subject; this method can be used for 
therapeutic, diagnostic, and prognostic purposes.

Due to the increased expression of the transferrin receptor in 
brain glioma, it is one of the most extensively studied targets 
for receptor-mediated transcytosis (RMT).[53] Cedars-Sinai 
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Medical Center owned two patents on using anti-TfR antibodies 
conjugated to polycefin-LLL to cross BBB.[54] In the second 
patent, Patil et al.[55] prepared polycefin-LLL nanonjugates that 
could be loaded with temozolomide (TMZ) in its hydrazide 
form and modified with PEG.

A promising approach to enhance brain delivery is to inhibit 
efflux transporters by modulating their expression and/or 
activity.[56,57] Clinical trial data of third-generation inhibitors 
(ariquidar, zosuquidar and elacridar) are awaited for possible 
clinical application of this treatment approach.[58] Other naturally 
occurring compounds such as curcumin,[59] quercetin,[60,61] and 
kaempferol are being studied and modified for use in brain 
cancer therapy to overcome the problem of multidrug resistance 
(MDR).[62] Barthomeuf et al.[22] studied the use of curcuminoid 
compounds to enhance the clinical efficacy of docetaxel for the 
treatment of cancers including GBM. The group proposes that, in 
addition to reducing Pgp transport, curcumin may reduce HIF-1- 
dependent and HIF-1-independent angiogenesis, which in turn 
would inhibit tumor progression, angiogenesis, and induction 
of resistance.[22] Banks et al.[63] provided a method to inhibit the 
function of RNA- and DNA-encoding efflux transporters among 
other blood-brain barrier proteins using antisense compounds. 
The patent suggests that inhibition of Pgp expression would 
allow increased accumulation of chemotherapeutic drugs in the 
CNS and thus improve therapeutic clinical outcomes.In another 
patent, McChesney et al. used a group of taxane analogues that 
stabilize tubulin dimers or microtubules at G2-M during mitosis 
but are not substrates for MDR proteins.[64]

The physiologic approach to target brain tumors takes advantage 
of endogenous receptors that are highly expressed at the 
BBB.[30,31] Unfortunately, almost all the receptors are nearly 
nonspecific as indicated by percentage dose reaching the brain 
following administration compared to percentage reaching 
other organs such as the liver, spleen or lung.[30] To avoid such 
nonselective patterns, Tosi et al.[65] used double-targeting ligands 
to provide added targeting benefit and minimize nonselectivity. 
The targeting ligands used by Tosi et al.[65] were sialic acid and 
glycopeptides. The targeting ligands were covalently conjugated 
to PLGA nanoparticles (SA-g7-Np).[65]

Nanocarriers for brain drug delivery
Nano-based delivery systems have seized increased attention 
from formulators, as indicated by recent patents and studies[ 
supplement material Table 1]. This can be attributed to 
their unique ability to deliver to therapeutic and diagnostic 
moieties.[66-72] Nanocarriers are unique because of their small 
size (typically sub 200 nm).[73] Nanoparticles are easily 
tailored in their structure and properties.[73] They also can carry 
active therapeutic or diagnostic moieties of heterogeneous 
physicochemical properties, and their release pattern can be 
controlled.[73]

A representation of possible NP structure(s) is shown in Figure 
3A. NPs can be formulated from different materials including 
polymers, lipids, organometallic compounds, and viruses.[74] 

However, mostly amphiphilic molecule-formed liposomes and 
polymeric nanoparticles (chemical species having a “polar” head 
group and “hydrophobic” tails) have been extensively exploited 
for brain drug delivery.[73,75] Long circulation time of the delivery 
system can be achieved by conjugating the nanoparticles with 
polyethylene glycol (PEG) (“PEGylation”).[66,67] The PEG-
coated nanoparticles can escape the mononuclear phagocytic 
system and circulate in the body for a longer time, increasing the 
chance of reaching the target and thereby enhancing the effect of 
the loaded drug.[66,67] The effect and benefits of PEGylation are 
discussed later.

Unfortunately, nanoparticles can carry some serious adverse 
effects.[76] Adverse effects of nanoparticles depend on individual 
factors such as genetics, existing disease conditions, exposure, 
nanoparticle chemistry, size, shape, agglomeration state, and 
electromagnetic properties.[76] The key to understanding the 
toxicity of nanoparticles is their size.[76] Nanoparticles are 
smaller than mammalian cells and cellular organelles, which 
allows them to penetrate these biological structures and disrupt 
their normal function.[76] Examples of toxic effects include 
tissue inflammation and altered cellular redox balance toward 
oxidation, causing abnormal function or cell death.[76]

Polymeric nanoparticles
Polymeric micelles are formed from amphiphilic block 
copolymers forming a core/shell nanostructure. In aqueous 
media, the hydrophilic heads are arranged to the outside and the 
hydrophobic tails to the inside to stabilize the structure, which 
is suitable for IV injections[77]. Delivery of docetaxel for the 
treatment of brain tumors by cyclic arginine-glycine-aspartic 
acid (RGD)-tagged polymeric micelles was developed by Li et 
al.[78] The authors found that RGD has affinity to bind to integrin 
receptor, which is overexpressed in glioblastoma tissues.[78] 

Krebs invented a novel biodegradable hydrogel polymer 
comprising chitin and poly(lactic-co-glycolic acid) for delivery 
of therapeutic agents to brain tumors.[79] The biodegradable 
hydrogel detailed in Krebs’ patent would allow release of anti-
VEGF to the periphery of the resected tumor site in a localized 
manner, with stable release rate over a sustained period. The 
pH-sensitive polymers which release the drug in an acidic 
microenvironment of solid tumors and endosomes, were the 
focus of a patent by Bae et al.[80] Targeting ligands, such as 
folate, can also be attached to the mixed micelles for enhancing 
drug delivery into brain cells.[56]

Zhou et al.[81] in a recent patent, developed small, less aggregable 
brain-penetrating polymeric nanoparticles that can be loaded 
with drugs. In another patent, Wu et al.[82] used polymethacrylic 
acid grafted starch (PMAA-g-St) nanoparticles containing 
polysorbate moieties that can target the polymer to brain tissues. 
Hyper-branched polymer of polyglycerol-amine (PG-NH2) was 
demonstrated to accumulate in the tumor environment due to the 
enhanced permeability and retention effect (EPR), as described 
in a patent by Yerushalmi et al.[83]
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Tour et al.[84] devised poly(ethylene glycolated) Hydrophilic 
Carbon Clusters Antibody Drug Enhancement System 
(HADES), in which nanovectors are coupled with an active 
agent and one of the agents that target glioma surface antigens, 
such as Interleukin 13 receptor (IL-13R), epidermal growth 
factor receptor (EGFR), and Gglial fibrillary acidic protein 
(GFAP).

Lipid-based nanoparticles
Liposomes are the first generation of nanoparticulate drug 
delivery systems and consist of one or more vesicular bilayers 
(lamellae) composed of amphiphilic lipids, delimiting an 
internal aqueous compartment.[85] The most advantageous 
features of liposomes are their ability to incorporate and deliver 
large amounts of drugs and the possibility of decorating their 
surface with various ligands.[86]

Chlorotoxin-modified, doxorubicin-loaded liposomes were 
described by Xiang et al.[87] to target chloride channel-mediated 
brain gliomas. Also, Li et al.[88] suggested that chemotherapy 
using functional targeting of paclitaxel via artemether liposomes 
could provide a novel strategy for treating invasive brain glioma.
Chen et al.[89] studied lactoferrin-modified, doxorubicin-loaded 
procationic liposomes and showed that the system offers 
effective therapeutic potential for gliomas. Cationic liposomes 
were described in a patent by Migliore et al.[90] to provide a novel, 
noninvasive strategy for nasal delivery of neuroactive proteins 
to the brain for treatment of central nervous system disorders. 
In another patent by Munson et al.[91] PEGylated uni-lamellar 
vesicle liposomes were described that were appropriately 
sized and formulated to cross the blood-brain barrier to deliver 
imipramine. To overcome toxicity associated with high peak 
drug concentration, Redelmeierand Luz used a non-PEGylated 
liposomal composition comprising at least one saturated neutral 
phospholipid and at least one saturated anionic phospholipid 
encapsulating a therapeutic or diagnostic agent.[92]

Solid lipid nanoparticles
Solid lipid nanoparticles (SLN) are stable lipid-based nanocarriers 
with a solid hydrophobic lipid core in which the drug can be 
dissolved or dispersed.[93,94] They are made of biocompatible 
lipids such as triglycerides, fatty acids, or waxes.[93,94] 

Nanoparticles containing brain-derived lipids may be 
transported into the brain via specific receptors for these lipids. 
Panyamand Chavanpatil designed nanoparticles composed of 
a brain lipid (phospholipid), a supplemental lipid (long chain 
saturated or unsaturated fatty acids, stearic acid, palmitic acid, 
linolic acid, or linoleic acid) and a PEG-conjugated lipid (dist
earoylphosphatidylethanolamine-polyethylene glycol).[95] This 
nanoparticle system can deliver a drug or therapeutic compound 
to the brain.[95]

Jin et al.[96] used solid lipid nanoparticles made of lipids extracted 
from deproteinated lipoproteins and enriched with cationic 
cholesteryl hydrochloride and phosphatidyl-ethanolamine. The 
authors, after intravenous administration of such cationic NPs 

for the delivery of siRNA to inhibit c-Met expression, were able 
to suppress the tumor growth without evident signs of systemic 
toxicity in an orthotopic xenograft tumor mouse model of 
glioblastoma.[96]

Singh et al.[97] studied lactoferrin-bioconjugated solid lipid 
nanoparticles as a new drug delivery system for potential brain 
targeting. Lactoferrin was conjugated to the surface of SLN 
using carbodimide coupling. SLN surface-conjugated with 
lactoferrin-encapsulating docetaxel maintained its complete 
activity and conserved its mechanism of action as characterized 
by cell viability and apoptosis studies.[97]

PEGylated-liposomal formulation for enhanced 
pharmacokinetics (Stealth® technology)
PEGylated liposomal doxorubicin (PLD; CaelyxTM, Doxil®) 
represents the first commercial liposomal formulation for 
passive cancer management with enhanced efficacy and 
reduced toxicity profile.[98] PLD is superior to the conventional 
doxorubicin preparation, showing reduced cardiotoxicity and 
prolonged activity due to stealth properties imparted by its 
polyethylene glycol PEG layer. Despite PLD smart passive 
properties in targeting cancer, its long circulation half-life and its 
ability to escape the reticuloendothelial system (RES) defense 
mechanism, it fails to manage brain tumors because of the BBB 
enhanced protective features.[50]

For the PLD to cross BBB, glutathione-PEGylated liposomal 
doxorubicin (2B3-101) is being investigated. Based on the 
patent owned by BBB Therapeutics BV (formerly, to-BBB 
technologies), glutathione-based drug delivery system can target 
brain tissues by receptor-mediated transcytosis.[50] According 
to the preclinical studies, 2B3-101 showed a 5-fold enhanced 
doxorubicin brain delivery versus PLD (Doxil®).[99] The 
company held a phase I/IIa clinical study in patients with solid 
tumors and brain metastases or recurrent malignant glioma.[100] 

Nektar develops new drug candidates by utilizing its proprietary 
3D 4-armed branched PEGylation and advanced polymer 
conjugate technologies to modify the chemical structure of 
various active pharmaceutical ingredients. It is a PEGylation 
technology supplier to a number of pharmaceutical companies 
including Affymax Inc., Amegen Inc., Merck and Co. Inc., Pfizer 
Inc., and UCB Pharma.[101] Nektar Therapeutics is currently 
investigating the use of etirinotecan pegol (NKTR-102) for 
treating brain tumors.[101,102] Furthermore, Nektar Therapeutics is 
conducting a phase II pilot study of NKTR-102 in patients with 
recurrence of high-grade glioma after bevacizumab therapy.[102]

Bioconjugates delivery systems
The main aim of bioconjugation is to form a stable, biologically 
cleavable covalent link between two molecules, at least one 
of which is a biomolecule [Figure 3B].[103] Bioconjugation 
is a form of functionalization of nanoparticles, which aims to 
increase stability, protect a drug from proteolysis, or enhance 
the targeting properties of the delivery system.[77,103] In spite of 
the historic fact that bioconjugates are older than nanoparticles, 
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research is increasingly being diverted back to it.[103] Factors 
that may encourage this resurgence of interest could include its 
ease of synthesis, high scale-up yield, ease of bench-to-bedside 
transformation, ease of formulation, and final formulation 
stability.[103] Bioconjugation reactions are generally categorized 
by the general reactivity or the functional group involved in the 
conjugation process, such as amine reactions, thiol reactions, 
carboxylate reactions, hydroxyl reactions, aldehyde and ketone 
reactions, active hydrogen reactions, photochemical reactions, 
and cyclo-addition reactions.[103] The design of a useful 
bioconjugate will depend mainly on its use, purpose, and the 
desired properties needed.[104] Thus, one could choose a suitable 
molecule and a proper cross-linker to form the bioconjugate.[104] 
The key to forming a successful bioconjugate is choosing the 
suitable crosslinker between the molecules.[103] 

As in any delivery system, bioconjugates are usually tailor-
designed to provide the function of interest. The active drug 
entity can be linked to a diagnostic agent, targeting moiety, 
pharmacokinetics-modifying agent such as PEG, bioresponsive 
or stimuli-sensitive agent, an aptamer, or an antibody. 
Furthermore, the choice of the proper linker can impart new 
functions and smart characteristics to the bioconjugate system 
[Figure 3].

A bioconjugate was patented by Bacha et al.[105] that may 
compromise a chimeric peptide of the structure of Formula 
(D-III): A-NH(CH2)2S-S-B (cleavable linkage), avidin-biotin-
agent complex, PEG layer, and a fusion protein for targeting 
the brain tumor. Another bioconjugate formulation, developed 
by Jefferies et al.[38] comprised a BBB-transport moiety linked 
to an antibody or therapeutic Fc-fusion polypeptide. Jefferies et 
al.[38] modified Fc regions to facilitate the delivery of therapeutic 
and/or diagnostic polypeptides across the BBB and thereby treat 
and/or diagnose conditions associated with the CNS, including 
cancer.

A patent entitled “Anti-EGFR antibody drug conjugate 
formulations” by Tschoepe et al.[106] discussed a staple 
formulation including: an anti-EGFR antibody or antigen-
binding portion thereof conjugated to an auristatin, a sugar, 

a surfactant, and histidine. In their patent Adair et al.[107] 
described nonaggregating resorbable calcium phosphosilicate 
nanoparticles bioconjugated to targeting molecules that are 
specific for brain cells. The targeting moieties used by Adair et 
al.[107] included antibodies, peptides, ligands, and/or receptors 
having sulfhydryl-group. Hutchison invented p97-antibody 
conjugates and related compositions that could be used in the 
treatment of cancers such as Her2/neu-expressing and Her1/
EGFR-expressing cancers to inhibit, prevent, or delay the 
metastasis of an antibody-resistant cancer.[108]

Kang et al.[109] hypothesized that modification of calreticulin 
(CRT) peptide to poly(ethylene glycol)-poly(l-lactic-co-glycolic 
acid) (PEG-PLGA) nanoparticles would mediate drug transport 
across the BBB and enable deep penetration to the interior of 
the glioma by functionally mimicking iron. Their study proved 
that CRT-NP significantly improved the therapeutic efficacy of 
paclitaxel for the treatment of gliomas.[109]

Toxins: targeting agents and a potential treatment
Disintegrins, a group of snake venom toxins, have the potential 
to block cancer cell migration and invasion by interaction 
with integrins.[110] Contortrostatin, a snake venom disintegrin, 
was proven to inhibit tumor growth and angiogenesis and 
to prolong survival in a rodent glioma model by Pyrko et 
al.[111] Similarly, scorpion venoms has been used in targeting 
brain tumors, in tumor painting, and in cell sensitization to 
chemotherapy.[112-114] Chlorotoxin (CTX) is a promising tool for 
glioma management.[112,115-118]

Chlorotoxin binds to metallomatrix proteins-2 and a glioma-
specific chloride channel.[119] CTX is a highly diffusible peptide 
that can cross the BBB or the BBTB with, to date, no evident 
signs of toxicity for normal human cells.[110] Coated iron 
superoxide particles conjugated to CTX may be used as a MRI 
contrast agent as well as for delivering therapeutic agents (e.g. 
O6-benzylguanine and siRNA) to glioma cells.[120-122] Other 
toxins such as BLZ-100 are being investigated.[123,124]

Physically facilitated brain drug-delivery
Advanced physically manipulated systems can be used to 
treat diseases and allow controlled dosage of drugs. Physical 
manipulation can be achieved via ultrasound, electric, magnetic, 
or photonic-emission technologies.[125] Davalos et al.[126] applied 
pulsed electric fields into brain tissue of an animal to cause 
temporary disruption of the BBB. There are examples of using 
electromagnetic field pulses to induce the permeability of the 
BBB. Qiu et al.[127] showed that electromagnetic pulses alter 
BBB permeability via regulating protein kinase C signaling and 
translocation of tight junction’s protein ZO-1. 

Kievit et al.[122] attached chlorotoxin to an iron oxide magnetic 
nanoparticle (MNP) core using a short PEG linker. Similarly, 
in vivo experiments by Braun et al.[128] have shown the effects 
of MNPs within a magnetic field on glioma cells lasting up 
to 100 min postexposure. A patent by Akhtari and Engel used 
functionalized MNP that comprise a moiety that provides 

Figure 3: Diagrammatic sketch for nanoparticulate and nanoconjugate 
systems design strategies
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selective association with cancer cells for the treatment and 
diagnosis of brain tumors.[129]

Yang and David formulated magnetic iron oxide nanoparticles 
(MIONs) coated with a molecule that is noncovalently associated 
with a brain-targeting molecule. The coated MIONs comprise 
an anti-tumor agent linked to a cell-penetrating peptide.[130] 
MIONs are oriented at the site of the brain tumor with an 
external magnetic field.[130] In a patent by Dixit et al.[131]gold 
nanoparticles conjugated with peptides against both EGFR 
and TfR and loaded with the photosensitizer phthalocyanine 4 
have been designed and characterized. Laser was then applied 
to activate the photosensitizer, causing subsequent cell death.[131]

On the other hand, nonthermal techniques to reversibly open 
BBB have been studied. One of these techniques is using 
ultrasound in the presence of microbubbles (MB).[132,133] MB 
work by resonating in an ultrasound beam, rapidly contracting 
and expanding in response to the pressure changes of the sound 
wave.[134] Inertial cavitation and destruction of microbubbles 
are capable of producing strong mechanical stress to enhance 
the permeability of the surrounding tissues and further increase 
the extravasation of drugs into the cytoplasm or interstitial 
cells.[135] Chen et al.[136] studied MB-carrying TGFβ1 inhibitor 
combined with ultrasound sonication to induce BBB/BTB 
disruption and enhance drug delivery. Pulsed-mode ultrasound 
exposure therapy was recently shown to enhance the antitumor 
effect of an EGFR-targeting chemotherapeutic drug facilitating 
antiglioma treatment.[137]

NUCLEIC ACID TECHNOLOGIES

MicroRNA
MicroRNAs (miRNAs) are endogenous RNAs composed 
of about 22 nucleotides. The miRNAs can play important 
regulatory roles in animals and plants by targeting mRNAs 
for cleavage or translational repression.[138,139] Currently, about 
2% of known human genes encode microRNAs.[140] A growing 
body of evidence shows that miRNAs are one of the key players 
in cell differentiation and growth, mobility, and apoptosis.[141-143] 
Most microRNAs in animals are thought to function by 
inhibition of effective mRNA translation of target genes through 
imperfect base pairing with the 3-untranslated region of target 
mRNAs.[138,140]

MiRNAs are appealing therapeutic targets and potential 
biomarkers of GBMs.[141-143] Chan et al.[144] were the first to 
investigate the functional properties of a single miRNA in GBM 
cell lines. They discovered that high expression of miR-21 is a 
common feature of GBM.[144] In GBM, 15 types of miRNAs are 
the most studied (miR-7, miR-10b, miR-15b, miR-17, miR-21, 
miR-23a, miR-25, miR-124, miR-128a, miR-128b, miR-132, 
miR-137, miR-195, miR-221 and miR-222).[145] In a patent by 
Park et al.[146] hypoxia-induced angiogenesis-associated diseases 
including cancers was suggested to be treated by miRNA-125.

Aptamers
Aptamers are nonbiological oligonucleotides that can bind 

to protein targets.[147] Aptamers can be used for therapeutic 
purposes in the same way as monoclonal antibodies.[147] 
However, unlike traditional methods for producing monoclonal 
antibodies, no organisms are required for the in vitro selection 
of oligonucleotides.[147] For this reason, aptamers avoid the 
immunogenicity of antibodies while maintaining all their 
properties.[147] However, there still remain largely unknown 
pharmacokinetic properties which make them harder to develop 
than any given therapeutic antibody.[147]

Aptamers, consisting of a single-stranded nucleic acid having 
100 nucleotides or less that specifically bind to tumor-initiating 
cancer cells, were developed and described by Rich et al.[148] The 
aptamer specifically binds to tumor-initiating cells of GBM.[148] 
Aptamers were the targeting agent of choice for a patent by 
Bloembergen et al.[149] where they used an aptamer-biopolymer-
active agent conjugate system for the treatment of cancer.

CONCLUSIONS AND FUTURE DIRECTIONS

The development cycle of new therapeutic drug entities for brain 
and CNS costs from $500 million to $1.5 billion to get to market. 
Such huge expense could be directly attributed to drugs failing 
late in clinical trials or during the post-market follow-up (Phase 
IV).[150] In spite of the advances in drug discovery technologies 
and high-throughput screening techniques, the development 
cycle of new therapeutic entities is still costly and lengthy. It is 
challenging to ensure efficacy and safety throughout the four 
phases of clinical trials.[151,152]

To overcome these problems and alleviate some of the costs 
associated with new drug entity letdown, pharmaceutical 
formulators spend effort modifying and reinventing therapeutic 
and diagnostic agents, giving them new characteristics with 
enhanced safety and efficacy profiles. The use of novel nano-
sized drug delivery systems (nanoDDS) is a major approach in 
such reinvention process. The nanoDDS can provide methods 
for targeting and releasing large quantities of therapeutic agents 
in exact, well-defined organs or tissues. Furthermore, they 
can easily be tailored, decorated, and modified via various 
agents such as stimuli-sensitive moieties, targeting agents, 
pharmacokinetics-modifying mediators, diagnostic agents, cell-
penetrating peptides, protective PEGylation layer, or antibodies. 
Such modifying moieties can provide novel functions and 
better efficacy or safety profiles to current therapeutic agents. 
Furthermore, most nanoDDSs provide both hydrophobic and 
hydrophilic environments, facilitating better drug solubility and 
enhanced physicochemical characteristics.[153]

Despite their advantages, nanoDDS suffer from many problems 
such as stability issues, formulation scale-up difficulties, and 
short shelf life. Developing novel complexes and sophisticated 
systems that could never reach the market due to high cost, 
inability of scaling-up the system, or instability of the final 
formulation is a major problem. Major process and formulation 
development concerns exist with respect to the scale-up 
process of complex nanoparticulate carriers. To overcome 
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these problems, pharmaceutical formulators started to divert 
their effort from nanoDDS to simple bioconjugate techniques 
to directly attach old problematic active pharmaceutical 
agents such as stimuli-sensitive moieties, targeting agents, 
pharmacokinetics-modifying mediators, diagnostic agents, cell-
penetrating peptides, protective PEGylation layer, or antibodies. 
Active pharmaceutical ingredients can be directly conjugated 
to antibodies against specific cell-type markers to create a 
hybrid smart molecule that is able to direct the active molecule 
to the disease tissue specifically. Consequently, many patents 
currently focus on simple bioconjugate structuresthat are easily 
synthesized with high yield, reduced cost, and high stability of 
the final formulation. This could provide a practical direction for 
the development of novel management tools and therapeutics 
for brain cancer for researchers worldwide, paving the road 
to affordable, scalable, stable, efficient, and safe management 
strategies.

All such techniques and technologies were illustrated in the 
recent patents analyses discussing brain drug delivery during 
2010 to 2015. Despite such efforts, the development of brain 
drug delivery carrier system is still costly and troublesome in 
its transformation from bench to bedside. Such systems require 
huge effort in their in vivo, in vitro testing and clinical trials. Most 
of the research funding in academia for brain delivery research 
comes from investing companies. Most of the companies 
investing in this field are small startups such as to-BBB and 
BiOasis Therapeutics. If such industrial startups fail to develop 
a promising moiety or carrier for brain drug delivery, their 
existence is usually jeopardized.[154,155] An integrated ”bench-
to-clinic” approach, realized through a structural collaboration 
between industry and academia, would strongly promote the 
development of brain tumor-targeted nanomedicines towards 
effective and safe clinical application.[156]
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While secondary solid cancer into the eye orbit is rare, it is the most common site for primary metastasis in female breast cancer. 
We report a case of a sixty-six years old woman presenting to her optician with complaints of double vision. Magnetic resonance 
imaging revealed an invasive lesion in the superior and medial rectus muscles of the right orbit, biopsy of which confirmed this as an 
infiltrating breast carcinoma. Investigation of the primary lesion showed an advanced invasive ductal carcinoma of the right breast. 
She was then treated with radiotherapy to the orbit and a non steroidal aromatase inhibitor Anastrozol (Arimidex®). We herein review 
and discuss the literature, epidemiology, mechanism of tumor spread, the “seed and soil” theory, clinical presentation, pathology, and 
management of this uncommon presentation.
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INTRODUCTION

Cancer metastasis to the eye orbit is rare[1-4] However, 
female breast cancer is the commonest primary cancer 
metastasizing to the orbit,[2,3,5,6] followed by, lung cancer, 
prostate cancer, melanoma, and genitourinary cancer in 
no particular order. Patients typically present with limited 
ocular mobility,[6] proptosis, blepharoptosis, palpable 
mass, blurred or decreased vision or pain. Signs and 
symptoms relating to orbital metastasis are usually noted 
late in the disease progression, and treatment generally 
consists of local radiotherapy to the orbit[6] in addition to 
treatment of the primary cancer, which in this case of ductal 
adenocarcinoma of the breast required hormonal therapy 
only.

CASE REPORT

A 66-year-old woman presented to her optician with 
symptoms of diplopia affecting the right eye only and 
was subsequently referred to an ophthalmologist. Physical 
examination showed a right sided ptosis and significant 
impairment in all extra-ocular muscle function with some 

sparing of the lateral rectus and superior oblique muscles. 
The initial diagnosis was that of a partial third cranial nerve 
palsy. A computed tomography (CT) scan revealed increased 
abnormal soft tissue enhancement in the superior aspect of 
the orbit, with involvement of superior and medial rectus 
muscles. The patient was then referred to an oculoplastic 
surgeon who noted that the patient had a “frozen eyeball”. 
A magnetic resonance imaging (MRI) scan further revealed 
an abnormal infiltrating lesion at the orbital apex encasing 
the optic nerve and involving all four rectus muscles 
[Figures 1 and 2]. Next, a CT-guided biopsy of the lesion 
was performed and histology revealed a metastatic lesion, 
most likely from a primary breast adenocarcinoma [Figure 
3]. Thus, the patient was referred to our multidisciplinary 
breast clinic whereupon a 10 mm palpable mass in the upper 
outer quadrant of the right breast was found, clinically 
suspicious of cancer. A mammogram and ultrasound were 
performed, followed by a core biopsy of the mass. The 
latter demonstrated features consistent with an invasive 
ductal carcinoma, histologically identical to the biopsy 
from the orbit. The tumor cells were estrogen receptor 
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positive, progesterone receptor positive and HER2 negative 
(Luminal A). Staging investigation unfortunately revealed 
diffuse bony metastases. The consensus of our team was to 
treat her with primary hormonal therapy and the patient was 
treated with an aromatase inhibitor (Arimidex®) 1 mg once 
a day. Adjuvant radiotherapy to the right eye was also done 
under the direction of the ocular oncologist.

DISCUSSION

Orbital metastasis of solid tumors is very rare[2-6] with most 
occurring in the uveal tract, especially in the posterior 

part of the choroid. It has been proposed[7] that breast 
cancer cells have the ability to remain viable away from 
their primary site. Indeed, breast cancer accounts for the 
highest incidence of metastasis to the orbit,[2,3,5-9] followed 
by prostatic, lung, melanoma, and gastrointestinal cancers. 
Another study showed that lung cancer was the second most 
common primary source for orbital metastasis, followed 
by prostate cancer. Other reported sources include cancers 
of the thyroid, liver, pancreas, adrenal gland, salivary and 
choroidal melanoma.[6]

Overall, orbital metastasis occurs in 2-3% of patients with 
systemic cancer.[6] However, metastasis into the extraocular 
muscles is an even less frequent presentation.[1] It did, 
however, occur in this reported case of breast carcinoma 
metastatic to the orbit, with all four recti muscles being 
involved. This is not in concordance with the prevailing 
view that skeletal muscles are considered an uncommon 
site for metastasis, (albeit less infrequent in malignant 
lymphoma and leukemia). It may be due to the fact that these 
muscles are in a more or less constant state of movement, 
thus preventing neoplastic cells from seeding them, or 
by producing an unfavorable chemical environment for 
neoplastic growth.[5] Clinical studies have shown that 
different cancer types frequently display distinct metastatic 
patterns, with neoplasms of particular histological types 
tending to metastasize to specific organs.[10] Paget[11] 
first proposed the “seed and soil” hypothesis of cancer 
metastasis. He postulated that tumor development was 
a consequence of the provision of a fertile environment 
(the soil) in which compatible tumor cells (the seed) could 
proliferate The ability or inability of specific organs to 
provide this favorable milieu and the success or failure 
of specific cells to respond to these microenvironments 
dictated the observed patterns of metastatic development in 
different cancers.[11] In contrast to the “seed and soil” theory, 
there is a mechanistic explanation for secondary tumor 
growth patterns. Here, the organ or tissue specificity is the 
direct consequence of the anatomical location of primary 
tumors. Thus, the secondary foci of epithelial cancers, 

Figure 1: Axial T1 MRI of skull showing an abnormal infiltrating lesion at the 
right orbital apex involving all four rectus muscles

Figure 2: Coronal T1 MRI of skull shows intra- and extra-conal soft tissue 
signal intensity lesion encroaching upon right optic nerve, likely infiltrating 
and effacing retrobulbar fat

Figure 3: Histology of orbital core biopsy showing infiltration by metastatic 
adenocarcinoma, most likely of breast origin
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which metastasize predominantly via the lymphatics, are 
subsequently found mainly in draining lymph nodes. It has 
been proposed that entrapment and growth of tumors might 
be affected by qualitative or quantitative differences in tumor 
cells’ ability to adhere to the vascular endothelium of particular 
organs;[11] organ-specific growth is thus a direct consequence 
of the specific localization or entrapment of circulating tumor 
cells. While it is tempting to speculate an immunologic basis 
for the propensity of breast cancer and malignant melanoma 
to metastasize to the extra-orbital muscles; the nature of any 
such site specificity remains unknown.[2]

Although the patient did have skeletal symptoms due to 
widespread bony metastasis which were largely dismissed 
by her general practitioner as being part of her arthritis 
complex, the main presenting symptom in this case was 
diplopia. However, a review of the literature indicates 
that this not commonly the case. A previous study of 100 
patients[6] showed that diplopia constituted only 9% of 
such patients. Frequency of their presenting symptoms and 
signs were limited ocular mobility (54%), displacement 
of the globe with proptosis (50%), blepharoptosis(49%), 
a palpable mass (43%), blurred or decreased vision 
(23%), pain (17%), visible mass or swelling (17%), and 
enophthalmos (11%). The latter sign interestingly and 
paradoxically was found to be associated with scirrhous 
breast cancer.[6,9,12] This may be explained by the presence 
of desmoplasia and fibrosis associated with the tumor, 
causing contracture of the orbital content, and paradoxical 
enophthalmous.

The diagnosis of metastatic tumor can be confirmed by 
CT scan[1,2] for more than 95% of orbital metastases and 
CT scan can provide considerable information regarding 
size, location, relation to musculature and other structures, 
as a well as the nature of the lesion. High resolution CT 
imaging is also an excellent diagnostic tool for extra-ocular 
metastasis. Focal or nodular muscle enlargement without 
focal bone destruction, fossa formation, orbital enlargement, 
or other evidence of neoplastic extension into contiguous 
structures is highly suggestive of metastasis. Diffuse 
enlargement with feathering of the muscle edge may occur 
or masquerade clinically as a myositic pseudotumor.[6] 
Bilateral involvement can be present despite only unilateral 
symptoms.[6] MRI, on the other hand, did not add specificity 
to the radiographic information in our case. Any patient 
with an undifferentiated malignancy first discovered in the 
orbit should undergo a full systemic evaluation to reveal 
the  primary tumor. Although MRI may provide the best 
resolution of orbital metastasis,[6] CT is more useful in cases 
of suspected prostate and breast cancer as metastatic bone 
involvement is very common in breast cancer too.

Metastatic lesions involved the horizontal rectus muscles 
are more common than the vertical rectus or oblique 
muscles.[6] Orbital metastasis from breast cancer tends 
to be diffuse and irregular, often growing along rectus 

muscles and fascial planes. In contrast, orbital metastasis 
from carcinoid tumor, renal cell carcinoma, and melanoma 
tends to be more circumscribed, at least in early stages.[6] 

Diagnosis is usually established by tissue biopsy, open, 
or fine needle aspiration to confirm a metastatic tumor 
lesion, and not simulating lesions, such as idiopathic 
orbital inflammation (also known as orbital pseudotumor). 
Special staining[12] with mucicarmine and alcian blue may 
be helpful, not only to obtain a diagnosis but also to identify 
the primary neoplasm. Histological diagnosis of metastasis 
is typically straightforward and does not present a problem 
to the pathologist.[7]

Although we did not test for Ki-67 status, (also known 
as MK 167) it has been used as prognostic parameter in 
breast cancer patients,[14] and its presence is associated 
with lower disease free survival and lower overall survival. 
Currently neither St Gallen, nor ASCO recommendations 
nor the German Interdisciplinary S3 Guidelines for the 
diagnosis, treatment, and follow-up of breast cancer have 
proposed Ki-67 as a routine prognostic marker. Ki-67 has 
been shown to have an inverse relationship with estrogen 
receptor status, but a possible direct relationship with 
HER2 status.

Treatment of histologically proven metastatic tumors to 
the orbit is mainly palliative,[12] and is comprised of orbital 
irradiation[6] with approximately 35-40 Gy to the affected 
orbit in divided doses over 3-5 weeks. Slightly more or 
less radiation may be indicated depending on tumor type. 
Radiation[7] may improve and preserve vision for the 
remaining lifespan of the patient. Regression of ocular 
metastasis following sterilization, adrenalectomy, or 
hypophysectomy has been reported in a number of cases of 
hormone dependent breast cancers,[2] however, Aromatase 
inhibitors (Anastrozole, Letrozole, Exemestane) are now 
recognized as the agents of choice for the management 
of post menopausal women with steroid hormone 
positive metastatic breast cancer, in whom indications 
for chemotherapy are not absolute.[13] Enucleation of 
the eye on the other hand should only be carried out in 
cases of intractable pain, most often caused by secondary 
glaucoma.[2]
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Neuroendocrine tumors of the oral cavity and jaws are exceedingly rare. They include paragangliomas, a melanotic neuroectodermal 
tumor of infants, small cell carcinomas, and Merckel cell carcinomas. Most have been non-functional in nature. Breast, lung, liver, 
colon, and prostate are the most common reported primary malignancies which can metastasize to the oral cavity. In most cases, 
oral metastases involve maxilla and mandible rather than soft tissues. The premolar-molar region is the most common localization. 
The purpose of this article is to describe a rare case of a high grade neuroendocrine tumor of the mandible which metastasized 
from the cervix.

Key words: Large/small cell carcinoma of mandible; metastatic tumor/carcinoma to the mandible; neuroendocrine/carcinoid 
tumor of mandible
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INTRODUCTION

Metastatic lesions to the jaws are known to simulate 
periodontal and pulpal disease and other radiolucent lesions 
that can occur in the jaws. Breast, lung, liver, colon, and 
prostate cancers are the most commonly reported primary 
malignancies which can metastasize to the oral cavity.[1]

Tumors of the neuroendocrine system constitute a 
heterogeneous group of lesions that vary in origin, location, 
histological appearance, the degree of differentiation, 
biologic behavior, functional activity and size but 
share certain histochemical, immunohistochemical, and 
ultrastructural characteristics.[2]

Neuroendocrine tumors comprise carcinoids, islet cell 
tumors, medullary carcinomas of the thyroid, mastocytomas, 
melanomas, Merkel cell tumors of the skin, neurocytomas, 
oat cell carcinomas, paragangliomas, pinealomas, and 
pituitary adenomas.[3]

The purpose of this article is to describe a rare case of a 
high-grade neuroendocrine tumor of the mandible which 
metastasized from the cervix.

CASE REPORT

A 35-year-old female patient reported with the chief 
complaint of a swelling in the right lower back region of 
the jaw for 20 days. Her history revealed a painful tooth in 
the region which was extracted 1 month earlier, followed by 
the appearance of swelling few days later. The swelling was 
initially small in size to start with but gradually progressed 
to the present size and was associated with loss of sensation 
on the right side of the lower lip. Medical history revealed 
that the patient had undergone a hysterectomy for small 
cell carcinoma of cervix 11 months earlier.

Extra-oral examination revealed a solitary swelling in the 
right lower third of the face measuring around 2.5 cm × 
2 cm in the greatest dimensions, roughly oval in shape with 
diffuse borders. Right sub-mandibular lymph nodes were 
palpable, tender, firm-to-hard inconsistency, and fixed.

Intraoral examination revealed the presence of solitary 
swelling in the right mandibular molar region, measuring 
1.5 cm × 1 cm. Vestibular obliteration was evident [Figure 
1]. Clinically, teeth number 26, 36, 46, 47 and 48 were 
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missing. Orthopantomograph revealed the presence of an 
ill-defined, honeycomb radiolucency in the right side of 
the body of mandible distal to 45, measuring 4.5 cm × 5 cm, 
roughly oval in shape [Figure 2]. Occlusal view showed a 
lingual cortical plate expansion.

Computed tomography scans were taken which 
demonstrated a destructive lesion in the right mandibular 
premolar-molar region and exhibited possible muscle 
infiltration. Further clinical investigations, including full 
bone scan, abdominal, chest and pelvic examinations, 
sonar ultrasonography of the abdomen and mammography, 
showed no space-occupying lesions. Standard hematologic 
investigations were within normal limits.

Incisional biopsy of the lesion was done and keeping 
in view the past medical history, a diagnosis of metastatic 
small cell carcinoma of the mandible was made. Surgery 
was advised to excise the tumor mass [Figure 3] and 
a radical right disarticulation hemimandibulectomy 
along with radical neck dissection on the right side was 
performed, and reconstruction was done with pectoralis 
major myocutaneous flap. She recovered well from the 

procedure and was referred to the radiotherapy center 
for further management. Later, the patient denied a 
secondary procedure for reconstructive purposes.

The pathological specimen was sent for histopathological 
examination and revealed tumor cells arranged in a 
lobular pattern, rosettes-papillary pattern, solid sheets and 
clusters. These cells had scant eosinophilic cytoplasms 
with round, polygonal nuclei with stippled chromatin. 
There were areas of necrosis. These tumor cells were seen 
infiltrating into the skeletal muscle fibers. Sections from 
lymph nodes revealed hyperplastic lymphoid follicles and 
prominent germinal centers. Sinusoids were filled with 
histiocytes [Figures 4 and 5].

Immunohistochemical studies revealed that the tumor cells 
were positive for chromogranin, CD56 and synaptophysin, 
while they were negative for S-100, cytokeratin (CK)-5/6 
and p63. Mib-1 labeling index was 50%. These findings 
were diagnostic markers of high-grade neuroendocrine 
carcinoma.

Figure 1: Intraoral photograph of the patient showing the tumor mass at the 
time of presentation

Figure 2: Orthopantomograph showing radiolucent changes in molar region 
on the right side

Figure 3: Excised tumor mass with safe margins
Figure 4: Photomicrograph revealing islands of carcinoma cells arranged in 
sheets with darkly stained nuclei (H and E, ×10)
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DISCUSSION

Primary carcinomas which are reported to metastasize 
to the jaws include those of the breast, lung, liver, colon 
and prostate.[1] The primary carcinomas having highest 
tendency to metastasize are different for both genders. 
They are as follows in decreasing order: for women, breast 
followed by carcinomas of the adrenal, colorectum, female 
genital organs and thyroid; for men, the lung followed by 
the prostate, kidney, bone and adrenals.[4]

It has been reported that most metastatic oral tumors are 
found in patients in their fifties, sixties and seventies.[4,5] 
According to Hirshberg et al.,[4] metastases to the jawbones 
have a slight female predilection while metastases to the 
oral mucosa have a male:female ratio of 1.6:1.

Features that might assist in the assessment of malignancy 
include the site of origin, depth of invasion, degree of 
differentiation, functional activity and size of the tumor.[2] 
The most common symptoms reported in literature are 
painful swelling, paresthesia, bleeding and increasing tooth 
mobility along with delayed healing of extraction socket, 
pathological fracture, masticatory difficulties, trismus, 
dysphagia, and dyspnea.[6] Paresthesia of the lower lip and 
the chin was found in our patient. As already reported, 
this should be considered as ominous sign for metastatic 
lesions to the mandible, as this signifies deep invasion 
of the tumor into the bone and involvement of the inferior 
dental or mental nerves.[7] Mental nerve neuropathy or the 
“numb chin syndrome”, in the absence of other causes, 
should be considered to be due to mandibular metastases 
until proven otherwise when seen in a patient with known 
malignancy.[8]

Being very sensitive immune-markers, neuron-specific 
enolase, and CK are most commonly used for definitive 

diagnosis. At present, in addition to ultrastructural studies, 
immunohistochemical techniques are the most sensitive 
methods available for the diagnosis of neuroendocrine 
tumors.[9] Treatment modalities for neuroendocrine 
carcinomas of the oral cavity have included surgery, 
multidrug chemotherapy, and radiotherapy, alone or 
in combination. Currently, well-established treatment 
protocols do not exist. Surgery alone is inadequate because 
these tumors tend to progress rapidly and at the time of 
diagnosis, they are reported to have a metastasis rate of 
roughly 14-50%.[10]

The presentation of a malignant lesion in the orofacial 
region may be the first indication of the existence of 
an unknown malignancy at a distant primary site. The 
presence of altered sensation in the area of the lower jaw 
and lip/chin region in a patient with a known non-head and 
neck malignancy should alert the clinician to the possibility 
of metastatic malignant disease. Appropriate investigations 
should be carried out to rule out other secondary and 
manage the case satisfactorily.
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Renal cell carcinoma (RCC) is well known for its metastatic potential and predilection for unusual sites of metastasis. Metastasis 
to the bladder is rare and has been reported predominantly from clear cell RCC. We report a case of a 72-year-old male presenting 
with a bladder tumor which on histopathological evaluation was found to be a metastasis from papillary RCC, 7 years after radical 
nephrectomy. This case highlights the need to maintain a high index of suspicion to diagnose bladder metastasis in a patient with 
a history of RCC presenting with a bladder lesion.
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INTRODUCTION

Renal cell carcinoma (RCC) metastasizing to the bladder is 
a rare phenomenon. It can be easily mistaken for primary 
bladder tumor on cystoscopy. Of the few cases reported 
in literature, bladder metastasis was predominantly from 
clear cell RCC. Here, we report a case of bladder 
metastasis from papillary RCC presenting 7 years after 
radical nephrectomy.

CASE REPORT

A 72-year-old male, a chronic smoker, presented with 
irritative lower urinary tract symptoms. He had undergone 
left radical nephrectomy for RCC (papillary sub-type, 
stage T3N0M0) 7 years ago. Clinical examination was 
unremarkable. His baseline investigations, including 
complete blood counts and serum biochemistry, were 
within normal limits. Urine analysis showed microscopic 
hematuria. A transabdominal sonography revealed a 3 
cm hyperechoic lesion in the left postero-lateral wall 
of the bladder. Abdominal contrast-enhanced computed 
tomography (CECT) confirmed the same lesion [Figure 1]. 
No extra-vesical spread or pelvic lymph node metastasis 
was evident. The CECT also confirmed that he was 
post-left radical nephrectomy; there was no evidence of 

local tumor recurrence or intra-abdominal metastasis. 
However, a chest radiograph revealed multiple cannon ball 
metastases. Cystoscopic examination revealed a solitary, 
broad-based lesion in the region of the left ureteric orifice 
[Figure 2]. The rest of the bladder was unremarkable. 
A cold cup biopsy of the lesion showed a neoplasm 
arranged predominantly in papillary pattern and focal 
areas of solid sheets, both composed of tumor cells with 
moderate eosinophilic cytoplasm and low-grade nuclear 
features. Immunohistochemistry revealed strong diffuse 
positivity for cytokeratin 7 (CK7), vimentin and focal 
positivity for cluster of differentiation 10 (CD10) [Figure 
3], suggesting a metastatic bladder tumor from renal 
papillary adenocarcinoma.

The patient was counseled regarding his disease; he refused 
active therapy and was referred for palliative care. He died 
of progressive disease 10 months later.

DISCUSSION

RCC can be an aggressive disease with the ability to 
metastasize widely. Besides the common sites of metastasis, 
i.e. lung, liver, bone and brain, RCC can also metastasize 
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to unusual sites with myriad presentations. Of the RCC 
sub-types, clear cell RCC is notorious for its unpredictable 
metastatic pattern; on the other hand, papillary RCC is 

rarely associated with prodigious metastasis. This has been 
attributed to its hypovascular nature, owing to the lack 
of Von Hippel-Lindau mutations that regulate vascular 
endothelial growth factor, the primary proangiogenic 
molecule in RCC.[1] The relative rarity of papillary RCC 
metastatic to the bladder was also demonstrated in a recent 
series of 11 cases of metastatic RCC to the urinary 
bladder that were detected over a span of 15 years, with 
only 18% (2/11) originating from papillary RCC.[2]

The bladder is an unusual site for metastasis of RCC with 
an incidence of 1.6% in autopsy series.[3] Other metastatic 
sites of RCC to the genitourinary tract include the ipsilateral 
ureter, contralateral ureter, ureteric stump and prostatic 
fossa. Bladder metastasis may be solitary or multiple, 
the latter having a worse prognosis. Both synchronous and 
metachronous bladder metastasis from RCC have been 
described. Metachronous lesions occur more commonly 
and have been reported to occur up to 12 years after radical 
nephrectomy.[4] Synchronous lesions are more likely to be 
associated with the presence of metastasis in other organs.

Although a variety of possible pathways for metastasis 
of RCC to the bladder have been proposed, the exact 
mechanism is not clear.[5] Hematogenous spread may 
occur through the general circulation or retrograde through 
the periureteric or gonadal veins. In this scenario, the 
metastasis is usually located within the bladder detrusor 
layer. Lymphatic spread may occur through the renal 
hilar lymphatics down the periureteral lymphatics and 
subsequently through the pelvic lymphatics to the pelvic 
organs. Transluminal spread with seeding of the distal 
urothelium may occur, especially in cases where the 
renal tumor infiltrates the pelvicalyceal system. We believe 
this to be the likely mechanism in our patient, considering 
that the site of metastasis was in the region of the left 

Figure 1: Contrast-enhanced computed tomography: Moderately enhancing 
lesion in the left postero-inferior wall of the bladder

Figure 2: Cystoscopic image: Broad-based non-papillary lesion arising from 
the region of the left ureteric orifice

Figure 3: (a-c) Histopathology showing papillary adenocarcinoma with moderate nuclear pleomorphism and eosinophilic cytoplasm. Hematoxylin and Eosin 
staining section (a, ×4; b, ×40); (d) Immunohistochemistry shows strong positivity for cytokeratin 7; (e)vimentin; (f) focal positivity for cluster of differentiation 10
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ureteric orifice and the lesion was primarily situated within 
the urothelium.

The most common presenting symptom of bladder 
metastasis is hematuria. In a patient with synchronous 
bladder metastasis, hematuria may be wrongly attributed 
to collecting system infiltration of RCC. The bladder 
metastasis may, thus be overlooked, only to become 
apparent later, when the patient continues to have 
hematuria post-nephrectomy. This has led some authors 
to recommend cystoscopic evaluation in all patients with 
RCC and hematuria.[4,6]

The definitive diagnosis of bladder metastasis is made by 
cystoscopy and biopsy or transurethral resection. The 
metastasis histologically resembles their renal primary. 
However, a basic immunohistochemical panel is useful to 
differentiate metastasis from poorly differentiated bladder 
tumors. RCC metastasis, like their primaries, show positive 
staining for CK AE1/AE3, CK7, CD10 and vimentin.[4] 
Well-differentiated primary papillary urothelial carcinomas 
are positive for CK7 and usually negative for vimentin. 
Urothelial carcinomas attain vimentin positivity only on 
sarcomatoid transformation. In diagnostically challenging 
cases, discriminatory immunohistochemical markers, such 
as PAX8 and GATA3 positivity, may be used to differentiate 
metastatic RCC from primary bladder urothelial carcinoma, 
in addition to alpha-methylacyl coenzyme A racemase 
positivity for papillary RCC.[2]

Due to the rare occurrence of bladder metastasis, there 
are no established recommendations for management. 
Metastasectomy has been advocated if complete resection 
of all metastasis can be accomplished.[7] Management 
options that have been described, include partial cystectomy 
or transurethral resection, either as a single modality or in 
combination with immunotherapy or targeted therapy.[8]

Prognosis has been reported to be good only when a 

single metastasis exists in the bladder.[7,9] To summarise, 
it must be emphasized that not all papillary tumors 
of the bladder are primary transitional cell carcinomas. 
Metastasis from papillary RCC must also be considered 
in a patient with a history of renal malignancy presenting 
with hematuria or a bladder mass. As in our case, these 
metastases may present several years after treatment of 
the primary malignancy.
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Aim: To evaluate the diagnostic value of technetium Tc99m-tetrofosmin (99mTc-TF) in primary cancers of the head and neck. 
Methods: Single photon emission computer tomography with planar imaging of the neck for primary site evaluation and whole 
body scanning for assessment of metastases in 12 patients with newly diagnosed head and neck cancer. Tumor-to-background 
index (T/Bg) was derived in patients with positive findings (tumor or lymph nodes). Results: The tomographic images showed 
increased tracer uptake in pathological sites (primary tumor or lymph node) in 9 patients (overall sensitivity 75%). Primary tumor 
was visualised in 7 patients (sensitivity 58%) and infiltrated lymph nodes in 4 out 7 patients (sensitivity 57%). Mean values for 
T/Bg index were 5.44 ± 1.28 for primary tumor and 4.25 ± 1.67 for lymph nodes. Mean values for T/Bg index were 4.5 ± 0.71 for 
patients with in situ and grade I carcinoma and 6.68 ± 0.36 for patients with tumor grade II and III (P = 0.034, Mann-Whitney U 
test). Conclusion: The present study demonstrates that 99mTc-TF is a valuable radiotracer for head and neck cancer imaging. To 
determine the potential role of this imaging protocol in clinical practice will require a larger sample size.
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INTRODUCTION

Malignant tumors of the head and neck are among the 
six most common forms of tumors in the body. Head and 
neck cancer include neoplasms of the upper respiratory 
tract (nasopharynx, oropharynx, larynx) salivary glands, 
and soft tissue of the neck with squamous cell carcinoma 
being the most frequent histological type. Diagnosis of 
this type of cancer is based on endoscopy and biopsy of 
the suspicious lesion.[1] Staging and evaluation of the extent 
of disease involves the use of computed tomography (CT), 
magnetic resonance imaging (MRI) and positron emission 
tomography (PET).[2] Follow-up evaluations after surgery 
and/or radiotherapy and differential diagnosis of disease 
relapse from radiation necrosis is more difficult to assess, 

due to extensive distortion of the normal anatomy, and may 
require a combination of different imaging tests,[3-7] such 
as PET scan.[8-11] However, its availability is limited by the 
need for a cyclotron that produces 18Fluorodeoxyglucose 
(18FDG) and its increased cost. In addition, in many 
countries, PET is not widely available so other methods are 
needed for tumor-imaging assessment.

When a PET scanner is not available, nuclear medicine still 
plays a crucial role in the initial staging of the disease and 
for follow ups. Lymph node cancerous involvement at initial 
presentation may be difficult to assess by conventional 
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imaging methods based only on morphology and size. 
Functional nuclear medicine imaging has the unique 
advantage of assessment of the metabolic state of lymph 
nodes. Currently, the agents employed are Thalium-201 
(201Tl) and the two technetium-99m labelled compounds 
Sestamibi (MIBI) and Tetrofosmin.[2]

99mTc-MIBI and Tc99m-tetrofosmin (99mTc-TF) are two 
lipophilic cationic complexes, which were originally 
employed in myocardial perfusion imaging, but later were 
found to possess tumor-seeking properties in the evaluation 
of diverse human malignancies.[12] The diagnostic value 
of 99mTc-TF could hold promise as a head and neck cancer 
tracer, although limited data exist in clinical research.[13,15] 
In the present study the diagnostic utility of 99mTc-TF prior 
to surgery of head and neck neoplasms was assessed and 
correlated with the 99mTc-TF uptake of histological grade, 
and tumor and lymph node size.

METHODS

Prior  to  surgery,  12 subjects  (11  males  and  1  female) 
of median age 65.5-year-old (48-83) with suspected 
head and neck cancer had 99mTc-TF planar and Single 
photon emission computer tomography (SPECT) imaging 
of the neck and whole body scanning for metastatic 
evaluation. None of the patients had received treatment 
prior to scintigraphy, except for patient twelve, who had 
surgery, radiotherapy and chemotherapy, one year prior to 
scintigraphy. This patient had scintigraphy because of a 
tumor relapse at the primary tumor.

All patients were interviewed before 99mTc-TF imaging 
and the patients’ age, height, weight, smoking habits, 
and alcohol consumption were noted. Data from the 
CT findings included the anatomical location and size 
of the tumor, as well as the existence and size of lymph 
nodes. Correlation of SPECT imaging with the tumor 
histopathology diagnosis and grade was performed after 
the original tumor was excised and the pathology was 
established. The protocol was approved by the Hospital 
Research and Ethics Committee. Informed consent was 
obtained from all patients. Clinical trial registration was 
not required for this small study.

Protocol
All patients were injected with a dose of 740 MBq (20 mCi) 
bolus 99mTc-TF; and immediately after injection patients 
drank 5 mL of lemon juice to stimulate salivary glands. 
Lemon juice stimulation achieves the lowest possible 
uptake of radiotracer in the salivary glands (normal 
distribution of 99mTc-TF) during imaging. Scintigraphy 
was performed with patients in a supine position. Anterior 
planar images were acquired 5-10 min post injection, using 
a zoom factor of 2.66. Tomography was acquired 15 min 
post-injection with the dual-head camera at 6o-angles 
(60 stops) and 30 s per projection (30 projection/head) over 

a 360° arc, using a low-energy, general purpose collimator. 
Acquisition was obtained with a matrix size of 64 × 64 
× 16, 1.85 zoom factor, and a 15% symmetric window at 
140 keV (no contour). Reconstruction method was filtered 
back projection (filter butterworth, cut-off frequency 0.5, 
power 7.0). No attenuation correction was used. Finally, 
whole body scan was acquired in all patients for possible 
distant metastases evaluation.

Two nuclear medicine specialists visually evaluated the 
planar, tomographic and whole body images, which were 
compared to the CT scans. Increased uptake in SPECT 
images (in a site of pathological finding on CT (primary 
tumor or lymph node) was considered a positive finding. A 
region of interest (ROI) was drawn on the relative coronal 
image. Background (Bg) ROI was drawn over the apex of 
the right lung. T/Bg index for tumor and lymph nodes was 
derived in all patients with positive findings. Patients with 
no significant uptake on pathological sites were considered 
negative.

Table 1: Physical characteristics of the patients and 
tumor anatomical location

Characteristics Patients
Gender 11 M/1 F
Mean age (years) 65.75 ± 11.8 (48-83)
Height (cm) 166.75 ± 8.9 (155-184)
Weight (kg) 69.25 ± 9.5 (55-82)
BMI (kg/m2) 25.00 ± 3.8 (16.2-32.4)
Smoking 11/12 (91.7%)

* 0: 1/12 (8.3%)

* 1: 0/12 (0.0%)

* 2: 11/12 (91.7%)
Alcohol 8/12 (66.7%)

** 0: 4/12 (33.3%)

** 1: 2/12 (16.7%)

** 2: 6/12 (50.0%)
Anatomical location of 
tumor
Eepiglottis 1/12 (8.3%)
Vocal cord 2/12 (16.7%)
Base of tongue 2/12 (16.7%)
Pharyngeal wall 1/12 (8.3%)
Tonsil 1/12 (8.3%)
Submandibular gland 1/12 (8.3%)
Soft palate 1/12 (8.3%)
Pyriform fossa 2/12 (16.7%)
Nasopharynx 1/12 (8.3%)
Histopathological findings
Squamous cell 10/12 (83.3%)
Adenoid cystic cell 2/12 (16.7%)  

M: male; F: female; BMI: body mass index; * Smoking habits: 
0 = no smoking; 1 = less than 500 cigarettes/year; 2 = more 
than 500 cigarettes/year; for more than 2 decades. **Alcohol 
consumption: 0 = no alcohol consumption, 1 = alcohol 
consumption no more than 2-3 times in week; 2 = every day 
consumption of alcohol
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Statistical analysis
Data are presented as mean (± standard deviation).Uptake 
of 99mTc-TF (T/Bg index) in tumors, as well as sensitivity, 
was correlated to tumor histological grade, and the tumor 
and regional lymph node size. For statistical analysis, the 
software “SPSS for Windows” (P ≤ 0.05 was considered 
as statistically significant). Non parametric statistics was 
applied. The Mann-Whitney U test compared means and 
the chi-square test to compare frequencies.

RESULTS

The characteristics of the twelve patients and the tumors are 
summarized in [Table 1].

Among them, 4 patients had in situ carcinomas, 2 patients 
grade I carcinoma, 1 patient grade II and 5 patients grade 
III carcinoma. The smallest measurable tumor was 2.0 cm, 
and the largest 5.5 cm. Pathological enlarged lymph nodes 
were noted in 7 patients with sizes between 2 cm and 5 cm 
[Table 2].

Tomographic images showed increased tracer uptake in 
pathological sites (primary tumor or lymph nodes) in 9 
patients, with an overall disease detection sensitivity of 
75% [Figure 1]. Primary tumor was visualised in seven 
patients (sensitivity 58%) and infiltrated lymph nodes in 4 

out of 7 patients (sensitivity 57%) [Table 3]. According to 
histological tumor grade, 4 (66.7%) patients with in situ or 
grade I and 3 (50%) patients with grades II or III had higher 
99mTc-TF tumor uptake (P = 0.373) than the counterparts. 
Scintigraphic sensitivity was lower with tumor size < 3 cm 
(33.3%) compared to tumor size ≥ 3 cm (83.4%) sensitivity. 
The statistical analysis found a trend towards a positive 
correlation with tumor size in radiotracer uptake, although 
the results did not reach statistical significance (P = 0.079) 
[Table 3]. In addition, one patient with tumor size of 4.5 cm 
had no uptake [Table 2]. Among the 7 patients with 99mTc-
TF uptake in primary tumor, 4 patients exhibited increased 
99mTc-TF uptake in the regional infiltrated lymph nodes. 
One of them had lymph node size < 3, while the other 
patients had lymph node sizes larger than 3 cm. Two of the 

Table 2: Tumor and regional lymph node characteristics in patients with head and neck cancer
Patient Tumor diameter: cm 

(max)
LN diameter: cm 

(max)
T/Bg Index LN/Bg index Histological 

Grade*
1 3 5 5.2 5.18 I
2 2.5 No LNs 3.52 No LNs 0
3 2 No LNs 4.57 No LNs 0
4 4.5 4.5 4.72 3.17 I
5 2 2 - - 0
6 3 3 6.44 - III
7 2.5 2.5 - 2.55 III
8 2.5 4 - 6.1 II
9 6 No LNs 6.5 No LNs III
10 4.5 2 - - III
11 2.5 No LNs - No LNs 0
12 5.5 No LNs 7.1 No LNs III

D: diameter; LN: lymph node; T/Bg: tumor-to-background; LN/Bg: lymph node-to-background; *Histopathological grade 0: in situ

Table 3: Tumor and lymph node uptake of 99mTc-TF and uptake sensitivity according to tumor grade and size and 
lymph node size in patients with head and neck cancer

Patients Patients No. TF uptake sensitivity 
(%) P Mean T/Bg ± SD P

In situ and Grade I 4/6 66.7%
0.343

4.05 ± 0.71
0.034*Grade II and III

Total

3/6

7/12

50.0%

75.0%

6.68 ± 0.66

5.44 ± 1.28
Tumor size < 3cm 2/6 33.3%

0.074
4.05 ± 0.74

0.053Tumor size ≥ 3cm

Total

5/6

7/12

83.4%

75.0%

5.99 ± 0.99

5.44 ± 1.28
LN size < 3 cm 1/3 33.3%

0.32
2.55

0.180LN size ≥ 3 cm

Total

3/4

4/7

75.0%

57.0%

3.99 ± 1.5

4.25 ± 1.67
LN: lymph node; T: tumor; Bg: background; TF: 99mTc-TF; *: < 0.05

Figure 1: Patient No. 4 with base of tongue cancer: (a) SPECT coronal slice 
(arrows showing the 99mTc-TF uptake); (b) relevant CT slice (arrows showing 
the tumor)
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5 patients with no primary tumor uptake had uptake in the 
lymph nodes [Table 2].

Mean values for T/Bg index in all patients was 5.44 ± 
1.28 for primary tumor and 4.25 ± 1.67 for lymph nodes. 
Statistical difference was found with histological grade, 
after categorizing the patients according to their grade, 
tumor and lymph node size. Thus, concerning histological 
grade, patients with tumor grades 0 or I had mean values 
for 4.5 ± 0.71, whereas patients with tumor grades II or III 
had T/Bg indexes of 6.68 ± 0.36. Statistically significant 
difference between the 2 groups was found (P = 0.034, 
Mann-Whitney U test) [Table 3]. Regarding tumor size, 
T/Bg index was lower in tumors < 3 cm (4.05 ± 0.74) than 
in tumors ≥ 3 cm (5.99 ± 0.99). After statistical analysis, 
there was a trend towards a positive correlation of T/Bg 
index with increasing tumor size (P = 0.053) [Table 3]. 
Mean values for T/Bg index of lymph nodes < 3 cm were 
2.55, and in lymph nodes ≥ 3 cm, was 3.99 ± 1.5. There 
was no statistical difference (P = 0.180), possible due to 
the small number of cases [Table 3]. No metastatic lesions 
were found on whole body images.

DISCUSSION

The study showed as sensitivity of SPECT in pathological 
sites (either primary tumor or regional lymph nodes) of 
75%. SPECT sensitivity for only primary tumor diagnosis 
was 58% while for infiltrated lymph nodes it was 57%. 
In accordance with our findings, a previous study in 10 
patients with nasopharyngeal carcinoma reported the 
99mTc-TF uptake in 7 out of 10 patients (70%).[15] Fattori 
et al.[14] studied exclusively patients with laryngeal cancer 
using 99mTc-TF and reported 96% sensitivity for detecting 
the primary mass and 50% for lymph node involvement. 
Variations of sensitivities using 99mTc-TF uptake in primary 
cancers of the head and neck between studies may be 
caused by a small study sample, but it may be higher in 
patients with exclusively laryngeal cancer according to 
other trials.[14]

In another study of 21 patients with nasopharyngeal 
carcinoma that evaluated 99mTc-MIBI, sensitivity was 97% 
and specificity 100%.[16] A study that compared 99mTc-MIBI 
to 99mTc-TF in nasopharyngeal cancers found that both 
radiotracers detected all primary tumors, 99mTc-MIBI was 
superior in detecting pathological lymph nodes (sensitivity 
95% vs. 79%).[13] The same authors also reported better 
sensitivity for 99mTc-MIBI compared to 201Tl during 
monitoring response to radiotherapy.[17] Similarly, another 
study reported a limited role of 201Tl in detection of the 
primary tumor with a sensitivity of 54%, specificity 75% 
and accuracy 57%.[18]

In contrast, Wang et al.[19] reported that 201Tl was more 
sensitive than 99mTc-MIBI, with 201Tl SPECT identifying 
94% of the primary lesions in head and neck cancers with 

different sites, and all of the positive and two negative 
lymph nodes.[20]

Another study found a higher percentages for sensitivity 
(88%) and specificity (94%).[21] Shiau et al.[22] reported a 
64% sensitivity for 99mTc-MIBI in primary tumor detection 
and 73%[23] for tumor recurrence. Shen et al.[15] reported 
higher specificity, but lower sensitivity for 99mTc-TF, as 
compared to CT. Finally, other researchers suggested that 
both 201Tl and 99mTc-MIBI have the same accuracies in 
locating primary, recurrent and lymph node involvement 
and thus could also be valuable.[24]

In the study, no relation of the 99mTc-TF sensitivity with the 
pathological grade of the tumor was observed, but there was 
a potential correlation of 99mTc-TF sensitivity with tumor 
size. Thus, it appeared to be a trend toward positive uptake 
with increasing tumor size, which did not reach statistical 
significance, probably a result of a relatively small number 
of cases. In contrast, 99mTc-TF result from previous studies 
with 99mTc-MIBI did correlated tumor size, stage, or histology 
and it did not affect the tracer uptake.[25] Five patients did 
not have any 99mTc-TF uptake and no tumor was visualized. 
All but one of these tumors had a size < 3 cm and were 
in the pharyngeal wall, with close proximity to the tonsils 
and the pyriform fossa. Lower sensitivity in this area could 
be due to the complex anatomy and physiological uptake, 
which make tumor distinction more difficult. Although not 
verified in the present study, another possibility for negative 
radiotracer uptake by some tumors could be a possible 
molecular mechanism that pumps the radiopharmaceutical 
out of the tumor cells.[26] Such mechanisms attributed 
to membrane multidrug resistance proteins have been 
associated with resistance to chemotherapy,[27-29] and or 
linked to limited or no radiotracer uptake in a variety of 
tumors.[30-33] if this mechanism proves to be significant in 
head and neck cancers, then the 99mTc-TF scintigrams may 
be useful in therapy planning for these patients.

Although the tumor grade was not correlated to radiotracer 
uptake sensitivity, it was positively correlated to T/Bg 
index. In another study, false-positive cases were reported 
when T/Bg index were ≤ 1.7.[13] In our study, no patient with 
radiotracer uptake had a T/Bg index ≤ 1.7.

In conclusion, the study showed that 99mTc-TF SPECT 
had an overall sensitivity for visualization of a head and 
neck primary cancer site of 58%. However, sensitivity 
was lower for certain tumor locations than others. For 
example, patients with tonsillar and pyriform fossa tumors 
didn’t have any uptake (false negative exam). Since these 
sites are difficult to assess, even with SPECT, the results 
in these locations should be interpreted with caution. 
Generally, SPECT should be accurate for visualization of 
tumors of > 3 cm in any other location. The T/Bg ratio was 
correlated with malignancy grade. Larger studies will help 
to increase the statistic power (as well as comparison with 
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18FDG PET/CT) to establish a role for 99mTc-TF SPECT 
in therapy, as well as prognosis of head and neck cancers.
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Aim: This study was performed to assess the extent of interfraction uterine motion during radiotherapy for cervical cancer and 
uterine body carcinoma while maintaining a strict bladder filling protocol. Methods: Twenty-four patients with cervical cancer or 
uterine body carcinoma who were treated on a linear accelerator, were recruited. During the course of external beam radiotherapy, 
cone beam computed tomographic scans were taken, once at the start of treatment and then weekly until the completion of the 
radiotherapy course. Patients were instructed to maintain a strict bladder filling protocol. After negating the effect of patient’s 
setup error by offline cone beam computed tomographic imaging, the position of the uterus was defined in the clinical target 
volume. Then the position of the uterus was compared in the following weekly scans. The position of the uterus was also correlated 
with the position and the filling of the bladder. This change in uterus position was measured separately in the anterioposterior 
(AP), superioinferior (SI), and lateral directions. Results: According to calculations based on weekly imaging, The mean values of 
shift in AP, SI, and lateral directions were respectively 0.67, 0.29, and 0.23 The mean extent of motion in the uterine position on a 
daily basis for individual patients ranged from -2.28 to +1.3 in AP, -0.56 to +0.71 in SI, and from -0.6 to +0.45 in lateral directions. 
Conclusion: At least once a week cone beam computed tomography might be necessary to minimize the geometrical miss and 
deliver the planned doses to the target tissue and normal structure provide best results with minimum toxicity by maintaining 
a bladder volume of about 100 mL and an empty rectum during the whole course of treatment. The daily anatomical shift and 
contour of the patients maintaining a bladder volume of approximately 100 mL with an empty rectum may result in asymmetrical 
conforming to the planning target volume and hence appropriate and adequate planning target volume margins are required.
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INTRODUCTION

External beam radiotherapy (EBRT) plays a great role in 
the management of female gynecologic cancers. Intensity 
modulated radiotherapy (IMRT) and image guided 
radiotherapy (IGRT) are considered the treatment of choice 
for cervical cancer and uterus carcinomas. These new 
techniques have overtaken the conventional four-field box 
technique as the preferred modality of treatment and have 
proven more efficacious in various studies.[1-3] The IGRT 
further reduces the radiation dose to the organs at risk (OAR) 
and thus further reduces toxicities. On the other hand, IMRT 
has very strict clinical and planning target volumes (CTV 
and PTV respectively) conforming to a particular volume to 

spare the adjacent organs; however, it does not account for 
interfraction and intrafraction motion of various organs as 
well as reduction in tumor volume during treatment.

This phenomenon did not need to be considered in the 
conventional technique as it provided a uniform dose to all 
the structures included in the treatment field which avoids a 
geometrical miss of the tumor. Therefore, motion of organs 
within the treatment area is a vital issue in IMRT and three 
dimensional conformal radiotherapy (3D-CRT). During the 
treatmenta steep dose gradient is usually present that uses 
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the newer techniques that conform to the optimum dose of 
the CTV or the shape of the target volume. Even a little 
geometrical movement could result in an underdosing to the 
target volume or conversely, delivering high undesirable 
doses to the surrounding normal tissues. These effects 
highlight the importance of accurate margin determination.

This pilot study was conducted to define the daily uterine 
shift in patients undergoing external radiotherapy on linear 
accelerators with IMRT technique using IGRT with the 
help of an on-board cone beam computed tomography 
(CBCT) scan taken once a week during the whole course 
of radiotherapy.

METHODS

We recruited 24 patients with the ages of 45 and 70 years 
who were diagnosed with cervical cancer and uterine body 
carcinoma were treated with EBRT (50 Gy in 25 fractions) 
from September 2010 to December 2013, and opted for the 
IMRT technique.

Before starting radiotherapy a six-clamp thermoplastic 
Orfit cast was prepared for immobilization of the pelvic 
region in all the patients and then contrast enhanced 
computed tomographic (CT) scan of pelvis was done and 3 
mm slice thickness scans were acquired and transferred to 
the treatment planning system (TPS) (Eclipse version 8.9). 
The gross tumour volume (GTV), CTV, PTV, and organs 
at risk (OAR) such as rectum, bladder, and femoral heads 
were delineated on the CT images following the guidelines 
of the International Commission on Radiation Units and 
Measurements report number 83 (ICRU 83).[4] Then IMRT 
plans were created with 6 Mega Volt (MV) and 15 MV 
photon beam and a Varian leaf motion calculator (version 
8.9.08), was utilized to calculate leaf motion for dynamic 
dose delivery. Dose-volume optimizer was used for plan 
optimization. Anisotropic analytical algorithm was used to 
calculate doses with grid size of 0.25 cm. After approving, 
the plans were scheduled for 25 fractions with daily imaging 
by On Board Imaging system and CBCT technique.

Patients were positioned and immobilized with the orfit cast 
on couch and then CBCT was done with the OBI system. 
The anatomy matching software Portal Vision 7.5, was used 
to study the patient’s setup deviations and to determine the 
spatial coordinates in the images. After patient setup and 
laser alignment during EBRT, a kV portal image was taken 
and matched with the reference image to avoid patient’s 
setup error and a CBCT scan was performed once at the 
start of treatment and then weekly until the completion 
of treatment. This CBCT was matched with the reference 
CT image to see the shift of the uterus, which was noted 
in X, Y, and Z axes [Figures 1 and 2]. A total of 96 scans 
were obtained during the whole treatment period, ie, four 
scans for each patient. Then the patients were assessed for 
intracavitory brachytherapy and if they did not fit, they 

were continued for boost by EBRT.

Patients were asked to maintain a strict bowel and bladder 
filling protocol by instructing all the patients to defecate and 
urinate and then to maintain strict water intake of around 
200 mL of water 20 min before the procedure. The position 
of the uterus was defined in the CTV during delineation 
on axial images of the lesion for radical radiotherapy. The 
CTV included all the gross as well microscopic lesions. The 
OARs such as the bladder, rectum, intestines, andfemoral 
heads were also delineated on axial images.

The position of the uterus was then compared in the 
following weekly scans on the axial images guided by 
sagittal, coronal and three-dimensional reconstructions. 
This was done by merging the weekly CT images with the 
reference CT image taken before the start of the treatment 
at the same level. For every scan, we used the lower level 
of the S1 vertebra. After merging the images, a preliminary 
bone to bone matching was done to negate the effect of 
patient’s setup errors which was followed by soft tissue 
matching of the uterus in two CT images. The change 
in CTV position during the bone to bone matching was 
subtracted from the anteroposterior (AP), superoinferior 
(SI), and lateral changes during the soft tissue matching. 
The correlation between the position of uterus with the 
position and the filling of the bladder was also assessed. 
This change in uterus position was measured separately in 
the AP, SI and lateral directions. No additional effort on the 
part of the patient or the doctor was required because a part 
of the OBI software performed the measurements during 

Figure 1: The perfect bone to bone matching of a patient with the reference 
computed tomographic image and the uterine shift between the two scans to 
negate the effect of the patient’s setup errors

Figure 2: The soft tissue matching of the contoured uterus with the 
reference scan showing bone displacement after radiotherapy
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the treatment. The time taken for every treatment was also 
similar among the patients undergoing IGRT of the pelvic 
region. The Mean of all the obtained-values for each patient 
was calculated and an unpaired-one-sample student t-test 
was applied to obtain the significance. The P value is less 
than 0.001 which is highly significant.

RESULTS

The mean, standard deviation, and median of uterine motion 
in each plane were calculated to see its association with the 
bladder filling and its influence on the displacement of the 
uterus. As shown in the Table 1, the displacement ranges 
were significant depending on the patient, although the 
mean values of the displacement were within 1 cm. The 
mean values of shift in AP, SI, and lateral directions were 
respectively 0.67, 0.29, and 0.23 for all the 96 scans done 
for 24 patients over the period of EBRT [Table 2].

The mean extent of motion in the uterine position on a daily 
basis for individual patients ranged from -2.28 to +1.3 in 
AP, -0.56 to +0.71 in SI, and from -0.6 to +0.45 in lateral 
directions. The mean movement in all the directions was 
also calculated over the course of the full treatment [Figure 
3], and showed more anterior and superior shift that might 
be due to bladder filling while the lateral deviation, although 

present, was minimum. The posterior shift might be due to 
the rectal filling or presence or absence of gas in the rectum.

The mean bladder volume was calculated to be 90.55 mL 
for all patients, and each patient had an average bladder 
volume of about 80 mL to 100 mL over the course of their 
treatment. This was done by maintaining a strict bladder 
control protocol for each patient. We found that maximum 
range of motion was observed when the bladder volume 
exceeded 100 mL as was seen in patient number 4, where 
a mean maximum shift in AP direction was almost up to 
-2.8 cm. When it was compared with their mean bladder 
volume, it was found to be excessive with a mean of almost 
up to 180 mL during the course of their treatment.

DISCUSSION

The EBRT with radiation doses of 40 to 50 Gy followed 
by boost with brachytherapy has been proven to be 
effective in the local control of cervical and uterine cancers. 
However, one of the major concerns with this modality of 
treatment has been acute or chronic small bowel toxicities 
with advancement in the treatment techniques of radiation 
therapy, it has been possible to reduce the toxicity to bowel. 
Nonetheless, it is essential to see that the benefits are not 
achieved at the cost of decreased local control due to a 
geometrical miss.[5-7]

The CTV for primary cervical cancer treatment comprises 
the partially mobile uterus and cervix, the less mobile 
upper vagina, parametrium and pelvic lymph nodes located 
along the side walls in the pelvis. When treating with a 
conventional four field box technique, internal motion is 
less critical as the dose distribution is likely to encompass 
the central structures within the high dose region even if 
they move a little. The dose distribution in IMRT has the 
potential to conform more precisely to the target volume. 
Therefore, assessment of organ motion has become more 
important as there can be a geometrical miss during daily 
treatment.

According to the ICRU statement number 62 (ICRU 62) two 
margin volumes of CTV should be used to create the PTV: 
the internal margin to account for organ motion, and the 
setup marginto account for variation in patient position.[8] 

Huh et al.[9] and Lee et al.[10] have previously reported the 
changes in the uterus position by comparing two magnetic 
resonance images taken before and during the period of 
radiotherapy. They showed that uterus movement and its 

Figure 3: The mean change of the uterine position in the lateral (X), 
anteroposterior (Y), and the superoinferior (Z) directions per patient over 
the whole course of the treatment along with its association with the bladder 
volume depicted in the area curve

Figure 4: Comparison of different means of displacement in different 
directions between current study and the study of Taylor et al.[11]

Table 1: Combined uterine motion in three different 
dimensions in patients undergoing radiotherapy

Dimensions Mean (SD), 
cm

Median, 
cm

Range of 
motion, cm

Lateral (X) 0.23 (0.22) 0.2 - 0.6 to 0.45
Anteroposterior (Y) 0.67 (0.83) 0.57 - 2.28 to 1.3

Superoinferior (Z) 0.29 (0.40) 0.245 - 0.36 to 0.71
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positional change were significant, which suggested the 
importance of accurately determining the target mobility 
for the conformal treatment. However, in that study, two 
sets of magnetic resonance images were taken in the supine 
position without a small bowel displacement system (SBDS) 
while the patients were treated in prone position with a 
SBDS placed under the patient’s abdomen. We studied 
the uterine motion once a week during the full course of 
radiotherapy and every time, we found a significant shift in 

uterine position in all directions.

In our study the mean bladder volume was 90.55 mL and it 
was shown that major shift occurred if the bladder volume 
exceeded 100 mL. We expected a mean bladder volume 
of 80 to 120 mL during IMRT in all our patients and this 
was corroborated on the weekly CBCT scans. Despite 
maintaining a standard bladder volume, we saw a uterine 
shift daily.

In a similar study by Taylor et al.,[11] in addition to the uterus, 
the movement of the cervix was assessed to determine the 
internal margin for radiotherapy. They concluded that an 
asymmetrical margin with CTV-PTV expansion of the 
uterus and cervix was needed during the treatment while 
they emphasized on the need for a strict bladder and rectum 
filling protocol during treatment.[11] Very few studies have 
documented the changes in uterine position during the 
radiotherapy course. An association between bladder filling 
and uterine movement was reported by Buchali et al.[12] 

that indicated no major AP change in cervical position. A 
maximum mean displacement in AP direction was seen in 
our study. In contrast, the mean displacement in SI direction 
was also substantial in the study by Taylor et al.[11] [Table 
3 and Figure 4]. The difference might be due to strict 
adherence to the bladder-bowel filling protocol in our study 
as well as once weekly CBCT instead of two imaging on 
two consecutive days in their study.

There is a definite association between the bladder filling 
and rectum emptying with uterine cervix movement. In 
addition, this association has been demonstrated by studies 
that have assessed the association of the bladder and rectum 
volume with the displacements of the uterus and the cervix 
respectively. Moreover, maximum uterine motion at the 
fundus emphasizes on the need to contribute a variable 

Table 2: The mean of movement in all directions and the mean bladder volume for each patient

Patient No. Dimensions Bladder volume, LLateral (X), cm Anteroposterior (Y), cm Superoinferior (Z), cm
1 0.16 - 0.3 - 0.06 0.031
2 0.1 - 0.133 0.1 0.111
3 0.2 1.32 - 0.24 0.151
4 - 0.6 - 2.28 0.16 0.189
5 0.25 1.15 0.55 0.157
6 - 0.08 1.04 - 0.4 0.113
7 0.45 - 0.75 - 0.225 0.062
8 0.3 1.15 - 0.05 0.125
9 - 0.06 0.6 - 0.12 0.088
10 0.36 0.55 - 0.2 0.067
11 0.4 0.3 - 0.15 0.046
12 0.1 0.04 - 0.36 0.064
13 - 0.12 0.18 0.56 0.055
14 0.1 0.3 0.71 0.049
15 0.3 0.4 0.4 0.076
16 0.31 - 1.21 - 0.35 0.140
17 - 0.1 - 0.53 0.21 0.096
18 0.2 0.67 0.6 0.090
19 - 0.45 0.45 - 0.34 0.070
20 0.15 - 0.22 - 0.56 0.040
21 0.2 0.71 0.43 0.083
22 0.3 0.51 0.25 0.066
23 - 0.21 0.81 0.16 0.100
24 0.14 0.91 - 0.22 0.105

Table  3 :  The  compar i son  o f  the  magni tude  o f 
displacements between current study and the study of 
Taylor et al.[11]

Magnitude of displacement, cm
Dimensions Mean (SD) Median Range
Present study
Lateral 0.23 (0.22) 0.2 - 0.6 to 0.45
Anteroposterior 0.67 (0.83) 0.57 - 2.28 to 1.3

Superoinferior 0.29 (0.40) 0.24 - 0.36 to 0.71

Taylor et al.[11] study
Lateral 0.08 (0.13) 0.0 0 to 0.5
Anteroposterior 0.7 (0.9) 0.5 0 to 0.48
Superoinferior 0.71 (0.68) 0.5 0 to 0.32

An assessment of interfractional uterine and cervical motion: 
implications for radiotherapy target volume definition in 
gynaecological cancer

Table 4: Adverse effects of radiotherapy in twenty-four 
participants

Frequency of toxicity, %
Grade 1 Grade 2

Dysuria 80 20
Urinary frequency/urgency 90 10
Diarrhea 95 5
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margin around the fundus in the uterine shift.

The incidence of early bladder and rectal toxicities 
amongst all our patients were mild with all of them except 
two showing Grade 2 cystitis and mild diarrhea. Only one 
patient had Grade 2 diarrhea which was controlled with 
conservative measures [Table 4].

Despite maintaining a strict bladder filling and rectal 
emptying protocol, the interfraction movement in the 
uterine position during the course of radiotherapy may 
lead to a miss in target or overtreatment of the rectum, 
which lead to toxicity. We could not find any study in 
which uterine shift was observed during the whole course 
of radiotherapy hence, we were unable to compare the 
results with other works.

In conclusion, interfraction movement of the target organs 
may lead to overdosing or underdosing of the target or 
the normal structures during IMRT, hence at least once 
a week CBCT imaging might be necessary to minimize 
the geometrical miss of the tumor and deliver the planned 
doses to the target and normal structures for the best local 
control with minimum toxicity which is the primary aim of 
IMRT. This would also aid in the selection of appropriate 
and adequate planning target margins and provide an 
asymmetrical PTV conforming to the daily anatomical 
shift and contour of the patients. We also recommend a 
tapered CTV to PTV margin especially around the fundus 
of the uterus as maximum uterine motion is known at the 
fundus however further studies with larger numbers of 
patients and exact point localization of the uterus will be 
required for this purpose.
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Primary malignant melanoma of the spinal cord: a case report
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Primary malignant melanoma of the central nervous system is rare, and the events involving the spinal cord are even more 
infrequent. A 30-year-old male presented with a mass lesion of the spinal cord. After radiological workup, the mass was resected 
in December 2012. The histopathological examination report and immunohistochemistry suggested malignant melanoma. PET-CT 
scan, brain MRI, and funduscopic examination did not reveal malignant melanoma elsewhere in the body. The patient received 
postoperative radiotherapy until March 2013. Presently, the patient is asymptomatic with normal neurological functions.
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INTRODUCTION

Primary malignant melanoma of the central nervous system 
(CNS) is rare, with less than 60 cases reported in the 
literature;[1] a disease that presents substantial diagnostic, 
prognostic and therapeutic challenges. We report a case of 
primary malignant melanoma of the spinal cord which was 
treated successfully with surgery and adjuvant radiation 
therapy (RT).

CASE REPORT

A 30 years old male presented with complaints of pain/
stiffness in the neck and numbness/weakness in all four 
limbs. The symptoms had been present for 90 days and 
were gradually progressing.

Magnetic resonance imaging (MRI) scan of the cervical 
spine [Figures 1 and 2] showed an intradural extramedullary 
enhancing mass lesion at the second and third cervical 
vertebral level, compressing the spinal cord with focal cord 
edema and anterior-right lateral displacement of the spinal 
cord. The lesion measured 14 × 17 × 29 mm in size and 
was hyperintense on T1 and hypointense on T2 weighted 
images. Another intradural extramedullary mass lesion was 
found at the craniovertebral level, indenting the cervico-
medullary junction. This lesion measured 13 × 18 × 16 mm 

in size and was hyper to hypointense on T1 and isointense 
on T2 weighted images.

The patient underwent laminectomy and surgical excision 
and decompression on November 26th 2012. No residual 
lesion was found on postoperative MRI scan.

The histopathological examination showed clusters 
of atypical spindle cells with prominent nucleoli and 
eosinophilic cytoplasm [Figure 3], with evident intra- and 
extracellular pigment deposition. Immunohistochemistry 
staining showed positivity for HMB-45 [Figure 4], S-100 
[Figure 5], and Melan-A [Figure 6]; all consistent with the 
histopathological diagnosis of malignant melanoma.

A thorough systemic survey was done including PET scan, 
tumor markers, ophthalmological, and dermatological 
examinations. These did not reveal any other foci of 
melanoma, leading to the diagnosis of primary spinal 
malignant melanoma. The patient received postoperative 
RT (50 Gray in 25 fractions on a linear accelerator with 6 
MV photons by parallel opposed portals) from January 3rd 
to February 13th 2013. Since then, the patient has been on 
regular follow up with normal neurological functions.
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DISCUSSION

Primary malignant melanoma of the CNS is rare. Other 

noncutaneous primary malignant melanoma sites include 

the gastrointestinal tract and the eyes. Primary malignant 

Figure 1: MRI of cervical spine, sagittal plane. MRI: Magnetic resonance 
imaging

Figure 2: MRI of cervical spine, transverse plane. MRI: Magnetic resonance 
imaging

Figure 3: Low power hematoxylin-eosin staining slide (× 10)
Figure 4: Histopathological slide stained with HMB-45 (× 40)

Figure 5: Histopathological slide stained with S-100 (× 40)

Figure 6: Histopathological slide stained with Melan-A (× 40)
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melanoma of the spinal cord most commonly involves 
the thoracic spine, followed by the cervical spine, and the 
lumbar region.[2] The diagnosis requires exclusion of a 
primary cutaneous or ocular lesion, as malignant melanoma, 
although infrequently, can metastasize to the spinal cord.[3]

The melanotic tumors of the CNS should be distinguished 
from other pigmented CNS lesions, e.g., meningioma, 
schawnnoma, pigmented astrocytoma, and gliomas.[4] 
The diagnosis can be confirmed by histology and 
immunohistochemistry, as per Hayward’s criteria stating 
that “there should be no melanoma outside the CNS, and 
the confirmation should be done by IHC.[5]” Melanocytic 
tumors are positive for S-100, HMB45, and Melan-A.

MRI of spinal cord melanoma shows characteristic features 
such as high signal intensity on T1-weighted images and 
equal or low signal intensity on T2-weighted images,[6] 
due to the paramagnetic properties of melanin or the 
hemorrhagic elements in the tumor.[6] Currently, there is 
no standard treatment for primary malignant melanoma of 
the spinal cord. The treatment regimen is similar to that of 
metastatic disease in the spinal cord, i.e., surgical resection 
followed by postoperative RT. Chemo- and immunotherapy 
have no proven clinical effects.[7] Differentiation between 
primary and secondary CNS melanoma is important, 
because primary CNS melanoma is associated with longer 
overall survival (OS).[8,9] OS in secondary CNS melanoma 
patients is less than one year,[1] although complete surgical 
resection followed by postoperative RT does increases 
OS in these patients.[10] However, lack of conclusive data 
renders the clinical outcome of spinal cord melanoma 
unpredictable.[2]
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It is my privilege to introduce the readers to this special 
issue entitled “Brain tumor cell invasion and metastasis: 
anatomical, biological and clinical considerations”. As 
cancer is a global epidemic which knows no borders, efforts 
to better understand biology and to control it should know 
no borders either. This issue contains a mixture of clinical 
and preclinical scholarly articles that have been written by 
scientists from America, Europe, and the Middle East. I hope 
that the fresh insights represented here will be appreciated 
by neuro-oncologists and brain cancer researchers across 
the translational spectrum.

The role of the PI3K/AKT/mTOR pathway in 
brain tumor metastasis
Alexandre Arcaro et al. (Switzerland)
This article is emphasizing the role of PI3K/AKT/
MTOR pathway on glioma growth and metastasis with a 
specific focus on angiogenesis, glioma cell invasion and 
inflammation.

Dissecting brain tumor growth and metastasis 
in vitro and ex vivo
Martin Baumgartner et al. (Switzerland)
This article reviews the in vitro and ex vivo techniques used 
to study growth and dissemination of brain cancer cells 
including organotypic slice culture methods.

Tailored nanocarriers and bioconjugates for 
combating glioblastoma and other brain tumors
Mohamed I. Nounou et al. (Egypt)
This article reviews blood brain barrier hampered drug 
delivery and suggests new CNS therapeutics delivery 

techniques by using tailored nanocarriers and bioconjugates.

Interdisciplinary management of central 
nervous system metastasis and neoplastic 
meningitis: recent developments and future 
perspectives
Ghazaleh Tabatabai et al. (Germany)
This article reviews advances in our understanding on the 
molecular mechanisms leading to invasion of tumor cells 
to the CNS and highlights the challenges and perspectives 
in the field of interdisciplinary management of CNS 
metastasis.

Brain tumor surgery: supplemental 
intraoperative imaging techniques and future 
challenges
Telmo Augusto Barba Belsuzarri et al. (Brazil)
This article discusses maximum safe brain tumor resection 
techniques including methods that are designed for a precise 
demarcation of brain tumors and their infiltration zones.

Brain infiltration by cancer cells: different 
roads to the same target?
Mayra Paolillo et al. (Italy)
This review illustrates recent findings of genes and cellular 
mechanisms that have been found to be involved in brain 
metastasis and describe the different cell types involved.

Effects of Gas1 on gliomas: a review on current 
preclinical studies
Jose Segovia et al. (Mexico)
This article reviews the potential therapeutic effect of the 
tumor suppressor Gas1 for treatment of GBM.
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Targeting cerebrospinal fluid for discovery of 
brain cancer biomarkers
Tarek Shalaby et al. (Switzerland)
This review examines potential and limitations of brain 
tumor biomarkers in the CSF.

Gemcitabine followed by radiotherapy in 
treatment of newly diagnosed high-grade gliomas
Maha El-Naggar et al. (Egypt)
This prospective single centre phase II study evaluated the 

efficiency of gemcitabine as radiosensitizer in the treatment 

of newly diagnosed high-grade glioma patients.
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Local infiltration and distal dissemination of tumor cells hamper efficacy of current treatments against central nervous system 
(CNS) tumors and greatly influence mortality and therapy-induced long-term morbidity in survivors. A number of in vitro and ex 
vivo assay systems have been established to better understand the infiltration and metastatic processes, to search for molecules 
that specifically block tumor cell infiltration and metastatic dissemination and to pre-clinically evaluate their efficaciousness. 
These systems allow analytical testing of tumor cell viability and motile and invasive capabilities in simplified and well-controlled 
environments. However, the urgent need for novel anti-metastatic therapies has provided an incentive for the further development 
of not only classical in vitro methods but also of novel, physiologically more relevant assay systems including organotypic brain 
slice culture. In this review, using publicly available peer-reviewed primary research and review articles, we provide an overview 
of a selection of in vitro and ex vivo techniques widely used to study growth and dissemination of primary metastatic brain tumors. 
Furthermore, we discuss how our steadily increasing knowledge of tumor biology and the tumor microenvironment could be 
integrated to improve current research methods for metastatic brain tumors. We believe that such rationally improved methods 
will ultimately increase our understanding of the biology of brain tumors and facilitate the development of more efficacious anti-
metastatic treatments.

Key words: Primary brain tumor; metastasis; in vitro model system; cell migration; organotypic brain slice culture

INTRODUCTION

Impressive achievements in genomic and epigenomic 
analyses of tumor tissues and individual tumor cells have 
revolutionized our understanding of primary brain tumors. 
Alterations detected on the genome or transcriptome 
level in large patient cohorts in combination with our 
increasing understanding of epigenetic gene regulation have 

disentangled apparently identical brain tumors as related 
but functionally different tumor entities.[1-5] Within such 
single tumor entities, alterations detected in their respective 
metastases suggested potential driver mechanisms of tumor 
progression.[6] This considerably more complex image we 
currently have is instrumental to better understand the highly 
heterogeneous nature of the tumor tissue itself and of the 
host environment interacting with it and shaping some of 
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its spatial, functional and morphological manifestations. 
However, in order to translate this still growing knowledge 
into clinical applications targeting the tumor phenotype, 
sophisticated model systems are necessary to explore and 
validate potential interference strategies under physiologically 
relevant conditions. In addition, functional genomics and 
cell-based molecular analyses are indispensable in many 
cases to clarify whether mutated or amplified genes are 
necessarily contributory to an altered proteome and causative 
for the cancerous phenotype. Moreover, the current wealth of 
genomic and transcriptomic data is insufficient on its own to 
isolate specific signaling networks driving tumor progression 
from a benign lesion to a disseminated cancer. Hence, to 
tackle the complexity of the metastatic process it is necessary 
to dissect it into individual steps that can be addressed with 
rationally adapted model systems. In this review we focus 
on in vitro and ex vivo primary brain tumor model systems 
and discuss how they can be improved and used to develop 
the molecular understanding necessary for designing novel 
anti-metastatic therapies. While none of these model systems 
on its own will suffice to tackle such a complex disease as 
cancer, they can effectively guide our search for efficacious 
and less toxic therapies and instruct the design of appropriate 
in vivo studies.

THE MACHINERY: ALTERED 
CYTOSKELETON DYNAMICS AND 
CELL MOTILITY DRIVE CANCER 
DISSEMINATION

Dissemination of tumor cells from the primary tumor 
causes healthy tissue infiltration and metastatic disease, and 

it hampers the efficacy of current cancer treatments. It is 
triggered by the transient or permanent induction of motility 
and invasiveness in the tumor cells. An essential prerequisite 
for primary brain tumor cell migration and invasion is the 
remodeling of the actin and tubulin cytoskeletons,[7-9] which 
not only provide force, traction and rigidity but also scaffold 
signaling complexes in a spatially controlled manner.[10-12] 
Hence, blocking motility and invasiveness by targeting 
pro-migratory cytoskeleton dynamics in tumor cells could 
prevent local tumor cell invasion, further dissemination 
from proximal metastases and the evolution towards a 
more aggressive phenotype. In a seminal review by Giese 
et al.,[13] the dichotomy of migration and proliferation in 
gliomas was recognized as the consequence of antagonistic 
cell regulation. Consequently, the authors concluded that 
an approach to influence the underlying mechanisms could 
be the basis of novel anti-invasive therapy strategies. A 
computational modeling study predicts that even a small 
increase in the motile capability of tumor cells, and the 
consequent short-range dissemination, increases net tumor 
growth and resistance to targeted therapy[14] [Figure 1]. 
Indeed, targeting tumor cell motility and invasiveness 
as a strategy against metastasis is an emerging theme in 
cancer research,[15-17] and the pro-migratory phenotype in 
tumor cells has been addressed in the past by a number of 
approaches that impair cell autonomous migration, cell-cell 
communication, cell-cell or cell-matrix interaction ([15] and 
references therein). This research led to the development 
of a number of clinical trial studies for solid tumors 
with approaches inhibiting various components of the 
aforementioned pro-migratory determinants.[15] 

Figure 1: Model of growth, progression and dissemination of primary brain tumors. The progression of primary brain tumors from a small neoplastic lesion to 
a metastasizing tumor through growth and dissemination of tumor cells is schematically visualized. The mode of tumor cell growth and dissemination varies 
between different tumors and involves random or guided, single or collective dissemination of tumor cells. The model depicting low range dissemination at 
early stages and the consequent increased net tumor growth is according Waclaw et al.[14]
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Despite of this, most current treatments including those 
against primary brain tumors still focus primarily on 
targeting growth and survival of the tumor cells. This lack 
of adequate anti-dissemination therapies is due in part to 
the complexity of the cell migration process itself and the 
redundancy of the signaling that controls its mechanics.

Additionally, tumor cells exploit mechanisms that normally 
direct physiological movements. However, the addiction 
of tumor cells to druggable pathways and our increasing 
understanding of cell mechanics and its control offer 
room for therapeutic interventions targeting tumor cell 
dissemination specifically.

The soil: the microenvironment in the brain
To address the impact of the tumor microenvironment 
on tumor growth and progression in vitro, we need (a) 
to better understand the intricate interaction between a 
growing neoplasm and its cellular, biophysical and chemical 
environment and (b) to continuously implement this 
increasing knowledge for advancing our model systems 
to mimic the micro environmental parameters better. The 
following paragraph will briefly discuss some relevant aspects 
of the still poorly understood interaction between the cells of 
primary brain tumors and their cellular host environment.

Biophysical properties of the brain 
microenvironment
Mammalian cells are sensitive to biophysical and chemical 
signals emanating from the surrounding matrix environment, 
the extracellular matrix (ECM), which can influence their 
behavior.[18-20] Depending on the tissue, composition and 
stiffness of the ECM differs markedly.[21] The stiffness or 
rigidity of a material such as a meshwork of collagen I fibers, 
describes its resistance to deformation. It depends on the 
elastic modulus (or compliance) of its constituting material 
e.g. fibrillar polymers of the protein collagen, which describes 
the ability to resist a distorting influence and to return to its 
original size and shape when the influence is removed. Thus, 
the stiffness of the ECM depends on its components and their 
elastic modulus. As the parenchyma of the brain is mostly 
devoid of fibers with a high elastic modulus such as collagen 
or fibronectin fibrils, its stiffness is very low compared to 
the ECMs in other tissues of the human body.[22] Conversely, 
the leptomeniges in the subarachnoid space, to where 
metastatic medulloblastoma tumors preferentially spread,[22] 

are connected by a network of collagen-rich trabeculae,[23,24] 
which likely is much stiffer than the parenchyma.

The basic constituents of the brain ECM are 
glycosaminoglycans with their most prominent member 
hyaluronan (Hyaluronic acid, HA), link proteins, lecticans 
and tenascins.[25] HA acts as a backbone for the assembly of 
a relatively loose and flexible meshwork. The distribution 
and composition of these ECM components in the 
developing rodent brain is changing during embryonal and 
postnatal phases and reaches a mature stage at postnatal 

day 20.[25] However, disease-associated remodeling of the 
CNS ECM has been observed after injury,[25-28] suggesting 
that growing primary neoplasms in the brain may also 
alter the surrounding ECM. Relatively little change in 
the expression levels of a small set of proteins in normal 
brain tissue and in brain tissue surrounding invasive 
glioblastoma was observed in a recent study,[29] except for 
Tenascin-R and CD168, which were both up-regulated. 
Matrix stiffness regulates proliferation and motility of 
Glioblastoma multiforme (GBM) cells[30] and the increase 
of ECM stiffness through fiber crosslinking by the product 
of the LOX gene causes their enhanced integrin-dependent 
invasion.[31] The specific impact of matrix stiffness on 
cell migration was investigated in glioma and found to 
decrease motility in agarose-stiffened collagen gels[19] 

and to increase motility in matrigel.[32] This somewhat 
conflicting result may be explained by the receptors sensing 
the matrix environment and their underlying signaling, 
which markedly influence the migratory outcome. Hence, 
the impact of matrix stiffness on the migratory behavior 
should always be investigated in the context of the cognate 
receptors. Whether matrix stiffness could exert a selective 
pressure on brain tumor cells contributing to the altered 
genetic landscapes is still poorly understood. One potential 
sensor and transducer of matrix stiffness in brain tumors 
is the HA receptor CD44, which was identified in GBM to 
facilitate invasiveness in stiff matrices.[33] 

Chemical properties of the brain 
microenvironment
Analogous to solid tumors outside the CNS, where parallels 
between the inflammatory response in wounds and the host 
tissue response to growing neoplasms has been noted,[34] 
remarkable similarities in brain tissue response after injury 
and in the vicinity of brain tumors exist.[35] Tissue response 
is driven initially by a local repertoire of innate and adaptive 
immune cells that is subsequently supported by infiltrating 
cells of the adaptive immune system. In the brain, an 
immune privileged site of the human body, tissue response is 
driven by microglia/macrophages and astrocytes. Microglia 
are involved in first-line innate immunity in response to 
brain injury, when they convert to an active proliferating, 
migrating and phagocytic phenotype.[36] Microglia and 
macrophages accumulate in and around glioma to which 
they are suspected to be attracted by glioma-secreted chemo 
attractants such as monocyte chemotactic protein-3 (MCP-
3), colony-stimulating factor 1 (CSF-1), granulocyte-
colony stimulatory factor (G-CSF), and hepatocyte growth 
factor/scatter factor.[37] Besides direct stimulatory functions 
through secretion of growth factors or proteolytic enzymes, 
glioma infiltrating macrophages were also found to 
contribute to tumor vascularization and net tumor growth.[38] 

Surprisingly, however, malignancy or primary cranial 
origin did not seem to determine immune cell infiltration 
as no significant difference in immune cell distribution 
was observed between different primary or secondary 
brain malignancies (Glioma, PNET/Medulloblastoma, 
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adenocarcinoma, melanoma meningioma).[39] A more 
recent study correlating inflammatory gene expression 
with the molecular subgroup of medulloblastoma, revealed 
significantly increased immune cell infiltration of tumor 
associated macrophages and other immune cells in the SHH 
subgroup,[40] suggesting a potential therapeutic relevance of 
immune cell targeting specifically for this subgroup.

Microglia are outnumbered by astrocytes, which account 
for nearly half of all cells resident in the brain. Astrocytes 
respond to brain injury and tumor growth in a process 
named reactive gliosis. On the one hand, reactive gliosis 
and the associated secretion of growth factors and cytokines 
help repairing injury in the CNS.[41] On the other hand, 
the astrocytic response in the tumor microenvironment 
also contributes to disease progression. Of note in this 
context is the capability of U87MG glioblastoma cells 
to induce astrocyte activation through the secretion of 
Receptor Activator of NF-kB ligand (RANKL), which 
in turn facilitates glioblastoma invasiveness in vivo by 
releasing FGF4, FGF6, TGF-β and Hepatocyte growth 
factor.[42] Consistently, co-cultured astrocytes display 
increased expression levels of a number of growth factors 
and cytokines and enhance invasiveness of glioblastoma 
stem-like cells.[43] Another decisive input could stem 
from astrocytes activated by the neoplastic lesion and the 
consequent up-regulation of matricellular proteins such 
as secreted protein acidic and rich in cys-teins (SPARC) 
in astrocytoma[44] and medulloblastoma[45] or connective 
tissue growth factor in glioma,[46] which jointly with 
additional matricellular proteins remodel neuronal tissue 
during development or after brain injury.[28] Significantly, 
the concept of reciprocal stimulation of tumor cells and 
astrocytes was recently also identified in metastatic 
melanoma, which elicits an inflammatory cytokine response 
in astrocytes that facilitates brain metastasis.[47] 

Combined, these studies emphasize the importance of 

incorporating environmental parameters into experimental 
protocols to explore their contribution to the proteomic 
landscape and the functional outcomes of primary brain tumors.

CURRENT IN VITRO MODEL SYSTEMS TO 
ADDRESS FUNCTIONS OF METASTATIC 
PRIMARY BRAIN TUMORS

Preclinical evaluation of novel anti-metastatic therapy 
strategies in animal models will remain an essential step 
towards the development of novel therapeutics. However, 
cell culture models are instrumental for deciphering 
essential morphological and functional aspects of the 
biology that drives neoplastic lesions into disseminated 
diseases. They also provide essential insights for designing 
appropriate animal models and help elucidating the causes 
that may underlie controversial outcomes of in vivo studies. 
Although a general trend towards 3D model systems 
can be noted, a majority of experiments in tumor-related 
research are still conducted in 2D settings. For a general, in 
depth description and comparison of 2D versus 3D culture 
systems, the reader is referred to Zimmermann et al.[48] who 
emphasized the need of higher throughput approaches to 
understand cell dissemination capabilities on one hand and 
the role of the microenvironment on the other hand.

The “ideal” in vitro cell culture model should mimic one or 
several of the following characteristics of the in vivo tumor: 
proliferative capabilities and morphology of the tumor cells, 
cellular and phenotypic heterogeneity, a dynamic tumor 
microenvironment and the drug response profile. A series of 
excellent reviews have recently described in depth the use 
of 3D tissue culture model systems in pathophysiology[49] 
and high-throughput drug candidate toxicity analysis,[50] 
to identify tumor-specific signaling pathways and 
biomarkers,[51] and to determine growth determinants for 
drug target discovery.[52] These reviews delineate what 
parameters contribute to a disease representing, efficient 

Figure 2: Tumor cell growth, survival and dissemination are governed by extrinsic and intrinsic parameters. Tumor cells are under the spheres of influence 
of intrinsic and extrinsic parameters. Colored ovals represent various degrees and manifestation patterns of such parameters, which dramatically increase in 
number and complexity in the organotypic environment



            Journal of Cancer Metastasis and Treatment ¦ Volume 2 ¦ May 18, 2016 ¦ 153

Table 1: Studies using 3D primary brain tumor model systems

Cells Tumor type Condition Experiment Matrix or 
scaffold Effect Ref.

U87MG
Glioblastoma 
multiforme 
(GBM)

2D, 3D 
neurospheres

Analysis of 
cell growth in 
neurospheres, 
wound healing 
after DDX6 or 
PHLDB1 knock-
down

None
50 % reduction in 
neurosphere formation 
and migration

[83]

U-251MG, 
U-343MG, 
LN-229

Glioma 2D, 3D spheroid 
culture

Analysis of stable 
over-expression 
of wt and 
mutant proteins 
under different 
oxygenation.

None

Mutant IDH1 causes 
reduced cell migration 
and differences in 
growth properties in 
3D spheroid cultures.

[84]

U87 GBM 2D, 3D single 
cell embedding

Spheroid in soft 
agar, 2D culture, 
analysis of Glioma 
co-culture with 
MSCs expressing 
suicide gene. 

Soft agar

Stem cell-mediated 
anti-tumor effect. 
Increased IC50 under 
3D culture conditions.

[85]

KNS42, U87, 
Res196, 
T7/11, GB-1

Pediatric and 
adult GBM and 
ependymoma, 
pediatric mixed 
glial tumor

3D, long-
term culture of 
large cellular 
aggregates

Rotary cell culture 
to generate large 
cell aggregates, 
growth on top of 
matrigel.

None

Angiogenic change 
and endothelial marker 
expression in GBM 
aggregates

[86]

SHSY5Y, 
T98G, 
U138MG

GBM and 
neuroblastoma

3D, spheroid 
culture

Exposure to 
Doxorubicin, 
Etoposide and 
Vincristine, 
analysis by 
electrochemical 
impedance 
spectroscopy.

None

Cytotoxic effect 
measured in 2D 
cannot be extrapolated 
to 3D. 3D cultures 
can also display 
higher sensitivity to 
chemotherapeutics.

[58]

U67-MG GBM 2D

2D wound healing, 
tubulogenesis 
assay on matrigel 
after exposure 
to rapamycin or 
hypoxia.

None Tube structure 
formation [87]

Rat C6, 
NSCs adult 
hippocampal

Glioma 3D, spheroid 
culture

Comparison of 
different 3D tissue 
clearing protocols.

None

Validation of tissue 
clearing protocols 
of high resolution 
imaging of spheroid 
culture.

[88]

U251 Glioma
2D and 3D 
rotary cell 
culture system 

Proteomic 
comparison of 2D 
and 3D cell culture.

None

Increased HLA-E 
expression in 3D 
culture and increased 
resistance to NK-
mediated cytotoxicity. 

[89]

DBTRG, T98, 
U87, A172, 
8MGBA, 
42MGBA, 
DKMG, 
GAMG, 
GMS10, GSCs

GBM 2D, 3D, single 
cell embedding 

Cytotoxicity assays 
using collagen 
I and collagen 
I-HA matrices in 
combination with 
receptor tyrosine 
kinase inhibitors.

Bovine 
skin 
collagen I, 
Collagen 
I-HA 
mixtures

Collagen-based 
3D matrix reduces 
sensitivity of GSCs 
to receptor tyrosine 
kinase inhibitors.

[60]

                                                                             Contind...
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Cells Tumor type Condition Experiment Matrix or 
scaffold Effect Ref.

U87-MG, 
primary MB 
samples

GBM 2D, 3D culture

Comparison of 2D and 
3D cultures for growth 
and viability after 
irradiation or treatment 
with TMZ, cisplatin or 
carmustin. 

ExtracelTM 
(Polyethylene-
based hydrogel 
with HA and 
gelatin).

3D cell culture is 
better morphological 
correlate to in vivo 
tumor, 3D grown 
GBM moderately less 
sensitive to irradiation.

[90]

U118-MG GBM
3D culture, cells 
grown on rigid 
matrix 

Evaluation of 
growth and stem cell 
properties

Porous chitosan-
HA

Porous chitosan-HA 
increases growth and 
causes up-regulation of 
stem-cell markers

[63]

Patient-
derived tumor 
material

GBM 3D, single cells

Embedding 
in hydrogels, 
morphology and cell 
migration analysis, 
single cell tracking for 
motility. 

Hydrogels made 
of collagen I, III, 
or collagen-HA 
mixtures

HA causes rounded 
morphology and 
reduces motility of 
matrix-embedded cells. 

[62]

U87-MG, 
U87+EGFR Glioma 3D, single cells

Analysis of growth, 
metabolic activity 
and HIF-1 VEGF, 
MMP-2, MMP-
9 and Fibronectin 
production.

GelMA or 
PEG4A hydrogels 
supplemented 
with 
methacrylated 
HA (HAMA) 
at increasing 
concentrations

Increasing HAMA 
concentrations cause 
up-regulation of 
fibronectin, VEGF and 
HIF-1.

[64]

A-172 Glioma
3D, single cells, 
microfluidic 
chip 

Analysis of single cell 
viability, F-actin size 
and cellular orientation 
in embedded cells 
under flow and VEGF 
in microfluidic chip.

Acrylated HA 
cross-linked with 
MMP-sensitive or 
RGD peptides

F-actin reorganization 
and re-orientation of 
cells in response to 
flow and VEGF.

[91]

OSU-2 GBM 3D, single cells 

Evaluation of matrix 
stiffness impact on 
tumor cell morphology 
and migratory/invasive 
capabilities.

Matrigel with 
varying stiffness

Increased matrix 
stiffness causes 
increased invasive 
motility.

[32]

M059K, 
HepG2, 
CYP3A

GBM, 
Hepatoblastoma

3D, micro-
scale perfusion 
system

Evaluation of liver 
cell metabolism on 
cytotoxic effect of IFO 
and TMZ.

Polylactic acid 
scaffold

TMZ showed much 
lower cytotoxicity 
against GBM cells in 
3D than in 2D. IFO 
effect dependent on 
metabolic activity of 
cytochrome P450 in 
hepatocytes.

[68]

U251MG, 
LN229 and 
U87MG

GBM 3D, organotypic 
slice culture

Evaluation of Rho-
family GTPase 
activation during 
GBM invasion in 
brain slice and 3D 
matrigel culture. Use 
of Rho-family GTPase 
fluorescent protein 
sensors.

Matrigel, slice 
culture

Perivascular and 
intraparenchymal 
invasion is associated 
with increased Rac and 
Cdc42 and reduce Rho 
GTPase activity.

[53]

U87, U251HF, 
SNB19, 
LNZ308, 
LN229

Glioma 2D, 3D 

Comparison of protein 
expression in cells 
grown under 2D or 
3D conditions and in 
different oxygenation.

AlgiMatrix

Differential expression 
of invasion, survival 
and hypoxia driver 
proteins between 2D 
and 3D. Effect of 3D 
growth dominates 
oxygenation.

[92]

                                                                                                                                                          Contind...
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Cells Tumor type Condition Experiment Matrix or 
scaffold Effect Ref.

LN18, GL15, 
U87, A172 GBM 2D, 3D

Seeding of GBM cells on 
brain Hi-spots and exposure 
to anti-proliferative drugs 
Ara-C, Taxol and TMZ

Brain Hi-Spots

Increased anti-
proliferative effect of 
TMZ on GBM cells 
maintained on Hi-spots.

[65]

C6 rat, U-87 
MG, U-118 MG Glioma

2D, 3D, 
Matrigel and 
chitosan-
alginate 
scaffolds 

Comparison of growth 
and morphology and 
secretion of VEGF, MMP2, 
fibronectin and Laminin 
between cells grown in 2D, 
in matrigel or on chitosan-
alginate scaffolds.

Matrigel, 
Chitosan-
alginate 
scaffolds 

Growth on chitosan-
alginate scaffolds 
reduces growth but 
increases secretion 
of VEGF, MMP2, 
fibronectin and 
Laminin.

[93]

LN18, F98, 
F98EGFR- vIII, 
C6 rat, U-87 
MG,

Glioma

2D, 3D 
spheroid 
culture, 
transwell 
migration

Evaluation of SHA impact 
on cell growth, collagen 
I invasion and mRNA 
expression of genes relevant 
for cell-cell and cell-matrix 
interaction.

Collagen I

SAHA treatment causes 
reduction of invasion 
and the reorganization 
of the matrix 
surrounding the tumor 
spheroids.

[94]

U178, U251 Glioma 3D transwell 
Analysis of transwell 
invasion and migration after 
compound inhibition of 
PKC∂.

Collagen I 
supplemented 
with Tenascin C

Tenascin-C deposition 
triggers glioma invasion 
in a PKC∂-dependent 
manner.

[95]

U373 Glioma 3D spheroid

Analysis of growth 
and dissemination in 
increasingly stiff collagen I 
gels.

Collagen 
I-agarose

Matrix stiffness 
impacts on glioma 
cell invasiveness. 
High stiffness blocks 
invasiveness.

[19]

U251, U178 Glioma 3D, single 
cells 

Quantification of transwell 
migration of cells stimulated 
with TNF-α, IL-1 or a 
combination of both.

Collagen I

Interleukin-1 beta (IL-
1b) and tumor necrosis 
factor-alpha (TNF-α) 
increase glioma cell 
invasiveness in 3D 
with parallel increased 
MMP-2 and MMP-9.

[96]

Primary mouse 
G3 MB Medulloblastoma 3D 

neurospheres 

Neurosphere compound 
toxicity assays using FDA-
approved drugs and ATP-
sensor dye. 

None

FDA-approved 
Pemetrexed and 
Gemcitabine 
significantly block 
proliferation of G3 MB.

[55]

DAOY, UW228 Medulloblastoma
2D, 3D 
transwell, 3D 
micro beads

Quantification of 
collagen invasion after 
HGF stimulation, small 
compound kinase inhibitor 
or siRNA treatment in cells 
seeded on Micro-beads and 
embedded in collagen I 
matrix. 

Collagen I

HGF-induced c-Met 
activation promotes MB 
cell invasion through 
the kinase MAP4K4.

[9]

DAOY, 
UW228, Med 
PDX1712, 
MedPDX411, 
primary MB

Medulloblastoma
2D, 3D micro 
beads and 
spheroids

Quantification of collagen 
invasion and cell migration 
after growth factor 
stimulation using invasion 
counter platform for 
automated quantification 
of motile cell behavior in 
different environments. 

Collagen I

HGF, EGF and bFGF 
are strong promoters of 
MB cell migration and 
invasion

[56]

                                                                              Contind...
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model system: the system should mimic biophysical and 
chemical properties of the tissue environment (composition 
and stiffness of matrix, availability of growth factors, 

cytokines, metabolites) in a well controllable manner, 
the cells should be observable to increase output options 
(morphological analysis, use of fluorescent protein[53]and dye 

Cells Tumor type Condition Experiment Matrix or 
scaffold Effect Ref.

DAOY, UW228 Medulloblastoma 3D, transwell 
migration

Quantification of 
VEGE-A induced, 
PERK-dependent 
transwell migration.

Matrigel

Tumor cell-derived 
VEGF-A promotes 
medulloblastoma cell 
migration and invasion 
through VEGFR2 and 
enhanced by PERK.

[97]

DAOY, UW228 Medulloblastoma 3D, transwell 
migration

Quantification of 
EphB1 effect on SHH 
medulloblastoma 
transwell migration 
using electrical 
impedance 
measurements.

None

Knockdown of Eph-B1 
causes reduction in B-1 
integrin expression and in 
growth and migration.

[98]

DAOY Medulloblastoma
3D, µLane 
microfluidics 
system

Quantitative and 
qualitative analysis of 
chemotactic response 
of MB cells to a 
gradient of EGF in a 
microfluidic system.

Matrigel

Matrigel invasion of MB 
cells towards an EGF 
gradient is blocked by 
pharmacological PI3-K 
inhibition.

[99]

DAOY Medulloblastoma

3D, transwell 
migration, 
xCelligence 
assay

Quantitative analysis 
of PDGFR control 
of CXCR4 pro-
migratory signaling 
in SHH MB model.

Matrigel

PDGF signaling restricts 
expression of negative 
regulator GRK6 and 
promotes CXCR4-Src-
dependent cell migration. 

[100]

DAOY, UW228-
3 Medulloblastoma 3D confrontation 

co-culture

Quantification of 
repulsive action of 
Slit-Robo signaling 
during MB invasion.

Collagen I Slit represses MB 
invasion in collagen gels. [101]

DAOY Medulloblastoma 2D/3D transwell 
migration

Evaluation of impact 
of matricellular 
SPAR on MB cell 
migration and 
invasion

Matrigel

SPARC suppresses 
migration and invasion 
by repressing Rho-
GTPase activation 
and by triggering Src-
dependent cytoskeleton 
reorganization.

[45]

DAOY, D283 Medulloblastoma

2D spheroid 
outgrowth, 
3D transwell 
migration

Comparison of 
invasion and self-
renewal. Analysis 
of higher versus 
lower self-renewing 
tumor spheres and 
stationary versus 
migrating adherent 
MB cells with respect 
to CD271 and CD133 
expression.

Collagen I

Highly self-renewing 
CD271 high, CD133 
low MB cell population 
in the core sustains 
tumorigenesis. 
Commitment to 
migration/invasion 
(metastatic phenotype) 
is identified by reduced 
CD271 and increased 
CD133 signature.

[102]

Overview of a selection of primary brain tumor studies that used 3D cell culture technologies. Ara-C: cytosine β-D-arabinofuranoside; 
CXCR4: CXC-motif-chemokine receptor 4; PERK: pancreatic endoplasmic reticulum kinase; EGF: epidermal growth factor; GBM: 
glioblastoma multiforme; GM-CSF: granulocyte-macrophage colony stimulating factor; GSCs: glioblastoma stem cells; GRK6: 
g-protein coupled receptor kinase 6; HA: hyaluronic acid; HAMA: methacrylated HA; HGF: hepatocyte growth factor; IDH1: isocitrate 
dehydrogenase 1; IFO: ifosfamide; MB: medulloblastoma; MMP: matrix metalloproteinase; PEG: polyethylene glycol; PDGFR: 
platelet-derived growth factor receptor; PI3-K: phosphoinositide 3’Kinase; RGD: l-arginine, glycine, and L-aspartic acid; SAHA: 
suberoylanilide hydroxamic acid (or vorinostat a HDACi); SPARC: secreted protein acidic and rich in cysteine; Src: rous sarcoma 
kinase; TMZ: temozolomide; VEGF: vasculature endothelial growth factor; 2D/3D: two dimensional/three dimensional
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sensors[54]) and it should have a high-throughput potential.

To understand the causes and consequences during 
pathophysiological progression from a primary neoplastic 
lesion in the brain towards a metastatic cancer and to pre-
clinically test potential intervention strategies, we thus 
require model systems that mimic not only the proteomic 
heterogeneity of the tumor cell itself but also the reciprocal 
interactions between the tumor and the receiving brain 
tissue [Figure 2]. The following paragraph provides an 
overview over some recent approaches in primary brain 
tumor research. It highlights the difficulty to design an 
optimal, tumor-adapted system and emphasizes the need to 
further improve currently used systems.

2D and 3D model systems in primary brain 
tumor research
A number of articles have been published in the last few years 
that used in vitro model systems to evaluate effects of novel 
potential treatment strategies on growth, viability or motile 
behavior of primary brain tumors [Table 1]. A general consensus 
has been reached in that 3D cell culture model systems reflect 
the specifics of the in vivo situation better compared to 2D 
model systems. On the down side of this was the lack of 
high-throughput capability of 3D methods that hampered 
until a few years ago their broader use in combination with 
in screening approaches. A milestone in this context was the 
generation of spheroid cultures in 96 or even 384 well format 
from primary brain tumors that allowed the parallel testing or 
large sample sizes.[54-56] In these studies, diagnostic dyes and 
fluorescent proteins were used individually or in combination 
for probing cellular functions on the one hand and for 
discriminating specific cell populations on the other hand. A 
general protocol describing the reproducible establishment 
and microscopy-based analysis of spheroid cultures using 
fluorescent protein quantification in high throughput was 
described recently.[57] As an alternative to fluorometric read-
outs, electrochemical impedance spectroscopy was used to 
quantify different susceptibilities of 2D versus 3D spheroid 
culture of glioblastoma and neuroblastoma cell lines to 
cytotoxic compounds[58] and to determine the therapeutic 
window of these compounds. Using different combination of 
dyes to separate subpopulation of cells grown in co-culture 
combined with diagnostic flow cytometry and two-photon 
microscopy allowed to further refine the selective output of 
3D methods.[54] However, high-throughput capabilities and 
accuracy of a selected read-out has to be carefully balanced 
and discriminating phenotypic differences at single cell 
level in 3D cultures in high throughput remains a formidable 
challenge.

The impact of the embedding matrix on the 
behavior of the tumor cell
The choice of the embedding matrix is of outmost 
importance for 3D cultures, in particularly for primary brain 
tumors that encounter in vivo mostly brain parenchyma and 
collagen-rich surfaces and structures in the subarachnoid 
space.[23,24,59] Hence, the biophysical and chemical properties 

of the matrix should be adjusted to those in the location of 
growth and metastatic dissemination of the tumor under 
investigation. In this context, Fernandez-Fuente et al.[60] 
investigated the impact of different environmental conditions 
on glioblastoma stem cells (GSCs). They found that GSCs 
grown in collagen-based 3D conditions were markedly less 
susceptible to receptor tyrosine kinase inhibition by currently 
available inhibitors, suggesting that oncogene addiction of 
tumor cells could also be bypassed by adhesion signaling.[61] 

Interestingly, matrix stiffness or the addition of hyaluronic 
acid (HA) did not affect the sensitivity of the GSCs in this 
study. Primary cells from glioma patient tumor material 
exposed to increasing concentrations of HA responded with 
rounded morphology and reduced migration, suggesting 
that HA concentrations may affect glioma cell behavior.[62] 
Consistently, addition of HA to porous chitosan scaffolds[63] or 
to artificial hydrogels[64] increased the expression of stem cell 
markers and VEGF and HIF-1, respectively. However, the 
finding that increasing matrix stiffness - by adding agarose to 
a collagen I matrix - blocks glioma invasiveness,[19] suggested 
that stiffness alone and independent of ligand binding acted 
as a critical determinant for primary brain tumor cell function. 
An improved in vitro environment for brain tumor research 
would consist of neuronal and brain-resident interstitial 
cells that secrete the brain-specific ECM components into 
which the brain tumor cells can then be implanted. Such 
an environment was established from brain tissue extracts 
on micro filters (Hi-spots) on which GBM cell sensitivity 
to anti-proliferative compounds was tested.[65] Despite its 
high-throughput potential, a setback of this method is the 
lack of control over the cellular composition in the Hi-spots 
and the absence of brain-specific architectural organization. 
A while ago, a simple but intriguing co-culture model of 
medulloblastoma and leptomeningeal cells was published, 
and it indicated paracrine, growth-promoting effects of 
latter that might be instrumental for studying the notoriously 
difficult to grow primary tumor cells in vitro.[66] The ideal 
“organotypic environment” for primary brain tumor research 
was already in development in the early seventies of the last 
century, when the organotypic brain slice culture (OBSC) 
technology was established.[67] The advantages of OBSCs are 
that micro environmental parameters and a relatively correct 
architectural organization are maintained that mimic the in 
vivo situation (see below).

Increasing complexity: system impact and single 
cell behavior
Neither are tumor functions disconnected from other tissues 
and the organs nor can the impact of tissues or organs on drug 
efficacy in the targeted tumor be predicted. An interesting 
approach to evaluate the effect of metabolic activity on 
cytotoxicity of compounds and chemotherapeutics in vitro 
was tested by Ma and colleagues using a 3D micro-tissue 
perfusion system.[68] TMZ and IFO were perfused through 
hepatocytes before exposure to GBM cells and a clear 
impact of hepatocyte-provided cytochrome P450 on IFO 
activation could be shown. Analogous experimental follow-
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ups are a number of organ on a chip technologies that are 
currently developed for assaying different disease states[69] 

and testing drug effects and metabolization.[70] 

On the opposite side of the spectrum is the need to resolve 
the mechanisms underlying brain infiltration of single 
tumor cells, which necessitates approaches allowing the 
quantitative analysis of molecular events in individual 
cells. This problem was tackled for the activation status of 
the important Rho family GTPase’s - Rho, Rac and Cdc42 
- in glioma cells.[53] Hirata et al.[53] used Rho-GTPase-
FRET (Förster energy resonance transfer) probes, where 
spatial activation of the GTPase’s was monitored by a 
shift in fluorescence signal. Rho-family GTPase-FRET 
fusion protein-expressing glioma cells were orthotopically 
implanted in rat brains and later analyzed inside brain 
slice cultures derived of these brains using two-photo 
microscopy. This study revealed higher Rac1 and Cdc42 and 
lower RhoA activities in glioblastoma cells penetrating the 
brain parenchyma than those advancing in the perivascular 
regions, and suggested that different driver mechanisms 
could exist for single cell dispersion in glioma. 

Together, these studies highlight the need for adapting the 
model system to the specifics of the biological context, 
with the consequent inclusion of biophysical or chemical 
components that best reflect the in vivo situation. Besides 
high-throughput screening platforms for the identification of 
novel pro-metastatic key players or alternative interference 
strategies against metastatic dissemination, we also need 
improved phenotype-based single cell analysis to decipher 
clonal differences and micro environmental impact on 
tumor behavior at the single cell level.

Organotypic brain slice culture (OBSC) in 
primary brain tumor research
A number of causal gene(s) and associated genetic mutations, 
molecular changes, probable targets and treatments for 
a variety of primary brain tumors have been identified. 
Despite of this, the process of dissemination, metastasis of 
the tumor cells from the primary site, and tumor recurrence, 
which is the leading cause for brain tumor related mortality 
in patients, remain obscure. Total removal of the primary 
tumor is on many occasions impossible at the microscopic 
level due to the insidious infiltration of the tumor cells 
into the surrounding brain tissue.[71] This majorly results in 
therapeutic failure and urges for model systems that allow 
addressing brain tumor cell invasion specifically. Standard 
3D in vitro invasion assays use ECM macromolecules that 
mimic the basement membrane (e.g. matrigel) as barriers to 
tumor invasion. These assays (described above and in table 
1) although quick, reliable, commercially available and easy 
to perform, have several limitations. They do not take into 
account the unique ECM composition in the brain and thus 
provide artificial environments that fail to closely mimic 
the normal brain tissue/tumor environment. This is further 
emphasized by the fact that distinct types of brain tumors 

localize within specific regions of the brain, highlighting 
the need for different microenvironments for modeling 
tumor growth and invasiveness. To circumvent this, mouse 
models have been generated for studying tumor propagation 
via orthotopic or subcutaneous xenografting of tumor cells. 
These experiments, however, are ethically controversial if 
inappropriately conducted, costly, labor intensive and need 
lengthy time periods for animal surgery and subsequent 
tumor development (especially for low grade tumors). These 
challenges and limitations highlight the need for developing 
a novel system wherein living brain tissue can be used as an 
ideal matrix for studying tumor cell growth and invasion.[72] 
One such system is the organotypic culture, where cellular 
constituents of organs or parts of organs are allowed to 
regrow into or persist as organ replacements. 

An excellent overview of 3D organotypic cultures has 
recently been provided,[73] which describes their potentials 
as experimental systems to visualize cellular mechanisms 
that drive tissue development, to study the genetic 
regulation of cell behaviors in tissues and to evaluate the 
role of micro environmental factors in normal development 
and disease. One hallmark of organotypic cultures is the 
tissue environment mimicking the structural and functional 
specifics of the organ of origin. This turns them into 
attractive models for cancer research to explore tumor host 
tissue interactions and to advance therapeutic approaches. 

Organotypic brain slice culture for visualization 
and quantification of brain tumor cell 
dissemination
OBSCs allow culture, maintenance and long-term survival 
of sections from any tissue of the CNS. Slices are mostly 
cultured at an air/liquid interface by either continuous 
rotation using the roller tube method or on a semi porous 
membrane using the Stoppini method.[74] Brain tissue slice 
cultures maintain their normal cytoarchitecture, complex 
cell relationships and biochemical and electrophysiological 
properties. OBSCs have been widely used in the field of 
neurobiology for synaptogenesis, neurogenesis, myelin 
formation, as models for studying neurodegeneration, for 
neuroprotective and neurotoxic assays, etc.[67] In the field of 
brain tumor research, they are an ideal platform to access the 
tumor microenvironment under intact anatomical conditions. 
Indeed, Jung et al.[71] established a brain tumor slice model 
wherein they used human white matter specimens in the 
upper chambers of transwell culture dishes. After 24 h, 
control human astrocytoma cells stably expressing enhanced 
GFP or GFP-RHAMM (receptor for hyaluronan-mediated 
motility) transfected astrocytoma cells were placed in a 
small centrally punched-out hole in the slice. The infiltration 
and migratory behavior of the GFP-expressing astrocytoma 
cells could be easily studied using confocal laser scanning 
microscopy (CF-LSM) up to 30 days post implantation. The 
authors were able to demonstrate that different astrocytoma 
cell lines display different degrees of invasion and that 
the migration of the human astrocytoma cells could be 
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stimulated or, using antisense targeting strategies, specifically 
blocked.[71] In an analogous study it was demonstrated that 
(1) the invasive behavior of the astrocytoma cells in the brain 
slice co-culture is not always identical to the results obtained 
from 2D migration studies, (2) the tumor cells spread out 
multidirectionally, (3) frozen human normal brain tissue 
can be used for the organotypic culture, (4) there were no 
obvious signs of necrosis, and (5) the brain cytoarchitecture 
and viability was preserved for at least 14 days.[72]

Although the human origin of the biopsies used as the host 
tissue in these studies excludes species-specific effects in 
the co-culture, slices from newborn rat or mouse brains are 
excellent alternatives. They offer several advantages: brain 
regions corresponding to the in vivo tumor localization can be 
chosen, developmental stage of the brain slice can be adjusted, 
multiple replicas from same brain region can be generated, 
and the use of transgenic animals allows modification of 
the cellular microenvironment. Ohnishi et al.[75] established 
OBSCs from 2-day-old neonatal rat brains, which were 
transferred on double-layered membranes consisting of two 
different membrane types and maintained at an interface 
between the air and the culture medium. The slices were 
then co-cultured with C6 glioma cells labeled with PKH2 
fluorescent dye. After 2 days of co-culture, the exogenous 
application of the chemotactic stimulator neural cell adhesion 
molecule L1 triggered tumor cell migration from the upper to 
the bottom membrane through the brain slice.[75] Since this 
study lacked CF-LSM analysis, OBSCs were subsequently 
performed by the slightly modified Stoppini method, which 
allowed quantifying glioma cell invasion using confocal 
microscopy.[76] This study revealed that the migrating cells 
showed a strong increase in immunoreactivity for matrix 
metalloproteinase 2 and 9.[76] Analogous OBSC technology 
was later used for mouse brain slices to quantify the 
invasiveness of glioma[77] and to correlate it with histological 
type.[78] Both studies used human, DiI-stained glioma biopsy 
tumor fragments and GFP-expressing spheroids directly 
implanted in the cortex of brain slices derived from 7 day 
old mice. This intraslice implantation system could be 
maintained in culture for 2 to 4 weeks. Quantification of 
the distance and density of the tumor cell invasion revealed 
that GBMs were 2-4 times more invasive than the lower 
grade glioma cells (LGGs). Within the different groups 
and grades of GBMs and LGGs, heterogeneity in terms of 
invasion was seen. It was also observed that the spheroids 
were less invasive in comparison to the directly grafted 
fragments. Overall using this system, Palfi et al.[77,78] and de 
Bouard et al.[77] could successfully recapitulate, monitor and 
quantify the invasion of single cells and the dissemination 
of glioma ex vivo. Recently, Chadwick et al.[79] developed 
OBSCs from postnatal day 6 mice and cultured the whole 
brain slices on membrane inserts coated with laminin. Tumor 
cells (astrocytoma and medulloblastoma) were stained with 
Cm-DiI for monitoring, and dispensed on the center of the 
slice. This co-culture system remained viable for one week 
and effects of drug therapies on tumor cell proliferation, cell 

death or changes in protein expression were successfully 
analyzed. Thus, Chadwick et al.[79] used the OBSC system 
as a qualitative and quantitative assay to calculate the fold 
change in the number of cells during the period of slice 
culture. Furthermore, they investigated either the whole brain 
or specific regions within the brain, to assess environmental 
impact on primary brain tumor cell growth.

Organotypic brain slice culture to study the 
microenvironmental impact
Malignant astrocytoma/GBM cause mortality by local tumor 
growth and brain invasion rather than systemic metastasis. 
GBM tumor cells diffusely infiltrate the brain parenchyma 
within and along the white matter tracts or around cerebral 
blood vessels,[53] and rarely penetrate basal lamina structures 
at the glial limitans externa. Analogously, malignant 
medulloblastoma must also infiltrate cerebellar tissue for 
distal dissemination. Moreover, resection of MB tumors is 
inevitably followed by relapse if the patients are not treated 
with cranio-spinal radiotherapy and chemotherapy, suggesting 
the occurrence of local dissemination of tumor cells from the 
primary medulloblastoma. In vitro studies aiming at better 
understanding the local invasion process have been hampered 
by the lack of identification of the brain ECM macromolecules 
involved and the only poorly understood implication of the 
cellular microenvironment. In vivo approaches on the other 
hand, offer too little spatial and temporal resolution to 
monitor tumor-microenvironment interactions appropriately. 
Thus, OBSCs could provide an important platform to study 
the cross-talk between the tumor cells and normal cells in 
a physiologically relevant environment. OBSCs can be 
used for investigating the microenvironment and its impact 
on the growth and spread of primary brain tumors, and for 
testing the measures that could be taken to prevent or treat it 
effectively.[79] Although, there is a lack of vascular supply to 
the tissue in the slices, capillaries do survive in these sections 
without any circulation.[80] Despite of the fact that there is 
no blood flow and that the capillaries are not functional, it is 
likely that they are still capable of expressing and secreting 
various molecules,[81] which could affect other cell types in 
the slice culture including the tumor cells. In addition, the 
intriguing exchange between tumor cells and astrocytes and 
the suspected tumor promoting functions of astrocytes[41-43] 
urges for novel studies addressing the therapeutic potential of 
the astrocyte-tumor interaction, for which organotypic slice 
culture would be an ideal system.

Along with their use for monitoring tumor dissemination, 
OBSCs have also been used for high resolution imaging 
of cytoskeletal structures in living glioblastoma cells. For 
this, glioblastoma cells were transfected with GFP-actin and 
placed onto murine brain slices and spinal cord explants. 
Using live-cell imaging to visualize the cytoskeleton of the 
tumor cells, a major change in the gross morphology from a 
solid, two dimensional state to a three dimensional substrate 
was noted. This morphological change was characterized 
by long, dendritic-like processes that displayed regions 
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of ruffling activity and filopodial protrusions and by down 
regulation of stress-fibers.[82] 

Thus, OBSC is an excellent technology to address a wide 
range of topics in primary brain tumor research, ranging from 
growth- and dissemination-promoting signaling, to the intricate 
interrelations between the tumor and its surrounding host tissue 
to the evaluation of efficaciousness of novel targeting strategies.

FUTURE PERSPECTIVES

Main emphasis for improving current in vitro technologies 
should be given to the cellular composition and the 
biophysical and chemical environment conditions under 
which the experiment is performed. The microenvironment 
of the in vivo location of the tumor and the composition of 
the neuronal and interstitial cells resident in this location 
should guide the choice of the components. At the single 
cell and population levels, molecular sensors for specific cell 
functions should be used for probing tumor cell behavior 
and therapeutic efficacy. Finally, an increased output 
should be strived for to enable pharmacological and genetic 
screening approaches for drug target identification. Thus, an 
organotypic environment, specific read-outs and the high 
throughput capability will be the three pillars of future in vitro 
approaches. A great potential lies in organotypic slice culture, 
and when this technology is combined with state-of-the-art 
microscopy, it will allow to reveal fundamental aspects of 
local tumor cell infiltration, the interaction of neuronal and 
brain interstitial cell populations with the tumor cells and the 
evaluation of the efficaciousness of novel treatments.
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INTRODUCTION

Invasion of tumor cells from primary tumors of the central 
nervous system (CNS) to organs outside the CNS is a highly 
rare event. In contrast, invasion of tumor cells arising 
outside the CNS to brain, spinal cord, or cerebrospinal fluid 
(CSF) occurs frequently, leading to CNS tumor growth and 
neoplastic meningitis. Moreover, in approximately every 
tenth patient, the diagnosis of brain metastasis is the first 
sign of the cancer disease.[1]

CNS metastases are the most common intra-axial 
malignancies, accounting for more than 50% of all brain 
tumors,[2] occurring in 20-40% of patients with cancer, and 
leading to symptoms during lifetime in about 60-75%.[3] 
Autopsy series identified CNS metastases in 15-41% 
of patients with known primary cancers at the time of 
death.[4-8] Most metastatic manifestations affect the brain 
parenchyma; 80% are found supratentorially and 20% 
infratentorially (15% cerebellum, 5% in the brain stem), 
with the spinal cord most infrequently involved. The 
incidence of single vs. multiple sites of CNS metastasis 
is approximately equal.[9] In about 4-15% of patients with 
CNS disease, CSF is involved.[10] Lung cancer, breast 
cancer, and melanoma are the primary malignancies that 
contribute to 80% of brain metastases.[7,11,12] Moreover, 
there is a high incidence of asymptomatic CNS metastases, 
so it is hard to estimate their true prevalence. Current 
studies estimate that approximately a third of patients with 
cancer eventually develop brain metastases.[10]

Several reasons may explain the increase in incidence 
of brain metastases over the past decades: Certainly, 
the widespread use and improvements in new imaging 
technologies facilitates the detection of metastatic lesions. 
For example, magnetic resonance imaging (MRI) of 
the neuraxis is currently used for the examination of 
approximately 60-70% of patients with cancer; 20 years 
ago, it was used in 2% of cancer patients.[13] The global 
increase in cancer prevalence is another contributing factor, 
especially the increase in cancers that have a tendency 
to invade the CNS, such as lung cancer. Moreover, the 
introduction of targeted therapies that have limited 
bioavailability in the CNS might also have resulted in an 
increase of CNS metastases (e.g. the treatment of human 
epidermal growth factor receptor protein 2(HER2)-positive 
breast cancer with trastuzumab, a compound with limited 
penetration from the blood to the CSF).[14,15]

Neoplastic meningitis (also referred to as meningeosis 
neoplastica or, based on the underlying tumor, as 
meningeosis carinomatosa, gliomatosa, or lymphomatosa) 
is a spread of tumor cells into the subarachnoid space. 
It is found in approximately 5-10% of all patients with 
malignant tumors and is a condition frequently diagnosed 
in late stage cancer.[16] The most common associated 
primary tumors are lung cancer, breast cancer, melanoma 

and lymphoma and leukemia.[17]

Patients with CNS metastases present with rather 
unspecific clinical symptoms. Headaches (40-50%), focal 
neurological deficits (30-40%), and seizures (15-20%) are 
the most common presenting symptoms. In leptomeningeal 
disease many symptoms are caused by an increased 
intracranial pressure mainly due to hydrocephalus, which 
leads to nausea and vomiting, neck and back pain, and 
confusion.[3]

MOLECULAR MECHANISMS OF CENTRAL 
NERVOUS SYSTEM METASTASIS 
FORMATION AND MAINTENANCE

Cancers that metastasize to the CNS need to undergo 
multiple steps, including detachment from the primary site, 
invasion, intravasation into the bloodstream, extravasation, 
survival, and proliferation. Even with different primary 
tumor origins, invasion and proliferation into the CNS 
appears to be associated with similar molecular programs 
and is highly supported and maintained by the tumor-
associated brain microenvironment.[18]

First, the growth of metastatic brain tumors is critically 
dependent on angiogenesis,[19] so therapies targeting 
this process might be important in the prevention or 
management of brain metastases. In a mouse model of 
brain metastases [HER2-amplified breast cancer cells 
in an orthotopic xenografting of human BT-474 cells], 
extracranial disease was successfully controlled using 
the HER2 inhibitors trastuzumab or lapatinib, but tumor 
control with monotherapy in the brain failed. By adding 
anti-VEGFR2 antibodies, however, tumor growth in the 
brain was better controlled, leading to improved survival, 
especially with a combination of lapatinib, trastuzumab, 
and anti-VEGFR2 antibody treatment.[20]

Second, astrocytes are intimately involved in maintaining 
normal homeostasis of the brain microenvironment, 
accomplished through transport of nutrients to the neurons 
and facilitation of neural signal transduction. In fact, 
activated astrocytes induced upregulation of survival 
genes. These mechanisms usually protect injured neurons 
from apoptosis, but can be abused by tumor cells (e.g. for 
protection from cytotoxic effects of chemotherapeutic 
agents).[21,22] A very interesting study on the impact of 
astrocyte-derived reshaping of the brain microenvironment 
was recently published by Zhang and colleagues: Mouse 
tumor cells lost PTEN expression only after dissemination 
to the brain, but not to other organs, and PTEN levels 
in PTEN-loss brain metastatic tumor cells were again 
rescued after leaving the brain microenvironment. This 
brain microenvironment-dependent plasticity of PTEN 
expression is epigenetically regulated by astrocyte-derived 
exosomes mediating an intercellular transfer of PTEN-
targeting microRNAs to metastatic tumor cells. As a 
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result of this adaptive PTEN loss, brain metastatic tumor 
cells released more chemokine CC chemokine ligand 2, 
leading to recruitment of IBA1-expressing myeloid cells 
and further enhancement of the growth and maintenance of 
brain metastases.[23]

Infiltrating inflammatory host cells, including tumor-
infiltrating lymphocytes or myeloid cells, are a third 
key component shaping the tumor microenvironment 
and correlating with patients’ survival times in several 
extracranial malignancies.[24] These cells significantly 
change their functional characteristics under the influence 
of high-grade glioma,[25] indicating that they might 
also play a role for supporting CNS metastatic growth. 
Clinicopathological correlations of associated lymphocytic 
infiltrates indicate a beneficial outcome for CNS immune 
response.[26] Two functional phenotypes of tumor-
associated macrophages have been proposed: the M1 and 
the M2 phenotype. While M1 is characterized by tumor-
suppressive functions, the M2 may have more tumor-
promoting functions, including suppression of immune 
responses and promotion of adaptive immune response and 
migration/invasion.[25] However, recent studies suggest that 
this dichotomy does not completely reflect the situation in 
brain tumors.[27]

In recent years, high-throughput technologies have evolved 
significantly. Thus, molecular tumor profiling (e.g. by Next-
generation sequencing, panel sequencing) for identifying 
molecular targets is in principle feasible in the short term. 
Data on the molecular characteristics of CNS metastases 
have only recently been acquired. This might be due to 
the fact that CNS metastatic tissues are only available 
from patients who are eligible for neurosurgical resection. 
Because craniotomies are not indicated in all patients 
with CNS metastases (see below), a systematic analysis 
of the molecular differences between CNS metastases and 
matched primary tumors or between CNS metastases and 
extracranial metastases remains challenging. Molecular 
profiling of matched CNS and extracranial metastases in 
smaller series of melanoma patients showed that CNS 
metastases distinguished themselves through specific 
molecular differences in the activation of the PI3K/mTOR/
Akt or HER2 or kirsten rat sarcoma (KRAS) pathway.[28-31] 
These studies highlight, for example, the potential of 
adding PI3K inhibitors or mTOR inhibitors as adjunct 
targeted therapy in the treatment of CNS metastases.

TREATMENT STRATEGIES NEED A 
PROFOUND INTERDISCIPLINARY 
DIAGNOSTIC WORKUP

In addition to the staging of extracranial disease, a thorough 
neurological workup including neurological examination, 
neurocognitive assessments, neuroimaging, and a spinal 
tap is in principle indicated in all patients with established 
malignant disease and suspected brain metastases. 

Depending on clinical symptoms and neuroradiological 
features, one single spinal tap or up to three spinal taps can 
be considered. If, for example, clinical symptoms strongly 
suggest an underlying meningeomatosis, a single lumbar 
puncture might not be enough to detect atypical cells in 
the CSF, so serial lumbar punctures might be necessary. 
Diagnostic workup of the CSF includes analyses of 
opening pressure, protein, glucose, and lactate levels as 
well as cytology and immunocytology.

Standard MRI exams include T1-weighted images with 
or without contrast enhancement, T2-weighted imaging, 
and FLAIR sequences. Differential diagnosis of brain 
metastases includes malignant gliomas and lymphomas 
or nonneoplastic conditions, such as abscess, infections, 
demyelinating diseases, and vascular lesions. Recently, 
the Response Assessment in Neuro-Oncology Brain 
Metastases (RANO-BM) working group has proposed 
criteria for a harmonization of the assessment of CNS 
metastases.[32] This might contribute to a standardization 
of techniques and assessment tools, particularly important 
in the era of targeted compounds. It is not yet entirely 
clear to what extent and how novel targeted therapies (e.g. 
immunotherapies and kinase inhibitors) will alter imaging 
characteristics. The recently published recommendations 
of the RANO-BM working group provide a guideline to 
differentiate imaging alterations during immunotherapies 
in brain tumors.[33] Innovative and advanced neuroimaging 
techniques will certainly gain even more importance. 
Examples include the addition of diffusion-weighted MRI 
(DW-MRI), perfusion MRI, proton magnetic resonance 
spectroscopy (MRS), and various amino acid tracers in 
positron emission tomography (PET). These techniques 
might be especially relevant to meet the challenges of 
disease monitoring (e.g. the discrimination of radiation 
necrosis from recurrent tumor might be challenging on MRI 
since both conditions present with contrast enhancement 
on T1-weighted MR images, and the pattern of abnormal 
enhancement closely mimics that of a recurrent brain 
metastasis).[34] In fact, small studies with perfusion MRI 
using CBV analysis showed the potential to differentiate 
between radiation necrosis and tumor recurrence with good 
sensitivity and specificity.[35] Nuclear medicine techniques 
might contribute to answering this critical question. While 
an fludeoxyglucose (FDG) tracer was not sensitive enough 
to differentiate vital brain metastases from unspecific non-
tumor changes related to therapy,[36] the amino-acid PET 
tracer 11C-methionine showed higher tumor-to-lesion 
uptake ratios in patients with recurrent metastases/glioma 
after radiation treatment than in patients with radiation 
necrosis.[37] Furthermore, the combination of two amino 
acid tracers (FET and MET) identified treatment-related 
changes with high sensitivity and specificity.[38]

The blood-brain-barrier is often mentioned as a challenge 
for diagnosis and therapy. In a very interesting preclinical 
study using mouse models of small metastatic breast 
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tumors, infusions of recombinant human tumor necrosis 
factor induced selective permeabilization of the blood-brain 
barrier to imaging tracers at sites of brain metastases. This 
method enabled the detection of smaller tumors that had 
been invisible using standard imaging techniques. Notably, 
this strategy even increased the delivery of radiolabeled 
trastuzumab to these metastatic lesions,[39] demonstrating 
the translational potential of similar approaches for 
theranostics.

THE ESTIMATION OF PROGNOSIS 
IS IMPORTANT FOR CLINICAL 
MANAGEMENT

The most widely established risk stratification scores are 
the Recursive Portioning Analysis (RPA), the Graded 
Prognostic Assessment (GPA), and Diagnosis Specific 
Graded Prognostic Assessment (DS-GPA) [Table 1].[40-43] 
Definitely, the presence of neoplastic meningitis in patients 
with solid tumors indicates a poor prognosis. Negative 
prognostic factors associated with leptomeningeal tumor 
cell dissemination are low Karnofsky performance status 
(KPS), increased age, uncontrolled intracranial pressure, 

low glucose levels, and high protein levels.[44-46]

RPA divides patients into three categories based on KPS, 
age, and primary tumor control, with patients in group 
I having a better prognosis than patients in group III.[40] 
The GPA evaluates the prognosis of patients with brain 
metastases based on the primary tumor diagnosis.[42] 
Histology carries prognostic significance, along with other 
subcategories (e.g. age and extracranial disease in lung 
cancer patients, or number of metastases in melanoma 
patients). Tumor subtype based on HER2/ER/PR status 
and age is prognostic for breast cancer and is expanded 
upon with a specific breast-GPA, currently in use in 
clinical trials.[43] Other prognostic scores were defined[47] 
and are summarized in Table 1. In large retrospective 
studies of melanoma patients with brain metastases, poor 
prognostic factors associated with worse survival were: 
> 3 parenchymal lesions, leptomeningeal disease, brain 
lesions developing concurrently with extracranial disease 
or while on systemic therapy for extracranial disease, poor 
performance status (KPS < 70%), elevated pretreatment 
LDH levels, and RPA class III.[48,49]

Table 1: Prognostic scores
Recursive partioning analysis
Class I II III

Age < 65 All patients not in Class I or class III KPS < 70%
KPS > 70%
Stable primary tumor
No extracranial metastases

Basic score for brain metastases 
Score 0 1
KPS 50-70% 80-100%
Control of primary tumor No Yes
Extracranial metastases Yes No
Score index for radiosurgery
Score 0 1 2
Age (years) > 60 51-59 < 50
KPS < 50% 60-70% 80-100%
Systemic disease Progressive Stable Complete response or no 

evidence for disease
Number of lesions > 3 2 1
Volume of largest target lesion > 13 mL 5-13 mL < 5 mL
Graded prognostic assessment
Score 0 0.5 1.0
Age > 60 50-59 < 50
KPS < 70% 70-80% 90-100%
CNS metastases (no.) > 3 2-3 1
Extracranial metastases Present - None
Diagnosis-specific graded prognostic assessment
i) NSCLC/SCLC
Score 0 0.5 1.0
Age > 60 50-60 < 50
KPS < 70% 70-80% 90-100%
Extracranial metastases Present - Absent
CNS metastases (no.) > 3 2-3 1
ii) Melanoma/RCC
Score 0 1 2
KPS < 70% 70-80% 90-100%
CNS metastases (no.) > 3 2-3 1
iii) Breast/GI cancer
Score 0 1 2 3 4
KPS < 70% 70% 80% 90% 100%

CNS: central nervous system; KPS: karnofsky performance status; NSCLC: non small-cell lung cancer
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The prognostic indices certainly play an important role 
in assessing the risk/benefit ratio and providing realistic 
advice and expectations to patients. For example, patients 
with poor prognosis can be offered supportive care, and 
those with good prognosis can be offered multimodality 
treatment. The prognostic scores might play a vital role in 
designing clinical trials as well.

Information about variables on neuroimaging, in addition 
to the pure number of brain metastases, might be valuable 
extensions to currently established prognostic scores. 
Spanberger and colleagues found a significant correlation 
between a small brain edema with an invasive tumor 
growth pattern, a low neo-angiogenic activity, and a low 
expression of HIF1a. These findings were associated 
with a shorter overall survival.[50] Further, high DW-MRI 
hyperintensity correlated significantly with a high amount 
of interstitial reticulin deposition, and this was again 
associated with lower survival.[51] Similarly, pre-operative 
DW-MRI characteristics of cerebral metastases and their 
peritumoral region in 76 patients were related to patient 
outcome.[52]

THERAPEUTIC APPROACHES 
TO CENTRAL NERVOUS SYSTEM 
METASTASIS

CNS metastases are, of course, a heterogeneous group with 
varied response to treatment and survival. Conventional 
treatment options usually include a combination of 
steroids, surgery, and radiation. Cytotoxic chemotherapy 
has had a limited role in the treatment of brain metastases, 
probably because CNS metastases often arise from heavily 
pretreated primary tumors and may thus have already 
acquired resistance to chemotherapeutics. In addition, the 
impaired blood-brain barrier penetration of some agents 
might further reduce their bioavailability in the CNS. 
Therapeutic decisions mainly depend on several factors 
related to patient clinical status (neurological deficit, 
neurocognitive deficit, general condition, comorbidities, 
etc.), primary disease status, extracranial metastatic disease, 
and CNS tumor characteristics (number, radiological 
aspect, size, and location).[40] Median overall survival times 
after occurrence of CNS metastases might be predicted by 
biomarkers as shown for LDH elevation in melanoma CNS 
metastases.[48] All relevant clinical factors need to be taken 
into account to identify the best therapeutic strategy among 
the available therapeutic options. We outline the currently 
available local and systemic therapeutic options in the 
following paragraphs.

LOCAL THERAPEUTIC STRATEGIES: 
NEUROSURGICAL INTERVENTION AND 
RADIATION THERAPY

Neurosurgical intervention and radiation therapy 
are currently the main modalities in the therapy of 

symptomatic CNS metastases. New surgical modalities 
have expanded the indication and spectrum of tumors 
that can be successfully removed. Since the introduction 
of intraoperative monitoring and development of less 
invasive strategies (e.g. microsurgery, endoscopic surgery, 
intraoperative navigation, ultrasound, and intraoperative 
MRI), surgical removal of brain metastases even in deep-
seated and elusive areas has become feasible without 
increased morbidity. To date, the strongest evidence 
for a survival benefit from surgery is for single CNS 
metastases.[53] In 1996, Mintz et al.[54] did not confirm a 
positive impact of surgery on overall survival in these 
patients. However, only 21.4% of patients in this study had 
a controlled extracerebral disease, and none of the patients 
had brain MRI assessment; therefore, comparability 
with other studies is rather limited. In a retrospective 
study of treatment modalities in 1,292 patients with CNS 
metastasis of lung cancer, breast cancer, and melanoma, 
Lagerwaard et al.[55] demonstrated an increase of median 
OS of 1.3 months in patients who received best supportive 
care only, 3.6 months in patients who received RT, and 
8.9 months in patients who received a combination of 
surgery and RT. Similar median OS benefits were also 
shown in a retrospective study of 1,137 melanoma patients 
who received best supportive care (2.1 months), RT (3.4 
months), surgery (8.7 months), or combined RT and 
surgical resection.[56]

Benefits of surgery include the ability to establish a tissue 
diagnosis and an immediate decrease of tumor mass, 
particularly of masses in the posterior fossa. Nevertheless, 
patients who might benefit from surgical resection must 
be carefully selected. Predictors that favor a surgical 
benefit include: single or few metastases, tumor location, 
surgical accessibility, KPS > 70, patient age < 65 years, 
local mass effect, control of extracranial disease, and 
absence of leptomeningeal involvement.[57] Based on the 
therapy oncology group database, patients of RPA class 
I are likely to benefit from surgery, whereas patients of 
RPA class III are not.[40] The primary goal of surgery is 
either macroscopic gross total resection or decompression 
dependent on the aforementioned predictors. Intraoperative 
neurosurgical techniques to maximize resection (e.g. 
image-guided surgery,[58] ultrasonography,[59] and 
introduction of fluorescence-guided surgery[60]) and to 
minimize neurological deficits by electrophysiological 
techniques[58] improved the likelihood of complete and 
safe removal of metastases. A combination of surgery plus 
radiation in patients with up to three CNS metastases can 
improve survival and preserve functional independence, 
as outlined in two prospective studies[61,62] and three 
retrospective studies.[63-65] Several criteria -- including 
tumor location, medical comorbidities, extracranial 
disease, and performance status -- may impact individual 
consideration and risk assessment for surgical resection. 
This is particularly relevant because evidence from 
studies in high-grade glioma surgery indicates that a new 



                                                                                                              Journal of Cancer Metastasis and Treatment ¦ Volume 2 ¦ May 20, 2016 ¦168

postoperative neurological deficit decreases survival up to 
3-4 months, and any substantial postoperative complication 
negatively affects functional status and the patient’s ability 
to undergo subsequent radiation treatment, both of which 
are crucial factors in determining survival.[66]

The main modalities in radiation therapy include stereotactic 
radiotherapy and whole brain radiation therapy. Stereotactic 
radiotherapy alone might be considered for patients who 
have a controlled systemic disease and a limited number 
of CNS metastases whose size is less than 3 cm. A 
combination of stereotactic and whole brain radiotherapy 
has been investigated in large clinical trials. There was no 
difference in overall survival, but the addition of whole 
brain radiation therapy significantly improved local and 
distant control.[9,67] Yet, patients treated with whole brain 
and stereotactic radiation therapy were at higher risk of a 
decline in learning and memory. Of note, neurocognitive 
testing was only performed once at 4 months in this trial.[68] 
Novel concepts of whole brain radiation therapy with an 
avoidance of the hippocampal region might lead to new 
opportunities in this treatment modality.

Radionecrosis can occur, typically within the first year 
after stereotactic radiotherapy. The differentiation between 
tumor progression and radionecrosis might be difficult, 
as mentioned earlier. Treatment recommendations for 
radiosurgery radionecrosis include bevacizumab and/or 
steroids.[69]

Regarding a refinement of treatment planning for radiation 
therapy, the value of amino acid PET in stereotactic 
radiotherapy treatment planning for focal recurrence 
at a previously irradiated site of a brain metastasis was 
evaluated. In 88 patients, the authors found that the total 
irradiation volume was significantly smaller in the PET 
group and that the median survival time was significantly 
longer in the PET group (18.1 months) than in the MRI 
planning group (8.6 months).[70]

CYTOTOXIC CHEMOTHERAPY: NO 
CONVENTIONAL STANDARD REGIMEN 
FOR CENTRAL NERVOUS SYSTEM 
METASTASES

To date, standard cytotoxic chemotherapy regimens have 
not been defined for the treatment of CNS metastases. 
Instead, inoperable patients are treated using the same 
cytotoxic chemotherapy employed for the treatment of 
extracranial disease. Alternatively, cytotoxic agents with 
good CNS penetration (such as topotecan, irinotecan, 
procarbazine, and carboplatin, temozolomide, or 
fotemustine) are also employed for empirical therapy, even 
in cases in which these agents are not the standard therapy 
for the primary tumor site. Pharmacological treatments for 
intrathecal therapies are ill-defined, too.

INTRATHECAL TREATMENT THERAPY 
FOR TARGETING THE CEREBROSPINAL 
FLUID

Intrathecal administration of drugs aims at targeting 
tumor cells in the CSF efficiently by circumventing the 
blood-CSF barrier while omitting systemic toxicity. 
Treatment can be done by repetitive lumbar punctures 
or through intraventricular catheter systems (i.e., 
Rickham or Ommaya reservoir). Among the drugs 
available for intrathecal treatment, methotrexate (MTX) 
and cytarabine are most frequently used. Alternatively, 
thiotriethylenephosphoramide has been approved in some 
countries. Liposomal cytarabine is a sustained-release form 
of cytarabine and was compared with MTX in a controlled 
trial in patients with solid tumors and leptomeningeal 
carcinomatosis. Patients who were treated with liposomal 
cytarabine experienced a longer time until neurological 
progression. However, there was no difference in overall 
survival.[71] Liposomal cytarabine is associated with an 
increased risk for radiculitis and arachnoiditis. This might 
be prevented by prophylactic dexamethasone application. 

Table 2: Overview of targeted compounds for central nervous system metastases that are outlined in the text
Molecular target Compound Compound characteristics
HER2 Trastuzumab Humanized mAb targeting the extracellular domain of HER2

Trastuzumab emantasine Antibody-drug conjugate; the antibody targeting HER2 is conjugated with 
an antimicrotubule agent that is only released in HER2+ target cells

Lapatinib Small molecule tyrosine kinase inhibitor that dually targets HER1 and 
HER2, binding to the intracellular domain

Neratinib Irreversible inhibitor targeting the catalytic domain of EGRF, HER2, and 
HER4

EGFR Gefitinib Inhibitor of EGFR
Erlotinib Inhibitor of EGFR

ALK Crizotinib Inhibitor of ALK
Ceritinib Inhibitor of ALK
Alectinib Inhibitor of ALK

BRAF Vemurafenib Selective inhibitor of mutated BRAFV600E

Dabrafenib Inhibitor of mutated BRAF, wild-type BRAF, and CRAF
CTLA4 Ipililumab Antibody targeting CTLA-4
PD-1 Pembrolizumab Antibody targeting PD-1 receptor

Nivolumab Antibody targeting PD-1 receptor
ALK: anaplastic lymphoma kinase; BRAF: serine/threonine-protein kinase B-Raf; CTLA: cytotoxic T-lymphocyte-associated antigen; 
HER: human epidermal growth factor receptor protein; EGFR: epidermal growth factor; PD: programmed death
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Supportive therapy aims at symptom relief. Steroids may 
help to decrease symptom burden similar to the situation in 
solid tumor manifestations in the brain.[72]

TARGETED THERAPIES ARE AVAILABLE 
FOR A SUBSET OF CENTRAL NERVOUS 
SYSTEM METASTASES

With increasing insight into molecular alterations and 
improved CNS penetration of targeted compounds, some 
specific molecular-targeted compounds are available that 
can also be applied in CNS metastases [Table 2]. We focus 
here on breast cancer, lung cancer, and melanoma.

Breast cancer
HER2 is overexpressed in up to 30% of breast cancers.[73] 
A retrospective analysis of 9,524 women in the pre-
trastuzumab era identified HER2 expression as a risk factor 
for brain metastases[74] with an incidence of CNS metastases 
in HER2-positive patients twice that of unselected breast 
cancer patients. Additionally, an increasing percentage of 
patients develop brain metastases, whereas their systemic 
disease is controlled using HER2-directed therapies.[75] A 
retrospective case series reported 23 of 93 (25%) patients 
developed brain metastases after trastuzumab therapy, 
and 78% of those patients had stable or better systemic 
disease. A meta-analysis using data from three large phase 
III trials indicated the incidence of CNS disease was 
significantly higher in the trastuzumab-treated patients.[15] 
Trastuzumab’s high molecular weight, approximately 700 
times that permitted by the blood-brain barrier, may create 
a sanctuary site in the CNS for HER2-positive tumors, and 
its limited CSF bioavailability hinders efficacy in treating 
brain metastases.[14] Lapatinib is a dual HER1 and HER2 
inhibitor that is administered orally. A single-arm phase II 
trial evaluated the activity of lapatinib plus capecitabine 
in 45 patients with HER2-positive breast cancer and brain 
metastases before Whole brain radiation therapy (WBRT). 
The CNS response rate was 67% with a median time to 
progression of 5.5 months.[76] Trastuzumab emtansine (T-
DM1) is an antibody-drug conjugate incorporating the 
human epidermal growth factor receptor 2 (HER2)-targeted 
antitumor properties of trastuzumab with the cytotoxic 
activity of the microtubule-inhibitory agent DM1. The 
antibody and the cytotoxic agent are conjugated by means 
of a stable linker.[77] The incidence of central nervous 
system (CNS) metastases after treatment with trastuzumab 
emtansine (T-DM1) versus capecitabine-lapatinib (XL), and 
treatment efficacy among patients with pre-existing CNS 
metastases in the phase III EMILIA study was analyzed 
in a retrospective study. In this retrospective, exploratory 
analysis, the rate of CNS progression in patients with 
HER2-positive advanced breast cancer was similar for 
T-DM1 and for XL. In patients with treated, asymptomatic 
CNS metastases at baseline, T-DM1 was associated with 
significantly improved OS compared with XL.[78]

Neratinib is an orally administered inhibitor of the ErbB 
receptor tyrosine kinase with antitumor activity in advanced 
HER2-positive breast cancer.[79] A phase II trial is currently 
underway for patients with HER2-positive breast cancer and 
brain metastases (NCT01494662). Further aspects of CNS 
metastases in the breast are outlined in a recent review.[80]

Non small-cell lung cancer
With the discovery of targetable molecular alterations in the 
treatment of non small-cell lung cancer (NSCLC), patients 
with newly diagnosed disease are currently stratified based 
on molecular alterations of several genes in the primary 
tumor, including the epidermal growth factor receptor 
(EGFR), Kirsten rat sarcoma viral oncogene homolog 
(KRAS), and translocations involving the echinoderm 
microtubule-associated protein like 4 (EML4) analastic 
lymphoma kinase (ALK) genes.[81] In a retrospective study of 
89 patients with NSCLC treated with stereotactic radiation 
therapy for CNS metastases, the addition of targeted 
therapies was associated with significantly better outcomes. 
Patients treated with targeted therapy against EGFR or 
ALK had a median survival of 21 months compared with 11 
months for patients who did not receive targeted therapy.[81] 
EGFR mutations are present in 10-25% of NSCLC. EGFR 
mutations in patients with brain metastases may be more 
common; two reports found EGFR mutations to be present 
in 63% and 50% of patients, raising the question whether 
EGFR mutations lead to an increased risk of developing 
brain metastases similar to HER2 overexpression in breast 
cancer.[82] Patients with ALK activation, on the other hand, 
had no increased risk of brain metastases but did show a 
higher frequency of liver metastases.[83,84]

Gefitinib and erlotinib are oral compounds and irreversible 
inhibitors of the intracellular domain of EGFR. Gefitinib is 
FDA-approved for NSCLC with EGFR mutations. Erlotinib 
is approved for locally advanced or metastatic NSCLC that 
has failed at least one prior chemotherapy regimen or for 
maintenance treatment for locally advanced metastatic 
NSCLC whose disease has not progressed after four cycles 
of platinum-based first-line chemotherapy. There is concern 
about poor BBB penetration of these agents as CNS 
response rates are disproportional to systemic response 
rates. Serum to CSF comparisons for gefitinib revealed only 
about 1% of the serum dose represented in the CSF.[85] Both 
drugs are near the 400 kDa molecular weight range, with 
the BBB retaining selectivity for molecules greater than 
200-400 kDa. Despite concerns for optimal bioavailability, 
gefitinib and erlotinib have been investigated in first-line 
palliative and combination settings. Two phase II trials 
for tyrosine-kinase inhibitors (TKI) in the first-line setting 
include data on patients with CNS metastases.[86,87] Both 
studies do not include sequencing data for EGFR mutations 
but instead use the clinical indicator of never-smokers. Lee 
et al.[86] reported 36 never-smoker patients including 10 
patients with synchronous brain metastases. Seven of ten 
patients demonstrated an intracranial objective response to 
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gefitinib, one patient had stable disease, and two patients 
had progressive disease after a median of 48-week follow-
up period. Kim et al.[87] reported 23 never-smoker patients 
with synchronous brain metastases with a response rate to 
either gefitinib or erlotinib of 69% and a disease control 
rate of 82%. The median overall survival was 18.8 months, 
and time to salvage WBRT averaged 19.3 months.

Further evidence for first-line TKI comes from a 
retrospective analysis of 155 patients screened for EGFR 
mutations.[88] The rate of CNS progression was lower in 
EGFR-mutant patients with advanced NSCLC treated 
initially with erlotinib or gefitinib compared with upfront 
cytotoxic chemotherapy (33% vs. 48%) at a median 
follow-up of 25 months, supporting a role for these drugs 
in prevention of CNS metastases. Median overall survival, 
on the order of 30 months, was not different between the 
two groups.

Erlotinib in combination with WBRT was evaluated 
in a prospective phase II trial in 40 patients with brain 
metastases from NSCLC regardless of EGFR status. The 
overall response rate was 86% and the median overall 
survival was 11.8 months. Of these 40 patients EGFR status 
was known in 17 patients. Interestingly, patients negative 
for EGFR mutations had a median overall survival of 9.3 
months, whereas patients who were positive for EGFR 
mutations had a median overall survival of 19.1 months.[89] 
The clinical benefit and feasibility of targeting ALK was 
demonstrated first with the multitargeted tyrosine kinase 
inhibitor crizotinib that competitively binds to the ATP-
binding pocket of the ALK and MET tyrosine kinases 
and inhibits phosphorylation of activated ALK. This was 
subsequently confirmed in phase II and III trials.[90-92] The 
ability of ALK-directed therapies to control and prevent 
the development of CNS metastases remains incompletely 
studied, with early reports suggesting inefficient CSF 
penetration of crizotinib.[93-95]

Ceritinib is a second-generation ALK inhibitor with 
increased activity against common ALK point mutations. 
The activity of ceritinib in ALK+ NSCLC has been 
confirmed in phase I and II studies. Larger head-to-head 
trials such as the phase III, ALEX “trial comparing alectinib 
to crizotinib will directly investigate PFS in the CNS and 
may provide further information to inform treatment 
decisions for ALK+ patients with brain metastases.

Melanoma
Activating BRAF mutations affect up to 60% of melanoma 
patients; more than 95% are the p.V600E mutation, 
with the remainder largely being p.V600L. Constitutive 
BRAF signaling activates the mitogen-activated protein 
kinase (MAPK) pathway.[96] Vemurafenib is an FDA-
approved BRAF inhibitor. In a pilot study of 24 patients 
with melanoma metastatic to the CNS treated with 
vemurafenib, median PFS was 3.9 months, and median OS 

was 5.3 months. An overall partial response rate at both 
intracranial and extracranial sites was achieved in 42%, 
and stable disease was achieved in 38%.[97] Further data are 
available from individual cases[98] and population-based 
studies.[99] New trials with CNS metastases are ongoing. 
Dabrafenib is an oral ATP-competitive inhibitor of BRAF 
kinase. A multicenter clinical trial evaluated dabrafenib 
in 172 patients both with and without prior brain therapy 
for BRAF-mutated melanoma metastatic to the brain with 
confirmed p.V600X mutation.[100] The primary outcome 
measure was overall response rate observed to be 29/74 
(39.2%) in patients without prior brain therapy and 
20/65 (30.8%) in patients with prior brain therapy. Thus, 
dabrafenib was helpful in patients with both new and 
pretreated brain metastases. Duration of response was 
20.1 weeks for patients without prior brain treatment and 
28.1 weeks for patients with prior brain treatment. Median 
overall survival was 33 weeks in patients without prior 
brain therapy and 31 weeks with prior brain therapy.

Resistance to therapy with BRAF kinase inhibitors is 
associated with a reactivation of the MAPK pathway. 
Consequently, the combination of BRAF and MEK 
inhibitor was assessed and showed increased efficacy 
compared to BRAF monotherapy alone.[101]

Current immunotherapy approaches focus mainly on 
checkpoint inhibitors Ipililumab and PD1/PDL1 inhibition. 
Ipililumab is a humanized monoclonal antibody against 
cytotoxic T lymphocyte antigen-4 (CTLA-4); it shows 
activity in melanoma brain metastasis, particularly if 
asymptomatic, by improving overall survival.[8,102,103] A 
phase 2 study of ipilimumab and fotemustine showed an 
overall immune disease control rate of 50% and median 
progression-free survival of 4.3 months, with increased 
incidence in hematological and nonhematological toxicity. 
Clinical trials for the assessment of immune checkpoint 
inhibition strategies in CNS metastases are ongoing.

QUALITY OF LIFE AND 
NEUROCOGNITION

The systematic assessment of neurocognitive function is 
often neglected in clinical routine but is crucial, mainly 
because neurocognitive function is a key feature of quality 
of life for patients. It is important to raise awareness and 
encourage more frequent use of neurocognitive monitoring 
tools (not only in large centers) as a regular part of the 
diagnostic workup. Certainly, there are multiple reasons 
for cognitive decline in patients with CNS metastases, 
including the neuroanatomical location of the lesions, 
symptomatic seizures, depression, distress, and potentially 
also the effects of neurotoxic systemic therapies and whole 
brain radiation therapy. It is notable that corticosteroids 
are a very common cause of neurocognitive decline. 
Steroid-induced changes in mood and sleep certainly 
affect cognitive function, leading to measurable effects on 
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declarative memory and even to decreased hippocampal 
volumes.[104] The severity of memory impairment is 
correlated to dose and duration of use.[105]

Primary prevention strategies might include the 
implementation of hippocampal-sparing whole brain 
radiation therapy, prophylactic use of the N-methyl-D-
aspartate receptor modulator memantine, or blocking the 
RAAS cascade. Assessment and treatment of depression is 
an important strategy, including appropriate pharmaceutical 
or psychological treatments.

FUTURE PERSPECTIVES

With increasing incidence of CNS metastases, an 
improvement of existing treatment strategies is 
urgently needed. Important steps for meeting this 
important epidemiological challenge include systematic 
interdisciplinary multiprofessional treatment teams, 
thorough biosampling and biobank studies for the 
establishment of further biomarkers or therapeutic targets, 
innovative imaging tools, and innovative clinical trial 
designs with meaningful endpoints including survival, 
quality of life, and neurocognitive assessments. Any 
extension of progression-free or overall survival for 
these patients will only be meaningful if quality of life 
and neurocognition can be preserved. There is rising 
need for further definition of reliable molecular/genetic 
tumor markers to be implemented in routine pathology/
neuropathology diagnostics, to catch up to increasing 
insights into molecular heterogeneity of cancer and its 
interaction with the local microenvironment.

An important future challenge will be to implement 
affordable investigations of the molecular and cellular 
components of the tumor microenvironment. In this regard, 
it will be increasingly important to visualize and monitor 
the expression of molecules and cell motion as well as to 
enhance the technical possibility of calculating cellularity, 
vessel permeability, vascular perfusion, metabolic and 
physiological changes, apoptosis, and inflammation prior 
to and during the course of therapy. A multimodal imaging 
algorithm is likely to improve sensitivity and specificity 
to meet these requirements. Certainly, novel multimodal 
algorithms will have to be prospectively investigated in 
multicenter trials for validation and standardization.

Since serial tissue biopsies are rarely clinically justified in 
CNS metastases, and in light of new upcoming targeted 
treatment options, noninvasive tools to measure drug 
penetration, pharmacodynamic effects, and efficacy are 
becoming increasingly important. Examples include PET-
based approaches for noninvasive measuring of drug 
uptake with 89Zr-trastuzumab and 89Zr-bevacizumab.[106,107]

Recent studies using magnetic resonance-guided focused 
ultrasound suggest a role for this noninvasive, radiation-
free alternative for treatment of small deep-seated 

brain metastases. New developments in this field could 
potentially further expand the treatment spectrum.[108-111]

For meeting these challenges, interdisciplinary and 
integrative research strategies must combine clinical 
investigation, neurological workup, quality of life 
assessments, neurocognitive testing, imaging, and 
histological and molecular profiling of tumor tissue to 
design individualized treatment strategies tailored to 
patients with CNS metastases. Only then can the full 
potential of precision therapeutic approaches be exploited 
for improving outcomes for our patients.
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INTRODUCTION

Brain cancers are the leading cause of death by solid tumors 
in children and the cause of morbidity and mortality across 
a wide range of adult individuals.[1,2] The identification of 
biomarkers that could allow diagnosis of brain neoplasms 
and could be informative for cancer spread or monitor 
therapy response is in great demand. Blood analysis for 
novel biomarkers has facilitated the timely diagnosis for 
patients with several malignancies such as prostate and 
breast cancers.[3] However, one of the challenges that 
contributes to the paucity of biomarkers in the serum for 
central nervous system (CNS) malignancies is the blood-
brain barrier, which is thought to prevent the release 
of tumor-specific molecules into the blood circulation. 
Cerebrospinal fluid (CSF) has thus been investigated in the 
search for brain tumor markers.

CSF is a readily accessible body fluid that is reflective 
of the underlying pathological state of the CNS, hence it 
has been widely targeted for biomarker discovery for a 
variety of neurological disorders. The CSF is continuously 
produced and recycled much like blood or lymph.[3] The 
majority of CSF is produced by the choroid plexus located 
on the lateral, third and fourth ventricles. The rate of CSF 
production in humans is 0.3-0.4 mL/min and the total CSF 
volume is 90-150 mL in adults and 65-150 mL in children.[4-6] 
CSF circulates through the ventricles, the cisterns, and the 
subarachnoidal space at the base of the brain, then flows 
over the convexities of the brain and down the length of 
the spinal cord.[5-7] Therefore, CSF is in contact with brain 
tissue and in proximity to most tumor bulks, making it 
an ideal reservoir of tumor-related/secreted molecules.[8] 
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It is accessible through lumbar puncture, a little invasive 
procedure. Any cancer cells released by brain cancer bulk or 
molecules that are actively secreted or passively diffused by 
cancer cells are likely to disperse into the CSF and therefore 
can be detected. Hence CSF analysis is considered to be an 
important tool in the evaluation of CNS malignancies. This 
review discusses potential and limitations of CSF analyses 
in brain cancer patients.

DETECTION OF CANCER CELLS IN THE 
CSF

Primary CNS cancers and metastases are often located in 
close proximity to ventricular surfaces or CSF cisterns.[9-11] 
Malignant cells derived from brain cancers reach the 
leptomeninges by CSF spread or by direct extension 
from the primary tumor itself e.g. medulloblastoma, 
primitive neuroectodermal tumors, germ cell tumors, 
ependymoma, and glioma may be disseminated throughout 
the neuroaxis by the flow of the CSF.[12-14] Table 1 shows 
the particular incidence of malignant leptomeningeal 
involvement in selected primary brain cancers. Currently 
microscopic evaluation of CSF is routinely performed in 
CNS malignancies with frequent leptomeningeal spread, 
such as medulloblastomas, PNET, pineoblastomas, germ-
cell tumors and CNS lymphoma.[15] Cancer therapy and 
prognosis of these groups of brain cancer are crucially 
determined by positive CSF cytology.[13,14]

CSF cytoanalysis
CSF cytology, in which CSF is prepared and examined 
under a microscope to look for cells, is currently considered 
the gold standard for diagnosis of brain cancer with 
leptomeningeal spread and metastatic cancer to the brain.[14] 
To achieve CSF cytology a sample can be obtained at the time 
of tumor surgery or by lumbar or intracerebroventricular 
(ICV) reservoir puncture.[3] However, lumbar CSF remains 
the specimen of choice to detect malignant cells of primary 
CNS tumors.[12,16] To avoid false positive results due to 
sloughing of tumor cells at the time of surgery, a recovering 
interval of one to two weeks is currently suggested before 

performing diagnostic postoperative CSF cytologic 
evaluation.[9,16,17] Accurate cytopreparatory techniques 
are essential criteria for successful CSF microscopic 
evaluations. 7.5 mL of CSF are usually withdrawn and 
immediately processed, as the cell counts can diminish by 
up to 50% within 2 h of collection.[4,18] CSF samples are 
then processed by centrifugation (CytospinÒ) at 800 g for 
3-5 min, air-dried for 10-15 min and stained with May-
Grunwald Giemsa (MGG) stain solution for 10-15 min.[19] 
Thin-layer preparation (ThinPrep) is a relatively new 
liquid-based cytology method which has been suggested 
to better detect malignant cells in CSF from solid tumors 
by performing good preservation of cell morphologic 
features. During the ThinPrep analysis, the CSF cells are 
collected through high-precision filtration driven by fluid 
mechanics and gently absorbed onto a glass slide by using 
electrochemical forces. The collected samples need to be 
added to 10 mL preservation solution, mixed and stood 
for 15 min. Slides are fixed in 95% ethanol for 15 min and 
stained by standard Papanicolaou method.[19]

CSF cytology, although indispensable, has many 
limitations Table 2. To start with it involves the pathological 
identification of abnormal cells in the CSF by Giemsa 
stain and clinicians must make judgments on the presence 
or absence of malignant cells. Hence, CSF cytological 
analysis is a pure qualitative test that bears no quantification 
and lacks validation.[3,20] Another weakness is that because 
the shedding of malignant cells into the CSF may occur 
intermittently and in low numbers, inconsistent presence of 
cancer cells in the CSF should be expected. CSF specimens 
may, therefore, fail to capture malignant cells representing 
one of the major weaknesses of CSF cytology. It is therefore 
recommended that CSF analysis should be repeated if 
initially negative.[21] One of the drawbacks is while CSF 
cytology is highly specific in detection of cancer cells, it 
suffers from a lack of sensitivity. A retrospective meta-
analysis[22] reported that CSF cytology sensitivity could be 
as low as 45% depending on how many times the lumbar 
puncture was repeated. False negative cytopathology is 
common (10-20% of patients) because of the paucity of 

Table 1: Association between primary brain tumors localisation and LS incidence
Disease Localisation Incidence LS Source
Medulloblastoma Fossa posterior possible extension to fourth ventricle, brainstem, 

cisterna magna 30-40% [17,85]
Supratentorial PNETs Frontal lobes, parietal, temporal and occipital lobes 25-40% [17,86]
CNS AT/RT The exact incidence of CNS AT/RT is difficult to determine because 

the tumor has been widely recognized for only the last decade 29% [87-89]
Retinoblastoma Retina, possible optic nerve invasion and choroidal involvement 3-23% [90,91]
Germ-cell tumors Pineal-region, possible extension to third ventricle, suprasellar 22% [92]
Primary CNS lymphoma Cerebral hemisphers, basal ganglia, corpus callosum, cerebellum 10-20% [93]
Brainstem glioma Tectal plate to medullary cervical junction, possible extension to 

prepontine cistern and fourth ventricle 3-13% [94,95]
Pinealoblastoma Pineal-region 10% [96]
LGG hypothalamic LGG can occur anywhere in the CNS 7% [97-100]
Ependymoma Infratentorial intraventricular (fourth ventricle’s floor, lateral walls, 

roof) or supratentorial within the brain parenchyma 5% [17]

LS: leptomeningeal spread; PNETs: primitive neuroectodermal tumors; CNS: central nervous system; AT/RT: atypical teratoid/
rhabdoid; LGG: low-grade glioma
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cells in the CSF and morphological similarities between 
benign and malignant cells.[13,23,24] The lack of standardized 
techniques for obtaining and evaluating CSF cytology 
specimens and the absence of molecular analysis of tumor 
cells certainly contributes to the wide sensitivity range.[3] 
Hence although it is currently used in the clinic, CSF 
cytology remains a poor surrogate marker for disease 
response in brain cancer/metastasis involvement.[9,13]

Flow cytometry analysis
CSF fluid flow cytometry is a useful addition to CSF 
cytology. Cytology examines morphologic patterns, and 
flow cytometry has the potential to provide information 
about cell surface protein expression. It is an additional 
highly sensitive cytological technique capable of accurately 
detecting malignant CSF cells, especially in comparatively 
smaller CSF volume and in samples with very low cell 
counts when combined with multicolor fluorescent antibody 
labelling.[9,23] In this method CSF must be processed 
similar to cytology within 1 hour of sampling however 
centrifugation should be minimized.[14,23] Automated 
methods allow rapid flow cytometry data analysis and 
thereby reduce the significant time expenditures used in 
conventional cytology routine.[14,25] Flow cytometry seems 
to provide a higher sensitivity. However the cell count and 
the percentage of neoplastic cells reported in the CSF by 

both cytology and flow cytometry were significantly higher 
compared with those found to be positive by flow cytometry 
alone.[23]

It has to be said that both false negative and false positive 
results (especially at low cell counts, < 25 cells/uL) can 
occur with flow cytometry too, a poor differential ability 
between mitoses and neoplastic cells is also reported Table 
2. Therefore before flow cytometry can be recommended 
in a routine CSF examination in combination with the 
conventional cytology, standardized protocols are needed 
to uniform definitions of positivity and procedure.[14,23,25] 
Rare cell capture technology, for example, CellSearch® is 
a recent technique using molecular markers to detect and 
enumerate circulating tumor cells in the CSF. This method is 
established to detect prognostic marker on different cancer 
cells circulating in the peripheral blood such as breast 
cancer and has recently attracted the interest of CSF cancer 
researcher.[3,9] However, the application of CellSearch® 
technology for detecting primary CNS cancer cells in CSF 
has not been published yet.

Other tools for cancer cell detection in the CSF
Measuring the chromosomal content of cancer cells in 
the CSF, using DNA single cell cytometry techniques 
or fluorescence in-situ hybridization that detects genetic 

Table 2: Advantages and disadvantages of different methods for brain tumors biomarkers detection in the 
CSF

Approach Method Pros Cons

Detection of cancer 
cells in the CSF

CSF cytoanalysis: CSF 
is examined under a 
microscope to look for 
cancer cells

Highly specific[12-14,16] Low sensitivity and false negative 
results are common[3,13,20,23,24]

Flow cytometry analysis: 
Have the potential to 
provide information 
about cell surface protein 
expression

Automated method that allows 
rapid analysis[14,25]

Smaller CSF volume is needed[9,23]

False negative and false positive 
results can occur (especially at low 
cell counts, < 25 cells/uL).
Poor differential ability between 
mitoses and neoplastic cells is 
reported[14,23,25]

Other tools: Measuring 
chromosomal content of 
cancer cells in the CSF 
using DNA single cell 
cytometry techniques 
or fluorescence in-situ 
hybridization

These techniques have the ability 
to detect genetic aberrations as a 
sign of malignancy location[26]

Low sensitivity[26]

Detection of 
biochemical molecules 
secreted by cancers to 
the CSF

CSF proteomic analysis: 
Systematic identification 
and quantification of the 
complete complement of 
proteins in the CSF

Specific proteomic patterns can 
differentiate subtypes or grades of 
specific brain tumors[27-30]

Limited sensitivity and specificity[31]

CSF microRNAs analysis: 
Measuring microRNA 
Profiling of CSF

High specificity and chemical 
stability[60,101] Only small amounts 
of CSF samples are required for the 
detection of miRNAs in the CSF 
offers the advantage of convenient 
repetitive monitoring of molecular 
events happening in cancer in the 
response to treatment[76]

The unknown origin and factors 
influence their level of expression 
might impact their specificity as 
biomarkers[76,102-106]

CSF: cerebrospinal fluid
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aberrations as a sign of malignancy, can also give additional 
diagnostic information to CSF analysis, but still has a low 
sensitivity Table 2. PCR can also establish cancer diagnosis 
when cytology is inconclusive, but the genetic alteration of 
the neoplasia must be known for it to be amplified with this 
technique, and this is generally not the case.[26]

PROTEOMIC ANALYSIS OF CSF

Proteomic profiling has become an active area of research 
for the biomarker discovery and the identification of new 
targets for therapeutic strategies. Recent studies have 
shown that specific proteomic patterns can differentiate 
subtypes or grades of human brain tumors.[27-30] Modern 
technological advancements in protein quantification which 
provide rapid screening, low sample consumption, and 
accurate protein identification, have enhanced the precision 
of proteomic analyses and are anticipated to accelerate 
brain tumor biomarker discovery.[31]

Research work on traditional sampling sources for 
proteomic profiling, such as blood[31,32] and tissue lysates,[33] 
have yielded asubstantial amount of information on 
potential brain cancer biomarkers. However, the majority of 
these markers exhibited limited value in a clinical setting, 
justifying the need for the exploration of more clinically 
relevant sampling sources. One such a promising source 
for protein biomarker discovery is the CSF where protein 
presences might result from either secretion/leaking by 
tumor tissues or abnormal blood brain barrier function.[8]

CSF proteomic analysis for detection of brain 
cancer markers
In the search for accurate biomarkers a number of reports 
have emerged over the past decade describing the analysis of 
different brain cancer proteome using CSF. For example the 
CSF level of carcinoembryonic antigen (CEA), is a protein 
tumor marker that is commonly increased in several human 
malignances, was found recently to play an important 
role in differential diagnosis of primary and metastatic 
brain tumors[34,35] and useful auxiliary marker in diagnosis 
of meningeal carcinomas.[36-38] In a study by Khwaja et 
al.,[39]the authors reported that proteomic analysis of CSF 
can discriminate malignant and non-malignant disease of 
the CNS and identified carbonic anhydrase protein (known 
to be overexpressed in many malignancies including high-
grade gliomas) as a prognostic marker of brain cancer.

The most significant example of how analysis of CSF 
proteins has impacted the clinical management of CNS 
cancer is in the case of intracranial malignant germ cell 
tumors.[40] Germ cell tumors are heterogeneous group of 
gonadal or extragonadal tumors that thought to arise from 
the aberrant migration and differentiation of primordial 
germ cells during embryogenesis. Extragonadal germ cell 
tumors can occur intracranial in the pineal and suprasellar 
regions and comprise approximately 3% of all pediatric 

brain tumors. Germ cell tumors retain the molecular 
characteristics of their primordial lineage as they maintain 
the expression of embryonic proteins, such as beta human 
chorionic gonadotropin (bHCG) and alpha-fetoprotein 
(AFP).[41] bHCG is a 36 kDa glycoprotein normally secreted 
by placental tissues while AFP is a 70 kDa glycoprotein 
normally secreted by the foetus primarily in the yolk sac, 
gastrointestinal tract, and liver. AFP is elevated in wide 
range of cancers, including colon adenocarcinoma, liver 
and gastric cancers while bHCG and AFP were found to 
be markedly elevated in the CSF of intracranial malignant 
germ cell tumor patients.[42] Both markers are currently 
utilized clinically as diagnostic and accurate indicators of 
response to therapy. Assessment of AFP and total bHCG in 
both serum and CSF is mandatory in order to distinguish 
between germinoma and NGGCT non-germinoma germ 
cell tumors. CSF AFP > 1000 ng/mL at diagnosis, or age 
< 6 years, intracranial malignant germ cell tumor patients 
are stratified as high risk and are treated more intensively. 
Moreover, the verification of bHCG and AFP levels prior 
to surgical resection provides a reference point that can be 
used to assess recurrence during follow-up however their 
absence does not rule out a germ cell tumor. Additional 
CSF protein markers such as placental alkaline phosphatase 
(PLAP) and lactate dehydrogenase isoenzymes have 
been shown to be clinically useful in the diagnosis and 
monitoring of pediatric intracranial germinomas, however 
such markers are less specific.[43] Elevated levels of s-kit, the 
soluble form of the c-kit receptor, a transmembrane tyrosine 
kinase receptor, was found to be a reliable marker for germ 
cell tumor diagnosis that can differentiate germ cell tumors 
from other CNS cancers. Miyanohara et al.[44] also reported 
that s-kit expression is able to detect recurrence of germ cell 
tumors and subarachnoid dissemination.

Gliomas are the most common primary brain tumors in 
adults. Glioblastoma multiforme (GBM) is the deadliest 
glioma with a median survival of only 14 months despite 
the recent advances in intensive therapeutic strategies.[45] 
Hence more effort was applied to study whether specific 
CSF proteomic profile can be generated to evaluate gliomas 
prognosis. Fang Shen et al.[8] conducted a review of the 
literature on the proteomic screening for glioma-related 
protein biomarkers in CSF. They were able to identify 19 
differentially expressed proteins, the majority exhibited 
increased concentrations (B2M, CA2, CA12, CALD1, 
DDAH1, MYCN, PPIA, SPP1, VEGFB, ALB, MAPT, 
SERPINA3, SPARCL1) while (GSN) was downregulated 
in the glioma CSF. Further functional assessments revealed 
several important protein networks (e.g., IL6/STAT-3) and 
four novel focus proteins (IL-6, galanin (GAL), HSPA5 
and WNT4) and the authors reported that these proteins 
might be involved in glioma pathogenesis. On the same 
theme, Khwaja et al.[46] used two proteomic techniques, 
two-dimensional gel electrophoresis and cleavable Isotope-
Coded Affinity Tag to compare CSF proteomes in order to 
identify tumor- and grade-specific biomarkers in patients 
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bearing brain tumors of different histology and grades. By 
performing retrospective analyses on 60 samples derived 
from astrocytomas WHO grade II, III, and IV, schwannomas, 
metastastic brain tumors, inflammatory samples, and non-
neoplastic controls, the group identified 103 potential tumor-
specific markers of which 20 were high-grade astrocytoma-
specific. SPARCL1, FGF14, VEGF-B, tau, b2M, bdefensin 
and Attractin were found as an upregulated marker in the 
CSF of patients with malignant astrocytoma and mediates 
glioma cell migration.[47] Sampath et al.[48] assessed whether 
vascular endothelial growth factor (VEGF) could be 
measured in the CSF of patients with cerebral neoplasms 
and used as a marker of particular brain cancer tumors. 
They investigated CSF samples from 27 patients with high-
grade astrocytomas, 39 patients with nonastrocytic CNS 
neoplasms, and 14 patients with no known CNS neoplasm. 
In their study, VEGF was detectable in 89% of samples 
with malignant astrocytoma and not normal CSF samples. 
The levels of VEGF were significantly higher in high-grade 
astrocytomas than in nonastrocytic tumors indicating that 
detection of VEGF in CSF could be a potential marker for 
differentiating astrocytic from nonastrocytic tumors.

Another group applied mass spectrometry based technology 
to identify possible CSF peptide markers of GBM.[49] 
Out of 2,000 detected CSF peptides four peptides which 
significantly distinguished GBM from controls were 
identified. They were specific C-terminal fragments of 
alpha-1-antichymotrypsin, osteopontin, and transthyretin 
as well as N-terminal residue of albumin. Interestingly the 
identified four molecules are constituents of normal CSF, but 
this group are the first to report their significant elevation in 
CSF of GBM patients. To detect biomarkers in high-grade 
astrocytomas, Ohnishi et al.[50] analysed the differential 
expression of proteins in the CSF from two cases each of 
diffuse astrocytoma (grade II), and glioblastoma (grade 
IV) using agarose 2-D gel electrophoresis. The authors 
found that the expression of gelsolin protein is decreased 
with histological grade. To examine whether gelsolin is a 
useful indicator of tumor aggressiveness the group further 
analysed the gelsolin expression in 41FFPE astrocytomas. 
Gelsolin expression was found to be significantly lower in 
high-grade than in low-grade astrocytomas. Moreover the 
overall survival of patients in the low-gelsolin expression 
was significantly poorer than in the high expression group 
highlighting the usefulness of gelsolin as a potential 
prognostic factor in astrocytoma.

Diffuse intrinsic pontine glioma (DIPG) is not surgically 
resectable, resulting in a paucity of tissue available for 
molecular studies and, currently, there are no effective 
treatments. Saratsis et al.[51] investigated 15 CSF specimens 
from patients with DIPG for proteomic analysis. Protein 
profiling was generated by mass spectrometry. CSF 
proteomic analysis revealed selective upregulation of 
Cyclophillin A (CypA) and dimethylarginase 1 (DDAH1) 
in DIPG, compared with controls. Protein expression 

was further validated with Western blot analysis and 
immunohistochemical assays using CSF and brain tissue as 
well as in blood samples from DIPG. Immunohistochemical 
staining showed selective upregulation of secreted but not 
cytosolic CypA and DDAH1 in patients with DIPG. Their 
study indicated that detection of secreted CypA and DDAH1 
in CSF and serum has potential clinical application, with 
implications for assessing treatment response and detecting 
tumor recurrence in patients with DIPG.

Primary central nervous system lymphoma (PCNSL) is 
another highly aggressive tumor that can lead to quick 
death if not diagnosed in time. The diagnosis of PCNSL can 
present a diagnostic challenge. It relies on histopathology 
of brain biopsies to the same extent as most brain tumors, 
while less invasive tests to detect early tumor pathogens 
with sufficient diagnostic accuracy are not available yet. 
Proteomic analysis of CSF has revealed various proteins 
that are differentially expressed in CNS lymphoma.[52-54] 
Among these, antithrombin III (ATIII), a serine protease 
inhibitor that is associated with neovascularization in CNS 
lymphoma, has been prospectively validated.[26] ATIII 
expression was reported by Roy et al.[55] to be elevated in 
the CSF of patients with CNS lymphoma compared to those 
patients with control. ATIII levels higher than 1.2 g/mL 
made the detection of CNS lymphoma possible with >70% 
sensitivity and 99% specificity.[26] Elevated antithrombin 
III levels significantly correlated with shorter survival rates 
and less response to chemotherapy. However and on the 
contrary a recent study from Finland, by Kuusisto et al.[56] 
declared that ATIII is not a suitable biomarker for diagnosis 
of PCNSL and increased concentrations of ATIII in CSF 
might be due to leakage of the blood-brain barrier.[57]

CXCL13 protein that is known to mediate chemotaxis of 
CNS lymphoma cells was detected within biopsy specimens 
from PCNSL patients[58] raising the possibility that this 
chemokine may contribute to CNS tropism. Rubenstein et 
al.[55] investigated the concentration of CXCL13 in CSF of 
CNS lymphoma patients and control cohorts in a multicenter 
study involving 220 patients. Their result demonstrated 
that elevated CXCL13 concentration in CSF is a highly 
specific marker for the detection of CNS lymphoma and 
can be helpful as an adjunctive diagnostic test and response 
to treatment assessment. Following their steps in studying 
chemokine in PCNSL, Sasagawa et al.[59] investigated CSF 
from 19 patients with CNS lymphoma (15 and 26 non-
lymphoma patients with various brain tumors) and reported 
that CSF IL-10 is a superior biomarker for initial screening 
for patients with CNS lymphoma.

Medulloblastoma (MB) is the most common malignant 
brain tumor in children. It includes various subtypes with 
group 3 and 4 subtypes being clinically distinct with regard 
to metastasis and prognosis, which may also manifest in 
a difference in their proteomic spectra. With the aim to 
identify putative biomarkers for MB in CSF, Rajagopal et 
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al.[60] investigated the CSF proteome from 33 children with 
MB and compared it against the CSF proteome from 25 age-
matched controls using two-dimensional gel electrophoresis. 
In their study levels of prostaglandin D2 synthase (PGD2S) 
were found to be six-fold significantly decreased in the CSF 
of tumor samples most likely representing a host response 
to the presence of the tumor.[61] Usually biomarkers are 
often thought to be elevated in a disease state compared 
to normal levels however candidate negative diagnostic 
marker such as PGD2S could be useful for detecting MB 
as well as recurrence of the disease. On the other hand it 
has to be said that while negative biomarkers are potentially 
useful, their relationship to tumor biology is less direct and 
more highly complex in comparison to proteins that are 
over-expressed in tumor associated samples.[40] Desiderio 
et al.[62] investigated CSF from 14 children with posterior 
fossa tumors (6 Pilocytic astrocytoma, 5 Medulloblastoma, 
3 Ependymoma and 5 nontumoral control). In their study the 
CSF proteomics demonstrated the potential biomarker role 
of the hemoglobin subunit beta fragments (peptides LVV- 
and VV-hemorphin-7) in posterior cranial fossa pediatric 
brain tumors. Both LVV- and VV-h7 were detectable in 
control-CSFs but absent in the patient CSFs collected 
before surgery (i.e. in presence of tumor). Interestingly 
both LVV- and VV-h7 were also absent in the CSF collected 
6 days after the resection tumor in patients with tumor 
relapse. Their data suggest that analysis in post-surgery 
CSF could be used to predict patient prognosis. However, 
it will be interesting to evaluate the cancer specificity of 
LVV- and VV-h7 in relation to other forms of CNS pediatric 
tumors. Finally levels of polysialic-neural cell adhesion 
molecule (PSANCAM), considered a marker of developing 
neuron, were found to be significantly higher in CSF from 
MB patients that are refractory to treatment or those who 
relapsed, than patients in remission.[63]

Atypical teratoid/rhabdoid (AT/RT) tumor is a rare, highly 
malignant tumor of the CNS most commonly found in 
children less than 5 years of age. Osteopontin (OPN) a bone 
matrix glycoprotein levels were found to be significantly 
elevated in patients with AT/RT. Clinical studies identified 
OPN as a potential diagnostic marker in ovarian, breast, 
colon, prostate, and lung cancers.[64] Using enzyme-linked 
immunosorbent assay and immunohistochemical analysis, 
Kao et al.[65] investigated plasma, CSF, and brain tissue 
specimens from 39 patients MB, 16; AT/RT, 8; epilepsy, 6; 
hydrocephalus, 9) and found that patients with AT/RT have 
higher plasma and CSF OPN levels in comparison with 
patients with MB, hydrocephalus, or epilepsy. Interestingly 
significant correlation between OPN levels and the risk 
of tumor relapse in patients with AT/RT was identified 
while OPN levels in the CSF were found to decrease with 
treatment.

Other biochemical markers
Malignant brain tumors may show an increased fraction of 
anaerobic LDH concentrations (LD4 and LD5) in CSF.[52] A 

number of other potential CSF protein biomarkers for CNS 
cancers have been reported in the literature such as Insulin-
like growth factor binding protein 2 (IGFBP2), Insulin-like 
growth factor binding protein 3 (IGFBP3),[66] Polysialic-
neural cell adhesion molecule (PSANCAM),[63] Total 
Tau (t-Tau),[67] Tumor necrosis factor (TNF) alpha[68] and 
CSF , S-100,[69] Neuron-specific (NSE),[70] neuron growth 
factor, HCG.[71] Apolipoprotein A-II,[72] MIC-1/GDF15,[73] 
Elevated expression of such markers in the CSF was found 
to be relatively specific for brain cancer[74,75] however 
sensitivities and specificities have widely varied.[26]

MICRORNAS

MicroRNAs (miRNA) are short, non translated fragments 
of RNA that bind to 3’ untranslated regions of messenger 
RNA and repress protein translation in several molecular 
pathways.[26] The discovery of miRNAs role in controlling 
essential regulators of key pathways implicated in 
development of CNS tumors make them a powerful tool for 
detection of cancer, risk assessment and prognosis. During 
the past decades, great efforts have been made in conducting 
research evaluating the diagnostic value of miRNAs in 
CNS cancer’s tissue.[76] However, a major drawback of 
the tissue-based approach centers on the need for invasive 
surgical procedures in sample collection. MiRNAs have 
been found to stably coexist in several body fluids including 
CSF which can be collected with minimal invasiveness and 
permit following the disease over time.[26] In this context 
several reports have described that deregulated miRNAs in 
CSF are closely associated with the clinical course of CNS 
malignant tumors.[2,77-82]

For example Baraniskin et al.[77] found that combined 
expression analyses of miR-21 and miR-15b were able to 
distinguish patients with glioma from controls with various 
neurologic disorders, including patients with carcinomatous 
brain metastases and primary CNS lymphoma with 
accuracy of 90% sensitivity and 100% specificity. While 
Teplyuk et al.[2] reported that combined analysis of a 
group of seven CSF miRNAs enabled the discrimination 
between GBM and metastatic brain cancers with more than 
90% accuracy. miRNA-21 and miR-10b expression levels 
were significantly increased only in brain tumor lesions 
(in patients with GBM or brain metastases) compared to 
nonneoplastic conditions while members of the miR-200 
family were found solely in CSF of patients with brain 
metastases, indicating that CSF miRNAs could be used to 
discriminate between glioblastoma and metastatic brain 
tumors, an important consideration for cancer treatment.[2] 
GBM is the deadliest glioma with median survival of 
only 14 months despite the recent advances in intensive 
therapeutic strategies.[80] Due to their anatomic location 
and infiltrative nature, these tumors are not amenable to 
surgical resection or even to biopsy in some cases. The 
paucity of biomarkers represents a sizable gap in improving 
the clinical management of these patients. Analysis of CSF 
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miRNA could therefore be advantageous for identifying 
putative disease markers for DIPGs.

An earlier work by Baraniskin et al.[77] demonstrated that 
combined miRNA analysis of miR-19, miR-21, and miR-
92a in CSF accurately discriminate patients with PCNSL 
from other neurologic disorders controls with diagnostic 
accuracy of 95.7% sensitivity and 96.7% specificity 
indicating significant diagnostic value. In the same theme, 
Scott et al.[79] conducted a review of the literature on CNS 
lymphoma diagnosis (1966 to 2011) and extracted data 
regarding the usefulness of CSF cytology, proteomics and 
miRNAs in the diagnosis of CNS lymphoma. The authors 
reported low sensitivity for CSF cytology (2-32%) which 
is increased when combined with flow cytometry. CSF 
lactate dehydrogenase isozyme 5, β2-microglobulin, and 
immunoglobulin heavy chain rearrangement studies have 
improved sensitivity over CSF cytology (58-85%) but have 
only moderate specificity (85%). Interestingly miRNA 
analysis has more than 95% specificity in the diagnosis of 
CNS lymphoma.

Twenty three studies with a total of 299 CNS cancer 
patients and 418 controls were analyzed by Wei et al.[81] 
through systematic meta-analysis for articles in the 
topic diagnostic value of miRNAs for CNS cancers and 
comparing sensitivity of on blood-and CSF based miRNAs 
assays for the diagnosis of CNS malignancies. Thirteen 

out of the 23 studies they analyzed focused on miRNAs 
as diagnostic biomarkers for glioma and 10 for PCNSL 
detection. The performance of miRNAs in CSF for CNS 
cancers detection showed more correctness in sensitivity 
suggesting a relatively high diagnostic accuracy. By the end 
of the study the authors concluded that miRNAs may be 
suitable as biomarkers for CNS cancers detection and that 
the CSF based miRNAs assays could be considered more 
reliable for clinical application. However, further validation 
based on a larger sample of patients and controls is still 
required.[81]

The presence and biological role of miRNAs in the 
extracellular environment of meddulloblastoma MB was 
examined recently by our lab and we found that more than 
one thousand miRNAs were released in the culture-medium 
in each of the MB cell lines tested.[82] Among them a panel of 
miRNAs were specific to the culture-medium of metastasis-
related cell lines (D341 and D283) which represents the 
aggressive group 3 and group 4 MB subtypes. Interestingly, 
three metastasis-associated miRNAs were over-represented 
in culture-medium of metastasis-related MB cell lines were 
found to be significantly enriched in the CSF of the MB 
patient. Although more samples are required to fully verify 
these results, our work presented the first evidence for the 
presence of miRNAs excreted extracellularly by MB cells 
and raises the possibility that investigations, using larger 
sets of MB samples, could lead in the near future to the 

Table 3: CSF biomarkers for the detection of brain cancer

Brain cancer Marker Method of 
detection References

Medulloblastoma, primitive neuroectodermal 
tumors, germ cell tumors, ependymoma and 
glioma

Cancer cells CSF cytology [12-14]

Intracranial malignant germ cell tumors bHCG and AFP CSF proteomic analysis [41]
Pediatric brain tumors (medulloblastoma , 
high-grade glioma, atypical rhabdoid tumor, 
astrocytoma, plexus carcinoma and anaplastic 
ependymoma, germ cell tumor)

Apolipoprotein A-II CSF proteomic analysis [72]

CNS lymphoma CD27, AT III, chemoattractant, 
CXCL13, CXCL12 and IL10 CSF proteomic analysis [55,57,107-111]

Cerebral low-grade lymphoma Immunoglobulin G IgG CSF proteomic analysis [112]
Brain metastases from lung adenocarcinoma Epidermal growth factor receptor 

EGFR CSF proteomic analysis [113]

Brain metastases from lung and breast cancers VEGF and stromal cell derived 
factor (SDF)-1 CSF proteomic analysis [73]

Medulloblastoma PGD2 CSF proteomic analysis [60]
Meningeal carcinomas CYFRA 21-1, NSE and CEA CSF proteomic analysis [70]
Glioblastoma MIC-1 GDF15 CSF proteomic analysis [114]

Glioblastoma miR-21 and miR-15b CSF microRNA analysis [115]
PCNSL miR-19, miR-21, and miR-92a CSF microRNA analysis [115]
Glioblastoma and brain metastasis miR-10b and miR-21 CSF microRNA analysis [116-117]
Brain metastases from lung and breast cancers Members of miR-200 family CSF microRNA analysis [116]
Glioblastoma, medulloblastoma, brain 
metastasis and lymphoma

miR-935, miR-451, miR-711, 
miR-223 and miR-125b CSF microRNA analysis [118]

CSF: cerebrospinal fluid; PCNSL: primary central nervous system lymphoma; bHCG: human chorionic gonadotropin; AFP: alpha-
fetoprotein; AT III: antithrombin III; CXCL13: chemokine C-X-C motif ligand 13; IL10: interleukin 10; VEGF: vascular endothelial 
growth factor; PGD2: Prostaglandin-D2 synthase; CYFRA 21-1: cytokeratin-19 fragment; NSE: neuron-specific enolase; CEA: 
carcinoembryonic antigen; MIC-1: macrophage inhibitory cytokine-1; GDF15: growth differentiation factor 15
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discovery of CSF-derived miRNA markers, with diagnostic 
and prognostic significance.

HOW NEAR ARE WE TO USING CSF 
MOLECULAR MARKERS FOR BRAIN 
CANCER DIAGNOSIS IN THE CLINIC?

The promise of CSF biochemical markers Table 3, such as 
proteins and miRNA, to detect and monitor brain cancer has 
swept through the oncology research area in recent years 
leading to ample publications. However, most putative 
markers did not progress beyond their initial discovery. 
A striking discrepancy exists between the effort directed 
toward CSF biomarker, whether it is protein or miRNA, 
discovery and the number of markers that made it into 
clinical practice.[83] Understanding the reasons why the 
role of these markers is not yet established in the diagnosis 
of CNS tumors can help accelerate the conduit between 
their discovery and clinical implementation. One of the 
confounding issues that participate in the failure of potential 
markers to reach the clinic is the lack of reproducibility 
between similar studies or low correlation of results. 
The most significant source for such inter-laboratory 
discrepancies is mainly due to differences in protein/miRNA 
preparation, in the analytical methods or the use of different 
technologies which may bias the analysis. There are various 
platforms/techniques which exist each with specific biases 
that can greatly influence the relative expression of certain 
molecules in the tested CSF sample and may lead to foregone 
conclusions. No wonder there is often a low correlation of 
results obtained from different platforms or even from the 
same labs using kits and reagents from different vendors. 
Yet there are no universally implemented guidelines. Hence 
standardization of these assays including CSF handling 
(collection, storage and preparation) is a challenge for the 
near future. Teuniseen et al.[84] have proposed protocols for 
the standardization of CSF collection to minimizing blood 
contamination of CSF and protocols for the standardization 
of CSF storage to prevent sample degradation and global 
proteome changes.[40]

Another critically important consideration is that despite 
the fact that several advanced platforms are available the 
analysis of secreted proteins/miRNA in the CSF is still a 
very challenging task due to technical difficulties. Often the 
scientists working on CSF biomarker discovery have limited 
knowledge of the protein/miRNA isolation/detection new 
platforms and or the analytical requirements which may 
hamper the subsequent markers analysis.

Together with low sample numbers that usually result in 
inadequate statistical power is another general weakness 
and might explain why not many of these markers have 
been validated for clinical use.[31,40] Taking together the 
successful translation of CSF biomarkers from basic 
research to clinical applications will likely require multi-
centre standardized and coordinated efforts to facilitate 

biomarkers discovery and implementation. Finally there are 
some other limitations to the interpretation of CSF cancer 
related molecules studies as biomarker. Protein/miRNA 
composition of CSF is dependent on patient attributes such 
as age, gender, the specific site of CSF access.[40]

CONCLUSION

CSF is an invaluable diagnostic window to the pathological 
state of CNS. It is easily accessible by minimally-invasive 
standard clinical methods and can provide the necessary 
biological information for the diagnosis of neurological 
diseases. Biochemical molecules secreted by brain cancers 
to the CSF hold great promise as diagnostic markers 
for a wide range of brain malignancies owing to the 
significant differences that have been reported between 
their expression profiles in healthy individuals and those 
of patients. However, significant concerns remain. Despite 
the sizeable published number of potential diagnostic and 
prognostic CSF biochemical markers their reproducibility 
between studies is unclear, and none have been validated 
for clinical use. The reported sample size in the literature 
is small. Most data were generated by a limited number of 
research groups using different protocols or technologies. 
No universally implemented guidelines are available yet for 
the CSF sample collection and preparation or for protein 
profiling or miRNA extraction from CSF and importantly 
for data analysis. It is therefore premature to make specific 
recommendations for their clinical implementation. More 
research that includes multi-institutional research and 
longitudinal studies of large patient cohorts to validate the 
clinical value of putative CSF markers, as demonstrated 
for the field of cancer genomics, is certainly warranted. 
The road from CSF biomarker discovery, validation, until 
the translation into the clinical setting could be long and 
difficult however, the reward for patients, clinicians and 
scientists could be rather significant.
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Aim: High-grade glioblastoma multiforme (GBM) has a poor median overall survival (OS). The standard treatment after surgery 
is temozolomide and radiotherapy (RTH). Patients with unmethylated methylguanine-methyltransferase promoter (MGMT) have 
no or little benefit from temozolomide and are eligible for alternative therapies. Gemcitabine is a good radiosensitizer. We aimed 
to evaluate the combination of gemcitabine with RTH in newly diagnosed GBM. Methods: The study was a prospective phase II 
study. Eligible patients were required to have histologically proven anaplastic astrocytoma or GBM. Patients underwent biopsies or 
subtotal resection. The treatment consisted of fixed-dose rate gemcitabine 175 mg/m2 weekly followed after 24 h by standard cranial 
RTH for 6 weeks. Tumor response was evaluated by Macdonald criteria. In case of progression, patients received temozolomide 
(200 mg/m2/5 days every 28 days). Results: Thirty patients with a median age of 52 years (30-69), 73%/27% male/female, the 
Eastern Cooperative Oncology Group performance status 1 (range 0-2) were enrolled. Five patients had a partial-response (17%) 
and 13 stable-disease (43%). Median time to progression was 7.88 months (95% CI 6.1-9.69) and OS was 11.77 months (95% CI 
9.97-13.56). The treatment was well tolerated with grade-3 neutropenia in 3, grade-3 anemia in 2 and impaired liver enzymes 
in 1 patient. Conclusion: Gemcitabine followed by radiotherapy is active and promising regimen in newly diagnosed GBM. 
Gemcitabine uptake is easy, with a long local retention of active metabolites, precluding systemic side effects of radiosensitization. 
In a phase III study this treatment should be evaluated in patients with unmethylated MGMT promoter who will not benefit from 
temozolomide.
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INTRODUCTION

Malignant gliomas grade 3 anaplastic astrocytoma (AA) 
or grade 4 glioblastoma multiforme (GBM) are rapidly 
progressing primary brain tumors, which in spite of 
advances in surgery, radiotherapy and chemotherapy, remain 
associated with high morbidity and mortality.[1] Despite the 
current multimodality therapy, the overall median survival 
for newly diagnosed patients is 10 months for patients with 
GBM and 2-3 years for those with AA.[2,3]

Standard treatment of malignant gliomas is surgery, 
followed by radiotherapy concomitant with temozolomide 
(TMZ), followed by adjuvant TMZ (Stupp et al.,[2] 2005). 
Surgery followed by involved field radiotherapy up to total 

dose of 60 Gray (Gy) significantly prolongs survival. There 
have been many efforts to intensify radiotherapy, including 
the use of radiosenstizers, brachytherapy, radioactive seeds 
implanted in the tumor bed, and stereotactic radiosurgery in 
selected cases.[4]

Initially the routine use of chemotherapy in addition to 
cranial irradiation was controversial. Individual randomized, 
controlled studies demonstrated no significant improvement 
in median survival with single agent or multiple agents 
chemotherapy, although a significant increase in survival 
was noted in a meta-analysis.[1] There was a significant 
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increase in the proportion of long-term survivors with 
the addition of chemotherapy, from less than 5 percent to 
approximately 15-20 percent, regardless of the patient’s 
performance status, the histological features of the tumor, 
the duration of symptoms or age (up to 65 years).[5]

However, the combination of radiotherapy with TMZ 
completely changed standard therapy, since this improved 
the median survival and overall survival.[2] However, 
not all patients benefit since an unmethylated promoter 
of methylguanine methyltransferase (MGMT) enables 
extensive repair of TMZ-adducts and these patients do 
not benefit from temozolomide[6] and are eligible for 
development of alternative therapies. Moreover, TMZ 
is relatively a poor radiosensitizer compared with other 
cytotoxic drugs,[7] However, the group of nucleoside analogs, 
including gemcitabine are excellent radiosensitizers.[8,9] 
Gemcitabine has been evaluated as a radiosensitizer for 
several tumor types, both in model systems and patients.[8,10] 
Gemcitabine, an analogue of deoxycytidine, enters the cell 
by the action of a nucleoside transporter[11] and it is activated 
by phosphorylation in a reaction catalyzed by deoxycytidine 
kinase (DCK), to gemcitabine monophosphate (dFdCMP) 
and subsequently phosphorylated to the 5’-diphosphate 
(dFdCDP) and triphosphate (dFdCTP) derivatives.[12,13] 
Gemcitabine exerts its cytotoxicity mainly through the 
irreversible incorporation of the activated triphosphate 
into DNA, resulting in chain termination. Due to a 
number of self-potentiating mechanisms, gemcitabine 
exhibits prolonged intracellular retention, a property likely 
partially responsible for gemcitabine’s broad spectrum of 
activity.[14,15]

The standard dose of gemcitabine (1,000 mg/m2) given 
over 30 min results in high gemcitabine peak levels 
(> 20 µmol/L), which rapidly decline below 1 µmol/L 
within 2 h.[16,17] However, DCK is saturated at much lower 
gemcitabine levels and in vitro and in vivo sensitivity to 
gemcitabine is most optimal at prolonged exposure to low 
drug levels in the nanomolar range.[18-20] Therefore, it was 
reasoned that prolonged infusion of gemcitabine, which 
would result in prolonged but lower plasma concentrations 
of gemcitabine, would be advantageous.[16,21] The fixed 
dose rate of 10 mg/m2/min infusion of gemcitabine 
gives this pharmacodynamic advantage over the 30 
min infusion,[16] resulting in a prolonged formation and 
retention of gemcitabine nucleotides which favour the 
activity of gemcitabine. A phase II trial showed that fixed 
dose rate gemcitabine can improve survival in patients 
with pancreatic adenocarcinoma but the difference was not 
significant in a randomized study.[22] Single agent studies 
of gemcitabine in high grade glioma did not show any 
benefit,[23,24] so that development of gemcitabine for this 
disease was discontinued. However, gemcitabine has shown 
a radiosensitizing effect in a number of human glioma cell 
lines[25-27] and in an animal model system.[28]

Sigmond et al.[29] demonstrated that gemcitabine could 
pass the blood-tumor barrier in GBM patients. In tumor 
samples, concentrations of gemcitabine and its active 
metabolite dF-dCTP were high enough to enable radio 
sensitization, which warrants clinical studies using 
gemcitabine in combination with radiation.

Weller et al.[24] and Metro et al.[30] indeed showed that 
gemcitabine combined with RTH was an active regimen, 
but whether it was more effective than RTH alone remained 
elusive. The combination gemcitabine-RTH followed by 
temozolomide showed promising activity.[30] Preliminary 
results of another phase I study showed that gemcitabine 
combined with radiotherapy is efficient and tolerable in 
high grade glioma.[31] The aim of our study was to evaluate 
the activity of gemcitabine with RTH as a treatment 
modality in newly diagnosed high- grade gliomas and 
temozolomide was administered after progression only.

METHODS

This was single center, phase II, open label, one arm 
non-randomized trial designed to determine the efficacy 
and safety of gemcitabine combined with therapy in the 
treatment of patients with newly diagnosed malignant 
glioma. The Research Ethics Board of Assiut University 
Hospital approved the study. All patients gave written 
informed consent before starting treatment.

Patients
Eligible patients had histologically proven malignant 
glioma (grade 3 or 4). Patients were at least 18 years of 
age; had the Eastern Cooperative Oncology Group (ECOG) 
performance status < 3, had adequate bone marrow reserves 
(hemoglobin > 9 g/dL, absolute granulocytes > 1.5 × 109/L, 
platelets > 100 × 109/L), and acceptable serum chemistries 
(serum calcium in normal range (8.8-10.2 mg/dL), serum 
creatinine < l.5 × upper limit of normal, bilirubin < 1.5 × 
upper limits of normal and AST (aspartate transaminase) < 
3 × upper limits of normal).

Patients were excluded if they were < 18 years old, had 
previous invasive malignancies or received previous 
chemotherapy or radiotherapy, had poor medical conditions, 
or were pregnant, nursing or not practicing effective 
contraception if appropriate.

Assessments and treatment plan
Pre-treatment evaluation included a history and physical 
and neurological examination, laboratory (complete blood 
picture, liver and kidney function, serum calcium level) 
and imaging studies (baseline CT and MRI brain) and a 
baseline toxicity evaluation.

After surgery of patients with malignant gliomas for either 
cytoreduction or a biopsy, patients received fractionated 
local RTH at a daily dose of 2 Gray (GY) per fraction, 
five days per week for six weeks (total dose of 60 GY). 



                                                                                                              Journal of Cancer Metastasis and Treatment ¦ Volume 2 ¦ May 18, 2016 ¦190

RTH was applied to the gross tumor volume with 2-3 cm 
margin for the clinical target volume. Radiotherapy was 
carried out using linear accelerator with 6-15 MV photons. 
Gemcitabine was administered at a fixed dose of 175 mg/m² 
by intravenous infusion starting 24 h prior to radiotherapy 
in the first week and then once weekly before RTH for the 
whole duration of the radiotherapy. Toxicities were graded 
using the NCIC-CTG expanded common toxicity criteria. 
Evaluation during protocol treatment included history and 
physical examinations (including full clinical neurologic 
examination), biochemical profiles; and imaging studies. 
Contrast-enhanced (gadolinium-DTPA) MRI of the brain 
was uniformly adopted for tumor assessment and evaluation 
of response. Baseline MRI examination was performed 
24-48 h after surgery and then within 1 week prior to the 
start of the experimental treatment, 4 weeks after the end 
of chemo-radiotherapy and every 8 weeks thereafter until 
evidence of disease progression. Toxicity assessments were 
done weekly during the radiotherapy and then one month 
from the end of the treatment then every 2 months or when 
clinically indicated. Toxicity was graded according to NCI-
CTC version 3.0.[32] Response was assessed using standard 
Macdonald criteria,[33] but patients were not considered 
to have had complete or partial responses unless clinical 
neurologic assessment was improved or stable. Patients 
were monitored until death.

Statistics
The duration of response was calculated from the first day 
of treatment to the date of progression for patients who 
achieved complete or partial response. Progression-free 
survival, analyzed by Kaplan-Meier method including 95% 
CI, was defined as the period of time elapsed from the first 
day of treatment to the date of disease progression, relapse 
or death from any cause. Overall survival was defined as 
the interval from the first day of study treatment to the date 
of patient death. The survival curves were estimated by 
the Kaplan-Meier product-limit method. The SPSS (11.0) 
statistical program was used for analysis.

RESULTS

Patients
From April 2009 to April 2011, thirty patients were enrolled. 
Table 1 shows the characteristics of patients entered on the 
study. Of the 30 patients included in the analyses, 8 were 
female and 22 male, with a median age of 52 years (range 
30-69). Patients had an ECOG performance status range 
0 to 2. There were 8 patients with anaplastic astrocytoma, 
and 22 with glioblastoma multiform.

Outcome
All patients received concomitant dexamethasone, while 
anti-convulsant treatment was given on demand. All the 
patients completed the chemoradiotherapy treatment. Six 
patients responded to the treatment (20%) and 13 patients 
had stable disease (43%) for an overall disease control rate 

of 63% [Table 2] [Figures 1 and 2]. At a median follow up 
of 18 months median time to progression was 7.88 months 
(95% CI 6.1-9.69) and overall survival was 11.77 months 
(95% CI 9.97-13.56). According to the histology Grade 3 

Table 1: Patient characteristics
Total patients 30
Age in years, median (range) 52 (30-69)
Gender
Male 22 (73%)
Female 8 (27%)
ECOG performance status, 
median (range) 1 (0-2)

Pathology
Anaplastic Astrocytoma 8 (27%)
Glioblastoma multiforma 22 (73%)
Surgical procedure
Subtotal resection 10 (33%)
Biopsy 20 (67%)

ECOG: Eastern Cooperative Oncology Group

Table 2: Treatment response
Response Patient number (%)
Complete response (CR) 1 (3)
Partial response (PR) 5 (17)
Stable disease (SD) 13(43)
Progressive disease (PD) 11 (37)
Disease control rate (CR+PR+SD) 19/30 (63)
Tumor response rate (CR+PR) 6/30 (20)

Figure 1: (a) MRI in T1 after Gd-DTPA infusion in axial plane shows an 
area of enhancement in GBM in the left parietal area; (b) MRI performed 1 
year after the end of chemo-radiotherapy shows a dramatic response of the 
tumour T1 axial plane after Gd-DTPA infusion. MRI: magnetic resonance 
imaging; GBM: glioblastoma multiforme

Figure 2: (a) PFS at a follow up of 18 months. The median PFS was 7.9 months 
(95% CI 6.1-9.7); (b) analysis of OS for 18 months, median OS was 11.8 months 
(95% CI 10.0-13.6). PFS: progression free survival; OS: overall survival
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astrocytoma has more favorable PFS 11.13 months (95% 
CI 9.37-12.88) and OS 15.25 months (95% CI 12.54-
17.96) than Glioblastoma multiform patients with PFS 
6.70 months (95% CI 4.505-8.90) and OS 10.50 months 
(95% CI 8.41-12.59). On multivariate analysis, factors 
predictive of progression were performance status (P 
= 0.04) and the extent of surgery (P = 0.02). The latter 
was evaluated in a subgroup analysis, which showed that 
patients with a subtotal resection had a higher probability 
for a longer survival than those patients who were only 
biopsied [Figure 3].

Safety
All patients completed radiotherapy for a total dose of 60 Gy. 
All patients were evaluable for safety of the combination of 
gemcitabine and radiotherapy. Treatment-related adverse 
events are summarized in Table 3. Generally the treatment 
was well tolerated. Hematological toxicity consisted of 
grade 3 neutropenia in three patients (10%), while grade 
3 anemia was reported in 2 patients (7%) on day 24; these 
patients received packed red blood cells. In the 3 cases 
of neutropenia, this was afebrile and occurred on day 16 
in 2 cases and on day 24 in one case after the initiation 
of study treatment. Also, non-hematological adverse 
events were mostly mild (grade 1) or moderate (grade 2) 

in intensity. Hypertransaminasemia was the only grade 
3 non-hematological adverse event in one patient (3%), 
and this patient was receiving antiepileptic treatment. No 
treatment-related grade 4 toxicities were observed.

DISCUSSION

In this study we demonstrated that gemcitabine followed 
by RTH is an active regimen for treatment of high grade 
newly diagnosed GBM. Our study met the primary 
activity objective, producing a response rate of 20% and 
disease control rate of 63%, which was in line with earlier 
gemcitabine/RTH data of 17.5% and 75%, respectively.[30] 
The results of these gemcitabine/RTH studies compare 
favorably with corresponding values for activity and 
disease control of 15.5% and 57.5%, respectively, obtained 
with nitrosurea given concurrently with radiotherapy.[34] 
Furthermore, the promising values of PFS of 7.88 months 
and OS 11.77 months are in the same range as that observed 
for temozolomide plus radiotherapy 6.9 months for PFS 
and of 14.6 months for OS.[2]

However, it is difficult to compare PFS and OS of the 
present study with those obtained in studies of radiotherapy-
temozolomide with or without adjuvant temozolomide, 

Table 3: Adverse events
Grade 1
Patient number 
(%)

Grade 2 
Patient number 
(%)

Grade 3
Patient number 
(%)

Grade 4
Patient number 
(%)

Heamatological toxicity 
Neutropenia 2 (7) 2 (7) 3 (10) 0

Aneamia 2 (7) 1 (3) 2 (7) 0
Thrombocytopenia 1 (3) 0 0 0
Non heamatological toxicity 
Impaired liver enzymes 2 (7) 1 (3) 1 (3) 0
Fever 2 (7) 0 0 0
Nausea/vomiting 3 (10) 1 (3) 0 0
Anorexia 2 (7) 0 0 0
Diarrhea 2 (7) 1 (3) 0 0
Fatigue 3 (10) 2 (7) 0 0
Convulsion 2 (7) 0 0 0
Headache 4 (13) 0 0 0
Insomnia 1(3) 0 0 0
Alopecia 9 (30) 4 (13) 0 0
Otitis externa 1 (3) 0 0 0
Scalp dermatitis 2 (7) 0 0 0

Figure 3: Subgroup analysis of PFS (depicted as Time to Progression, TTP) and OS according to surgical extension median PFS of 11 months (95% CI 8.1-
13.9) for subtotal resection versus 4 months (95% CI 3.5-4.6) for a biopsied patients and median OS 15.4 months (95% CI 13.5-17.3) versus 9.5 months (95% 
CI 8.1-11.0) for subtotal resection versus biopsy, respectively. PFS: progression free survival; OS: overall survival
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where 17.5-34.5% of patients had received complete tumor 
resection prior to study entry.[2,35] All patients in our study 
had residual disease after surgery, while 67% of the patients 
were biopsied-only. A subgroup analysis of TMZ plus 
radiotherapy showed that the 93 patients who underwent 
only biopsy had no significant improvement in median 
overall survival.[2]

Although PFS was the secondary objective in the present 
study, our results are not likely to be influenced by sequential 
temozolomide as it was only given after progression of 
the patients. In contrast, OS may be affected by the TMZ 
administered at disease progression. In another study,[30] 
this might not have been the case.

The combination of gemcitabine plus radiotherapy was 
well tolerated. No treatment-related grade 4 toxicities were 
observed, while there were only 6 cases of grade 3 adverse 
events, including 5 patients with hematological toxicity 
and one with hypertransaminasemia .This was in line with 
toxicity reported for gemcitabine with RTH in high grade 
glioma patients with weekly schedule.[30] On the whole, 
the treatment-related morbidity did not differ significantly 
from that observed with nitrosourea or temozolomide given 
concurrently with radiotherapy.[2,34,35]

The standard treatment of high grade glioma patients 
has changed considerably since the introduction of 
radiotherapy combined with temozolomide.[2,36] However, 
the benefit is only achieved in a subgroup of patients, who 
have a methylated MGMT promoter in the tumor.[6] The 
patients with a hypomethylated MGMT promoter have 
an active MGMT enzyme, which will repair the DNA 
damage. Moreover, even in cells with a methylated MGMT 
promoter TMZ is a relatively poor radiosensitizer.[7] 
Therefore these patients are eligible for an alternative 
treatment. Although gemcitabine as a single drug does 
not have an antitumor activity against GBM,[23,24] this 
is not due to a poor passage of the blood-brain barrier. 
Normal brain depends on preformed nucleosides to enable 
nucleotide synthesis in the brain.[37] Since gemcitabine 
resembles normal deoxynucleosides it is not unexpected 
that it is taken up efficiently into the brain and that the 
blood-brain barrier does not preclude gemcitabine’s 
passage.[29] Although the low dose of gemcitabine would 
preclude an antitumor effect by the drug itself, this dose 
results in sufficiently high concentrations in the tumor 
for radiosensitization can be reached. Since gemcitabine 
is an excellent radiosensitizer, low concentrations are 
sufficient,[25-27,38] while it is also important to have an 
adequate time-period between the drug and radiation,[8,9,39] 
since the active metabolite, dFdCTP, is retained for at least 
24 h in tumors this will allow to maintain sufficiently high 
levels.[19] This delay will also prevent cumulative toxicity. In 
addition to the radiosensitizing effect of gemcitabine, also 
its main catabolite, difluorodeoxyuridine, has been shown 
to be a good radiosensitizer,[40,41] while the catabolite is 

maintained at micromolar levels for days, including brain. 
This catabolite was recently shown to be able to inhibit 
thymidylate synthase.[42] This inhibition, leading to an 
accumulation of deoxyuridine triphosphate (dUTP), might 
be basis for an additional radiosensitizing effect.[9] Hence a 
dual radiosensitization might be achieved in glioma.

In conclusion, this study shows that fixed dose rate infusion 
of gemcitabine given before radiotherapy is clinically 
effective as a radiosensitizer for newly diagnosed GBM. 
Gemcitabine has a better cost effectiveness compared to 
the financial cost temozolomide. Further investigation of 
chemo-radiotherapy is needed and a Phase 3 trial with a 
higher number of patients will be initiated, to determine 
whether the gemcitabine radiosensitizing effect can be 
achieved irrespective of the methylation status of the 
MGMT promoter.[30]
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Due to the lack of effective treatments, advanced colorectal cancer (CRC) remains a leading cause of cancer death in the 
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authors review recent progress in understanding the molecular mechanisms underlying MR-mediated CRC progression and its 
therapeutic implications.
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INTRODUCTION

Colorectal cancer (CRC) is the second leading cause of 
cancer death worldwide with 1.4 million new cases and 
693,900 deaths each year.[1] In the United States, CRC is 
currently the third leading cause of cancer death for both 
men and women.[2,3] Annually, approximately 140,000 
people are diagnosed with CRC of which 50,000 will die, 
primarily from advanced disease.[2,3] Although surgical and 
endoscopic treatment is very effective for patients with 
early-stage CRC, late-stage CRC is generally resistant to 
chemo- and radiation- therapy.

Uncontrolled cell proliferation is an integral part of 
CRC progression. Cancer cell proliferation is regulated 
by a variety of growth factors and receptors. Epidermal 
growth factor (EGF) and other EGF receptor (EGFR) 
agonists play key roles in promoting growth of many 
human cancers, including CRC. As a result, biologicals 
that target EGFR have been approved by the Food and 
Drug Administration for the treatment of EGFR-positive 
advanced CRC; this approach enhances survival by 
several months.[4,5] However, the 5-year survival rate for 

advanced CRC remains only 10-15%.[4,5] New therapeutic 
approaches are urgently needed.

MUSCARINIC RECEPTORS IN NORMAL 
COLON TISSUE AND CRC

The muscarinic cholinergic family of G-protein-coupled 
receptors (GPCRs) consists of five muscarinic receptor 
(MR) subtypes designated muscarinic acetylcholine 
receptor subtype M1 (M1R)-M5R (for review see[6-9]). 
MR is expressed in many tissue types and play important 
roles in progression of many cancers including breast, 
prostate, lung and CRC.[10-12] M1R and M3R, expressed 
widely in the gastrointestinal (GI) tract, are coupled to 
Gq11, activate phospholipase C and increase cell calcium. 
Using reverse transcription polymerase chain reaction 
with primers specific to MR subtypes, radiolabeled ligand 
binding assays, and calcium mobilization studies, Frucht 
et al.[13,14] reported that 60% of colon cancer cell lines they 
tested expressed M3R. Subsequently, Yang and Frucht[15] 

reported up to 8-fold increased M3R expression in 62% of 
colon cancers compared to normal adjacent normal colon 
epithelium.
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MUSCARINIC RECEPTOR LIGANDS 
IN CRC (ACETYLCHOLINE AND BILE 
ACIDS)

Role of acetylcholine
Acetylcholine (ACh) was traditionally regarded solely 
as a neurotransmitter that functioned exclusively in the 
central and peripheral nervous systems. However, over 
the past decade emerging evidence indicates that ACh is 
also produced and released by normal and neoplastic non-
neuronal cells including human keratinocytes, small cell 
lung cancer cells, immune cells, and intestinal epithelial 
cells.[16-21] Choline acetyltransferase (ChAT) plays a critical 
catalytic role in the biosynthesis of both neuronal and 
non-neuronal ACh. Homozygous ChAT mutant embryos 
lack detectable ACh.[22] Also, ACh released from nerve 
endings is rapidly hydrolyzed by choline esterases thereby 
limiting its actions to immediately-neighboring cells. As a 
consequence, ACh production by non-neuronal cells can 
play a key role in regulating the actions of cells or tissues 
that are not directly innervated by cholinergic neurons.

ACh can be released by enteric neurons or produced by 
colon cancer cells. Although ACh release from intestinal 
non-neuronal cells was identified more than a decade 
ago,[23] its physiological relevance remains poorly 
understood. We showed that human colon cancer cells 
produce and release ACh that acts as an autocrine growth 
factor to stimulate cell proliferation.[24] We demonstrated 
that: (1) basal colon cancer cell proliferation is inhibited 
by the cholinergic antagonist atropine, cholinesterases, 
and inhibitors of choline transport; (2) ChAT is expressed 
at low levels by mouse and human intestinal mucosa, 
and at high levels by mouse colon tumors, a majority 
of human colon cancer cell lines, and CRC surgical 
specimens; and (3) human colon cancer cell lines produce 
and release ACh as demonstrated by high-performance 
liquid chromatography with electrochemical detection. 
These findings strongly support a role for ACh in CRC 
progression.

We proposed an important role for MR activation 
in ultrarapid growth of CRC in a patient with 
pheochromocytoma.[25] This elderly man with long-
standing, unresectable pheochromocytoma experienced 
rapid development of rectal adenocarcinoma despite 
close endoscopic surveillance. We determined that 
the patient’s CRC overexpressed M3R, whereas his 
pheochromocytoma expressed ChAT. These findings 
suggested that ACh release from the pheochromocytoma 
stimulated rapid growth of the rectal neoplasm. As proof-
of-principle we found that culture media conditioned 
by pheochromocytoma cells stimulates proliferation of 
a human colon cancer cell line, an effect attenuated by 
adding the MR antagonist atropine.

Role of bile acids
Besides ACh, bile acids and its derivatives are also 

important MR ligands. In 1998, we made the serendipitous 
observation that bile acids interact functionally with 
muscarinic receptors on gastric epithelial cells.[26] 
Subsequently, we made several novel observations: (1) 
conjugated secondary bile acids interact selectively and 
functionally with choline containing compounds (Cho) 
cells expressing muscarinic receptors;[27] (2) molecular 
modeling revealed a strikingly similar structural alignment 
of the geometry and surface electrostatic charges of bile 
acids and ACh;[27] (3) bile acid binding triggers appropriate 
post-M3R signaling;[27] (4) hybrid molecules created 
from bile acids and ACh are MR ligands;[28] and (5) 
lithocholic and deoxycholic acid conjugates interact with 
M3R on human colon cancer cells, thereby stimulating 
post-receptor signaling and cell proliferation.[29] Because 
muscarinic effects on colon cancer cell proliferation are 
mediated by transactivation of EGFR,[30,31] results of 
bile acid interaction with M3R depend on the cell type 
examined. In Cho cells that express M3R but not EGFR, 
deoxycholic acid conjugates are MR antagonists.[32] In 
H508 and HT-29 colon cancer cells that express both 
M3R and EGFR deoxycholyltaurine (DCT) is a MR 
agonist whose effects are mediated by transactivation of 
EGFR.[30,33] To our knowledge, no endogenous mammalian 
cholinergic agonists other than ACh and bile acids have 
been identified.

The observation that bile acids interact selectively and 
functionally with plasma membrane muscarinic receptors 
prompted us to examine their actions on intestinal 
epithelial cells. In particular, we studied H508 human 
colon cancer cells that co-express M3R and EGFR, and 
SNU-C4 cells that express EGFR but not muscarinic 
receptors.[14] DCT caused dose-dependent increases in 
M3R signaling and H508 cell proliferation that were not 
observed in SNU-C4 cells.[30] These proliferative effects 
of bile acids are mediated by interaction with plasma 
membrane M3R, not by interaction with bile acid nuclear 
receptors (i.e. the farnesoid X receptor) that regulate bile 
acid metabolism.

We demonstrated that efficacious concentrations of pro-
proliferative bile acids are achieved in the intestine.[34] 
Because H508 cells derive from a moderately well-
differentiated cecal adenocarcinoma, cecal contents 
were obtained immediately post-mortem from 19 
persons. Using internal controls, bile acid spectrum 
and concentration were determined by an enzymatic 
assay and gas-chromatography/mass spectrometry. 
Total 3α-hydroxy bile acids were 400 ± 200 μmol/L 
(mean ± SD) and deoxycholic acid conjugates were 
12 ± 28 μmol/L (maximum, 104 μmol/L).[33] Overall, 
in one-third of subjects, cecal conjugated deoxycholic 
acid achieved levels (10-100 μmol/L) that stimulate 
colon cancer cell proliferation in vitro.[30,33,34] Cecal bile 
acid concentrations in persons with ileal disease, ileal 
resection, and colon cancer are not known. Additional 
factors suggest that bile acid interaction with GI epithelial 
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cell muscarinic receptors can regulate cell proliferation: 
(1) fecal bile acids are in contact with intestinal epithelial 
cells for many years (average age for developing colon 
cancer is > 50 years);[35] (2) bile acids lack an ester linkage 
and are not hydrolyzed by tissue cholinesterases that 
rapidly inactivate ACh;[28] (3) lipophilic lithocholic acid 
derivatives have access to muscarinic receptors in the 
lipid bilayer of cell membranes (i.e. the novel bile acid: 
ACh hybrid molecule, lithocholylcholine, interacts with 
muscarinic receptors on rat aortic strips);[28] (4) neoplastic 
cells commonly lose polarity, thereby expanding 
expression of muscarinic receptors, usually restricted to 
the basolateral membrane, to the entire plasma membrane; 
and (5) increased tight junction permeability between 
neoplastic cells allows access of luminal bile acids to 
basolateral membrane receptors.[36] We believe that this 
collective evidence makes a compelling argument that 
muscarinic receptors and MR ligands play an important 
role in intestinal epithelial cell proliferation and CRC 
progression.

Although experimental studies in rodents suggest that 
bile acids are intestinal tumor promoters,[37] the role of 
endogenous bile acids in colon carcinogenesis remains 
poorly understood. Dawson et al.[38] showed that in 
mice deficient in the ileal apical sodium-dependent bile 
acid transporter (ASBT, encoded by SLC10A2), fecal 
bile acid excretion increased more than 10-fold. To 
examine the development of aberrant crypt foci (ACF), 
the earliest histological marker of colon neoplasia, 
we treated WT and Asbt-deficient [Slc10a2 (-/-)] male 
mice with azoxymethane (AOM), an intestine-selective 
carcinogen.[39] We also used a combination of AOM and 
dextran sodium sulfate to induce colon tumorigenesis. 
Compared to littermate controls, we found that Asbt-
deficient mice demonstrated significant increases in ACF, 
as well as colon tumor number and size. Also, Asbt-
deficient mice had a two-fold increase in the number 
of colon adenocarcinomas. Finally, in murine colon 
neoplasia, increased fecal bile acids were associated with 
increased expression of M3R and EGFR, and activation 
of post-EGFR signaling. These observations indicate 
that endogenous bile acids also promote intestinal 
tumorigenesis.

MR SIGNALING IN CRC AND DISEASE 
PROGRESSION

Transactivation of EGFR
EGFR is commonly over-expressed in many epithelial 
malignancies and this feature often indicates a more 
aggressive phenotype.[40] Likewise, as observed with 
M3R, EGFR is frequently over-expressed in colon 
cancer (in 25-77% of tumors compared to adjacent 
normal mucosa).[40,41] Co-expression of M3R and EGFR 
in many colon cancer cell lines, and over-expression of 
these receptors in the majority of colon cancers suggests 
that the functional interaction observed between M3R 

and EGFR is important for regulating colon cancer cell 
proliferation.[31]

Previously, we found that in H508 cells which over-
express both M3R and EGFR, but not in SNU-C4 
cells that express EGFR but not M3R, ACh stimulated 
cell proliferation by approximately 200% compared 
to control.[31] In H508 cells, both ACh and EGF 
stimulated calcium-dependent EGFR activation (tyrosine 
phosphorylation) and activation of extracellular signal-
regulated kinase 1 and 2 (ERK1/2); MR antagonists 
and inhibitors of the mitogen-activated protein kinase 
(MAPK) phosphorylation blocked these effects. In 
addition, ACh- and EGF-induced phosphorylation of 
ERK1/2 MAPK and cell proliferation were abolished by 
EGFR inhibitors. However, in Cho cells transfected with 
rat M3R, which lack EGFR, ACh-induced ERK1/2 MAPK 
phosphorylation was not altered by EGFR inhibitors. It 
was concluded that, in H508 cells, cholinergic ligand 
interaction with M3R results in transactivation of EGFR, 
thereby stimulating cell proliferation.[31] These results 
indicate that EGFR transactivation is a key mechanism 
underlying MR-mediated intestinal tumorigenesis and 
cancer progression.

Cell proliferation and tumorigenesis
Uncontrolled cell proliferation is a hallmark of 
malignancies. We showed that in human colon cancer 
cells ACh-induced activation of M3R stimulates robust 
but selective matrix metalloproteinase (MMP) gene 
expression.[42] In H508 human colon cancer cells, ACh 
caused a striking dose- and time- dependent increase 
in mRNA and protein levels of MMP1, 7, and 10 by 
upregulating gene transcription. As a consequence, 
ACh stimulated MMP7-dependent cell proliferation by 
transactivating EGFR.

Using in vivo models, we showed that genetic ablation 
of M3R in AOM-treated mice attenuates epithelial 
cell proliferation, and the number of adenomas and 
adenocarcinomas per mouse colon (65% reduction in 
the number of adenocarcinomas/colon).[43] Whereas 50% 
of AOM-treated wild-type (WT) animals had multiple 
adenocarcinomas/colon, this was not the case with any 
M3R-deficient animal. Moreover, in M3R-deficient mice 
the overall colon tumor volume was reduced by 60% 
compared to that in WT animals. Collectively, these 
observations suggest that M3R may play a role in both 
tumor initiation and promotion; that is, both the number 
and size of tumors was reduced in M3R-deficient animals.

MR antagonists are potential therapeutics in CRC. We 
showed that M3R gene ablation and treatment with 
scopolamine butylbromide, a non-subtype-selective MR 
inhibitor, attenuated small intestinal neoplasia in ApcMin/+ 
mice with aberrant beta-catenin signaling.[44] Compared 
with ApcMin/+ mice, ApcMin/+M3R-/- mice showed 70% 
and 81% reductions in tumor number and volume, 
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respectively. After 8 weeks of continuous treatment, 
scopolamine butylbromide-treated mice had a significant 
reduction in both tumor number and volume as compared 
with control mice. Overall, these findings indicate that the 
interplay of M3R and beta-catenin signaling is important 
for intestinal mucosal differentiation and neoplasia.

Because intestines express both M1R and M3R receptors, 
it is important to determine whether these two receptors 
have distinct functions. We showed divergent effects of MR 
subtype gene ablation on murine colon tumorigenesis.[45] 
Although AOM-treated M3R-deficient mice had fewer and 
smaller colon tumors than control WT mice, reductions in 
colon tumor number and size were not observed in M1R-
deficient and dual M1R/M3R-deficient mice. Microarray 
and real-time PCR analyses revealed a possible role for 
zinc finger protein (Zfp) 277 expression in mediating these 
different phenotypes. However, the molecular mechanism 
underlying the MR-dependent regulation of Zfp 277 
requires further investigation.

We demonstrated cholinergic MR activation augments 
murine intestinal epithelial cell proliferation and 
tumorigenesis in vivo.[46] Mice treated with the MR agonist 
bethanechol, provided in drinking water, had increased 
AOM-induced colon tumor numbers and size compared 
to AOM-treated mice drinking untreated water. Cell 
proliferation in both normal mucosa and adenocarcinomas 
was increased in bethanechol-treated compared to 
control mice. Also, in tumors, bethanechol treatment was 
associated with increased expression of M3R, EGFR 
and post-EGFR signaling molecules Myc and cyclin 
D1. Bethanechol treatment also increased normal colon 

mucosal thickness and stimulated expression of selected 
MMP genes, including MMP7, MMP10, and MMP13. 
These findings confirm that MR agonists are intestinal 
tumor promoters.

Cell migration and invasion
Cell migration is a key mechanism of cancer invasion. 
Using three distinct in vitro models, we showed that MR 
activation enhances cell migration and invasion. Using 
a soft agar colony formation assay, we showed that 
ACh enhanced anchorage- and MMP-dependent growth 
of H508 human CRC cells. In addition, in H508 and 
HT29 human CRC cells, using in vitro wound closure 
and Matrigel invasion models,[47] we showed that ACh 
treatment increased cell migration that was was blocked 
by inhibiting RhoA and Rho kinase, key proteins that 
interact with the actin cytoskeleton. Lastly, using an 
electrical cell impedance sensing invasion assay, we 
showed that ACh stimulated MMP1-dependent invasion 
of H508 cells.[48]

CONCLUSION

Muscarinic receptors are expressed in normal colon 
epithelial cells and overexpressed in colon tumors and 
colon cancer cell lines. Primary MR Ligands include ACh, 
deriving from both neuronal and non-neuronal tissues, 
and secondary bile acids. MR activation enhances colon 
cancer cell proliferation, cell migration, and invasion 
by transactivating EGFR, thereby initiating post-EGFR 
signaling [Figure 1]. MR antagonists and other agents 
that block MR activation or subsequent post-MR signal 
transduction have promise for CRC therapeutics.

Figure 1: Muscarinic acetylcholine receptor subtype M3 (M3R) agonist-induced signaling in human colon cancer cells. Post-M3R matrix metalloproteinase 
7 (MMP7) activation releases heparin binding epidermal growth factor (EGF) like growth factor (HBEGF), thereby activating EGF receptors (EGFR) 
signaling which promotes cell proliferation, survival and migration downstream extracellular signal-regulated kinase (ERK) activation induces MMP7, which 
replenishes MMP7 (green arrow), and MMP1, which promotes colon cancer cell invasion (red arrow)
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FUTURE DIRECTIONS

It is clear that muscarinic receptors and ligands play key 
roles in CRC progression. Unfortunately, there are no 
published translational and clinical studies at this time. 
Future studies focused on determining overexpression of 
muscarinic receptors in different patient cohorts, relation 
to CRC staging, tumor differentiation and prognosis will 
shed more lights in the importance of muscarinic receptor 
signaling in CRC.

Another important aspect of MR signaling in CRC is 
therapeutic potential of MR-based therapy. Because M1R 
and M3R are both expressed abundantly in the intestinal 
epithelium, buy have distinct functions,[45] it is critical to 
develop M1R- and M3R-specifc ligands, and test their 
pharmacological and therapeutic characteristics both 
in vitro and in vivo. These studies will lay important 
foundations for future human clinical trials that are focused 
on MR-based therapy. In addition, colon-specific drug 
delivery systems[49] should be utilized to reduce unwanted 
systemic side-effects.
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INTRODUCTION

Human papillomavirus (HPV) is considered to be one of the 
viral infections associated with cancers and other diseases 
worldwide. HPVs are non-enveloped viruses with double 
stranded circular DNA.[1,2] The genome of papillomavirus 
constitutes three segments; early, late and genomic regions. 
The early region with E1, E2, E4-E8 forms half of the HPV 
genome. The early fragments function at different stages, 
in such both E1 and E2 is involved in the regulation of 
DNA replication, E2 in transcription (E2), E5, E6 and E7 
in cell transformation [Table 1]. The late region (L) with 
L1 and L2 forms 40% of the genome and the genomic 
regulatory region forms the rest of the genome.[3] The late 
region of the genome involves the structural proteins of the 
virion [Table 1].[4]

HPVs are characterised according to their tissue tropism and 
they are subdivided into five main genera (Alpha-, beta-, 
gamma-, nu- and mu-papillomaviruses) depending on the 
DNA sequences, HPV life cycle characteristics and disease 
associations.[5-8] Alpha-HPVs infect mucosal tissues, 
whereas beta-, gamma-, nu- and mu-papillomaviruses 
infects cutaneous sites causing cutaneous lesions in 
humans.[9,10] However, as in recent years the number of 
HPV genotypes identified in healthy skin is increased, it 
is difficult to assign the cutaneous HPV types with a given 

cutaneous pathology. The HPVs can be further subdivided 
according to the epidemiological classification as ones 
with low, intermediate and high risk oncogenic potentials 
depending on the viruses’ ability to promote the proliferation 
of infected cells and lead to malignant transformations.[1,11] 
The low risk HPVs including HPV6, 11, 42, 43 and 44 
may cause condylomas and benign cervical lesions that do 
not form malignancies.[1,4,12,13] The intermediate oncogenic 
risk HPVs involves HPV31, 33, 35, 51 and 52 and there is 
still an ongoing debate whether the intermediate oncogenic 
risk HPVs cause malignant transformation as much as the 
high risk HPV types.[2,14] High oncogenic potential HPVs 
include HPV16, 18, 45 and 56 and these HPVs mostly 
cause neoplastic transformations.[2,4,14] Unlike alpha-
HPVs, most of the beta- and gamma-HPVs results in 
asymptomatic infections in immune-competent individuals 
and these viruses adapt to their host and complete the life-
cycle without causing any apparent diseases.[8,15-17]

Although the molecular defects caused by HPV 
infection leads to malignant transformation, it is not 
well established how they predispose to disease and 
whether keratinocyte[18,19] or the immune system is being 
compromised.[20,21] Therefore, although mainly the high 
risk HPV types cause malignant transformation and the 
low risks do no, it is possible that the low-risk viruses 
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may also be associated with human cancers. The current 
understanding indicated that HPVs infect cells found in 
germ layers of the skin and mucous membranes, keranocyte 
or cells with differentiation potential of keranocyte. The 
mechanism of HPV infection is suspected to be similar 
among different tissues; in such the HPV infects the basal 
layer of the cervix causing exposure of the basement 
membrane, and HPV enters the basal layer of the tonsillar 
epithelium infecting and exposing the crypt cells.[22,23]

TRANSMISSION OF HPV

The most common sexually transmitted infection is 
presumed to be the HPV infection. HPV infection can be 
transmitted via both sexual and nonsexual contacts. HPVs 
penetrate the body through the skin and epidermis injuries, 
mucous membranes and skin abrasions.[24] Genital types 
of HPVs are mostly transmitted sexually. Generally in 
women, epidemiological studies have shown that the HPV 
infection is associated with the number of sexual partners, 
initial age of sexual intercourse and the likelihood of one of 
the sexual partners with an HPV infection.[25,26] Therefore 
for HPV associated cancers, such as cervical, penile or 
urethra, the sexual partner plays a key role as much as the 
individual’s own sexual behaviour.[25,27]

More rarely, HPVs can be transmitted via perinatal 
transmission during birth from the mother to child that is 
also observed in the transmission of other microbial and 
viral infections.[28,29] Horizontal transmission of HPV is 
also possible and it was first reported with a 5 year old 
boy of HPV2 infection presented as warts on the hands and 

anus of the child via genital-finger transmission.[30]

IMMUNE RESPONSES TO HPV AND 
VACCINE-INDUCED PROTECTION

HPVs that cause persistent visible papillomas, especially 
at oral and genital sites, are the main concern for the 
individuals. It is known that under some circumstances the 
virus is cleared and although the underlying mechanism 
of the virus clearance is not well understood, the immune 
response, particularly T cells, seems to play the main 
role.[31-33] Lesion persistency and progression are increased 
in both animals and humans with genetic, iatrogenic or 
acquired cell mediated immune deficiencies, such as in 
patients with severe combined immunodeficiency,[34] in 
immunosupressed organ recipient patients,[35] in patients 
with epidermodysplasia verruciformis[35] and sun-exposed 
sites of patients with non-melanoma skin cancer.[35-37] 
Moreover, HPVs can escape the immune system and down 
regulate the innate immune signalling pathways.[38]

The clearance of high risk HPV types are believed to be 
harder since these types weaken the immune defences 
causing infection to continue and progress to neoplasias. 
However, it should be noted that progression from 
infections to cancer is a rare event and the first defence 
against HPV is the natural immunity. High risk HPV 
types are believed to destabilize the immune responses via 
obstructing the interferon pathway, down regulating major 
histocompatibility complex class I genes and changing the 
antigen production.[39] High risk HPV types continue to 
express the E6 and E7 oncoproteins that leads to genomic 

Table 1: List of HPV proteins and their function
HPV 
proteins Function

E1
Viral DNA replication
Repressive agent in transcription
Inhibition of DNA replication[24,199]

E2

DNA replication
Functions with E1, especially in HPV6, 11 and 16[24]

Responsible for coding proteins regulating viral DNA transcription[199] 
cell transformation, initiating and inhibiting apoptosis, transcriptional regulation, and in the modulation of the 
immortalizing and transformation poten-tial of HPV[24]

When inactive, it promotes E6 and E7 expression and influence tumor lesion development
When active, it inhibits E6 and E7 transciption leading to increased p53 expression and apoptosis of infected cells[199]

E4 Affects the formation of the HPV-1 triggered nodules[24] may be involved in the cell cycle regulation[199]

E5 Transformation of viral DNA
Viral DNA replication[24,199]

E6

Maintains the viral replication
Synthesis of the genes via epithelium differentiation[200]

Involved in HPV dependent malignant transformation via destructing the control of cell cycle regulation and cell 
maturation[199]

E7

Maintains the viral replication
Contributes to the genetic instability of HPV-infected cells by interfering with the normal replication of centrosomes
Synthesis of the genes via epithelium differentiation[200]

Involved in HPV dependent malignant transformation via destructing the control of cell cycle regulation and cell 
maturation[199]

HPV: human papillomavirus
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aberrations and malignancies. Furthermore, differences in 
cell tropism and disease progression patterns are believed 
to be one of the reasons of higher cancer association with 
certain HPV types, such as higher association of HPV18 
with adenocarcinoma and in cervical intraepithelial 
neoplasias grade 2 (CIN2). The high risk HPV types 
causing adenocarcinomas may infect cells that already 
have a potential glandular differentiation.[40] Therefore 
abortive or semipermissive infection of these cells may 
play an important role in the adenocarcinoma development. 
Recently, in silico models and epidemiological studies 
showed that the immune response may only contribute less 
than 20% of HPV clearance in individuals with normal 
immunity.[41] Ryser and colleagues (2015) further proposed 
that the virus is mainly cleared by stem cell divisions in 
immunocompromised individuals.[41]

Overall balance between the positive and negative immune 
factors may vary and these may lead to clearance of 
lesions. Therefore, therapeutic vaccines against HPV 
infections may play a strong role in prevention HPV 
associated lesions and cancers.[42] In 2006, the Food and 
Drug Administration approved the use of recombinant 
quadrivalent HPV vaccine gardasil for protection against 
HPV6, HPV11, HPV16 and HPV18 L1 proteins in females 
in the age between 9 and 26 years old.[43] It is proposed that 
in three doses of this vaccination at 0, 1 to 2 and 6 months, 
the HPV associated genital warts and the cervical cancer 
can be prevented.[44] This vaccination is also proposed to 
protect against the vulvar and vaginal cancers as well as 
intraepithelial neoplasias.[45] In 2009, the bivalent vaccine 
against HPV16 and HPV18 was licensed[46] and this 
vaccine is intended to protect against anogenital warts, 
precancerous lesions and cervical cancer.[45] Both the 
bivalent and quadrivalent HPV vaccines have been actively 
used in more than 80 countries.[47] Both of the vaccines 
are shown to be safe, having enduring protection against 
primary infection and stable protection.[48] These vaccines 
have a moderate cross-protection against high risk HPV 
types, HPV31, 33, 45, 52 and 58.[49,50] However, only 70% 
of cervical cancer cases can be avoided by using these 
vaccines.[51] Quadrivalent vaccines also protects against 
low risk HPV types, HPV6 and HPV11 that causes 90% 
of genital warts.[43] The development of these vaccinations 
has brought a new era in the prevention of HPV and these 
vaccinations are great promise; however there is still 
room for much more development. In general, therapeutic 
vaccines have been proposed but only few of them reached 
clinical trials. The current vaccinations do not protect 
against all the HPV types and the cost of these vaccinations 
make them impossible to be used in some parts of the 
world, especially in newly developing countries. Therefore, 
although vaccinations enabled a tremendous step towards 
prevention of HPV associated diseases, more feasible and 
affordable vaccinations with protection against all the HPV 
types are required.

GLOBAL BURDEN OF HPV IN CANCERS 
AND DISEASES: PREVALENCE AND 
ROLE OF HPV

The highest HPV prevalence is observed to be 24% in 
Saharan Africa, 21% in Eastern Europe and 16% in Latin 
America.[52] In majority of the populations, the highest 
prevalence of HPV is observed in women younger than 
25 years. The prevalence reduces in older women with 
some having an increased rate in pri- or early-menopause. 
Although these prevalences are observed for many 
populations, in some others like China, the HPV prevalence 
is age-independent. On the other hand, HPV prevalence 
remains to be at a constant rate across all age groups in 
countries like Asia and Africa.[53] The reason of different 
prevalences observed in different populations worldwide 
are not very well understood, but it is possible that it varies 
due to the age of initial sexual activity, the number of 
partners and the habits of the sexual activities.

Different HPV genera cause both non-cancerous and 
cancerous diseases. Formation of warts on the skin and 
uretra, mucous membranes of the oral cavity, respiratory 
tract, throat and genitals have been associated with HPV 
infections. Current data indicates that the prevalences of the 
genital HPV infections are considerably higher compared 
to the oral HPV. Globally HPV infections are associated 
with approximately 50% of HPV caused cancers in women 
and 5% in men.[54] Different carcinogenesis is detected 
at different anatomical sites and at different level that is 
most likely because of the differences in the expression 
of the viral genome, in such HPV associated genital tract 
infections are observed at higher incidence compared to the 
head and neck cancer incidence. Genital HPV infections are 
connected with more than 99% of cervical cancers,[55] 97% 
of anal cancer,[56] 70% of vaginal cancers,[57] 47% of penile 
cancers,[58] 40% of vulval cancers,[57] 47% of oropharynx 
cancers and 11% of oral cavity cancer cases.[59]

ROLE OF HPV IN CANCER 
DEVELOPMENT

The mechanism of cancer progression in patients with 
HPV infection is not well established. However, there are 
a number of hypothesis on the possible routes of HPV in 
cancer progression. One of the hypotheses suggests that 
the cancer progression is associated with the increased 
accessibility and proliferation of the basal layers at the 
metaplastic epithelial site and therefore this increases the 
risk of metastasis. This becomes even more apparent at the 
puberty time and the onset of sexual activity.[60]

The initial infection of the cell and the relation of this to 
the disease outcome are not well understood. Generally 
HPV infection causes cell destruction as well as cell 
transformation and tumour development. HPVs interfere 
with cell cycle regulation and prevent apoptosis in cells 
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with unscheduled DNA replication. It is possible that HPV 
infection mainly affects the cells located near the squamo-
columnar junctions that form the stratified epithelial layers 
of the transformation zone as the cervix matures, such 
as the epithelial reserve cells.[61,62] It is believed that the 
formation of the lesion starts with the infection of the basal 
stem cell and the formation of a persistent lesion depends 
on the longevity of the stem cell.[6,63,64] This hypothesis is 
especially convincing for the low-risk HPV types since 
they do not usually lead to neoplasia and do not particularly 
stimulate the basal cell proliferation. The viral replication 
proteins E1 and E2 may play a role in the amplification of 
the viral genome.[63,65,66] One of the hypotheses suggests 
that E2 may be possibly involved in genome partitioning 
where the viral transcription is regulated by E2.[67] A 
viral DNA helicase, such as E1, may separate the viral 
DNA replication from cellular DNA replication during 
establishment and amplification of the genome.[6,68] Of all 
the HPV proteins, E6 and E7 are the key ones associated in 
cancers via eliminating the tumour suppressors p53 and Rb 
leading to anti-apoptosis, genetic instability and formation 
of skin or mucosa lesions.[22,23,69] In low-risk HPV types, the 
wound healing process may hold an important role in the 
initial proliferation of the infected cells.[70] For the high-
risk HPV types, viral proteins E6 and E7 function in the 
cell proliferation in the basal and parabasal cell layers. This 
function is particularly important at cervical sites where 
neoplasias may occur.[6] The functions of viral proteins E6 
and E7 vary between the high and low-risk HPV types and 
these are associated with different pathologies.[71] The low 
risk HPV E6 and E7 proteins cause weak transformation 
or no transformation at all. RB1 is targeted and degraded 
by the high risk HPV E7 proteins, whereas E6 proteins 
target TP53 and stimulate telomerase (TERT). Telomerase 
activation is a fundamental stage for the high risk HPV type 
mediated cell immortalization in vitro.[72] However, more 
studies involving animal models are required to understand 
the HPV integration in vivo. On the contrary, even though 
the low risk HPV E7 proteins bind to RB1, it is not involved 
in the degradation. Low risk E6 does not bind to TP53 and it 
does not stimulate TERT.[73] The mechanism of oncogenesis 
associated with HPV is proposed to be through p16-INK4a 
expression. High risk HPV E7 triggers p16-INK4a through 
KDM6B histone demethylase causing p16-INK4a mediated 
CDK4/6 inhibition and RB1 mediated cell cycle arrest and 
senescence.[74-76] More aberrations including abnormal 
number of centromeres, multipolar mitotic spindles, 
chromosome lagging and anaphase bridges are also 
observed in cells expressing HPV16 E6 and E7 genes.[77] 
These aberrations may occur in cells with HPV infection at 
the early stages, but they can be easily detected in invasive 
cancers. Therefore, these abnormalities that originates 
during mitosis increases the risk of mutation accumulation 
that may cause malignant transformation in vitro. One of 
these aberrations is the allelic loss, such as losses in 3p and 
10p that are associated with telomerase activation.

LOWER GENITAL TRACT NEOPLASIAS: 
CERVICAL, VAGINAL AND VULVAR 
CANCER

Neoplasias of the genital tract includes cervical (CIN), 
vaginal and vulvar intraepithelial neoplasias and a fraction 
of these neoplasias progresses to invasive cancers. HPV 
infection is detected in almost all cervical, half of the vulvar 
and approximately 70% of vaginal tumors.[78]

The organisation of the life cycle of HPVs in the 
development of lower genital tract neoplasias is well 
established.[79-82] Retrospective studies have reported that 
almost all the women with cervical cancers are infected 
with HPV and in the more severe cases, that are squamous 
cell carcinomas, HPV16 is the most prevalent type observed 
in 90% of the cases[40,52,83,84] Ten percent of the cervical 
cancers are adenocarcinomas that are mostly caused by 
HPV infections.[40] Women with HPV16 (61%) and HPV18 
(10%) were shown to have 200 fold higher risks for the 
development of cervical cancers.[1,85] The prevalence of 
other HPV types are less observed in cervical cancer cases, 
in such HPV45 was observed in 6%, HPV31 in 4%, HPV52 
in 3%, HPV35 in 2% and HPV58 in 2% of cervical cancer 
cases.[86]

The risk factors for cervical cancers follow the similar 
parameters for the general HPV infection risks, such as 
high parity (more than 4 vaginal deliveries), full term 
pregnancy at earlier age (18 years old or earlier) and use 
of hormonal oral contraceptives.[83,87] Progression of the 
cervical cancer can be affected by several factors including 
coinfection with other sexually transmitted infection, such 
as Chlamydia trachomatis, herpes simplex virus, HIV or 
tobacco smoking and immune suppression.[55,83] Therefore, 
counselling adolescents at earlier age for avoiding tobacco 
use, initiation of sexual intercourse and limiting the number 
of partners may help to reduce the cervical cancer.

The HPV proteins E6 and E7 are proposed to play a role 
in the pathogenesis of HPV associated cervical cancers.[88] 

The phenotype of the cervical neoplasia was suggested to 
vary depending on the expression levels of E6 and E7 were 
suggested to increase from cervical intraepithelial neoplasia 
grade 1 to 3 (CIN1 to CIN3). These interactions of HPV 
proteins with cellular pathways of the host cell will give a 
chance for potential targets for HPV based cancer treatment 
strategies. Additionally, E2 gene is also believed to take a 
part in cervical cancer since in about 35% of HPV induced 
cervical cancers full length viral genomes are expressed.[89,90] 
The regulation of gene expression is changed when the viral 
DNA integrates with the cell chromosomes. This integration 
leads to a continuous expression of E6 and E7 proteins 
causing accumulation of mutations of the cellular DNA 
and promoting malignancies.[77,91] These accumulations 
of mutations, mostly monosomies, trisomies, structural 
changes, chromatid gaps and breaks and double minutes, 
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are often detected in cervical cancers as well as other 
epithelial tumors.

The underlying mechanism of the progression from CIN1 
through CIN2, CIN3 and eventually cancer is not well 
established, it may be due to the early integration events 
in CIN1 or due to deregulation of viral gene expression. 
It is also possible that the initial deregulation leads to 
instability of chromosomes and causes integration. It is 
believed that the integration arises in high grade lesions, 
such as CIN2 and CIN3 and the deregulation of E6 and E7 
expression may increase or remain at a constitute level.[92,93] 

In this scheme, flat warts can be resembled in CIN1 lesions, 
however the proliferation level of the cell is lower in the 
basal and parabasal layers.[13] Increased expression levels 
of E6 and E7 in high-risk HPV type infections causes 
CIN2+ phenotypes. This phenotype leads genetic changes 
that contribute to cancer progression. These suggest that 
low expression levels of E6 and E7 does not affect the 
function of the cellular targets in CIN1 and therefore does 
not contribute to cancer progression. In CIN2/ CIN3+, the 
viral deregulation assists the viral episome into the host cell 
chromosome. This may further cause deregulation of E6 
and E7 expression. In clinical vaccine trials it was shown 
that young women can have CIN2+ soon after infection[94-97] 

for these cases, it is possible that deregulation of the gene 
expression is due to cell signaling changes[98] or epigenetic 
modifications, such as viral DNA methylation.[99]

An important step has been taken towards prevention of 
HPV induced cervical cancers with the use of vaccines 
against HPV. However, due to various reasons, including the 
unavailability of the vaccines in certain regions of the world 
or the high costs of the vaccines, the wide application of 
the vaccines is not available. Therefore, in case of cervical 
cancer development, early detection strategies and treatment 
play a vital role to prevent any deaths. The treatment for the 
early cervical cancers is usually performed by conisation 
or radical hysterectomy. For the more advanced tumors, 
cisplatin based chemo-radiotherapy is preferred that results 
in 65-80% survival rates. Surgical excisions are usually 
the standard for the HPV associated anogenital lesions.[100] 
The treatment strategy for CIN is to eliminate the abnormal 
HPV infected precancerous cells and maintain the cervical 
integrity. One of the most commonly used treatments for 
CIN involves loop electrosurgical excision procedure, 
electrofulgaration and cryotherapy.[101]

The other lower genital cancers include vulvar and vaginal 
cancers. Majority of the vulvar and vaginal cancers are 
squamous cell carcinomas.[57] In majority of the cancers of 
the vagina HPV DNA is detected; approximately half of the 
vaginal cancers are caused by HPV16 (54%) followed by 
HPV18 (8%).[57] Similarly, HPV DNA is detected in most 
of the vulvar intraepithelial neoplasia, however only half of 
these neoplasias causes cancer. HPV16 is associated with 
32% and HPV18 with 4% of the cases.[57,102-104] Therefore, 

although HPV may play a role in vulvar cancer, this 
association is not clear.

BREAST CANCER

Several epidemiological studies reported HPV detection in 
breast cancer samples.[105-109] Nevertheless the role of HPV 
in breast carcinogenesis is by far not certain and further 
randomized control trials are required to establish the 
definite role of HPV in breast cancer development.

HEAD AND NECK CARCINOMAS

Head and neck carcinomas involve a wide range of tumors 
and is one of the most common cancers worldwide.[110] The 
prevalence of HPV DNA in head and neck cancers depends 
on the cancer site, geography and ethnicity.[104] The most 
consistent prevalence of HPV infection is the oropharyngeal 
cancers with an association of 35-50% in developed 
cancers, whereas the HPV is detected in approximately 
5-15% within the rest of the oral cavity.[52,84] The overall 
risk factors for head and neck carcinomas include tobacco 
smoking and alcohol consumption.

The first cases of HPV relationships with oral cell squamous 
cell carcinomas were reported in 2008 for lingual cancer, 
tonsil cancer and oropharyngeal cancers.[111,112] Overall the 
prevalence of these cancers are higher in men compared to 
women.[113] Oropharyngeal carcinomas (OPCs) are the most 
studied and the most characterised type of head and neck 
carcinomas. In the last decade the incidence of HPV related 
OPCs have doubled in number of patients and therefore 
more attention has drawn to these cancer types.[114] HPV 
positive oropharyngeal cancers are mainly associated 
with oral sex and rare p53 mutation.[115] Interestingly HPV 
infection was shown to improve the prognosis of OPC with 
better survival is reported in HPV positive OPCs[116] and 
therefore these patients may have a chance to benefit from 
a less intense treatment strategy.[117] Chemotherapy using 
paclitaxel, cisplatin on centuximab; followed by concurrent 
radiation has been used in treatment of OPC patiens.[118] With 
the increasing number of HPV associated OPC patients, the 
use of antiviral and immunotherapeutic strategies show an 
improved outcome.[42] Although HPV related OPC have 
increased through the years, the HPV negative OPCs still 
account for the majority of the OPC patients.

The HPVs, mostly HPV16 and HPV33, were detected 
in quarter of the patients with invasive laryngeal cancers 
and are predominantly detected in women compared to 
men.[119-121] HPV is also associated with potential malignant 
disorders, such as erythroplakia, oral leukoplakia and 
oral lichen planus.[122] Erythroplakia has the highest 
risk of malignant transformation. Half of the cases with 
erythroplakias alone is associated with HPV infection[123] 
and the  frequency of the HPV detection influences the 
severity of the lesions. In one study the HPV prevalence 
was 32.8% in oral lichen planus, 40.9% in oral leukoplakia 
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and 47.7% in oral squamous cell carcinomas.[124] Oral 
leukoplakia is associated with HPV6, HPV11 and HPV16 
and these may lead to malignant oral diseases.[125-127] 
Similarly, HPV is detected more often with increased 
prevalence in oral lichen planus.[128]

The overall prognosis of head and neck squamous cell 
carcinomas seems to be better with HPV infected patients. 
Young individuals appear to have increased risk of having 
HPV positive tonsillar and oropharyngeal carcinomas[129,130] 

with better prognosis and lower relapse risks compared 
to HPV negative head and neck squamous cell carcinoma 
(HNSCC) patients.[131] Approximately 6% prevalence was 
reported for HPV positive OSCCs.[132] However, more than 
half of the patients with HNSCC (57%) were shown to have 
metastases to the brain where all are HPV positive.[133]

LUNG CANCER

Lung cancer is one the foremost causes of cancer associated 
deaths worldwide. Although cigarette smoking plays a 
crucial role in lung cancer development, less than 20% of 
the smokers have lung cancer.[134] Therefore, other factors 
including inactivation of tumour suppressor genes, such as 
p53, Rb and p16, and HPV infection have been proposed to 
be involved in the development of lung carcinogenesis.[134,135] 
The possible role of HPV in lung cancer was initially 
proposed due to the similarities of the morphological 
epithelial changes detected in bronchial carcinomas with 
genital HPV lesions.[136,137] HPV detection in lung cancer 
was confirmed in 1988[138] and the association of HPV with 
lung cancer was then verified by detection of HPV DNA in  
lung cancer samples.[139,140] However, the issue is debated 
and controversial studies have been reported.[141,142] Some 
groups reported that E7 proteins of high risk HPV16 and 
HPV18 are detected,[143,144] some reported that none of 
the HPV types are present in non-small lung cancer.[145] 
An international pooled analysis of HPV association with 
lung cancers revealed that HPV DNA is present but in a 
very small number of lung tumors.[146] Therefore, the direct 
relevance of lung cancer with HPV requires further analysis. 
A recent meta-analysis data showed that HPV infection has 
a strong relationship with lung cancer with significantly 
increased risk of lung squamous cell carcinoma upon 
HPV16 and HPV18 infection and in this meta-analysis, it 
is proposed that the HPV vaccination may lower the lung 
cancer risk.[147]

Respiratory papillomatosis (RRP) is a serious condition 
that may spread to lungs and can progress to cancer.[148,149] 
Patients with RRP have an increased risk of developing 
laryngeal neoplasias and carcinomas.[150] RRP is mainly 
caused by the alpha-HPVs, HPV6 and/or HPV11.[151] The 
transmission of upper respiratory tract infections may be 
passed on by sexual contact and from mother to child during 
child birth canal.[4,152] Although many therapies have applied 
for RRP patients, such as surgical, treatment with antivirals 

and chemotherapeutic drugs; there is limited success with 
mostly side effects.[153] Therefore like all the other cancers, 
early detection and vaccines can play a crucial role in RRP. 
Although the present HPV vaccines protect against HPV 
11, there is the need for development of vaccines for other 
HPV types, especially HPV6 for the prevention of RRP.

BLADDER CANCER

The first association of HPV and bladder tumors was 
reported in 1988.[154] The prevalence of HPV infection 
in bladder carcinomas ranges from 0% to 81%.[155-159] 
Overall, the involvement of bladder cancer with HPV is 
controversial. Although some studies reported a positive 
correlation between HPV infection through contribution 
of E6 and E7 oncogenic proteins,[160-163] some reported no 
association between HPV infected bladder carcinoma.[164,165] 

Furthermore, p16-INK4a was reported to be involved in the 
development of bladder cancer through suppressing the 
inactivation of Rb protein association with HPV infected 
bladder carcinoma.[163,166,167] The controversy continues with 
the inverted papiloma of the urinary tract and urothelial 
carcinomas. In some reports HPV is associated with 
inverted papilloma of the urinary bladder[168] and urothelial 
carcinomas,[167,169] but in the others no association was 
reported.[170,171]

HPVs, especially HPV16 and HPV18, were detected 
mostly in low grade (grade 1) tumours and never have 
they been reported for grade 3 carcinomas.[163,167,172-175] 

Therefore potentially HPV is only associated with low 
grade carcinomas.

PENILE CARCINOMA AND ANAL 
CARCINOMA

Penile carcinomas mainly originate in the squamous mucosa 
of the glans, coronal sulcus or inner surface of the foreskin 
of the penile. Penile cancers are rare and they usually occur 
in uncircumcised men.[176] About half (40-50%) of the 
penile squamous cell carcinomas are related to the high risk 
HPV infection[52,177-180] and mostly the basaloid and warty 
types of penile cancers are consistently related to HPV 
infection, whereas HPV DNA was only detected in some 
of the keratinizing and verrucous penile carcinomas.[179] 
Mainly HPV16 (69%) and HPV18 (13%) play a role in the 
development of penile squamous cell carcinomas.[57] High 
risk HPV types, generally HPV16 and HPV18, are detected 
in Bowenoid papulosis, which resemble genital warts but 
with high grade squamous cell carcinoma in situ, can be 
found on the external genitalia, perineum or perinally.[181] 
HPV16 and HPV18 are also associated with Eryhtroplasia 
Queyrat, which is in situ carcinoma of the penile mucosa. 
This carcinoma can also be present on the urethra, vulva, 
tongue and oral mucosa. Buschke-Löwenstein tumors, 
which cause destruction of the underlying tissues leading 
to transformation into squamous cell carcinoma and are 
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located on the penile glans, prepuce, vulva, vagina and 
perianal sites, are also associated with low risk HPVs, HPV6 
and HPV 11.[182,183] Additionally, in both males and females, 
approximately 85-95% of the anal cancers are HPV DNA 
positive.[52,104] Of these, HPV16 (75%) and HPV18 (3%) are 
the causes for almost all the cases of anal cancers.[56,184]

SKIN CANCER

Similar to the head and neck, bladder and breast cancers, the 
involvement of HPV in cutaneous squamous cell carcinoma 
has not been surely established. A range of nonmelanoma 
skin cancer forms contain DNA from beta HPV types.[185] 
HPV induced skin cancers include cutaneous squamous cell 
carcinoma and superficial squamous cell carcinoma, such 
as Bowen’s disease.[186] Approximately 30% individuals 
with infection develop invasive squamous cell carcinomas 
with 90% of these tumors correlated with HPV5 and 
HPV8.[36,187] Genetic susceptibility to HPV is demonstrated 
with epidermodysplasia verruciformis; however, HPV 
infection alone is not enough to develop cancerogenesis 
in epidermodysplasia verruciformis.[42] Mainly, these 
tumors are induced by sun explosion and ultraviolet 
radiation. Cells with HPV5 and HPV8 E6 proteins 
disturb DNA double strand break repair[188] and reduces 
the efficiency of base excision repair pathway[189] causing 
higher sensitivity to UV-B exposure. It may be possible 
that because of impaired DNA repair activity, patients 
with acquired immunodeficiency syndrome or patients 
with epidermodysplasia verruciformis are more subjected 
for the infections and at a higher risk of developing HPV 
associated cutaneous malignancies.[185,190,191] In order 
to reduce the prevalence of HPV induced skin cancers, 
diagnosis of skin manifestations caused by HPV should be 
routinely checked.[186]

ROLE OF HPV IN NON-CANCEROUS 
DISEASES

One of the most common non-oncogenic HPV diseases 
involves genital warts and the clinical manifestations 
extend from flat and common warts and cauliflower like or 
filiform warts.[186] The genital warts are mostly common in 
younger people with the age of less than 25 years old and 
the transmission is more than 60% with an incubation time 
between 2 to 8 months.[192] Various clinical presentations are 
observed when keratinocytes respond to the HPV infection 
depending on the HPV type and the anatomical site. Genital 
warts are mainly associated with HPV6 and HPV11. 
Although mainly low risk HPV types, HPV6 (89%) and 
HPV11 (11%),[193] both high and low risk HPV types may 
cause genital warts.[194] Bowenoid papulosis is described by 
several flat patches in genital area. Similarly, condylomata 
plana are flat warts that have been associated with HPV 
infection.[195] Recurrence of genital warts with progression 
of lesions even after 3 months are reported in one-third of 
individuals with presence of genital warts.[196]

Genital warts can be found on penile shaft, base of the 
penis, scrotum, pubic region, glans and rectal area. In 
women, they are mostly present in the labia minora and 
vaginal opening.[197] In the decision of the therapy strategy, 
many factors, such as morphology of the lesion, HPV 
classification and immune competent status, are taken into 
account. Unfortunately, none of the treatment strategies, 
including targeted lesion destruction or immunologic 
modification, are shown to clear the HPV infection or avoid 
the recurrence. With the use of HPV vaccines, the incidence 
of the warts has been decreased.[198] If these warts remain 
untreated, they can either regresses spontaneously or they 
can grow larger and become more numerous resulting in 
complicated  cases.[192] Therefore, prevention HPV infection 
and therefore formation of these warts will be the optimum 
goal.

CONCLUSION

In the recent years, the biology of HPV infection and its role 
in the progress of cancer have been widely evaluated. All 
the data discussed in this review point out the significance 
of HPV infection in several benign and malignant diseases. 
Although the understanding of association of HPVs with 
cervical cancer is very well established further studies are 
required to analyse the relationships between HPV and 
certain cancers including breast, lung, bladder, some types 
of head and neck cancers and penile cancers.

To improve the mortality and morbidity of HPV associated 
cancers and diseases, there is an enormous need for early 
detection and prevention strategies. Although screening 
programs for early detection strategies have been developed 
for some cancers, such as cervical, there is still a big gap to 
be filled for other precancerous lesions, such as for some 
of the head and neck carcinomas. One of the examples of 
these screening strategies may involve oral examination, 
cytology and salivary HPV DNA tests which may provide a 
better early diagnosis for oral and oro-pharyngeal cancers. 
Moreover development and spread of more cost-effective 
vaccines is mandatory. Availability of low cost screening 
may prevent the future generations to develop HPVs 
induced cancers. In light of this knowledge, HPV vaccines 
are useful in the protection against cervical, oral and oro-
pharyngeal cancers. However, it should be kept in mind that 
the current HPV vaccines do not protect against all HPV 
types, particularly beta-HPV types and their associated 
diseases. Therefore, despite all these advances, other 
strategies for early detection and prevention for different 
HPV types are required.
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Lung cancer is one of the most common and deadliest forms of cancer. It accounts for 13% of all new cancer cases and 19% of 
cancer-related deaths. In India, lung cancer constitutes 6.9% of all new cancer cases and 9.3% of all cancer cases. There has also 
been a dramatic rise worldwide in both the absolute and relative frequencies of lung cancer occurrence. In 1953 it became the most 
common cause of cancer mortality in men. By 1985, it became the leading cause of cancer deaths in women, causing almost twice 
as many deaths as breast cancer. The demographic profile of lung cancer has changed greatly over the years; however, methods for 
diagnosing, screening, and managing lung cancer patients have improved. This is due to our growing understanding of the biology 
of lung cancer. It is now possible to further define lung cancer types beyond small cell lung carcinoma and non-small cell lung 
carcinoma. Moreover, new histology-based therapeutic modalities have been developed, and more new lung cancer biomarkers 
have been uncovered. Therefore, more detailed histological characterization of lung cancer samples is warranted in order to 
determine the best course of treatment for specific patients. This review article describes how these new molecular technologies 
are shaping the way lung cancer can be treated in future.
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INTRODUCTION

Lung cancer is one of the most common and deadliest forms 
of cancer. Worldwide, it accounts for 13% of all new cancer 
cases and 19% of cancer-related deaths. In India alone, lung 
cancer constitutes 6.9% of all new cancer cases and 9.3% 
of all cancer-related deaths. There has been a dramatic rise 
worldwide in both the absolute and relative frequencies of 
lung cancer occurrence.[1] By 1953, lung cancer was the 
most common cause of cancer mortality in men. By 1985, it 
was the leading cause of cancer deaths in women, causing 
almost twice as many deaths as breast cancer.[2]

The demographic profile of lung cancer has changed greatly 
over the years; however, methods for diagnosing, screening 
and managing lung cancer patients have also improved. 
This is due to our growing understanding of the biology of 
lung cancer. It is now possible to further define lung cancer 
types beyond small cell lung carcinoma (SCLC) and non-
small cell lung carcinoma (NSCLC). In 2012, the Cancer 
Genome Atlas (TCGA) Research Network published in 
Nature that characterized the lung squamous cell carcinoma 

genome. The researchers found a large number and variety 
of DNA alterations, many of which seem to be the driving 
force behind the initiation and progression of lung cancer. 
TCGA is jointly funded and managed by the National 
Human Genome Research Institute (NHGRI) and the 
National Cancer Institute (NCI), both of which are part 
of the National Institutes of Health. New histology-based 
therapeutic modalities have been developed, and more new 
lung cancer biomarkers have been uncovered. As a result, 
more detailed histological characterization of lung cancer 
samples is warranted in order to determine the best course 
of treatment for specific patients.[3]

For NSCLC, there are currently more than 50% of 
adenocarcinoma cases and around 15-20% of squamous 
cell carcinoma cases that need to be further characterized 
based on mutation analysis. Mutations in epidermal 
growth factor receptor (EGFR) gene strongly predict 
the efficacy of EGFR inhibitors, with response rates of 
over 70% in patients who have EGFR mutations.[4] In 
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two randomized phase III studies, the Iressa Pan-Asia 
Study (IPAS) and WJTOG3405, the use of gefitinib as 
the first-line treatment for previously untreated metastatic 
adenocarcinoma of the lung leads to longer progression-
free survival (PFS) in patients with tumors positive for 
EGFR mutations, compared to platinum-based doublet 
chemotherapy.[5] Similar outcomes have been observed 
for erlotinib in advanced NSCLC patients with EGFR 
mutations.[6] These findings have important implications 
to lung cancer treatment regimes in India, where EGFR 
mutations have been shown to occur in 25-50% of lung 
cancer cases.[7] However, the purpose of mutational studies 
in adenocarcinoma and squamous cell carcinoma can be 
very different. Researchers have made important progress 
in the understanding and development of treatments for 
adenocarcinomas, which are the most common type of lung 
cancer. Unfortunately, these treatments have been largely 
ineffective in treating lung squamous cell carcinomas. Lung 
squamous cell carcinomas frequently develop in the large 
airways in the centre of the lungs, while adenocarcinomas 
often arise at the edges of the lungs. Lung adenocarcinomas 
sometimes affect non-smokers, while lung squamous cell 
carcinomas arise almost exclusively in smokers.

Another example of mutation-driven therapy is the 
targeting of the echinoderm microtubule-associated 
protein like 4-anaplastic lymphoma kinase (EML4-
ALK) rearrangement. The ALK gene encodes anaplastic 
lymphoma kinase, a member of the receptor tyrosine 
kinase (RTK) family. RTKs transmit signals from the 
cell surface into the cell through a process called signal 
transduction. The EML-ALK fusion leads to uncontrolled 
cell proliferation. This mutation occurs in about 3-7% of 
unselected NSCLC.[8] In one study, NSCLC patients treated 
with crizotinib, a tyrosine kinase inhibitor targeting ALK, 
showed a response rate of 65%.[9] In cases where there was 
disease progression after treatment with crizotinib, ceritinib 
can be used. Ceritinib is a new ALK inhibitor that has 
been recently approved based on its encouraging response 
rate of 56% in patients whose cancer has progressed after 
treatment with crizotinib.

MOLECULAR TESTING

The most useful biomarkers for predicting the efficacy of 
targeted therapy in advanced NSCLC are somatic genome 
alterations known as driver mutations. These mutations 
occur in cancer cells in genes encoding proteins that are 
critical to cell growth and survival. Driver mutations are 
typically transformative, which means that they initiate 
the evolution of a non-cancerous cell to a cancerous one. 
In addition, driver mutations often impart an oncogene 
addiction trait to the transformed cell. This means that 
the mutated protein enables the cancer cell to receive 
survival signals from the driver mutations. Hence, driver 
mutations are good biomarkers for selecting patients 
for targeted therapies. Whenever feasible, patients with 

advanced NSCLC should have their tumours assessed 
for the presence of driver mutations.[10] Guidelines by the 
College of American Pathologists (CAP), the International 
Association for the Study of Lung Cancer (IASLC), and the 
Association of Molecular Pathologists (AMP) recommend 
analysis of either the primary tumour or of a metastasis for 
EGFR and ALK mutations for all patients with tumours that 
exhibit features of an adenocarcinoma, regardless of their 
clinical characteristics.[11]

The most important requirements for molecular testing 
modalities are that they should utilise clinically available 
specimens (formalin- or paraffin-embedded tissue) and 
that the turnaround time should be relatively short. The 
instrument should be semi-automated and relatively 
inexpensive. The most commonly used modalities are: 
(1) gene sequencing, the most comprehensive method for 
mutation testing; (2) next-generation sequencing, which uses 
simultaneous evaluation of multiple genes or even whole 
genomes; (3) allele-specific testing, which analyzes DNA 
for a predefined abnormality; (4) mass spectrometry, which 
analyzes short fragments of DNA by their mass to charge 
ratio and can detect fragments that have different molecular 
weights than expected, a mutation; (5) fluorescence in situ 
hybridisation (FISH), which is typically used to detect gene 
translocations, amplifications, and other rearrangements; 
(6) immunohistochemistry (IHC), which is considered an 
alternative to FISH for determining ALK translocations; and 
(7) multiplex genotype testing, which allows an entire panel 
of genotypes of interest to be queried at a single time from a 
single tissue sample instead of doing the tests sequentially. 
IHC is, however, not currently recommended for detecting 
EGFR driver mutations since positive or negative IHC 
results do not necessarily indicate the presence or absence, 
respectively, of an EGFR mutation. In contrast, multiplex 
genotype testing is the most tissue-efficient approach, 
particularly when dealing with small tumour samples.

Mutations associated
The identification of oncogenic activation of particular 
tyrosine kinases in some advanced NSCLC tumours, most 
notably mutations in the EGFR gene or rearrangements 
in of the ALK gene, has led to a paradigm shift and the 
development of specific molecular treatments for patients.

EGFR mutations
EGFR is a transmembrane protein with cytoplasmic kinase 
activity that transduces growth signals to the cell. Among 
Asians, the incidence of EGFR mutation is much higher, up 
to 62%, and occurs more frequently among non-smokers. 
In advanced NSCLC, the presence of an EGFR mutation 
confers a favourable prognosis and is strongly indicative 
of sensitivity to EGFR tyrosine kinase inhibitors such as 
erlotinib, gefitinib, and afatinib.

Nevertheless, it has been observed that most of the patients 
who initially respond to an EGFR tyrosine kinase inhibitor 



                                                                                                              Journal of Cancer Metastasis and Treatment ¦ Volume 2 ¦ June 15, 2016 ¦216

subsequently experience a recurrence. How this acquired 
resistance towards tyrosine kinase inhibitors occurs is not 
fully understood, but secondary mutations in EGFR and 
amplification of the oncogene MET are common in these 
patients. The most common secondary EGFR mutation 
is the substitution of methionine for threonine at position 
790 (T790M).[12] Another characteristic of the acquired 
resistance is the amplification of the MET oncogene, which 
is detected in 5-20% of patients with progressive disease 
while being treated with either erlotinib or gefitinib.[13] In 
some cases, only MET amplification is present, while in 
others, amplification and the secondary T790M mutation 
in EGFR are present. The absence of the MET oncogene 
amplification may be indicative of improved survival in 
patients with surgically resected NSCLC.[14]

ALK translocation
Translocations involving ALK are present in approximately 
4% of NSCLC adenocarcinomas in the United States, and 
occur more frequently in non-smokers and younger patients. 
In advanced NSCLC, the presence of an ALK translocation 
indicates sensitivity to ALK tyrosine kinase inhibitors such 
as crizotinib and ceritinib, and treatment with these agents 
significantly prolongs progression-free survival.

RAS mutations
Approximately 15-25% of patients with lung adenocarcinoma 
have oncogenic KRAS mutations. The RAS family of 
proteins is a central mediator for the mitogen-activated 
protein kinase (MAPK), signal transducer and activator 
of transcription (STAT), and phosphoinositide 3-kinase 
(PI3K) signalling pathways, which work together to control 
cell proliferation and apoptosis. The most common RAS 
mutation are missense substitutions in codons 12, 13, or 61. 
These mutations result in a constitutively active RAS due to 
malfunctioning of the RAS GTPase.

ROS1 translocation
ROS1 translocation is associated with adenocarcinoma 
histology, and is typically observed in younger patients and 
those who have never smoked. ROS1 is a RTK of the insulin 
receptor family. For these patients, first-line management 
with crizotinib is recommended, instead of platinum-based 
chemotherapy (Grade 1B). For patients who have received 
prior chemotherapy, treatment with crizotinib the preferred 
second-line chemotherapy (Grade 1A).[15]

HER2 mutation
HER2 (ERBB2) encodes a RTK from the EGFR family. 
Mutations in HER2 have been detected in approximately 
1-2% of NSCLC tumours, primarily adenocarcinomas. For 
patients with a HER2 exon 20 insertion mutation, a second-
line targeted therapy with either afatinib monotherapy or 
trastuzumab in combination with singl- agent chemotherapy 
(vinorelbine or docetaxel) is recommended, rather than 
single-agent chemotherapy alone (Grade 2C).[16]

BRAF mutation
BRAF encodes a downstream signalling mediator of 
KRAS. The BRAF protein activates the MAPK pathway. 
BRAF mutations have been observed in 1-3% of NSCLC 
with adenocarcinoma variant and are usually associated 
with a history of smoking.[17] For patients with a BRAF 
V600E mutation, treatment with BRAF inhibitors such as 
(dabrafenib andovemurafenib, or dabrafenib plus trametinib 
to inhibit the MAPK pathway is recommended, rather than 
single-agent chemotherapy.

MET abnormalities
Generally smoking-related and identified via IHC in 25-50% 
of NSCLC specimens, MET expression also appears to be 
associated with a more severe prognosis.[18] MET encodes 
a RTK for hepatocyte growth factor (HGF). Abnormalities 
include overexpression due to gene amplification and splice 
site alterations at exon 14 of the gene. In such patients, 
treatment with a MET inhibitor (crizotinib or cabozantinib) 
is recommended rather than single-agent chemotherapy as 
second-line treatment.

RET translocation
The RET gene encodes a cell surface RTK that is frequently 
altered in medullary thyroid cancer. RET mutations 
are encountered in younger patients and non-smokers. 
For patients with RET rearrangements, treatment with 
a RET inhibitor such as cabozantinib or vandetanib is 
recommended rather than single-agent chemotherapy as 
second-line treatment (Grade 2C).[18]

PIK3CA, AKT1, PTEN alterations
PIK3CA encodes the catalytic subunit of phosphatidyl 
3-kinase (PI3K), which is an intracellular central mediator 
of cell survival signals. AKT1 acts immediately downstream 
of PI3K. PTEN dephosphorylates and subsequently inhibits 
AKT. Oncogenic alterations in this pathway include gain-
of-function mutations in PIK3CA and AKT1, and loss of 
PTEN function. Alterations in the PI3K signalling pathway 
appear more frequently in patients who are smokers and 
with tumours of squamous histology. PIK3CA mutations 
also may promote resistance to EGFR inhibitors in EGFR-
mutant NSCLC.[19]

FGFR1 amplification
Fibroblast growth factor receptor-1 (FGFR1) is a cell 
surface RTK that mediates cell survival and proliferation. 
FGFR1 amplification has been detected in 13-25% of 
squamous tumours.[20] FGFR1 amplification is associated 
with smoking and with worse overall survival.

CTNNB1 (β-catenin) mutation
The CTNNB1 gene encodes β-catenin, a protein important 
for the regulation of epithelial cell growth. Mutations in this 
gene have been observed in approximately 2% of NSCLC, 
particularly in tumours with secondary EGFR mutations 
following acquired resistance to EGFR inhibitors.[21]
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DDR2 mutation
The DDR2 gene encodes a cell surface RTK that is mutated 
to an active form in about 4% of squamous cell carcinomas 
of the lung.[22] Dasatinib inhibits DDR2, and one patient 
treated with the combination of dasatinib and erlotinib had 
a tumour response. Clinical trials tomdetermine dasatinib 
efficacy are underway.

MEK1 mutation
The MAP2K1 gene encodes the MEK1 protein, a central 
mediator of cell proliferation signals that is downstream 
of RAF in the MAPK pathway. MAP2K1 mutations may 
be found in approximately 1% of adenocarcinomas.[23] The 
clinical response of NSCLC with MAP2K1 mutation to 
MEK or ERK inhibitors is currently being investigated.

The accessibility of mutation analysis is limited largely 
due to the high cost, as well as the lack of quality control, 
uniformity of techniques and standards among various 
laboratories. However, the cost for these tests may decrease 
when the reagents are purchased in bulk. The amount and 
quality of the tumour tissue used for molecular profiling 
is also an important issue to consider, especially since the 
tissue yield for lung cancer samples is limited by small core 
biopsies. Judicious use of IHC and conservation of samples 
for molecular testing would be helpful. Cell-free circular 
tumour DNA is also emerging as a useful tool for mutation 
testing and therapeutic monitoring.

IMMUNOTHERAPY

More than 80% of lung cancer cases are classified as 
NSCLC. Although there have been significant advances 
in the treatment of subsets of patients with molecularly 
defined NSCLC, for instance, NSCLC positive for EGFR 
mutation and ALK rearrangement, the improvement 
of prognosis is still modest for the majority of NLCSC 
patients. It is clear that a plateau has been reached with 
traditional chemotherapy, with minimal added benefit when 
chemotherapy is combined with the angiogenesis inhibitor 
bevacizumab.

Immunotherapeutic approaches are based on the premise 
that the immune system plays a key role in surveillance 
and the eradication of malignancy, and tumours evolve in 
order to elude the immune system. These approaches differ 
from traditional chemotherapy and targeted therapies that 
primarily target rapidly dividing cells and key molecular 
events that drive tumour growth and invasion. The goal 
of immunotherapy is to help the host’s immune system 
recognize that cancer cells are foreign in order to stimulate 
immune response.

Historically, non-small cell lung cancer (NSCLC was 
considered to be non-immunogenic). Two approaches 
to harness the immune system are of particular interest: 
immune checkpoint inhibition and vaccination.

IMMUNE ACTIVATION AND CHECKPOINT 
INHIBITION

Immune recognition is initiated by antigen presenting cells 
(APCs). When stimulated by antigens on cancer cells, APCs 
express B7-1 and B7-2 on their cell surface, and migrate to 
the lymph nodes to present the antigens to resting T cells. 
The B7 proteins bind to CD28 on the T cells, initiating a 
series of downstream signalling events that promotes the 
activation, survival and proliferation of the target T cells. 
These activated T cells then release cytolytic enzymes such 
as perforin and granzyme, as well as cytokines that help 
recruit other members of the immune system to the cancer 
cells. The result is tumour destruction and the creation 
of memory T cells. Several immune checkpoints exist to 
dampen the immune response to protect healthy individuals 
from detrimental inflammation and autoimmunity. Two 
well-characterized checkpoint proteins, the cytotoxic 
T-lymphocyte antigen 4 (CTLA-4) and the programmed 
death receptor 1 (PD-1), are targets in NSCLC clinical 
trials. The purpose of inhibiting these check point proteins 
is to prevent their interference with the elimination of 
cancer cells.

Antibodies targeting CTLA-4: ipilimumab
Ipilimumab is an IgG1 CTLA-4 monoclonal antibody 
that prolongs overall survival in patients with metastatic 
melanoma. Currently there is a phase III trial that compares 
standard chemotherapy with carboplatin and paclitaxel with 
the same regimen combined with concurrent ipilimumab 
for patients undergoing chemotherapy for treating naive 
metastatic squamous cell NSCLC (NCT01285609).

Antibodies targeting PD-1 and PD-L1
Treatment of NSCLC with antibodies against PD-1 
and programmed death-ligand 1 (PD-L1) has yielded 
encouraging results; early clinical trials showed a prolonged 
response to the antibody in patients with chemotherapy 
refractory metastatic NSCLC. Randomized phase III 
trials to evaluate anti-PD-1 and anti-PD-L1 antibodies for 
metastatic NSCLC treatment are in progress, and other 
studies are investigating various combination strategies.

Nivolumab is an IgG4 monoclonal antibody against PD-1 
that has been approved for both advanced squamous cell 
carcinoma of the lung and unresectable or metastatic 
melanoma. Nivolumab received US Food and Drug 
Administration approval on March 4, 2015 for the 
treatment of patients with advanced squamous NSCLC with 
progression, either in concurrent with or after platinum-
based chemotherapy. This approval was based on results 
from the CheckMate 017 and CheckMate 063 trials.

Pembrolizumab, an IgG4 monoclonal antibody also 
targeting PD-1, is a breakthrough therapeutic agent for 
treating advanced NLCLC that received FDA approval in 
late 2014. The approval was based on emerging results 
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from a large Phase I dose expansion trial that have since 
been updated.

PD-L1 expressed on cancer cells can bind to PD-1 on 
activated T cells to suppress the immune system.

MPDL3280A is an IgG1 monoclonal antibody against PD-L1 
that targets cancer cells expressing PD-L1, thus preventing 
the interaction between PD-L1 and PD-1 expressed on 
activated T cells. It is also engineered to prevent antibody-
dependent cell-mediated cytotoxicity (ADCC) and 
complement mediated cytotoxicity in activated T cells that 
may express PD-L1. Similarly, IgG1 monoclonal antibody 
MEDI4736 and IgG4 monoclonal BMS-936559 also target 
PD-L1. BMS-936559 is a fully human antibody that is an 
IgG1 monoclonal antibody to PDL1 with an engineered 
Fc domain to eliminate MEDI4736 effector function (i.e. 
complement mediated cytotoxicity and ADCC). BMS-
936559 is a fully human IgG4 monoclonal antibody to 
PDL1 which has been evaluated in a dose escalation phase 
I trial with expansion cohorts in NSCLC, melanoma, and 
renal cell carcinoma.[24]

Vaccination
Non-small cell lung cancers (NSCLCs) are characterized 
by several genetic alterations in neoantigens that can 
potentially be recognized by the immune system as foreign. 
Vaccination enhances the body’s exposure to such antigens 
and immune cell priming. Randomized trials are currently 
focusing on approaches that couple tumour antigens or 
cells with immune adjuvant agents; such approaches may 
enhance the antigen presenting cell response to the vaccine.

One example is the melanoma associated antigen A3 
(MAGE-A3) vaccine. The melanoma associated antigen 
A3 (MAGE-A3 gene family consists of “cancer germline” 
or “cancer testis” genes that are normally expressed only 
on testicular germ cells and placental trophoblasts.[25] 
Several tumours also express MAGE-A3, including 
30-50% of NSCLCs. The GSK1572932 vaccine is a 
recombinant MAGE-A3 protein vaccine combined with the 
immunological adjuvant AS15.

MUC-1 is a cell surface glycoprotein that is overexpressed 
and/or aberrantly glycosylated in several epithelioid 
malignancies, including NSCLC. Tecemotide is a vaccine 
consisting of the BLP25 MUC-1 lipopeptide and the 
adjuvant monophosphoryl lipid A, as well as cholesterol 
dimyristoyl phosphatidylglycerol (DMPG) and dipalmitoyl 
phosphatidylcholine (DPPC) as the carrier lipids that form 
the liposome. The primary endpoint of the trial evaluating 
this vaccine was overall survival. There was no significant 
increase in overall survival among 1239 patients receiving 
tecemotide compared to those receiving the placebo 
(median 25.8 and 22.3 months, respectively).

Belagenpumatucel-L is an allogeneic whole tumour vaccine 
consisting of cells from four irradiated NSCLC cell lines 

modified using a TGF-beta antisense plasmid to block TGF-
beta secretion. TGF-beta inhibits T and B cell activation, 
dendritic cell maturation and antigen presentation, as well 
nd natural killer (NK) and lymphokine activated (LAK) 
activation. TGF-beta also induces immunosuppressive T 
regulatory cells.

In addition to the vaccines described above, there are 
several other types of vaccines that are currently being 
evaluated in phase III studies. More effort is being invested 
into developing new vaccines and combining vaccines 
with other immunologic agents, chemotherapy, or targeted 
agents. Advances in DNA and RNA sequencing as well as 
drug development may also ultimately enable the design 
of personalized vaccines consisting of antigens uniquely 
expressed by tumour cells from a specific patient.

CONCLUSION

Lung cancer is the leading cause of cancer-related mortality 
in the United States and worldwide. More than 80% of lung 
cancer cases are classified as NSCLC. In the past decade, 
there has been significant breakthrough in our understanding 
of the tumour biology of NSCLC. Signalling pathways that 
are vital for tumour growth have been identified and have 
been effectively targeted pharmacologically. This article 
summarizes the implications of these advances for treating 
lung cancer and highlights the ongoing work to improve 
clinical outcomes of this disease. Treatment of lung cancer 
has come a long way with greater use of molecular markers 
and targets. Nonetheless, there is still much to be done to 
help our fight against lung cancer.
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Case Report

Osteonecrosis of the jaw in a patient with acute myeloid leukemia, who 
received azacitidine
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The first case of osteonecrosis of the jaw (ONJ) related to azacitidine therapy was reported. A 64-year-old male with acute 
myeloid leukemia, who received 5-azacitidine, presented with pain and purulence of the right second premolar. An unsuccessful 
endodontic therapy resulted in dental extraction 6 months later. The post-extraction non-healing socket was managed with 
antibiotics and multiple surgical debridements without response. ONJ stage 2 was diagnosed 12 months after the initial symptoms 
of pain and purulence and was managed conservatively. Currently the patient is still receiving 5-azacitidine therapy, while ONJ 
remains asymptomatic. This case highlights the presence of alveolar bone disease prior to the appearance of ONJ. Osteonecrosis 
in chemotherapy, although rare, may increase as long-term survival of cancer patients, who receive those medications increases. 
Health care professionals need to be alert, while collaboration with an experienced oral/dental oncologist would be beneficial to 
the patient.
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INTRODUCTION

Osteonecrosis of the jaw (ONJ) in cancer patients is related 
to antiresorptive therapy, such as bisphosphonates and 
denosumab, and angiogenesis inhibitors, such as bevacizumab 
and sunitinib.[1-3] Medications with antiangiogenic effect, 
such as sorafenib, imatinib, everolimus, aflibercept, 
trastuzumab and pazopanib were related to ONJ in few 
case reports.[4-8] Ipilimumab, a monoclonal antibody against 
cytotoxic T-Lymphocyte-Associated Antigen-4 (CTLA-4) 

was recently associated with ONJ.[9] In patients receiving 
antiresorptives, concurrent chemotherapy was reported as a 
risk factor, while chemotherapy alone has also been related 
to ONJ in three patients.[10-12]

Dental extraction has been considered as one of the causes 
for ONJ.[13-15] This myth has, however, been questioned.[16] 
It is now believed that the dental extraction, indicated due 
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to periodontal/dental infection and disease, will lead to 
exposure of the alveolar bone, which may already be necrotic 
and will not heal.[17] Infection, within a unifying concept 
of medication-related impaired immune response was 
proposed to play an important role in the pathophysiology 
of ONJ.[18]

In this paper we report what we believe is the first case of 
ONJ in a patient with acute myeloid leukemia (AML), who 
was treated with azacitidine. The presence of alveolar bone 
disease leads to the dental extraction and the subsequent 
diagnosis of ONJ.

CASE REPORT

A 64-year-old male, smoker was diagnosed on April 2010 
with myelodysplastic syndrome (refractory anemia) of 
low-risk according to IPSS (normal karyotype, without 
cytopenia, blasts 3-4%).[19] One year later the patient 
progressed to refractory anemia with excess blasts, type 
II (RAEB-II), normal karyotype, without cytopenia, 
blasts 15%.[20] He was placed on 5-azacitidine therapy 
[75 mg/m2 (150 mg) day 1 to day 7 on 28 days cycle] with 
partial remission (Hgb > 11 g/dL, Platelets > 100 × 109/L, 
Neutrophils > 1.0 × 109/L, bone marrow blasts decreased 
by 50% but still > 5%). Two years later, after 17 cycles 
of 5-azacitidine, he progressed to AML. His complete 
blood counts showed: Hemoglobin 9.6 gr/dL, white blood 
cells 21.6 × 109/L, absolute neutrofil count of 4.0 × 109/L, 
immature white blood cells (myelocytes, metamyelocytes) 
and blasts 5.0 × 109/L, platelets 142.0 × 109/L. Bone 
marrow biopsy revealed 25-30% infiltration of CD34 
(+) cells (blasts). Cytogenetic analysis (karyotype) was 
normal (46XY). He received 7 + 3 induction chemotherapy 
[intravenous infusion of Cytarabine (200 mg/m2 day 1 
through day 7) and Idarubicin 10 mg/m2 on 30’ infusion on 
day 2, 4, 6]. During hospitalization the patient developed 
neutropenic fever, managed with empiric antibiotic 
treatment (piperacilin + tazobactam and amikacin) and red 

blood cell and platelets transfusions. Two months later, 
bone marrow aspiration and flow cytometry disclosed 
persistent disease.

Patient did not consent to receive induction chemotherapy 
and was placed on low intensity chemotherapy with 
hydroxyurea per os for six months. Bone marrow biopsy 
revealed greater than 60% blast cell infiltration, with 
a normal karyotype and patient was treated again with 
5-azacitidine from that time to present. Bone marrow 
blasts dropped to 14%.

Figure 1: Swelling, fistula and purulunce on the post extraction non-healing 
socket (July 2015). Necrotic bone could be probed through the fistula

Figure 2: Radiolucency is seen in the socket (July 2015)

Figure 3: Remission of pain, swelling and purulence (August 2015)

Figure 4: Radiolucency remains in the bone, socket area (September 2015). 
A gutta-percha cone has been inserted through the fistula
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On June 2014 the patient received a restoration of the 
2nd right mandibular premolar because of pain. Pain and 
purulence persisted in spite of endodontic therapy. Dental 
extraction was recommended and completed in December 
2014. The post-extraction follow up revealed a non-
healing socket. This area was managed with antibiotics 
(amoxicillin alone or combined with metronidazole) and 
surgical debridements (January to July 2015). A biopsy 
taken from the soft tissue of the socket showed granulation 
tissue. On July 2015 pain, swelling and purulence at the site 
of previous extraction [Figure 1], with necrotic bone being 
probed through a fistula and radiolucency, was observed on 
the periapical X-ray [Figure 2], leading to the diagnosis of 
osteonecrosis.

Management with antibiotics, ozone oil applications and 
low level laser therapy (LLLT) treatments [Ripamonti-11, 
Nicolatou-13], twice weekly, resulted in remission of 
symptoms [Figure 3], while the radiolucency and fistula 
persisted [Figure 4].This is a retrospective case presentation 
from existing de-identified medical record data. Patient 
gave consent for the medical record review.

DISCUSSION

Azacitidine is a chemical analogue of the cytosine 
nucleoside and functions as a DNA demethylating 
agent and as an antimetabolite.[21] Reduced cell division 
and growth may result from demethylation of DNA. 
Azacytidine, as a metabolite, can exert a direct myelotoxic 
and cytotoxic effect. Azacytidine, by both its demethylating 
and antimetabolite actions, might have negatively affected 
the increased need of cellular division and growth of bone 
remodeling and the soft tissue healing after the dental 
extraction in our patient. Azacitidine-related cytotoxicity 
and impaired immune response to infection could have also 
contributed to the development of alveolar bone disease and 
infection, which had preceded the appearance of ONJ.

Gemcitabine chemotherapy was associated with ONJ in a 
patient to Sezary syndrome, an aggressive leukemic form 
of cutaneous T-cell lymphoma.[12] In that case, ONJ was 
related to the effects of gemcitabine, through suppression 
of vascular endothelial growth factor. Osteonecrosis 
was also reported in a patient with AML and in one with 
breast cancer, who received aggressive chemotherapy. No 
azacitidine was administered to the above patient with 
AML. Neutropenia and severe immune suppression were 
related to the development of ONJ in those cases.[10] The 
presently reported patient developed ONJ while he was 
on azacitidine therapy. T-cell-related altered immune 
response and infection were related with ONJ in another 
patient, with advanced metastatic melanoma, who received 
ipilimumab.[9] Pain, purulence and periodontal ligament 
widening indicating alveolar bone disease and infection 
preceded the appearance of ONJ in all those cases, including 
the present case. Our findings support the proposed role of 

alveolar bone disease and infection in the pathogenesis of 
ONJ.[17,18]

The major treatment objectives for patients with ONJ 
are pain and infection control and minimization of ONJ 
progression. Antibiotics and topical antiseptics combined 
with ozone oil applications and LLLT are used as best 
available clinical practice for early ONJ stages.[1,5,17,22] 
Ozone oil has antimicrobial and healing properties, while 
LLLT biostimulation can improve healing.[23,24] The 
patient was managed with antibiotics, amoxicillin and/or 
metronidazole, ozone oil applications and LLLT. The long 
delay (12 months) for the diagnosis of ONJ and the multiple 
unsuccessful dental and surgical interventions, combined 
with the continued azacitidine therapy, may be related to 
the persistent ONJ lesion.

In conclusion, this case increased the list of medications 
that can lead to ONJ and highlighted the importance of the 
presence of localized alveolar bone infection prior to the 
appearance of ONJ. The occurrence, though rare, of this 
potentially serious complication may increase with the 
long-term survival of cancer patients.
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Intracystic (encapsulated) papillary carcinoma of breast is a rare variant of breast cancer. It is usually a low-grade tumor showing 
estrogen, progesterone positivity. The authors report an unusual case of intracystic papillary carcinoma showing high nuclear 
grade, brisk mitosis, and necrosis with triple negativity for estrogen, progesterone, and Her-2/neu receptors, as well as negative 
axillary lymph nodes. Such cases need to be reported to increase awareness so that they will be managed conservatively, avoiding 
any overtreatment despite being high grade and triple negative.
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INTRODUCTION

Intracystic (encapsulated) papillary cancer (IPC) is a 
rare entity of breast cancer accounting for approximately 
1 to 2% of all breast tumors and usually presenting 
in postmenopausal women.[1] Histologically, it is 
characterised by an expansile papillary lesion which 
is surrounded by a thick fibrotic wall and an absent 
myoepithelial cell (MEC) lining. These lesions are known 
to have an excellent prognosis with only sufficient local 
therapy.[2] They tend to have low-grade nuclei and low 
mitotic activity, and to be estrogen (ER) and progesterone 
(PR) receptors positive and Her-2 neu negative.[3] To date, 
there are only two reported cases of IPC which are triple 
negative in the literature.[2,4] Our case is unusual in being 
a noninvasive encapsulated grade III papillary carcinoma 
with negative nodes and triple-negative immunostaining.

CASE REPORT

A 60-year-old female presented with a complaint of 
progressively increasing swelling in the right breast since 
one year. The swelling was not associated with any pain 
or discharge. On physical examination, a 2 cm × 2 cm 
relatively firm lump was palpable in the upper outer 
quadrant. Mammography revealed a lobulated, well-
defined nodular mass. Ultrasonography showed a well-
delineated, heterogeneous, hypoechoic solid lesion with 
no axillary lymphadenopathy. Fine-needle aspiration 
cytology was performed, which showed sheets and 
occasional papillary clusters of ductal cells revealing 
extensive pleomorphism, vesicular nuclei, and prominent 
nucleoli [Figure 1]. Based on these findings, a diagnosis 
of high-grade ductal carcinoma was offered. Despite being 
a T2N0 tumor, a modified radical mastectomy (MRM) 
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was performed to rule out any invasion and to look for 
any micro metastasis in lymph nodes. Gross examination 
showed a well-circumscribed and encapsulated mass 
measuring 2.8 cm × 2 cm × 2 cm having a friable grey-
white cut surface with areas of necrosis [Figure 2]. The 
base of resection and overlying skin were 2 cm and 3 cm 
away, respectively, and free of tumor. Sections were 
taken from the tumor along with the capsule. Separate 
sections from the adjoining breast were also taken to rule 
out invasion. Eleven lymph nodes were dissected from 
the axillary fat. Microscopic examination showed a thick 
fibrous capsule surrounding a neoplasm composed of 
blunt or delicate papillary structures with central cores. 
Intervening necrotic areas were also seen [Figure 3]. 
The cells lining the papillae showed high-grade nuclear 
atypia with variable N:C ratios, vesicular chromatin, 
and prominent nucleoli [Figure 4]. Mitotic figures were 
seen frequently (> 10/10 hpf). The MEC lining was 
absent within the papillary processes and at the periphery 
of tumor; this finding was confirmed by performing 
immunohistochemistry for smooth muscle actin (SMA) 
[Figure 5]. Tumor cells were negative for ER, PR, and 
Her-2/neu immunostains, performed with positive controls 
[Figure 6]. Adjacent breast tissue showed only fibrosis. No 

invasive malignancy was seen. All the dissected axillary 
lymph nodes were free of metastasis (0/11). A diagnosis of 
encapsulated (intracystic) papillary carcinoma, high grade 
and triple negative, was rendered. Post-surgery on follow-
up, the patient is disease free to date (4 months).

DISCUSSION

Papillary lesions of the breast are usually difficult to 

Figure 1: High power view of cytology smear showing tumor cells exhibiting 
pleomorphism, high N:C ratio, hyperchromatic nuclei, and prominent 
nucleoli. A cystic macrophage is also seen, suggesting a cystic change in 
the neoplasm (Giemsa ×400)

Figure 2: Gross specimen. (a) Modified radical mastectomy specimen 
showing tumor; (b) a closer view showing a well-defined, thick capsule 
sorrounding a necrotic, friable tumor

Figure 3: Scanner view showing a papillary tumor surrounded by a thick, 
fibrous capsule (HE, ×40)

Figure 4: Microscopic view showing the tumor architecture and cytological 
features. (a) Low power view showing papillary structures with fibrovascular 
cores. (HE, ×100); (b) high power showing tumor cells exhibiting 
pleomorphism, vesicular nuclei with prominent nucleoli (HE, ×400)

Figure 5: High power view showing tumor cells negative for: (a) smooth 
muscle actin immunostains; (b) performed with a positive control in a benign 
papillary tumor (SMA ×400)
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differentiate. Papillary carcinomas of the breast are divided 
into invasive and noninvasive types. The noninvasive type 
is further divided into the diffuse form (papillary variant of 
ductal carcinoma in situ) and the localized form (intracystic 
or encysted papillary carcinoma).[5] Encapsulated papillary 
carcinoma is characterised by the presence of papillary 
carcinoma within an apparent cystically dilated duct. 
Myoepithelial cells are present neither in the papillae of 
IPC nor at the periphery, in contrast to papillary ductal 
carcinoma in situ (DCIS), in which there are MECs at the 
periphery of involved spaces.[6] Several IHC stains like 
SMA, CD10, or S-100 can be used to confirm the presence 
of myoepithelial cells. IPCs have been considered to be a 
form of low-grade invasive carcinoma with an expansile 
growth pattern, or part of a spectrum of progression from 
in-situ to invasive disease.[6] IPCs may occur alone, but 
more often the surrounding breast tissue contains foci of 
low- or intermediate-grade DCIS, usually with a cribriform 
or micropapillary pattern.[7] Areas of invasive carcinoma 
may also be seen in association with them. These tumors 
are usually of low or intermediate nuclear grade with 
no evidence of necrosis and are strongly ER positive 
and Her-2/neu negative,[1] unlike our case, which shows 
high-grade nuclear features and is triple negative. Also, 
these tumors are well delineated, remain quiescent, and 
are best regarded as intraductal papillary carcinomas.[8] 
The patients with IPC are much less likely to die than 
those diagnosed with other types of breast cancer. At 10 
years, the survival rate has been found to be greater than 
95%.[5] Lefkowitz et al.[9] have reported a 100% survival 
rate and 91% disease-free survival rate at 10 years. The 
treatment options can involve breast-conserving surgery 
in the form of wide local excision with or without adjuvant 
radiotherapy or mastectomy.[10] Low-grade tumors are less 
likely to recur or metastasize and are best treated by local 
excision in the absence of invasion. On the other hand, 
patients with higher-grade tumors have an increased risk 
of recurrence and metastasis.[1] It is for this reason that 
a MRM was performed in our case because cytology 

showed high-grade nuclear features and invasion could 
not be excluded. Axillary interventions include sentinel 
lymph node biopsy and/or axillary dissection.[11] The 
low yield for metastasis and vascular invasion makes 
chemotherapeutic intervention not mandatory.[10] This 
treatment modality is considered only in cases associated 
with lymphovascular invasion. Adjuvant radiotherapy and 
endocrine therapy (tamoxifen) has been recommended in 
younger patients (< 50 years) and in patients having IPC 
associated with invasion and/or DCIS.[12]

In our case, no DCIS or foci of invasive carcinoma were 
seen in the surrounding breast. In addition to that, our 
case showed high-grade morphology (Nottingham’s 
histologic score = 8/9, grade III) with triple-negative 
immunostaining, which is a very rare finding.[2]

To conclude, the unusual high-grade adverse 
histomorphological features of IPC, with triple-negative 
immunostaining and no invasive foci, as seen in our case, 
is a rare finding. The management and prognosis in such a 
case remains questionable.
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Skeletal metastasis in carcinoma cervix occurs in about 0.8-23% of cases. These lesions are usually radiographically lytic. Very 
few cases of metastases to the skull have been identified, about 5 cases to the best of our knowledge. We present a case of 
adenosquamous cell carcinoma of cervix with fat attenuating skull metastases in a 38-year-old lady that is not reported till date. 
The lesion was lytic, expansile and with negative attenuation of -15 to -30 Hounsfield units corresponding to fat.Metastases must 
be included in the differentials of scalp lesions. A history of recent onset of swelling and associated lytic areas in calvarium on 
contrast enhanced computed tomography with multiplicity can give a clue to metastatic nature of disease.
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INTRODUCTION

Bone metastases in carcinoma cervix can be due to 
local extension, however, distant metastases are due to 
hematogenous dissemination. The metastatic sites are 
commonly the spine, followed by pelvic bones rarely it can 
involve the skull where the appearance is of an expansile 
lytic lesion. High index of clinical suspicion is required for 
the diagnosis of skull metastases and should be included 
in the differentials of scalp lesions in a known primary. 
Till date fat attenuating metastasis to skull has not been 
reported.

CASE REPORT

A 38-year-old lady presented with severe neck pain for which 
she underwent contrast enhanced computed tomography 
(CECT) spine examination elsewhere that revealed multiple 
lytic lesions in the vertebra suggestive of metastases. She 
underwent biopsy of the same, which revealed metastatic 
adenosquamous carcinoma. The lady was diagnosed with 
metastases of unknown origin and referred to our institution 
for work up. At the time of admission the patient was bed 
ridden with altered sensorium. She later had one episode of 
vaginal bleeding for the first time according to history with 
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no other relevant clinical history. On general examination 
she had multiple soft scalp swellings, which were of recent 
onset, no other significant findings were present. She had a 
proliferative growth in the cervix measuring 3.5 cm × 3 cm, 
rest of the systemic examination was unremarkable. CECT 
exam of the whole body confirmed the cervical mass 
[Figure 1] that was infiltrating the urinary bladder. Multiple 
vertebral, pelvic and skull metastases were detected. The 
skull metastases were lytic with negative attenuation of 
-15 to -30 Hounsfield units [Figure 2] corresponding to 
fat. The metastases in spine and pelvis were of soft tissue 
attenuation. One of the calvarial lesions infiltrated the right 
transverse sinus causing thrombosis. She underwent a 
biopsy of cervix, which showed primary adenosquamous 
carcinoma. Fine needle aspiration cytology of the scalp 

swelling was performed which demonstrated metastatic 
squamous cells with presence of fat globules [Figure 3]. 
She had an Eastern Cooperative Oncology Group score of 
4. Due to advanced nature of the disease she was treated 
palliatively with supportive care including intravenous 
fluid administration, pain management and antibiotics. 
There was no role of active treatment. The clinical status 
of the patient deteriorated rapidly and she succumbed due 
to the disease.

DISCUSSION

Carcinoma cervix is the most common malignancy in 
Indian women, with an incidence of 19-44% per 100,000 
women.[1]

Figure 1: Heterogeneously enhancing cervical mass infiltrating the urinary 
bladder with bladder base thickening. Laterally parametrial stranding 
extends to the medial 2/3rd. Fat plane with rectum is lost posteriorly. Left 
obturator node is seen

Figure 2: Expansile lytic lesion in the left frontal bone with average fat 
attenuation of -27 Hounsfield units (arrow tip). Underlying brain parenchyma 
is normal. The lesion causes corresponding scalp bulge in frontal region 
along the external surface

Figure 3: Photomicrograph of smear of FNAC scalp showing clusters of neoplastic squamous cells admixed with fat globules. (A) power view MGG (×100); (B) 
power view MGG (×400); (C) power view PAP (×100). FNAC: fine needle aspiration cytology; MGG: May-Grunwald Geimsa stain; PAP: papanicolaou stain
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Apart from local spread, the disease spreads to the pelvic and 
para-aortic lymph nodes and then by hematogenous route to 
the supra and infradiaphragmatic viscera.[2] About 5-35% 
eventually develops pulmonary metastases,[3,4] 3% develops 
liver metastases,[5] 16% develops bone metastases.[4]

Skeletal metastasis in carcinoma cervix occurs in about 
0.8-23%[1] of cases. Bone metastases can be due to 
local extension, however, distant metastases are due to 
hematogenous dissemination. These lesions are usually 
radiographically lytic, and patients have recurrent or 
advanced disease with other sites of metastases.[6] The 
metastatic sites are commonly the spine, followed by pelvic 
bones. Very few cases of metastases to the skull have been 
identified, about five cases to the best of our knowledge.

Yanuck et al.,[7] reported a 21-year-old woman with stage 
IV cervical cancer that presented with a mass on the frontal 
bone, other cases of skull metastases reported are Niloofar 
Ahmadloo et al.,[8], Mohanthy et al.,[9] Abhishek et al.,[10] 
and Zilberlicht et al.[11]

The case reported by Abhishek et al.[10] was similar to our 
case where the histlogical subtype was adenosquamous 
carcinoma and patient also had superior sagittal sinus 
thrombosis. Our patient had transverse sinus thrombosis. 
The other cases were of squamous cell carcinoma. Rath 
et al.[12] and Agrawal et al.[1] reported cases with multiple 
metastases to the scalp (skin).

In a recent analysis of 813 patients with stage IB disease, 
Look et al.[13] noted a poorer survival for patients with 
adenosquamous lesions. Also, more patients developed 
extrapelvic recurrences than those with squamous or 
adenocarcinoma cell types. Neuroendocrine cervical 
tumors and glassy cell tumors have also been associated 
with hematogenous spread with early-stage disease. The 
aggressive disease in our patient could be explained by the 
adenosquamous cell type of carcinoma she had.

No reports have been published till date demonstrating fat 
containing metastases to skull as seen in our case. The spine 
and pelvic metastases were not fat attenuating.

In a patient with carcinoma of cervix, metastases must be 
included in the differentials of scalp lesions. The lesions 
may mimic sebaceous cysts and lipomas (in our case, 
they were soft on clinical exam and fat containing on 
computed tomography mimicking lipoma). A history of 
recent onset of swelling (present in our case) should prompt 

imaging, associated lytic areas in calvarium on CECT with 
multiplicity can give a clue to metastatic nature of disease. 
In our patient, the disease was detected at an advanced 
stage as the presenting symptom itself was metastases to 
vertebrae presenting as neck pain she had no symptoms 
relating to carcinoma cervix until later.
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Despite the fact that currently existing therapeutic 
approaches are highly effective and can markedly improve 
clinical outcome in cancer patients with even advanced 
diseases, the problems of treatment resistance, therapy 
recurrences and unfavorable disease progression are 
still not solved. It is generally believed that the small 
population of the intratumoral carcinoma stem cells (CSCs) 
is responsible for poor clinical outcome, because CSCs 
are considered as a reason for the tumor heterogeneity, 
diminished sensitivity to chemo- and radiotherapy and 
enhanced abilities for metastatic spread.[1-5] Investigation 
of the biological properties of CSCs is a hot topic in cancer 
research. In order to know more about CSC behavior, it is 
necessary to possess the CSC-specific molecular patterns 
distinguishing CSCs from non-CSCs. Using currently 
existing surrogate CSC biomarkers [CD133 (prominin-1), 
CD44, CD24, Bmi-1, Notch family members, Hedgehog, 
aldehyde dehydrogenase 1 (ALDH1), nestin, etc.], 
subpopulations carcinoma cells with stem cell properties 
can be isolated for further investigations.[2] Recent 
studies have demonstrated that a variety of intracellular 
pathways are affected in CSCs: CSC metabolism is 
characterized by activation of glycolytic pathways[6] and 
intracellular redox potential is dysregulated;[1,7,8] molecular 
mechanisms governing cell cycle, cell proliferation and 
cell death development are also disrupted. Thus, there is 
a hypothesis that one of the reasons of CSC insensitivity 
to chemotherapeutics and ionizing radiation is the slower 
CSC proliferation and CSC quiescence.[1] It is known that 
chemotherapeutic agents and radiotherapy eradicate fast 
dividing and proliferating carcinoma cells more effectively 
than the slower dividing cells.[1] Therefore, it is logical to 
suggest that quiescent CSCs should be changed in their 
intracellular signalings underlying cell cycle regulation 
and cell division. Indeed, Gardane et al.[9] and Vaidya[10] 
in their article have clearly demonstrated that low doses 

of curcumin can accelerate proliferation of the leukemic 
cells and application of 5-fluorouracil becomes more 
effective compared to the treatment with 5-fluorouracil 
without curcumin. These findings help to assume that 
administration of the compounds affecting quiescence 
of carcinoma cells can improve therapy results in cancer 
patients with malignant tumors containing a high number 
of quiescent CSCs.

Review article by Kim et al.[11] highlights therapeutic 
opportunities to target CSCs and to reach better treatment 
results in cancer patients. Recent years have seen an 
increased number of research reports on the CSC-related 
intracellular and intratumoral molecular pathways that can 
be effectively blocked in order to reach better survival 
rate in cancer patients. This review article provides an 
analysis of different strategies that can be introduced into 
the clinical practice in order to improve therapy outcome 
in patients with unfavourable prognosis.

The Guest Editor and contributors to this special issue of 
the journal Journal of Cancer Metastasis and Treatment 
hope that basic researchers and clinicians will read these 
articles with great interest.
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INTRODUCTION

Cancer stem cells (CSCs) are a small subset of cancer cells 
with the ability to self-renew and initiate tumor growth. 
They were first discovered in acute myeloid leukemia 
(AML) in the late 1990s.[1] Since then, CSCs have been 
discovered in many solid tumors.[2-6] Within the last two 
decades, CSCs have become a subject of intense research 
as a potential target for cancer therapeutics.

The discovery of CSCs led to a major shift in cancer 
modeling. Previously, cancers were thought to be made 
up of equipotent malignant cells which either renewed or 
differentiated stochastically, giving rise to a heterogeneous 
tumor. In contrast, the CSC model suggests that a hierarchy 

exists among tumor cells, with CSCs at the top, producing 
the bulk of the tumor cells while maintaining their own 
renewal.[5] A third model, clonal evolution, states that 
heterogeneity comes from genetic or epigenetic changes 
that arise during cancer progression. The CSC and clonal 
evolution models are not mutually exclusive, as CSCs 
can also evolve over time, generating different clonal 
subpopulations within the tumor.[6]

CSCs share a number of properties with normal stem 
cells (SCs). Both typically make up a small percentage 
of the total number of cells in a tissue, they are largely 
quiescent, and, most notably, they are multipotent and 
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can self-renew indefinitely. Many pathways vital to SC 
function, such as Wnt, Hedgehog, Notch,[7] and PI3K/Akt,[8] 
are dysregulated in CSCs, potentially contributing to 
neoplastic transformation. For example, cases of multiple 
myeloma have displayed abnormal signaling in response 
to elevated levels of Hedgehog ligand secreted by tumor 
stromal cells,[9] and upregulated Notch4 signaling has been 
implicated in drug-resistant breast CSC activity.[10] Like 
SCs, CSCs are able to repair damaged DNA more quickly 
and overexpress drug-efflux pumps such as ATP-binding 
cassette (ABC) transporters. In a glioblastoma model, 
aberrant Akt signaling contributed to overactivation of the 
ABC transporter ABCG2 in CSCs, leading to increased drug 
expulsion and rendering them resistant to mitoxantrone.[11]

CSCs may also contribute to metastasis. During normal 
wound healing, cells are able to migrate to the wound site 
through the epithelial to mesenchymal transition (EMT) 
process. CSCs may also undergo EMT when migrating 
from the primary tumor site. Another theory hypothesizes 
that the CSC microenvironment -- including the 
surrounding vasculature -- facilitates metastasis.[12] While 
the exact mechanisms have not been discovered, there are 
many reports of CSC-driven metastasis. In fact, numerous 
studies have used breast CSC-rich cell lines such as MDA-
MB-231 to first produce primary tumors and then seed 
lung metastases.[13,14]

Studies of CSC-targeted therapy depend on the isolation 
and enrichment of CSCs. They can be identified, isolated, 
and characterized by several methodologies, including flow 
cytometric analysis of CSC-specific cell surface markers, 
detection of side-population (SP) phenotypes by Hoechst 
33342 dye exclusion, changes in aldehyde dehydrogenase 
(ALDH) enzymatic activities using an aldeflour assay, 
ability to grow as suspension spheres in serum-free medium, 
SC-related gene expression, and auto-fluorescence.[6,15-17] 
There are no widely accepted techniques solely developed 
to isolate CSCs, necessitating the use of combination 
markers and methods rather than single strategies.

Surface marker-based assays have become the mostly 
commonly used method.[18] Table 1 summarizes the list 
of cell surface phenotypes of CSCs in different tumors. 
The detection can be performed with specific antibodies in 
flow cytometry, competitive ELISA, or magnetic beads.[19] 
Dick and coworkers showed the first evidence of the 
presence of CSCs in human AML by the flow cytometric 
display of the CD34+CD38- surface marker phenotype.[20] 
A breast CSC subpopulation was identified and isolated by 

the combination of CD44 and CD24 markers.[2]

Functional CSC properties like intracellular ALDH 
enzymatic activities and ABC transporter efflux activities 
of vital DNA dyes such as Hoechst 33342 have been used 
for CSC isolation.[21,22] Increased aldehyde dehydrogenase 
isoform 1 (ALDH1) activity has been used to identify 
and analyze different types of CSCs. Furthermore, CSCs 
have a distinct efflux mechanism, stemming from their 
high expression of ABC transporter proteins.[15] These 
cells, referred to as the “side population” (SP), are able to 
actively transport fluorescent dyes such as Hoechst 33342 
out of the cells. Flow cytometric SP analysis has been 
performed with numerous cancer cell lines and the SP has 
shown enriched CSC activities.[21]

A subpopulation of CSCs exhibit intrinsic autofluorescence 
and were shown to be exclusively linked to a functional 
CSC phenotype in different epithelial tumors. These 
autofluorescent cells had CSC characteristics such as 
high self-renewal, long-term tumorigenic capacity, 
invasiveness, and chemoresistance. These cells have 
intrinsic autofluorescence with excitation wavelengths at 
488 nm and emission at about 520 nm. This new marker 
has been proven to be a more reliable and accurate way to 
identify and characterize CSCs.[16,23]

Another important functional property of CSCs, as well as 
normal stem SCs, is the ability to produce sphere-forming 
colonies from a single cell in serum-free medium or in soft 
agar medium, as differentiated cells cannot survive and 
proliferate in this environment.[24] Thus, several studies 
have used the sphere formation assay as an efficient 
method for isolating, enriching and maintaining CSCs 
from various primary tumors. Generally, these CSC-driven 
spheres are greater in both number and size as compared 
to ones generated from non-CSCs.[18,25] These spheres 
clearly demonstrated stem-like properties and expressed 
characteristics of CSCs.[16]

Here, we will focus on cancer therapeutics which can 
target CSCs. The development of various strategies that 
can act effectively against CSCs has been categorized into 
six groups, as shown in Figure 1.

REGULATING CSC SIGNALING 
PATHWAYS

Many signaling pathways are deregulated in CSCs and 
are potential targets in anti-CSC therapies. Overactivation 

Table 1: Cancer stem cell surface markers in human cancers
Tumor types Surface marker on the CSCs References
Breast CD44+/CD24-, CD133+, EpCAM+ [2,17,18]
Colon CD133+, EpCAM+, CD44+ [17,18,36]
Glioma (brain) CD133+, CD15+, CD49f+, CD90+ [3,17,18]
Leukemia (AML) CD34+/CD38-, CD123+ [1,17,18]
Lung ABCG2, CD133+ [16-18]
Melanoma ABCB5, CD133+, CD20+, CD271+ [18]
Ovarian CD44+, CD117+, CD133+ [39]
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of the Notch pathway has been implicated particularly 
in breast CSCs, possibly by influencing the EMT and 
contributing to the invasiveness of the CSCs.[26] One 
group investigated the effects of the bioactive compound 
psoralidin on Notch signaling in a breast cancer model. The 
plant-derived drug inhibited Notch signaling in both bulk 
tumor and CSCs, resulting in decreased mammosphere 
formation, upregulation of pro-apoptotic proteins, and 
inhibition of CSC proliferation.[27] Other studies have 
demonstrated that inhibiting Notch signaling resensitizes 
breast cancer cells to doxorubicin and docetaxel.[28]

The Hedgehog signaling pathway may also contribute 
to CSC formation. Hedgehog signaling controls cell fate 
and proliferation in embryonic SCs, but dysregulation of 
the pathway has been associated with CSC generation. 
Cyclopamine was the first Hedgehog antagonist to be 
identified and its effects have been studied in many 
cancers.[29] Cyclopamine depleted CSCs and induced 
tumor regression in a chronic myeloid leukemia model,[30] 
decreased tumor growth rate in a medulloblastoma 
model,[31] and inhibited proliferation of pancreatic CSCs.[32]

Hedgehog abnormalities are linked to aberrant Wnt 
pathway activity. It is believed that Wnt plays a role in 
maintaining the self-renewal capabilities of CSCs. CD44, 
a CSC marker, is an important target for Wnt signaling, and 
CD44 knockdown resulted in decreased tumor formation in 
an intestinal cancer model.[33] Another group tested several 
small molecule antagonists of Wnt and reported reduced 
mammosphere formation in vitro and halted tumor growth 
in vivo in a breast cancer model.[34]

SILENCING ONCOGENES

RNAi is biological processes in which small interfering 
RNAs (siRNA) cause complementary target mRNA to be 
degraded, thereby silencing the gene. While there are many 
RNAi-based strategies which target bulk tumor cells, fewer 
studies have shown CSC-specific RNAi. One group used 
lentiviral short hairpin RNA (shRNA) to silence the human 
papillomavirus gene E6 in CSC-enriched cervical cancers. 
They discovered that after shRNA exposure, CSC growth 
and sphere formation were dramatically inhibited. E6 is 
upregulated in cervical CSCs, and E6 silencing also led to 
decreased CSC self-renewal through TGF-β modulation.[35] 
Another study also used shRNA to silence HMGA1, an 
oncogene overexpressed in CD133+ colon CSCs. HMGA1 
knockdown restored normal SC properties to CSCs, 
including quiescence, increased asymmetric division, and 
decreased self-renewing division. HMGA1 silencing was 
also linked to increased p53 expression.[36] Both E6 and 
HMGA1 may be viable targets for anti-CSC therapy.

The application of RNAi in the clinic has been hampered 
by the inability to deliver high enough doses to the tumor 
site. One group has used targeted siRNAs to downregulate 
CSC oncogenes in vivo. They used PEGylated EpCAM 
aptamers to guide siRNA to EpCAM-overexpressing 
breast CSCs. The siRNA accumulated at the tumor site and 
resulted in an 80% knockdown of the survivin gene, which 
inhibits apoptosis and promotes chemoresistance in CSCs. 
When combined with doxorubicin, the aptamer-siRNA 
chimera improved survival rates of tumor-bearing mice,[37] 
demonstrating the effectiveness of anti-CSC RNAi in vivo 

Figure 1: Novel therapeutic strategies for targeting cancer stem cells
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as well as in vitro.

TARGETING CSC SURFACE MARKERS

One potential CSC therapeutics approach is targeting 
CSC surface markers. One of the most established and 
commonly used CSC biomarkers is CD44, which is a 
cell-surface extracellular matrix receptor.[6] Many studies 
represented CD44 antibody therapy as the major anti-CSC 
approach. The first of these studies showed that H90 anti-
CD44 therapy successfully eradicated AML.[38]

CD133 is a transmembrane glycoprotein and is another 
well-known CSC marker in several tumors such 
as glioblastoma, hepatocellular and colon cancers. 
CD133+ CSCs have shown resistance to chemotherapy 
and radiotherapy due to their slower cell cycle, lower 
proliferation, higher expression of DNA repair and anti-
apoptotic genes.[39,40] In a study by Carter et al.,[38] the 
AC133 antibody was conjugated to a potent cytotoxic 
drug, monomethyl auristatin, using a protease cleavable 
linker. This antibody drug conjugate was efficiently 
internalized, co-localized with the lysosome and showed 
high effectiveness against hepatocellular cancer cells.

EpCAM has been discovered as a CSC marker in solid 
tumors and is correlated with all the characteristics of 
CSCs. EpCAM+/CD44+/CD24- population in breast 
cancer had a significantly higher frequency of tumor-
initiating cells. Moreover, ovarian cancer cells with high 
EpCAM expression were involved in EMT, leading to 
metastasis.[2,41] Humanized EpCAM antibodies have been 
successful in both preclinical and early clinical studies, 
showing potent anti-tumor activity.[38,41]

INHIBITING ABC TRANSPORTERS

CSC chemoresistance is due in large part to the 
overexpression of drug efflux pumps such as ABC 
transporters. Several pharmacological agents have 
demonstrated inhibitory or neutralizing effects on these 
transporters. There are three generations of inhibitors of 
one of the main ABC transporters, P-glycoprotein (P-gp). 
However, none have been approved for clinical use due 
to a lack of specificity and adverse side effects. Recently, 
a more specific P-gp inhibitor, vardenafil, has shown 
promise in mitigating the effects of P-gp overexpression. 
Vardenafil appeared to directly block P-gp-mediated drug 
efflux and resulted in increased intracellular concentration 
and cytotoxicity of paclitaxel and vincristine.[42]

RNAi has also been used to silence ABC transporter 
genes. siRNA targeting P-gp reversed drug resistance in 
a doxorubicin-resistant breast cancer model. Doxorubicin-
resistant cell lines are enriched with CSCs upon prolonged 
doxorubicin exposure.[43] Exposing the resistant, CSC-
enriched cells to P-gp siRNA resulted in downregulation 
of P-gp gene expression and led to increased intracellular 

accumulation of doxorubicin and a 4-fold resensitization.[44]

Nanotechnology can be used alone or in combination with 
drugs or RNAi of ABC transporters. Triblock copolymers 
by themselves have been shown to resensitize P-gp-
overexpressing tumors to chemotherapeutic drugs; one 
group incorporated such a copolymer into polylactic acid 
micelles and reported overcoming multidrug resistance 
(MDR) in a paclitaxel-resistant breast cancer cell line.[45] 
One ABC transporter inhibitor, ritonavir, was conjugated 
with copolymer nanoparticles to increase uptake into 
tumor cells and enhance the cytotoxic effect of doxorubicin 
in drug resistant murine leukemic cells.[46] Another study 
suppressed P-gp using siRNA-loaded dextran polymeric 
nanoparticles in conjunction with doxorubicin treatment.[47]

ENHANCING IMMUNE RESPONSES

It is hypothesized that CSCs are able to evade cancer 
immunosurveillance due to phenotypic and functional 
properties that allow them to survive in immunocompetent 
hosts. Antitumor immune cells are detectable and relevant 
to disease prognosis. Tumor associated antigens (TAA) 
are encoded by lineage specific genes and are often 
present or overexpressed on tumor cells.[48] In patients 
with metastatic melanoma, circulating CD8+ T cells 
targeting the TAA MART-1 were detected, although 
they were functionally unresponsive.[49,50] These TAA-
specific T cells may be rendered anergic in vivo, and it 
is also plausible that CSCs downregulate their expression 
of human leukocyte antigen class 1 molecules or TAAs 
as another means of immunoevasion[49,50] Consequently, 
immunotherapy has become one of the most promising 
treatments for patients with metastatic cancer. Examples 
of strategies developed to enhance the host immune 
system are nonspecific immunomodulation to activate the 
host’s immune response, and adoptive cell transfer of ex 
vivo expanded lymphocytes, such as T cells and natural 
killer (NK) cells.[48,51]

Nonspecific immunomodulation includes treatment of 
patients with metastatic cancer using FDA-approved 
cytokines such as IFNα and IL-2.[48,52] Administration 
of high doses of IL-2 into experimental animals was 
reported to reduce lung and liver metastases, and further 
investigation was conducted in human patients with 
metastatic melanoma, which demonstrated 15-20% 
objective clinical response.[53,54] Several researches have 
attempted to explain the role of IL-2 in immunomodulation, 
and proposed that IL-2 induces expansion of T cells 
with major histocompatibility complex (MHC) -specific 
recognition of TAA to eliminate target cells.[54,55] One 
disadvantage of this nonspecific antitumor immune 
activation is it also upregulates the CD4+CD25hi Foxp3+ 

regulatory T cell (Treg) population, which impedes general 
antitumor T cell function and contributes to tumor 
immunoevasion.[52,56]
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Another promising strategy in targeting cancers in vivo 
is adoptive transfer of chimeric antigen receptor (CAR) 
engineered T cells, which can specifically target any 
TAAs or cancer stromal antigens with high binding 
affinity. Preclinical models have been developed as a 
proof of concept that CARs could also be used to target 
CSCs.[57] Deng et al.,[58] for instance, demonstrated 
that CAR T cell therapy could inhibit tumor growth of 
highly metastatic prostate cancer that expresses low 
levels of EpCAM. Other CSC-targeting adoptive T cell 
therapies include CAR T cells which bind to a CSC-
specific N-glycosylation-dependent epitope of CD133,[59] 
high-molecular weight melanoma associated antigen or 
chondroitin sulfate proteoglycan 4-specific CAR T cells 
that were reported to specifically eliminate melanoma 
with a CSC phenotype,[60,61] and epidermal growth factor 
receptor variant III (EGFRvIII) specific CAR T cells 
which target glioma SCs.[62]

Cells in the tumor microenvironment was also found 
to express several negative immune regulators such as 
programmed cell death 1(PD-1) and its ligand (PD-L1), 
cytotoxic T lymphocyte associated 4 (CTLA-4), and 
transforming growth factor β (TGF-β).[63] Engagement 
of CTLA-4 attenuates activation of downstream 
inflammatory cytokines, which contribute to T cell 
antitumor immunity, such as IL-2 and IFN-γ.[64,65] In 
Tregs, the engagement of CTLA-4 is required for immune 
suppression.[66] Antibodies blocking CTLA-4 engagement 
were developed and tested for their cancer therapeutic 
potential.[67] Wu et al.[68] showed that CTLA-4 monoclonal 
antibody (mAb) was able to inhibit early stages of 
tumor growth in a murine mesothelioma model and 
improved tumor infiltration of CD8+ and CD4+ T cells. 
In human patients with advanced melanoma, the CTLA-
4 mAbs ipilimumab and tremelimumab prolonged T 
cell activation. However, only ipilimumab demonstrated 
improved survival in phase III study of patients with 
previously treated melanoma and gained FDA approval 
for treatment of metastatic melanoma in 2011.[69] Future 
applications of mAb CTLA-4 will most likely come in the 
form of combination therapy to modulate the host immune 
system in a more effective synergistic fashion .

[67,68,70,71]

The second T cell regulatory pathway is the PD1/PD-
L1 axis, which inhibits lymphocyte activation. PD-L1 
or B7 homolog 1 (B7-H1) is expressed in many tumors 
including melanoma and cancers of the lung, colon, 
ovarian, liver and breast.[63,72] PD1/PD-L1 binding triggers 
apoptosis of B and T cells in the tumor microenvironment. 
In tumors with upregulated PD-L1 expression, there is 
decreased T cell infiltration, activation, and expansion, 
effectively shielding CSCs against the host’s immune 
response.[63,72,73] Most recently, the new immunotherapy 
drug which has been approved by FDA in May 2016.
Tecentriq is a monoclonal antibody that targets the PD-1/
PD-L1 pathway by directly binding with a PD-L1 protein 
expressed on tumor cells and tumor-infiltrating immune 

cells. This immune checkpoint inhibitor will help the 
body’s immune system fight against cancer cells.[74]

In addition to previously reported suppressor molecules, 
CD200 (OX-2) is another immunosuppressive factor that 
may have an important role in CSC’s immunoevasion.[75] 
CD200 is co-expressed with CSC markers such as 
CD133+ glioblastoma, colon and melanoma CSCs, 
CD44+/CD24- in breast CSCs and CD44+ prostate 
CSCs.[76,77] Upregulation of CD200 negatively correlates 
with the levels of Th1 cytokines required for effective 
T cell activation, such as IL-2 and IFNγ.[78-80] Shifting 
of Th1 to Th2 cytokine production is observed in the 
progression of many cancer types and is a characteristic 
of the tumor microenvironment, especially in carcinomas 
with poor prognosis.[78]

TARGETING THE TUMOR 
MICROENVIRONMENT

The tumor microenvironment of CSCs has three 
major characteristics: (1) chronic inflammation and 
secretion of inflammatory cytokines,[81] (2) hypoxia,[82] 
and (3) perivascular niches that regulate the capacity 
of proliferation and differentiation.[83] Inflammatory 
cytokines such as IL-1β, IL-6 and IL-8 activate the Stat3/
NF-κB pathways in tumor and stromal cells to further 
secrete cytokines in a positive feedback loop that prompts 
CSC self-renewal, angiogenesis, and metastasis.[81,84] 
Moreover, the CSC population along with other cells 
which coevolved in the tumor microenvironment are near 
blood vessels that form a niche characterized by severe 
hypoxia and increased angiogenesis.[82,83] These aspects 
of the tumor microenvironment have been explored as 
possible pharmaceutical targets of CSCs.

Recent studies have demonstrated decreased tumor 
growth after blocking IL-6 and/or IL-8 cytokine 
signaling.[85,86] One of the pharmaceutical molecules 
tested was repertaxin, a non-competitive inhibitor of 
IL-8 and CXCR1 signaling, which decreased tumor size 
and increased efficacy of chemotherapy.[87] However, the 
effects of blocking single cytokines is limited as both IL-6 
and IL-8 are critical for xenograft tumor growth and the 
combined expression of these genes correlates with poor 
prognosis in patients with breast cancer. Therefore, co-
inhibition of both IL-6 and IL-8 was suggested to be a 
more advantageous method to induce substantial effects 
on tumor growth.[88]

Tumor hypoxia is another intriguing method for attacking 
CSC niches. Hypoxia activates the hypoxia inducible 
factor (HIF) pathway and upregulates HIF-1α, which 
mediates multiple biological effects of hypoxia in 
tissues and increases resistance against chemotherapy 
and radiation.[89] Several small molecule inhibitors of 
the HIF pathway have been pursued in clinical trials, 
although only a few of them were successful. Bortezomib 
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(Velcade®, PS-341) was approved by the FDA in 2003 for 
use against multiple myeloma, followed by Temsirolimus 
(Torisel®, CCI-779), approved in 2007 for use against 
renal cell carcinoma. The majority of the other drugs -- 
including Perifosine, 2-methoxyestradiol, Echinomycin, 
Geldanamycin -- were terminated in either phase I or II 
trials when they failed to show significant advantages.[89]

Lastly, targeting tumor vasculature is another way to 
disrupt the CSC niche. Several agents blocking the 
activity of vascular endothelial growth factor, which 
drives the migration of endothelial cells and stimulates 
angiogenesis, are being tested in initial phases of 
clinical therapy with moderate success. These include 
Bevacizumab (Avastin®), Cediranib (AZD2171), 
Sunitinib and Vandetanib.[82,90-93]

NANOMEDICINE IN COMBINATION 
THERAPY

Frequently after treatment, surviving CSCs induce 
new tumor formation and metastases in which cancer 
reappears in an even more aggressive form. With this 
phenomenon in mind, an increasing number of CSC-
targeted therapeutic agents have been developed over 
the past several years such as salinomycin, curcumin, 
thioridazine hydrochloride, sulforaphane, miR-34a, 
and miR-130b.[94-97] Despite their therapeutic potential 
in targeting CSCs, their clinical application has been 
hindered by their hydrophobicity, poor specificity and 
poor pharmacokinetics (PK) profiles.[98-100]

Recent developments in nanoparticle delivery systems have 
provided new strategies to efficiently deliver therapeutics 
that can overcome the challenges posed by CSCs and 
improve therapeutic efficacy of CSC-targeting agents by 
controlling release kinetics, prolonging circulation time 
and improving bio-distribution. In a study by Zhou et 
al.,[98] they used HPMA polymeric nanoparticles to deliver 
a Hedgehog pathway inhibitor that efficiently eliminated 
CD133+ cells within prostate tumors. Mamada and 
coworkers designed mesoporous silica nanoparticles to 
deliver a potent inhibitor of the Notch signaling pathway. 
Their nanoparticle drug treatments efficiently targeted 
CSC populations in the tumor. Furthermore, in the study 
done by Wei and colleagues, salinomycin was conjugated 
to a hyaluronic acid-based nanogel to target CD44+ drug 
resistant cells which enhanced the therapeutic efficacy of 
salinomycin.[97,98]

Another advantage of using nanoparticles is the 
additional capability to modify their surfaces with 
targeting agents such as mAbs and peptides. High target 
selectivity and internalization can be achieved by surface 
modification of nanoparticles with targeting moieties. As 
previously discussed, CSCs are characterized by certain 
surface markers; this allows specific targeting of CSCs 
as a therapeutic strategy for drug delivery. Swaminathan 

et al.[101] demonstrated that their targeted nanoparticles 
induced a significant tumor volume reduction compared 
to untreated control and non-targeted groups in an in vivo 
MDA-MB 231 xenograft tumor model by developing 
paclitaxel-loaded polymeric PLGA nanoparticles 
conjugated with CD133 mAb. In another study done by 
Dou et al.,[94] myeloma CSCs were treated with silver 
nanoparticles decorated with anti-ABCG2 antibodies on 
the surface along with vincristine. Despite these advances 
in the laboratory, targeted nanoparticle approaches in the 
CSC field are still in the early preclinical development 
stage due to limitations such as potential systemic 
toxicity, unwanted side effects, and poor extravasation 
and exposure to their targets.[97,98,102]

It has been shown that using a CSC-targeted inhibitor 
alone is not very effective in reducing the tumor bulk due 
to the fact that these inhibitors are not highly cytotoxic 
as compared with conventional chemotherapeutics. 
Thereby, dual targeting nanoparticles loaded with CSC 
inhibitors and conventional cytotoxic agents can improve 
clinical outcomes by effectively eradicating both CSCs 
and bulk tumor cells at the same time. When compared 
with the free drugs, the nanoparticle formulated drugs 
were significantly more effective and less toxic both in 
vitro and in vivo.[103-105]

CONCLUSION AND FUTURE 
PERSPECTIVES

It is clear now that conventional chemotherapy is not 
enough to overcome the abilities of CSCs to self-renew 
and metastasize. A combination of surface markers and 
their functional properties have been used to identify 
and isolate CSCs. Despite this progress, there is still a 
lack of reliable and accurate CSC markers. This must be 
overcome in order to develop therapeutic strategies with 
higher specificity and fewer side effects.

Using either small molecule inhibitors or RNAi to target 
CSC-associated oncogenes and signaling pathways have 
resulted in decreased functionality and numbers of CSCs 
and tumor regression in several pre-clinical models. CSCs 
develop resistance to conventional chemotherapeutics, 
but targeting ABC transporters resensitizes CSCs to 
those same drugs. Several studies have shown greater 
CSC targeting effects by employing antibodies against 
CSC-specific biomarkers. Anti-CSC approaches such as 
CD44 and EpCAM antibodies could selectively induce 
differentiation and inhibit proliferation.

Modulating the immune system and tumor 
microenvironment as a means of targeting CSCs has 
shown encouraging results. However, the efficacy of 
immunotherapy alone may be inadequate to produce clinical 
results. Therefore, combination therapy with conventional 
modalities as well as with immunomodulatory agents may 
be of future interest to enhance therapeutic effects.
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As discussed above, nanocarriers enhanced the delivery 
and cytotoxic activity of CSC-inhibitors. Several studies 
introduced active targeting strategies of nanoparticle 
surfaces to increase their specificity and cellular uptake 
by CSCs. Lastly, researchers have been focusing on 
nanoparticle-mediated drug combinatorial therapy. One 
important advantage of nanocarriers is their capability 
to incorporate multiple therapeutic agents in one carrier 
system, allowing co-delivery of cytotoxic drugs and CSC 
inhibitors to simultaneously target both bulk tumor and 
CSCs. Patient cures will rely on the ablation of the entire 
tumor. Ultimately, nanoparticle mediated combination 
therapy may prove to be the most successful in eradicating 
whole tumors.

The CSC field is relatively new, and CSC-targeting 
therapeutics is in their early stages. While many 
advances have been made in CSC research, many of 
these studies have been performed in vitro only, and none 
are past the early clinical stages. Important factors such 
as effective dosages and side effects must be elucidated 
before employing cancer treatment plans that target 
both differentiated tumor cells and CSCs. There is need 
to improve the existing methods to precisely isolate, 
identify and target CSCs. As mentioned, increasing 
amount of nanomedicine have been evaluated about their 
application potentials in CSC therapy, but only a small 
amount of them can be approved to translate to clinical 
treatment. With the fact that every cancer acts differently 
in different patients, the development of personalized 
combinational therapies may serve as a key to successful 
treatments. Furthermore, it is important to realize that the 
combination of nanomedicine and immunotherapy may 
present a novel direction which shows great potential in 
personalized cancer therapy.
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It has been almost two decades, since the existence of 
leukemic stem cells (LSCs) were first demonstrated 
in acute myeloid leukemia (AML) using xenogenic 
transplant models.[1,2] Although LSCs were the first type 
of cancer stem cell (CSC) to be described experimentally, 
CSCs have been identified in a variety of malignancies 
and extensive efforts have been made to understand 
and characterize specific biomarkers associated 
with the various types of cancers.[3] However, it still 
remains unclear whether these transformed cells arise 
as a result of the normal cells undergoing a malignant 
change or whether they are the differentiated malignant 
cells that have re-acquired stem-like characteristics.[4] 
Irrespective of the conundrum regarding the origin 
of the LSCs, studies have highlighted that there exists 
remarkable heterogeneity to the LSC compartment at 
both the cellular and molecular level.[5] Such intratumoral 
heterogeneity has been associated with the failure of many 
chemotherapeutic agents and progress to a refractory 
state, also known as the state of secondary resistance.[6] 

Furthermore acquired quiescence has offered the CSCs 
to evade being killed by conventional chemotherapy and 
radiotherapy, leading to cancer relapse and metastasis.[4]

Cancer immune surveillance is considered to be 
an important host protection process to inhibit 
carcinogenesis and to maintain cellular homeostasis. It 
has been shown that deregulation of the tightly controlled 
immune response may result in immune escape of CSCs, 
and there has been a growing interest in understanding 
the mechanisms that regulate the immune modulatory 
properties of the CSCs in order to develop more effective 
therapy that can eradicate these quiescent cells. Some of 
the signs of immune tolerance projected by CSCs include 
downregulation of positive co-stimulatory molecules, 
higher expression of negative co-stimulatory molecules, 
and secretion of soluble factors that induce regulatory T 

cells, such that they inhibit the productive activation of 
effector T cells.[7]

Other than the intrinsic factors such as the signaling 
pathways and the very recently stated micro RNA 
(miR-126) that drives quiescence and self-renewal 
within the LSCs;[8] extrinsic factors such as the tumour 
microenvironment also plays a central role in the 
progression of cancer. The microenvironment has been 
implicated as a source of chemoresistance and disease 
relapse. Recent advances strongly indicate that the 
leukemic cells target the microenvironment to create an 
environment that is more suitable for the progression 
of cancer.[9] In fact quiescence has been described as 
a survival strategy adopted by CSCs to resist harsh 
environmental conditions and cytotoxic insults.[10]

Thus, cancer stem cells are the “unscathed successors” 
that progressively deteriorate the condition of the patient. 
Their inherent quiescent “status quo” along with the 
complex interplay of several factors (as those discussed 
above) contribute towards sustaining and propagating 
the malignant disease. Eradicating CSCs, the root of 
cancer origin and recurrence, has therefore been thought 
as a promising approach to improve cancer survival or 
even to cure cancer patients.[11] Nevertheless, a major 
challenge thwarting the eradication of CSCs is that their 
identification and isolation has been hampered due to the 
non-specificity of their cell surface biomarkers[3] and also 
by the fact that the commonly used fluorescent markers 
are not stable, and hence do not allow tracking over an 
extended period of time.[12]

A study conducted by Gardane et al.,[13] published 
in this issue demonstrates that low concentrations of 



                                                                                                              Journal of Cancer Metastasis and Treatment ¦ Volume 2 ¦ July 8, 2016 ¦244

curcumin sensitize the quiescent leukemic cells (QLCs) 
towards more effective killing by the anti mitotic drug, 
5-fluorouracil. Curcumin pushes the QLCs into the cell 
cycle, thereby sensitizing them through the induction of 
proliferative responses. Similar observations have been 
reported by other studies wherein it has been implicated 
that the induction of cell cycle entry of the QLCs enhances 
apoptosis and elimination of human primary AML cells 
in vivo.[14,15] Such studies underscore the essential role of 
cell cycle regulation in LSC function.
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Long-term quiescence or dormancy is a fundamental feature of cancer stem cells (CSCs) that are genetically identical to the 
malignant clone but constitute the only cells with tumor propagation potential within the overall tumor population. These 
quiescent cells show significant resistance to radiation and antiproliferative chemotherapy due to distinctive properties that seem 
to be related to their stem cell-like character. Hence, successful anticancer therapy must consist of approaches that can target 
not only the differentiated cancer cells, but also the CSCs. Using serum-starved KG1a cell line as an experimental model system 
of quiescent leukemic cells (QLCs), the present study demonstrates that QLCs exposed to low concentrations of curcumin show 
high proliferative potential. Furthermore, when subjected to a combination therapy consisting of low concentrations of curcumin 
and 5-fluorouracil (5-FU), the QLCs displayed a high kill with an increase in the levels of nitric oxide (NO) and reactive 
oxygen species. These results were further consolidated with the observation of high caspase-3 activity in cells subjected to the 
combination therapy. This may suggest that low concentrations of curcumin stimulate the QLCs to become mitotically active, 
thereby sensitizing them to killing by the antimitotic drug, 5-FU.
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INTRODUCTION

Acute myeloid leukemia (AML) is a heterogeneous 
clonal disorder of hematopoietic progenitor cells that 
is characterized by a blockage of differentiation and an 
accumulation of immature non-functional myeloid cells 
in the blood.[1] It is the most common malignant myeloid 
disorder among children and adults.[2] The mainstream 
approach for AML treatment is chemotherapy, radiation, or 
surgery.[1,3] However, the association between conventional 
therapy and severe toxicity followed by a tendency to 
relapse or metastasize cannot be ignored.[3,4] In many cases 
resistance to therapy develops, leaving AML patients with 
no alternative but to undergo bone marrow transplantation 
(BMT) for a disease-free survival.[2,4]

According to cancer stem cell (CSC) theory, CSCs are 
responsible not only for tumor initiation, development, 
and metastasis but also for therapeutic resistance.[3,5-7] 
These cells were first identified by Bonnet and Dick[8] in 
AML. Following their findings many other groups have 
identified these cells in various solid tumors, such as brain, 
breast, pancreas, and prostate.[9-12] Standard chemotherapy 
and radiotherapy target only the active tumor cells. 
Quiescent CSCs evade therapy and remain unharmed, 
a major concern for the development of insensitivity 
towards therapy leading to relapse associated with 
leukemia.[3,5,7] Furthermore, the release of inflammatory 
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cytokines -- particularly interleukin (IL)-6, IL-8 and IL-1 
-- as a consequence of induced cancer cell death has been 
shown to stimulate replication of CSCs,[13,14] and also 
affect at multiple sites along CSC pathways such as Wnt, 
Notch, Hedgehog, and focal adhesion kinase (FAK).[7,12,13] 
CSCs that are generated as a result of chemotherapy-
induced tumor cell death that stimulates the release of 
inflammatory cytokines have been reported to be more 
refractory to therapy.[13,15,16] This suggests that, for therapy 
to be consistently effective, it must eliminate both CSCs 
and non-stem cell cancer cells.

Currently research is being done to harness the medicinal 
properties of natural compounds for treating leukemia.[17,18] 
Natural compounds are cheap, are easily available, 
and do not cause any adverse effects.[17,18] Curcumin is 
a well-known dietary polyphenol[19-21] and is an active 
ingredient of turmeric that possesses antioxidant and anti-
inflammatory activities.[19,21] Its safety and tolerability has 
been well-established by numerous clinical studies.[19,21] 
It has been shown that curcumin has significant cytotoxic 
and apoptotic effects on the promyelocytic cell line, HL-
60, suggesting that it may have a potential therapeutic 
role for human leukemia.[22-25] A study conducted by 
Fong et al.[26] showed that curcumin inhibited the side 
population (SP) phenotype of the rat C6 glioma cell line, 
demonstrating for the first time in vivo that curcumin has 
anticarcinogenic and antimetastatic activity in the brain. 
Another study demonstrated that curcumin is able to target 
breast stem/progenitor cells, as evidenced by suppressed 
mammosphere formation along serial passage and by 
a decrease in the percent of aldehyde dehydrogenase 
(ALDH)-positive cells.[27-29]

To summarize, several cell and animal studies have 
demonstrated and corroborated the apoptotic activity 
and anticancer effect of curcumin in different types 
of cancers,[30-34] and recent research has shown that 
curcumin can also target CSCs.[35] In the present work we 
demonstrate that curcumin, at low concentrations, induces 
proliferative responses in QLCs, thereby sensitizing them 
to the antimitotic drug, 5-fluorouracil (5-FU).

METHODS

Reagents
Curcumin, Fetal Bovine Serum (FBS), Griess Reagent, 
Dichloro-dihydro-fluorescein diacetate (DCFH-DA), 
Propidium Iodide (PI), 3-(4, 5-Dimethylthiazol-2-yl)-2, 
5-Diphenyltetrazolium Bromide (MTT), 5- Fluorouracil 
(5-FU), Dimethyl Sulfoxide (DMSO), RNase-A were 
purchased from Sigma-Aldrich, USA; Iscove’s Modified 
Dulbecco’s Media (IMDM), L-Glutamine,  Antibiotic 
Solution (Penicillin + Streptomycin), Trypan Blue Dye,  
Phosphate Buffer Saline (PBS) were purchased from 
Himedia, India; Caspase-3 Colorimetric Assay Kit was 
purchased from RayBiotech.

Cell culture
KG1a cell line was procured from National Centre for Cell 
Science (NCCS), Pune, India and was maintained under 
standard conditions as per the ATCC guidelines. KG1a 
is a variant sub-line of KG1 that is morphologically and 
functionally less mature than KG1. It does not respond to 
colony-stimulating factors in soft agar assays. Cells were 
starved in low serum (0.5% FBS) medium overnight to 
prepare Quiescent Leukemic Cells (QLCs) from them.[36]

QLCs were subjected to various treatments as follows:

1. Treatment with only curcumin (CU): QLCs were 
treated with various concentrations of curcumin ranging 
from 10 µg to 100 µg/mL in growth medium (IMDM 
supplemented with 20% FBS) for 48 h.

2. Treatment with only 5-fluorouracil (5-FU): QLCs 
were exposed to varying concentrations of 5-FU (6-
100 µg/mL) in growth medium for 24 h.

3. Combinatorial treatment: QLCs subjected to curcumin 
treatment (10-100 µg/mL) for a period 48 h (step 1) 
were harvested and resuspended in fresh growth 
medium containing 6 µg/mL of 5-FU. The cells were 
further incubated for a period of 24 h after which 
they were subjected to various biochemical assays as 
described below.

3-(4,5-Dimethylthiazol-2-yl)-2, 
5-Diphenyltetrazolium Bromide (MTT) assay
QLCs exposed to various treatments were subjected to a 
standard MTT assay as discussed before, and the percent 
proliferation was determined.[36]

Growth curve experiment
Growth curve experiment was performed to determine 
the doubling time. QLCs were treated with 10 µg/mL 
curcumin, and viable cell counts were taken at specified 
time intervals using trypan blue dye exclusion method.

Flow cytometric analysis of cell cycle
Cell cycle analysis using propidium iodide (PI) staining 
was performed to distinguish the cells in various stages 
of the cell cycle. Briefly, the QLCs exposed to various 
treatments were stained with PI, after which analysis of the 
cell cycle was performed using BD FACSCaliburTM (BD 
Biosciences, USA).

Nitric oxide (NO) assay
Nitric oxide assay was performed using modified Griess 
reagent for the colorimetric detection of NO production 
by QLCs subjected to curcumin and/or antimitotic drug 
treatment(s) at 540 nm using BioTek™ Eon™ Microplate 
Spectrophotometer (USA).

2’, 7’-dichlorofluorescein diacetate (DCFDA) 
assay
QLCs exposed to curcumin and/or antimitotic drug 
treatment(s) were checked for the generation of Reactive 
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Oxygen Species (ROS) by DCFDA assay. QLCs were 
incubated with 10 µM DCFDA for 30 min at 37°C. After 
incubation, 2’, 7’-dichlorofluorescein (DCF) was measured 
at 495-529 nm by using a fluorometer (Fluoroskan Ascent, 
Thermo Fisher Scientific, USA).

Apoptotic assay
This assay was performed as per manufacturer’s instructions 
(RayBiotech) to estimate the caspase-3 activity of the 
QLCs. The intensity of the color was measured at 400/405 
nm by using a spectrophotometer reader (BioTek™ Eon™ 
Microplate, USA).

Statistical analyses
The data were analyzed by One-way Repeated Measure 
Analysis of Variance (One-Way RM ANOVA). The 
Standard Error of Mean (S.E.M.) values were used for 
plotting the error bar graphs, using the SigmaPlot software 
(version 13.0). Level of significance was denoted as 
follows: ∗P ≤ 0.05, ∗∗P ≤ 0.01 and ∗∗∗P ≤ 0.001.

RESULTS

Low concentrations of curcumin induce 
proliferation of quiescent leukemic cells
It has been shown that curcumin inhibits cell proliferation, 
causes cell cycle arrest, and initiates apoptosis in several 
human cancer cell lines.[37,38] We first wanted to determine 
the concentration(s) of curcumin that would be most 
effective against the QLCs. Hence we cultured the serum-
starved KG1a cells for 48 h with various concentrations 
(10-100 µg/mL) of curcumin. We were expecting to 
see a dose-dependent inhibitory effect of curcumin on 
the QLCs. Intrestingly, however, we observed that low 
concentrations of curcumin (10 µg/mL and 20 µg/mL) 
stimulated the cells to undergo proliferation, whereas at all 
other concentrations of curcumin (30 µg/mL to 100 µg/mL) 
imparted inhibitory effects [Figure 1]. Our proposition is 
that since KG1a cells are known to contain leukemia-like 
stem cells,[16] low concentrations of curcumin could have 
induced the leukemia-like stem cells to proliferate.

Curcumin results in an increased cell yield by 
reducing the doubling time of QLCs
Since low concentrations (10 µg/mL and 20 µg/mL) 
of curcumin led to proliferation of the QLCs, we next 
wanted to know whether treatment with curcumin would 
alter the cell cycle kinetics. Serum-starved KG1a cells 
were treated with 10 µg/mL of curcumin, and viable cell 
counts using trypan blue dye exclusion method were taken 
at every 24 h interval for a period of 6 days. As seen in 
Table 1, it was observed that till day 4, the doubling time 
of QLCs treated with curcumin was reduced to almost 
half that of the untreated cells. The minimum doubling 
time of 6.14 h was observed on the second day. It is also 
important to note that the doubling time of curcumin-
treated cells was lower than that of untreated cells for all 
6 days [Figure 2].

5-Fluorouracil inhibits the proliferation of 
QLCs in a dose-dependent manner
The presence of leukemic stem cells (LSCs), also 
known as cancer stem cells (CSCs), is a major problem 
in the treatment of leukemia. The LSCs are refractory 

Table 1: Doubling time of untreated versus treated 
QLCs

Day Time interval 
in hours

Doubling time in hours
Untreated 

QLCs
QLCs + curcumin 

(10 µg/mL)
1 0-24 23.99 11.99

2 24-48 11.99 6.14

3 48-72 29.74 13.97

4 72-96 36 18.15

5 96-120 44.8 28.2
6 120-144 35.3 20.5

QLCs: quiescent leukemic cells

Figure 1: QLCs undergo proliferation in response to low concentrations 
of curcumin: Serum-starved KG1a cells were treated with varying 
concentrations of curcumin (10-100 µg/mL) for 48 h and were subjected to 
MTT assay. Treatment with low concentrations (10 µg/mL and 20 µg/mL) 
of curcumin led to proliferation of QLC cells as compared to the vehicle 
control (VC) cells. The data represent mean ± S.E.M. of three independent 
experiments (*** P ≤ 0.001)

Figure 2: Treatment with curcumin reduces the doubling time of QLCs: 
QLCs were treated with 10 µg/mL of curcumin. Viable cell count was taken 
at an interval of 24 h for 6 days. Although minimum doubling time (6.14 h) 
was observed at Day 2 (24-48 h), the overall doubling time of curcumin-
treated cells was always lower than the doubling time of vehicle control 
(VC). The data represent mean ± S.E.M of three independent experiments 
(** P ≤ 0.01)
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to treatment, and their presence is associated with 
relapses.[13,15,16] In 2008, Vaidya et al.[36] showed that 
inhibition of p38 mitogen-associated protein kinase 
(MAPK) sensitizes the QLCs to antimitotic agents 5-FU 
and cytosine arabinoside (Ara-C). Since the treatment of 
QLCs with low concentrations of curcumin was pushing 
the cells into proliferation, we conjectured that this 
proliferative response could be translated to increase the 
sensitivity of the leukemic cells to antimitotic agents. 
Hence, we first reconfirmed whether serum-starved KG1a 
cells were a good model system to study the effects of 
antimitotic drugs. We exposed the quiescent KG1a cells 
to different concentrations of 5-FU and subjected them 
to MTT assay. As shown in Figure 3, 5-FU induced dose-
dependent killing of the quiescent KG1a cells, thereby 
validating it as a good model system for testing the 
efficacy of antimitotic drugs.

Quiescent leukemic cells prepared from KG1a 
get sensitized to low levels of 5-FU when treated 
with low concentrations of curcumin
Based on our previous studies,[36] we wanted to examine 
whether the proliferative response induced by low 
concentrations of curcumin treatment would make the 
quiescent leukemic cells more susceptible to the mitotic 
inhibitor 5-FU. KG1a cells that were made quiescent 
by serum deprivation were first treated with low 
concentrations of curcumin (10 µg/mL and 20 µg/mL) 
and then exposed to 6 µg/mL (lowest concentration) of 
5-FU.[36] MTT assay was then carried out to assess the 
percent proliferation of the cells. It was observed [Figure 
4E] that QLCs that were treated with a combination of 
5-FU and low concentrations of curcumin were more 
effectively killed (low percent proliferation: 60% and 65% 
for 10 µg/mL and 20 µg/mL, respectively) as compared to 

Figure 3: 5-Fluorouracil imparts its cytotoxic effect on quiescent KG1a cells in a dose-dependent manner: Serum-starved KG1a cells were incubated with 
different concentrations of 5-FU (6 µg, 10 µg to 100 µg/mL) for 24 h and were subsequently subjected to MTT assay. As seen in the graph, QLCs displayed 
a dose-dependent response to increasing concentrations of 5-FU. The data represent mean ± S.E.M. of three independent experiments (*** P ≤ 0.001)

Figure 4: Treatment with low concentrations of curcumin sensitizes the QLCs to the antimitotic agent, 5-FU: Serum-starved KG1a cells were incubated with 
different concentrations of curcumin (10-100 µg/mL) for 48 h. After 48 h, the QLCs were further incubated with 5-FU (6 µg/mL)  for another 24 h. When the 
cells were subjected to MTT assay (E), it was observed that the percent proliferation of QLCs exposed to the combination treatment (10CU + 5-FU, 20CU 
+ 5-FU) was lower than for the cells treated with only 5-FU. The data represent mean ± S.E.M. of three independed expriments (** P ≤ 0.01). (A-D) They 
represent phase contrast images using a 20 × objective of an inverted microscope (Carl Zeiss, 200 × magnifications) of QLCs exposed to curcumin and/or 
5-FU. (A) Vehicle control QLCs growing in clumps; (B) QLCs exposed to 10 µg/mL curcumin, showing maximum proliferation; (C) QLCs exposed to only 5-FU; 
(D) QLCs exposed to 10 µg/mL curcumin and 5-FU, showing fewer cells, indicating that the QLCs have been more efficiently killed by 5-FU; (E) graphical 
representation of QLCs subjected to MTT assay
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the cells that were treated with 5-FU alone (higher percent 
proliferation: 90%). Figure 4 (A-D) represents phase 
contrast images of QLCs that were untreated [Figure 4A] 
or exposed to only curcumin [Figure 4B], only 5-FU 
[Figure 4C] and both curcumin and 5-FU [Figure 4D]. 
It is clearly seen that QLCs that were exposed to only 
curcumin underwent high proliferation and were more 
susceptible to the antimitotic effects of 5-FU.

Curcumin pushes the QLCs into the S phase of 
the cell cycle which sensitizes them to killing by 
the antimitotic drug 5-FU
The antimitotic drug, 5-fluorouracil (5-FU) selectively 
kills the cells in the S-phase of the cell-cycle, leaving the 
quiescent leukemic cells (QLCs) unharmed.[36,39] Hence, 
our next step was to check whether the induction of 
proliferative responses in presence of low concentration(s) 
of curcumin was pushing the QLCs into the S phase of the 
cell cycle.

In this set of experiments, serum-starved KG1a cells were 
treated with curcumin and/or 5-FU, after which they were 
taken for propidium iodide (PI) staining.  Figure 5B shows 

that, as compared to the vehicle control (VC) cells (M2 = 
2.37%), a greater number of curcumin-treated cells (M2 
= 29.76%) migrated from G0/G1 phase towards S phase 
of cell cycle. It was also observed that as a consequence, 
fewer number of curcumin-treated cells (M1 = 40.44%) 
were present in G0/G1 phase than in the untreated cells (M1 
= 85.95%). In QLCs that were exposed to combination 
treatment (curcumin + 5-FU), a profile similar to 
curcumin-only cells was observed in M1, M2, and M3 
stages. However, a striking difference was seen at the M4 
stage between the cells that were subjected to combination 
treatment (M4 = 30.58%) (green bar at M4 of Figure 5B) 
and those that were treated with 5-FU only (M4 = 9.87%) 
(red bar of at M4 Figure 5B). The difference indicates that 
the proliferative responses induced by curcumin sensitized 
the QLCs to killing by the antimitotic drug 5-FU.

QLCs exposed to combination treatment show 
higher caspase-3 activity
The flow cytometric analysis of the cell cycle effectively 
demonstrated that the exposure to curcumin was helpful 
in improving the outcome of antimitotic drug therapy 
[Figure 5B]. However, we wanted to confirm whether the 

Figure 5: Cell cycle analysis showing that curcumin causes greater migration of QLCs from the G0/G1 phase to other stages of the cell cycle: QLCs were 
treated with curcumin (10 µg/mL) for 48 h. After 48 h the quiescent cells were incubated with 5-FU (6 µg/mL) for another 24 h and then subjected to PI 
staining. The stained cells were acquired and analyzed using BD FACSCaliburTM. As compared to the vehicle control (VC), a much higher percentage of 
cells treated with curcumin were pushed into the S and G2/M phase. More importantly, the QLCs that were exposed to curcumin were more effectively killed 
by 5-FU than cells that were not. (A) Side scatter plot of untreated vehicle control cells (QLCs), where R1 is the gated population of QLCs that is positive for 
PI. The histograms demonstrate a distinct pattern of the different phases of the cell cycle marked as M1 (G1/G0 phase), M2 (S-phase), M3 (G2/M phase) and 
M4 (Dead cells) of untreated QLCs (VC) and of QLCs subjected to curcumin and/or 5-FU treatments; (B) a tabular and graphical representation of Figure 
5A, depicting the percentage of gated QLCs in each stage of the cell cycle in response to treatment with cucrumin and/or 5-FU
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QLCs that were being targeted by 5-FU were undergoing 
apoptosis. To check the apoptotic profile of QLCs treated 
with both curcumin and 5-FU, we performed  caspase-3 
assay as per manufacturer’s instructions. As seen in Figure 
6, there was indeed a high caspase-3 activity in cells treated 
with combination therapy when compared to those treated 
with only 5-FU. This confirms that curcumin sensitized the 
QLCs to undergo apoptosis in presence of the antimitotic 

drug 5-FU.

Low concentrations of curcumin and 5-FU 
together increase the levels of nitric oxide in QLCs
Since low concentrations of curcumin caused the 
proliferation of QLCs that were sensitive to 5-FU 
treatment, we wanted to check whether the kill seen in 
QLCs was being mediated by the expression of nitric oxide 
(NO). NO is known to react with superoxide at a high rate 
(k ≥ 6.7 × 109 M−1 s−1) to form peroxynitrite, which is far 
more reactive and damaging than its precursors.[40] The 
downstream products of superoxide, including hydrogen 
peroxide and peroxynitrite, are potent oxidants that induce 
oxidative injury of cells, resulting in apoptosis.[41,42] Nitric 
oxide assay determines nitric oxide based on the enzymatic 
conversion of nitrate to nitrite by nitrate reductase.[43,44] The 
reaction is followed by a colorimetric detection of nitrite 
as an azo dye product of the Griess reaction, which absorbs 
light at 540 nm. As seen in Figure 7, cells that were treated 
with a combination of both curcumin and 5-FU expressed 
higher levels of NO than cells that were treated with only 
curcumin or only 5-FU.

Combination treatment of quiescent KG1a cells 
with low concentrations of curcumin and 5-FU 
stimulates higher generation of reactive oxygen 
species
Generally, the production of ROS by mitochondria is a 
consequence of the blockade of the electron transfer chain. 
It has been well documented that NO can inhibit the activity 

Figure 6: Combination therapy promotes higher caspase-3 activity in 
quiescent leukemic cells. QLCs were treated as represented in the graph. 
The treated cells were harvested and subjected to caspase-3 assay. 
Intensity of the color was measured at 400/405 nm by using microplate 
spectrophotometer. In the graph, VC represents vehicle control; 10CU 
represents the cells treated with curcumin only (10 µg/mL); 5-FU represents 
cells treated with 5-FU only (6 µg/mL), and 10CU + 5-FU represents 
combination treatment of 10 µg/mL of curcumin and 6 µg/mL of 5-FU. Serum-
starved KG1a cells treated with 10 µg/mL of curcumin induce minimum 
caspase-3 activity as compared to VC. Cells treated  with a combination of 
10 µg/mLof curcumin and 6 µg/mL of 5-FU induces maximum caspase-3 
activity as compared to the cells exposed to only 5-FU. The data represent 
mean ± S.E.M of three independent experiments (* P ≤ 0.05, *** P ≤ 0.001)

Figure 7: Combination treatment with low curcumin concentrations and 
5-FU leads to higher generation of NO in quiescent KG1a cells: QLCs were 
subjected to various treatments as shown in the graph. After treatment, 
the cells were spun, supernatant was collected into fresh plates and to the 
supernatant was added an equal volume of Griess reagent. The plate was 
incubated for 15 min in dark at room temperature (RT) and the intensity 
of color was measured at 540 nm using microplate spectrophotometer. 
PC represents positive control, that is sodium nitrite solution (50 µm). VC 
represents vehicle control; 10CU and 20CU represent the concentrations 
of curcumin used, that is cells treated with only 10 µg/mL and 20 µg/mL 
respectively; 5-FU represents cells treated with only 6 µg/mL of 5-FU; 
10CU + 5-FU, and 20CU + 5-FU represents cells treated with combinatorial 
treatment of curcumin (10 µg/mL or 20 µg/mL) and 5-FU (6 µg/mL). Serum-
starved KG1a cells treated with 10 µg/mL and 20 µg/mL of curcumin 
generated minimum amount of nitrites as compared to VC, whereas cells 
treated with a combination of 10 µg/mL or 20 µg/mL of curcumin and 6 µg/mL 
of 5-FU, respectively, showed maximum levels of nitrite as compared to the 
cells treated with only 5-FU. The data represents mean ± S.E.M of three 
independed experiments (* P ≤ 0.05, ** P ≤ 0.01)

Figure 8: QLCs subjected to combination treatment generate higher 
levels of ROS: Quiescent cells generated from KG1a cells were incubated 
with low concentrations of curcumin only (10 µg/mL and 20 µg/mL), 5-FU 
only (6 µg/mL) and a combination of curcumin and 5-FU, as shown in 
the graph. The treated cells were collected and spun, and the cell pellet 
was incubated with 100 µL of DCFDA (10 µm) for 30 min at 37°C. After 
incubation the cells were centrifuged, and the pellet was resuspended in 
1 × PBS. The fluorescence was measured at 495-529 nm. In the graph, 
PC represents positive control that is hydrogen peroxide (50 µm), VC 
represents vehicle control; 10CU and 20CU are cell samples treated with 
curcumin only (10 µg/mL and 20 µg/mL, respectively), 5-FU represents 5-FU 
only (6 µg/mL) treated cells, and 10CU + 5-FU, 20CU + 5-FU represents 
combination treatment of curcumin (10 µg/mL or 20 µg/mL) and 5-FU (6 µg/mL), 
respectively. Quiescent KG1a cells treated with only 10 µg/mL or 20 µg/mL of 
curcumin generated minimum amount of ROS, as compared to VC. QLCs 
treated with a combination of 10 µg/mL or 20 µg/mL curcumin, respectively, 
and 6 µg/mL of 5-FU showed maximum ROS generation as compared to 
the cells treated with only 5-FU. The data represent mean ± S.E.M of three 
independent experiments (* P ≤ 0.05, ** P ≤ 0.01)
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of several enzymes of the mitochondrial respiratory chain 
including complex I, complex II-III, and complex IV in 
the cells.[41,45,46] The inhibition of mitochondrial respiration 
by NO may increase the electron leakage and cause the 
formation of endogenous ROS (mainly superoxide anion), 
which can be observed in submitochondrial particles.[46-48] 
High levels of ROS may cause the oxidative damage 
of various cellular components and finally result in cell 
death.[45,46] ROS is capable of causing oxidative damage 
to biomacromolecules, leading to lipid peroxidation, 
oxidation of amino acid residues (especially cysteine 
residues), formation of protein-protein cross-links, and 
DNA oxidative damage.[41,49] Since we had seen a high 
expression of NO in cells treated with the combination 
of curcumin and 5-FU, we were interested in finding out 
whether these cells would also generate high levels of 
ROS. The QLCs treated with a combination of curcumin 
and 5-FU were subjected to DCFDA assay. It was observed 
[Figure 8] that combination treatment [curcumin (10 µg/mL 
and 20 µg/mL) + 5-FU (6 µg/mL)] led to an increase in the 
level of ROS generation (10 µg/mL = 80%, 20 µg/mL = 
60%), as compared to that generated by only 5-FU treated 
cells (40%).

DISCUSSION

AML is a hematological malignancy that results from 
transformation of multipotent hematopoietic progenitors 
and leads to accumulation of immature myeloid cells in 
the bone marrow. Many studies have shown that curcumin 
demonstrates antiproliferative, antioxidative, cytotoxic, 
pro-oxidant, and antitumor activity in many human 
cell lines,[1,19,21] including T and B leukemia, in a dose-
dependent manner.[50,51] Although it has been reported that 
curcumin induces apoptosis in human leukemia HL-60 
cells,[24] the exact pathway that leads to apoptosis of the HL-
60 cells remains unclear. Another study has demonstrated 
that ROS is involved in the apoptosis induced by curcumin 
in HL-60 cells.[25] Additionally, it has been shown that 
curcumin may inhibit proliferation and induce apoptosis 
of leukemic cells by arresting them in various phases of 
the cell cycle.[13,14] It has also been suggested that curcumin 
may induce apoptosis in tumor cells by a mitochondria-
dependent mechanism, suggesting that curcumin can 
activate cytochrome c caspase-3.[37,38,45,46,48]

In the last few years, progressive studies have underscored 
the importance of a combination approach in the 
development of effective therapies against leukemia. It 
is becoming obvious that the molecular basis for most 
leukemias is far more complex than can be addressed by 
use of a single-target or single-drug approach. On one 
end, there are cycling cancer cells that are receptive to 
antimitotic drugs; on the other end, there are mitotically 
inactive leukemic stem cells that evade traditional 
anticancer therapies. As a result, it is imperative to 
adopt a multitarget-based drug development paradigm 
for the treatment of complex human diseases that 

work by different mechanisms of action. In the present 
study, we have demonstrated that low concentrations of 
curcumin push the quiescent leukemic cells into the cell 
cycle, thereby sensitizing them to the antimitotic drug 
5-fluorouracil. Although the molecular mechanism(s) 
behind the inhibitory effect of the combination therapy 
on leukemic cells have yet to be explained, this approach 
could be exploited to selectively target leukemic stem 
cells that are responsible for relapse associated with 
leukemia, and to develop novel anticancer therapies for 
the treatment of leukemia. Simultaneously, this approach 
could also be combined with other strategies employed 
in the ex vivo expansion of normal hematopoietic stem/
progenitor cells.
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EGFR mutation -- a commonly neglected mutation in squamous cell 
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Lung cancer is the leading cause of cancer-related death worldwide. Advances in molecular biology have unveiled various 
targetable mutations with epidermal growth factor receptor (EGFR) being most common.  EGFR testing is recommended for all 
locally advanced or metastatic adenocarcinoma lungs but recommendation in squamous histology is uncertain. However, just 
on the basis of histology, EGFR testing should not be withheld in patients diagnosed as squamous cell cancer on small biopsy, 
in females, never smokers and Asians. We report two cases with squamous cell lung cancer diagnosed on small biopsy, in non 
smoker females with EGFR mutations emphasizing the importance of testing in such population.
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INTRODUCTION

Lung cancer is the most common cancer in the world 
accounting for 12.9% of total cases and 19.4% of total 
cancer related mortality.[1] Advances in molecular biology 
have led to the identification of mutations within the 
epidermal growth factor receptor (EGFR), and the finding 
that these mutations make tumors exquisitely sensitive to 
EGFR tyrosine kinase inhibitors (TKIs), has revolutionized 
treatment of non-small cell lung cancer (NSCLC). EGFR 
mutations are more common in never-smokers, in patients 
with Asian ethnicity, and in patients with adenocarcinoma 
histology.[2] However, solely on the basis of histology, 
EGFR testing should not be excluded in patients with 
squamous cell cancer, especially females, never smokers, 
Asian ethinicity and squamous histology diagnosed on 
small biopsy as adenocarcinomatous component cannot 
be ruled out on small biopsy specimens.[3] We present two 
cases of squamous cell lung cancer diagnosed on small 
biopsy in non smoker females with EGFR mutations who 
benefitted with oral TKIs.

CASE REPORT

Case 1
A 56-year-old female, diabetic, hypertensive, non smoker 
presented with history of cough, weight loss and right sided 
weakness. Magnetic resonance imaging brain showed two 
hypodense lesions in left frontal lobe. Positron emission 

tomography-computed tomography revealed right lung 
mass with mediastinal lymph nodes, brain, adrenal, 
pancreatic and bone lesions. A core needle biopsy from 
lung mass revealed squamous cell carcinoma, p40 positive 
and thyroid transcription factor (TTF) negative [Figure 1]. 
In view of symptomatic brain metastasis, she was treated 
with whole brain radiotherapy followed by two cycles 
of gemcitabine and carboplatin based chemotherapy. 
However, in view of poor tolerability due to grade 4 
neutropenia and poor performance status, chemotherapy 
could not be given. Her biopsy was reassessed for EGFR 
mutational analysis and showed L858R mutation positive. 
She was started on erlotinib and imaging studies after 2 
months of therapy demonstrated significant tumor response 
in the pulmonary lesions and in the metastatic sites.

Case 2
A 44-year-old female, diabetic, hypertensive, non smoker 
presented with history of breathlessness. Bronchoscopy 
showed malignant intermediate bronchus obstruction. 
Bronchial biopsy revealed squamous cell carcinoma 
expresses p40 [Figure 2] but negative for TTF1. In view 
of her being non smoker EGFR mutation was tested and 
was positive for exon 21L858R mutation. After 3 cycles of 
gemcitabine and cisplatin based chemotherapy there was 
partial response and now she was on maintenance erlotinib 
with good disease control.
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DISCUSSION

Deeper understanding of the pathobiology of NSCLC 
has led to the development of small molecules that 
target genetic mutations known to play critical roles in 
the progression to metastatic disease. EGFR mutation is 
one of the most common targetable mutations in NSCLC 
particularly in non squamous histology. The incidence of 
EGFR mutations in NSCLC varies by ethnicity, with studies 
estimating a range from 10-15% of Caucasians to 40-50% 
of Asians.[4] In India the frequency of EGFR mutations has 
been found to be between 25-40% in various studies.[5] 
However, EGFR mutation occurs only in less than 5% 
patients of squamous cell histology. We present two cases 
of squamous cell carcinoma of lung with activating EGFR 
mutation. Thus, just on the basis of histology, patient 
should not be deprived of potentially beneficial non toxic 
therapies and can derive same benefits with oral TKIs as in 
patients of adenocarcinoma histology,[6] especially in light 
of some important caveats regarding exclusion of testing 
in all cases diagnosed as squamous cell carcinoma. First, 
a small biopsy sample showing squamous morphology 
does not exclude the possibility of an adenocarcinomatous 
component elsewhere in the lesion. Second, the distinction 
between adenocarcinoma and squamous cell carcinoma 
can be extremely challenging in some cases.[7] EGFR 

mutations have been found to be more common in female 
patients, never-smokers, and patients of Asian ethnicity 
irrespective of histology. In conclusion, EGFR testing 
should be tested in patients with squamous cell lung cancer, 
especially in females, never smokers, Asian ethnicity and 
squamous histology diagnosed on small biopsy.
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Figure 1: Squamous cell carcinoma positive for p40. (a) Lacking expression of thyroid transcription factor; (b) immunohistochemistry (magnifications, × 40)

Figure 2: Immunohistochemistry (magnification, × 40) on biopsy for case 2 
positive for p40
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Acrospiromas are cutaneous tumors of sweat duct differentiation. Although various eccrine sweat gland tumours including 
benign acrospiroma are widely reviewed, malignant acrospiroma is rarely reported. Clinically, they resemble other cutaneous 
lesions and the primary treatment is wide local excision with or without lymph node dissection. The efficacy of adjuvant 
chemotherapy and radiation therapy requires further investigation.
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INTRODUCTION

Acrospiroma represents a group of benign ductal tumors 
of the eccrine sweat glands that sometimes are connected 
to the skin, ranging from solitary plaques to exophytic 
papules or dermal nodules.[1] Malignant acrospiroma (Syn: 
malignant nodular/clear cell hidradenoma, malignant clear 
cell acrospiroma, clear cell eccrine carcinoma, primary 
mucoepidermoid cutaneous carcinoma) comprises a 
group of rare epidermal, juxta-epidermal, and dermal 
ductal carcinomas that may coexist with their benign 
counterparts and have the potential for regional lymph 
node and, very rarely, distant metastases.[2] The primary 
treatment is wide local excision with or without lymph 
node dissection.[3] We describe a case of a malignant 
acrospiroma involving inguinal region with metastases 
to inguinal lymph nodes and bones in a 37-year-old man 
despite initial wide local excision. Although various 
eccrine sweat gland tumors including benign acrospiroma 
have been widely reviewed, malignant acrospiroma is 
rarely reported and thus the literature on their response to 
chemotherapy is limited.

CASE REPORT

A 37-year-old man presented at our medical oncology 
outpatient department with complaints of a mass in the 
right inguinal region for over 1 year with no history of 
antecedent trauma. The mass gradually increased in size 
and was associated with mild discomfort. There was no 
skin ulceration or discharge. Examination revealed a 
rounded mass adherent to skin with diameter of 4 cm in 

right inguinal region. The swelling was firm in consistency 
and mildly tender. There was another mass 2 cm below 
this measuring 3 cm × 2 cm, firm in consistency, mobile, 
non-tender with normal overlying skin, felt to be a lymph 
node clinically.

The patient was operated on and excision of the mass 
along with inguinal nodal dissection. Pathology revealed 
dermal appendage neoplasm (acrospiroma -- of hydra 
adenoma type), well-circumscribed, with mitotic figures 
(< 2/hpf). No necrosis was seen. Nodal tissue showed 
metastasis from the same tumor [Figures 1 and 2]. The 
patient was put on regular follow up and no adjuvant 
chemo/radiotherapy was given in view of lack of clear 
benefits from either of these modalities.

However, patient was lost to follow up and presented 1 
year later with swelling in same area. The swelling had 
appeared 4 months earlier and gradually increased in size, 
associated with mild discomfort. Examination revealed 
a firm, smooth swelling, not adherent to skin, round in 
shape with dimensions of 6 cm × 5 cm in the right inguinal 
region.

Computed tomography (CT) with contrast of chest, 
abdomen and pelvis revealed a well-defined soft tissue 
density lesion in the right inguinal region, with minimal 
fat stranding. The lesion showed mild heterogenous 
enhancement [Figure 3].
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FNAC smears of right inguinal mass revealed features 
of metastatic deposits from a round cell tumor. 
Immunohistochemistry on the cell block showed strong 
positivity for vimentin, focal positivity for NSE, and 
negative staining for desmin, MIC-2, and synaptophysin 
such features favouring a diagnosis of malignant 
acrospiroma.

The patient went to surgery and a right inguinal dissection 
with excision of the mass was done. Grossly, the specimen 
revealed a fibro-fatty, globular, soft tissue lesion measuring 

15 cm × 8 cm × 6 cm. On serial sectioning a globular, 
encapsulated grey-white area measuring 5 cm × 5 cm 
was identified, with 6 nodes being removed. Microscopic 
examination again revealed a metastatic cutaneous adnexal 
tumor (malignant acrospiroma) with 2 of 6 nodes involved.

In view of only a locoregional recurrence, the patient was 
planned for external beam radiotherapy to right inguinal 
region with a total of 45 Gy in 20 factions. However, 
after 13 treatment days, the patient developed ulceration 
of local site and further radiotherapy was withheld. The 

Figure 1: Light microscopy showing dermal appendage (acrospiroma) 
(magnification, × 10)

Figure 2: High power view of malignant acrospiroma (magnification, × 100)

Figure 3: Computed tomography pelvis showing nodal mass involving right inguinal region

Figure 4: Computed tomography chest showing destructive lesion involving posterior end of 9th rib
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patient was lost to follow-up but and presented 1 year 
later, again with a firm nodule at the right inguinal region 
measuring 1 cm × 1 cm. Repeat CT of chest/abdomen/
pelvis revealed a soft tissue thickening with a solitary, 
round lesion in the right inguinal region along with an 
expansile soft tissue density lesion with bone erosion 
involving the left 9th rib, suggestive of metastases 
[Figure 4].

Patient was again subjected to wide local excision of right 
inguinal lesion and also of 9th rib mass. Three nodes also 
were dissected, with the largest measuring 3 cm × 3 cm, 
along with a 4 cm × 5 cm mass present over and adherent 
to 9th rib postero-laterally. Microscopy revealed sections 
from both the rib lesions as well as groin nodes showing 
infiltration by malignant sweat gland tumor. Marrow of 
rib bone revealed infiltration of same tumor. Bilateral 
iliac bone marrow aspiration and biopsy were negative 
for tumor.

Patient was subsequently given adjuvant chemotherapy 
consisting of paclitaxel 175 mg/m2 and cisplatin 80 mg/m2 
every 3 weeks for 6 cycles. The patient is on regular follow 
up and in clinical remission for the past 18 months.

DISCUSSION

Acrospiromas are cutaneous tumors of sweat duct origin 
and differentiation. They usually present as slowly 
enlarging 1 cm to 2 cm nodules in middle-aged or 
older adults without site predilection. The term eccrine 
acrospiroma was first coined by Johnson and Hewig, in 
1969, because, by histologic and histochemical studies, 
the cells were believed to mimic those of the eccrine sweat 
gland.[4] Histologically, these lesions are subclassified 
according to the location of the tumor in relation to the 
epidermis, with those confined primarily to epidermis as 
epidermal acrospiroma and those involving both epidermis 
and dermis as juxtaepidermal acrospiroma or just eccrine 
poroma. Those which are confined exclusively to dermis 
or have minimal connection to epidermis are terme dermal 
acrospiroma or hidradenoma.[1]

Malignant acrospiroma comprises a group of rare 
epidermal, juxtaepidermal, and dermal ductal carcinomas 
occurring over the head and neck, anterior trunk, or 
extremities.[5,6] One series described an incidence of only 
five cases in a group of 750,000 evaluated individuals over 
an eight-year period.[7] They follow a predictable pattern 
from the initial tumor site to regional lymph node and 
ultimately to systemic spread.[3,8]

In the present case, the lesion recurred multiple 
times despite initial wide local excision and adjuvant 
radiotherapy, carried out following the first recurrence. 
Secondly, the lesions were slowly growing with delayed 
recurrent nodal and bone metastases and hence the need 
for prolonged follow up.

Malignant acrospiromas are treated by wide local 
excision, but with a local recurrence rate of around 50%.[9] 

In one case there was described the use of wide local 
excision with adjuvant radiotherapy for malignant eccrine 
acrospiroma of the scalp and left parotid, which eventually 
had local recurrence in the parotid region after 2 years.[3] In 
another case there was described  a more radical surgical 
approach of amputation of the leg with regional lymph 
node dissection. This was required for clinical control 
of extremity acrospiroma.[10] In another reported case, a 
66-year-old female with a recurrent malignant acrospiroma 
of the chest treated by wide radical resection, including 
chest wall excision, followed by reconstructive surgery 
and radiotherapy. After 16 months, there was no evidence 
of local recurrence or distant metastasis.[11]

One group described the role of radiotherapy in malignant 
eccrine acrospiroma, wherein 3 cases of malignant 
acrospiroma were treated with postoperative radiotherapy 
with doses of 71-76 Gy to the primary surgical bed and 
50 Gy to the draining lymph node basin, with modest 
disease-free survival (27 and 35 months) in 2 of the 3 cases. 
They suggested that certain histological features such as 
dermal lymphatic invasion, nerve sheath involvement, 
deep structural  infiltration, positive resected margins, and 
extracapsular lymph node extension may identify a high risk 
of recurrence and merit postoperative radiotherapy.[12] The 
role of chemotherapy in eccrine sweat gland carcinomas, 
and especially malignant acrospiromas, is not clear. Various 
case reports and case series have reported on the use of a 
multitude of drugs in various sweat gland carcinomas 
including cyclophosphamide and doxorubicin, bleomycin, 
cisplatin, mitomycin C, with partial response and a median 
duration of response of 4 to 16 months.[13-16] There are 
also isolated reports of response to taxanes (docetaxel and 
paclitaxel).[17]

Analyzing all the available literature, we conclude that 
wide local excision is the treatment of choice for these rare 
skin appendage tumors when localized, while adjuvant 
radiotherapy may provide some additional benefit in local 
control. Poly-chemotherapy is thought to be an option for 
more extensive lesions and paclitaxel-containing regimens 
could provide a viable option for palliation. However, 
more evidence in the form of case series and case reports 
is needed to establish its usefulness.
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Aim: Esophageal cancer is one of the major types of cancers, causing death of approximately 5% of all cancer deaths. This is 
due, in large part, to both relatively ineffectual and unavailable treatment. In order to develop an effective treatment strategy 
against esophageal cancer, it is important to target metastatic genes. In the present study, we have used a cancer-associated 
fibroblast (CAF) cell line derived from culturing peripheral blood mononuclear cells from a metastatic esophageal cancer patient 
to see whether chitosan nanoparticles (Ch-Np) treatment can modulate the metastatic phenotype of CAF cells by using various 
cellular and molecular markers. Methods: A CAF cell line was developed from peripheral blood mononuclear cells (PBMC) 
from a metastatic esophageal cancer patient. The cells were treated with 100 µg/mL of chitosan nanoparticle in vitro for the 
morphological and oncogenic characteristic studies, along with the expression of various genes involved in process of tumor 
development and metastasis. Techniques such as Light and Phase Contrast Microscopy, cell growth rate, Scratch metastatic assay, 
and molecular profiling were carried out to see changes in CAF cells before and after Ch-Np treatment. Results: It was observed 
that CAF cells grew in monolayer and had a doubling time of 25 ± 0.38 h. Morphologically, the cells had a fibroblastic appearance. 
After treatment with 100 µg/mL of Ch-Np in vitro, there was an increased doubling time to 30 ± 0.83 h. Similarly, Scratch Assay 
showed an inhibition in the metastatic property of these cells. These findings were confirmed with gene expression studies. It was 
also observed that there was complete down-regulation of metastatic genes MMP1 and MMP9 and chemokines such as CXCR-4, 
CXCR-7, CCR-5, and SDF-1, indicating that Ch-Np inhibited the metastatic characteristic of CAF cells. Conclusion: This study 
has shown that there was an inhibition of metastatic properties of CAF cells after treatment with Ch-Np, suggesting that Ch-Np 
can be a delivery system used for targeting cancer cells for treatment of esophageal cancer.
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INTRODUCTION

The tumor microenvironment plays a crucial role 
in development and progression of cancers. The 
microenvironment is mainly comprised of specialized 
stroma cells known as fibroblasts, also called cancer-
associated fibroblast (CAF) or myofibriloblast. CAFs 
secrete various tumor promoting factors as well as 
angiogenic factors which accelerates tumor growth. 

Tumor Growth Factor β (TGF-β) and Hepatocyte Growth 
Factor (HGF) are the mediators released by CAFs. These 
cause increased cell proliferation, more angiogenesis, and 
reduced apoptosis.[1] CAFs have been found to play an 
important role in a variety of cancers, including breast, 
pancreatic, prostatic, and esophageal cancers.[2,3]

Dr. Pravin D. Potdar’s present interest is to study molecular profiling of Circulating Tumor Cells (CTC), Circulating Tumor 
DNA, Cancer Associated Fibroblasts and Cancer Stem Cells involved in metastatic process of cancers, and to see how this 
process can be reverted back to normal by using innovated technologies which include nanotechnology and nanomedicine.
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Esophageal cancer is an aggressive cancer, affecting 
450,000 patients. In esophageal squamous cell carcinoma 
(ESCC) expression of HGF and fibroblast growth factor 
(FGF) in CAFs has been found to be related to tumor cell 
proliferation.[4] CAF-derived wnt2, an important signaling 
molecule, was able to enhance a process called epithelial 
mesenchymal transition (EMT). This EMT involves loss 
of intracellular adhesion and polarity by tumor cells of 
epithelial origin. These cells can be transformed into 
mesenchymal cells with the capability of migration and 
invasion.[5] Protein levels of CAF are also related to a 
poor prognosis of patients with esophageal cancer. Also, 
proteins such as α smooth muscle actin, CD-10, and 
periostin have been found to be related to the poor patient 
survival.[3] Thus, it is evident that CAFs are important to 
tumor cells in esophageal cancer since they are associated 
with invasion, migration, and a poor prognosis. Many 
drug trials are carried out in order to develop a successful 
treatment strategy against esophageal cancer, but the 
role of CAF has been neglected. Hence, it is essential to 
attempt to target their CAF cells in order to prevent tumor 
progression.

In current cancer research nanoparticles are replacing 
traditional chemotherapeutic drugs because of their 
specificity, small size, and permeability into cells. 
Nanoparticles made up of biodegradable material such 
as chitosan have appeal since they are cheaper, do not 
involve toxic chemicals in their preparation, and have low 
cell cytotoxicity.[6] The chitosan nanoparticle has shown 
therapeutic significance in various cancers, including 
breast, gastric, and oral cancers. Chitosan nanoparticles 
have not been explored in esophageal cancer and their 
effect on CAFs has not yet studied. The current project 
was designed to understand the effects of chitosan 
nanoparticle on human peripheral blood-derived CAF by 
performing gene expression studies. We have attempted to 
demonstrate that chitosan nanoparticles alter expressions 
of genes involved in esophageal tumors and have found 
that these nanoparticles effectively reduced the metastasis 
of CAF cells. These results suggest that using chitosan 
nanoparticles targeting esophageal CAFs could be a 
potential therapeutic strategy against esophageal cancers.

METHODS

Materials
Low Molecular weight Chitosan (≥ 75% deacetylation),  
sodium Tri-polyphosphate (sTPP), Acetic Acid, 1N 
NaOH, D/W, Low-glucose Dulbecco’s Modified Eagle 
Medium (DMEM) , Fetal Bovine Serum (FBS), Penicillin 
Streptomycin (PenStrep), L-Glutamine, Vitamin C, 
Phosphate Buffer Saline (PBS), Trypsin EDTA, TRIZOL 
reagent, cDNA Preparation kit (Applied Biosystem, 
USA), Agarose, Primers for Actin, Keratin18, Vimentin, 
VEGF, MMP1, MMP9, E-cadherin, CXCR-4, CXCR-7, 
CCR5, Sdf1α, Oct4, Nanog, SOX-2 were purchased from 
Sigma Chemicals, USA.

Development and maintenance of esophageal 
CAF
Peripheral blood from an esophageal squamous cell 
carcinoma (ESCC) patient was taken for extraction of 
CAF. Ficol-gradient was performed and separated cells 
cultured in RPMI supplemented with 10% FBS, Penstrep, 
and glutamate. After 24 h of culture the media were 
replaced with complete DMEM supplemented with 10% 
FBS, 1% Penstrep, 0.2% Glutamate, and Vit C. CAFs 
were seen after about 34 days of culturing. The cells were 
confluent within a week, then stored in -80℃ while some 
were maintained in culture. These cells were labeled as 
esophageal CAF. Frozen cells were revived and cultured 
in growth medium at passage number 31. Culture dishes 
were incubated at 37℃ with 5% CO2 and the media 
removed on alternate days, followed by washing of cells 
with PBS and supplementing with new media. After 
reaching confluency cells were trypsinized with 1% 
trypsin and transferred into fresh flask for expansion.

Staining of CAF cell line (Giemsa, Alizarin Red, 
and Oil Red staining)
Culture plates were washed with PBS, fixed with methanol 
(50%), and incubated for 30 min at 4℃. The plates were 
then washed with D/W to remove the methanol. Fixed and 
washed plates of CAF were stained with Giemsa stain. 
Alizarin Red staining was required for the methanol-fixed 
cells, which were stained with 2% Alizarin stain (pH 4.2) 
for 30 min. After oil red staining, the fixed and washed 
cells were incubated with 60% isopropanol for 5 min. 
This was followed by removing the isopropanol and then 
staining with the 0.3% oil red for 5 min. After staining 
the plates were washed with D/W to remove excess stain.

Phase contrast microscopy
Inverted Phase contrast Microscope (Carl Zeiss Co.) 
was used for studying morphology of the cultured cells. 
The microscope was attached to the computer having TS 
View software for observing and capturing the images. 
The cells were monitored regularly with the use of phase 
contrast microscope and images captured.

Chitosan nanoparticle (Ch-Np) preparation
Ch-Np was prepared using the ionic gelation method. 
Low molecular weight chitosan was dissolved in 1% 
acetic acid under constant stirring conditions. Zero 
point one percent sTPP prepared in D/W was added 
in the chitosan solution, drop by drop, under constant 
stirring. A solution change from clear to turbid was 
taken as confirmation for nanoparticle formation. pH 
of the chitosan solution was adjusted to 7 using 1N 
NaOH. Formed nanoparticles suspended in the solution 
were separated by centrifuging at 2000 g for 3 min. The 
supernatant was discarded and the nanoparticles were 
washed with DMEM and again centrifuged in order to 
remove any chemical residue. The nanoparticles were 
then suspended in the media for later use.
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Growth curve for control vs. treated CAF
Cells were plated at a density of 5 × 104 per well in a 6 
well plate and fed with the DMEM medium. The cells 
were collected from each well at different time intervals, 
i.e., 24 h, 48 h, 72 h, and 96 h. For each time point the 
cells were washed with 1 × PBS and trypsinized. The 
trypsinized cells were mixed with equal amount of 
Erythrocin B. The cell count was taken by using Neubauer 
hemocytometer. The cell growth rate was carried out for 
control and 100 µg treated Ch-Np. The experiment was 
repeated three times and average growth and Standard 
Deviation were calculated for each time point.

Cellular morphology of CAF cells
CAF cell morphology was observed before and after 
treatment with Ch-Np. Sixty-five millimeter petri dishes 
were seeded with 5 × 104 cells per plate. Two plates were 
taken, one as untreated control whereas another dish was 
treated with 100 µg/mL Ch-Np. Cell morphology was 
observed under phase contrast microscopy for after 24 h, 
48 h, and 72 h of treatment and compared to control cells.

Molecular marker analysis
Two 65 mm petri dishes were seeded with 20 × 104 cells 
per plate. The cells were then washed with PBS and fed 
with new DMEM daily. After 2 days one plate was treated 
with 100 ug/mL Ch-Np. After 24 h of treatment the cells 
were washed with PBS and RNA extraction from cells was 
carried out using TRIZOL method (Invitrigen). cDNA was 

prepared from extracted RNA by using cDNA Reverse 
transcriptase kit. Gene expression studies were performed 
using PCR. The PCR mix consisted of ammonium  
sulphate buffer including 1.5 mm MgCl2, 200 µm of each 
of the dNTPs, 200 ng/µL each primer, 1U Taq Polymerase, 
and 5µL cDNA. Pluripotency markers (Oct-4, Nanog, 
SOX2), differentiating markers (Keratin 18, Vimentin, 
E-Cadherin, VEGF), chemokine and cytokine (CXCR-
4, CXCR-7, CCR5 and Sdf-1α), and metastatic markers 
(MMP1, MMP9) were used. Primers and annealing 
temperatures used for these genes are mentioned in Table 
1. Initial denaturation was carried out at 95℃ followed 
by denaturation at 94℃; annealing (specified in Table 1), 
extension at 72℃ and final extension at 72℃ for 7 min. 
Forty cycles were run for each PCR followed by gel loading 
and observation under UV-illuminator and photographed.

Scratch assay for evaluation of CAF migration
Two 65 mm plates were initially seeded with 5 × 104 cells 
per plate. The cells were then allowed to reach confluency. 
After reaching confluency, both dishes were scratched 
with the help of a sterile scalpel. Care was taken to scratch 
equal areas in both culture plates. This caused a loss of 
cells on the scratched area. The scratched control plate 
was kept as it is whereas other the scratched plate was 
treated with 100 µg/mL Ch-Np and incubated at 37oC at 
5% CO2. The scratched area was observed under the phase 
contrast microscope after 24 h, 48 h, and 72 h of treatment 
and photographed for cell migration. This experiment was 

Table 1: Primer sequence, annealing temperature and size of band for molecular markers
Name Primer Annealing (℃ ) Size (bp)
Actin

Upstream       GACTACCTCATGAAGATC
Downstream   GATCCACATCTGCTGGAA

55 417

Oct4
Upstream       GAGCAAAACCCGGAGGAGT
Downstream   TTCTCTTTCGGGCCTGCAC

55 310

Nanog
Upstream       GCTTGCCTTGCTTTGAAGCA
Downstream   TTCTTGACCGGGACCTTGTC

55 256

SOX2
Upstream       GCCGAGTGGAAACTTTTGTC
Downstream   GTTCATGTGCGCGTAACTGT

57 264

Keratin
Upstream       GAGATCGAGGCTCTCAAGGA
Downstream   CAAGCTGGCCTTCAGATTTC

55 357

Vimentin
Upstream       TTCAGAGAGAGGAAGCCGAAAAC
Downstream   TTTAAGGGCATCCACTTCACAG

62 426

VEGF
Upstream       GAAGTGGTGAAGTTCATGGATGTC
Downstream   CGATCGTTCTGTATCAGTCTTTCC

62 422

E-Cadherin
Upstream       TGCTCTTGCTGTTTCTTCGG
Downstream   TGCCCCATTCGTTCAAGTAG

60 422

MMP1
Upstream       CTGAAGGTGATGAAGCAGCC
Downstream   AGTCCAAGAGAATGGCCGAG

55 427

MMP9
Upstream       CGCAGACATCGTCATCCAGT
Downstream   GGATTGGCCTTGGAAGATGA

64 405

CXCR-4
Upstream       GGACCTGTGGCCAAGTTCTTAGTT
Downstream   ACTGTAGGTGCTGAAATCAACCCA

60 273

CXCR-7
Upstream       TGGGTGGTCAGTCTTCGT
Downstream   CCGGCAGTAGGTCTCAT

60 293

CCR-5
Upstream       CTTCATCATCCTCCTGACAATCG
Downstream   GACCAGCCCCAAGTTGACTATC

60 261

Sdf-1α
Upstream       TGATCGTCTGACTGGTGTTA
Downstream   CTTAGGGGATTTGGAAGTTT

60 188
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repeated twice with the same number of cells and using 
same scalpel for making the scratch.

RESULTS

Morphological characterization of CAF cells by 
phase contrast microscopy
Esophageal CAF showed fibroblast-like appearance, 

having extended cellular filaments as shown in Figure 
1a. Giemsa Stain stained the nucleus of CAF, as shown 
in Figure 1b, making the nucleus completely visible and 
showing clear cytoplasm. Calcium granules within CAF 
cytoplasm of were stained by Alizarin Stain as shown in 
Figure 1c. Oil Red staining did not impart any color on 
the cells as shown in Figure 1d, indicating that there were 
no adipocytes.

Figure 1: (a) Phase contrast microscope image of CAF; (b) giemsa staining; (c) alizarin staining; (d) oil red staining of CAF. CAF: cancer associated fibroblast

Figure 2: Cell growth curve for control untreated cells vs. Ch-Np-treated cells effect of Ch-Np on alignment of CAF. CAF: cancer associated fibroblast
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Growth curve for control vs. treated CAF
Growth curve for untreated CAF showed a gradual 
increase in the number of cells during 0-24 and 24-
48 h. After 48hr the number of cells almost doubled. 
However, the 72-96 h time duration did not show a 
doubling of cells. This experiment was repeated three 
times and overall doubling time for untreated cells 
was 25 ± 0.38 h [Figure 2]. In the case of treated cells, 
during first 24 h, the cell count was less than the initially 
seeded cells. Then, cells showed a gradual increase in 
number. Importantly, the doubling rate of treated cells 
was increased because the number of cells after 92 h 
of culturing in the treated plate was less than that of 
control cells, as shown in Figure 2. This experiment was 
repeated three times and the overall doubling time for 
treated cells was 30 ± 0.83 h [Figure 2].

Cellular morphology of CAF cells
Phase-contrast morphology of untreated and Ch-Np-
treated esophageal CAF was observed at 24, 48 and 
72 h. Untreated CAF cells showed random growth 
and cells were overlapping with each other, as shown 
in Figure 3a, 3b, and 3c, whereas in the case of Ch-
Np-treated plates, the cells exhibited monolayers with 
equal gaps and looked parallel to each other, as shown 
in Figure 3d, 3e, and 3f. These cells did not overlap 
with each other as was observed in the control CAF 
cells. This seems to indicate that they changed their 
malignant phenotype towards a normal phenotype by 
Ch-Np treatment.

Figure 3: (a) Randomized alignment of control cells after 24 h; (b) randomized alignment of control cells after 48 h; (c) randomized alignment of control 
cells after 72 h; parallel alignment of Ch-Np-treated cells [(d), (e), (f)]

Figure 4: Expression of pluripotency markers in control and treated cells

Figure 5: Expression of differentiating markers in control and treated cells
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Molecular marker studies
This study was undertaken to evaluate mRNA expression 
of pluripotency, differentiation, metastatic spread, 
and chemokine markers in CAF cells before and after 
treatment with Ch-Np by using specific primers as 
described in Table 1.

Pluripotency markers in CAF and Ch-Np-
treated CAF
Pluripotency of cells is defined as properties of stem cells 
which allow cells to proliferate indefinitely. Oct4, Nanog, 
and Sox2 are known as such markers. These markers 
were studied in untreated and treated CAF cells. It was 
shown that these CAF cells normally expressed Oct4, 
Nanog, and Sox2, indicating their proliferative activity as 
transformed cells. However, in the Ch-Np treated cells, 
Oct4 and Sox2 genes were down regulated and Nanog 
remained unchanged, as shown in Figure 4.

Differentiating markers in CAF and Ch-Np-
treated CAF
Keratin18 and Vimentin were the two differentiating 
markers studied in CAF- and Ch-Np- treated cells. Figure 
5 shows prominent expression of Keratin18 and Vimentin. 
However, both these genes were down-regulated in Ch-
Np-treated cells.

Metastatic markers in CAF and Ch-Np-treated 
CAF
VEGF, MMP1, and MMP9 were studied as metastatic 
genes in CAF and Ch-Np-treated CAF. There was slight 
down-regulation of VEGF and MMP1 genes in Ch-Np-
treated CAF. However, complete down-regulation of 
MMP9 was observed in Ch-Np-treated CAF [Figure 6]. 
Also studied was E-Cadherin, an adhesive molecule and 
actively involved in the EMT (define EMT) process. It 
was observed that there was complete-down regulation 
of E-Cadherin in CAF as well as in Ch-Np-treated CAF, 

Figure 6: Expression of metastatic markers in control and treated cells
Figure 7: Expression of chemokine and chemokine receptors

Figure 8: (a) Scratched Assay performed on control CAF after 24 h; (b) Scratched  Assay performed on control CAF after 48 h; (c) Scratched Assay 
performed on control CAF after 72 h; (d) Ch-Np-treated cells after 24 h; (e) Ch-Np-treated cells after 48 h; (f) Ch-Np-treated cells after 72 h
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as shown in Figure 6.

Chemokines in CAF- and Ch-Np-treated CAF
CXCR4, CXCR7, and CCR5 are chemokine receptors 
mainly involved in the process of metastasis where Sdf-
1α is a ligand to CXCR4. Their expressions were studied 
in CAF and Ch-Np-treated CAF. Figure 7 shows complete 
down-regulation of CXCR4 and CCR5 in Ch-Np treated 
CAF cells. Also, there was slight expression observed 
in CXCR7 and Sdf-1α in Ch-Np treated CAF cells as 
compared to control CAF cells, as shown in Figure 7. 
Control CAF cells expressed all these genes normally 
[Figure 7].

Evaluation of metastatic potency of CAF cells 
by scratch assay
Scratch assay is mainly useful to evaluate migration 
potencies of metastatic cells. As CAFs were isolated from 
a metastatic patient, the scratch assay was used to study 
the metastatic potency in control CAF cells and Ch-Np-
treated CAF.

This effect was studied at two time points, i.e, 24 and 
48 h after Ch-Np treatment, as shown in Figure 8. It was 
observed that there was good migration of these cells in 
a scratch area in control CAF dishes, even at 24 h. In 
48 h many cells were seen in scratch area in control CAF 
[Figure 8a, 8b, and 8c], whereas CAF cells treated with 
Ch-Np showed few cells migration after 24 h and 48 h, 
as shown in Figure 8d, 8e, and 8f. These observations 
indicated that Ch-Np treatment affects cell motility after 
48 h of treatment.

DISCUSSION

CAFs are some of the most important stromal cells 
involved in tumor initiation, progression, and its 
metastasis in ESCC.[7] It is important to attempt to 
target these cells along with their cancer cells when 
developing a drug against the cancer. Recent trends in 
drug development involve the use of nanoparticles which 
are efficient in drug delivery. Chitosan nanoparticle 
is one such nanoparticle which is being explored in 
various cancers and other diseases.[8] Our study focused 
on evaluating the anti-metastatic effect of Ch-Np on 
CAF isolated from the peripheral blood of a patient with 
metastatic esophageal cancer.

CAFs have shown extensive growth proliferation and 
multiply at a doubling time of 25 ± 0.38 h. However 
Ch-Np-treated cells have inhibited the growth of these 
cells, indicating an inhibitory effect of Ch-Np on CAFs. 
Studies have shown that Ch-Np inhibited the growth of 
breast cancer cells in vitro.[9] Similarly, another group 
found[8] that Ch-Np effectively inhibited proliferation of a 
human gastric carcinoma cell line, indicating its potential 
beneficial activity against human gastric cancer. The 
present study also indicated the potential use of Ch-Np 

for inhibition of growth of metastatic esophageal cancer.

Cancer cells are resistant to contact inhibition, a common 
phenomenon in normal cells.[10] In current study CAF cells 
showed random overlapping cell growth in the control 
plates, whereas in Ch-Np-treated cells they were aligned 
in parallel fashion and showed clear cut monolayer cells, 
as if they were having normal phenotypic growth. The 
results further showed that these cells seem to have better 
contact inhibition than control CAF cells, which had 
metastatic potential.[11] This might be the reason for the 
random growth of CAF since they were isolated from 
metastatic PBMC cells of the esophageal cancer patient. 
These phenotypic changes were confirmed by molecular 
markers studied in this project.

Several studies have shown that Oct4, Nanog, and Sox2 
are excellent pluripotency markers in cancer cells.[12,13] 
In the present study mRNA expression of Oct4, Nanog, 
and Sox2 in control CAF and Ch-Np-treated CAF were 
studied. Prominent expression of this pluripotency 
marker in control CAF was found. According to one 
study,[14] Oct4 played an important role in promoting 
carcinogenesis and also in preventing cancer cells from 
undergoing apoptosis. Another group[15] found that 
expression of Oct4 and Sox2 was altered in ESCC and 
together they impart a poor prognosis in the disease. In 
the present study down-regulation of Oct-4 and Sox2 in 
CAF after Ch-Np treatment was observed. Thus, clinical 
inhibition in expression of these genes may give hope a 
better outcome in ESCC.

In order to understand the characteristics of CAFs, 
the expression of keratin18, an epithelial marker in 
cancer cells, was studied. Keratin18 is currently mainly 
studied to understand prognosis in cancer patients.[16] 
Recently it was[17] noticed that there was up-regulation 
of keratin18 in breast cancer patients. This coincides 
with the observation in the current study where there 
was a higher expression of Keratin18 in CAF cells. 
Furthermore, in the current study there was a complete 
down-regulation of keratin18 after treatment of Ch-Np, 
implying the acquisition of a normal cell phenotype 
and loss of tumor progression capability. Vimentin was 
also studied in the present study and its expression was 
noticed on CAFs. This is accordance with a previous 
study.[18] Over-expression of Vimentin in cancer cells has 
been associated with increased invasion and metastasis in 
tumor. According to one study[19] inhibition of vimentin 
expression reduced cancer cell migration. Down-
regulation in expression of vimentin was observed in the 
Ch-Np-treated CAF, suggesting that Ch-Np can reduce 
cell migration and, ultimately, metastasis. Metastasis is 
an important characteristic of cancers which is governed 
by genes such as VEGF, MMP1, MMP9, and E-Cadherin. 
MMP1 and MMP9 have been found to be associated with 
cancer cell metastasis in ESCC.[20] Down-regulation in 
these two important genes, MMP1 and MMP9, observed 
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in Ch-Np-treated cells, may thus reduce the metastatic 
ability of cancer cells.

As mentioned earlier, CAFs are derived from the tumor by 
the process of EMT, which involves loss of intracellular 
adhesion. The absence of E-cadherin in control CAFs 
supports the process of EMT and loss of intracellular 
adhesion.[5,21] The other important molecular marker, 
VEGF, which plays a role of angiogenesis, was also not 
affected by Ch-Np treatment.[22] Hence, future studies 
have to be done with Ch-Np on CAFs so as to target 
E-cadherin and VEGF. Tumor development involves 
a variety of chemokines which are secreted by cancer 
cells. CXCR4, CXCR7, CCR5, and Sdf-1α are some 
such chemokines. Prominent expression of CXCR4 in 
esophageal cancer has been shown to have a poor long 
term prognosis and involvement in tumor spread.[23] 
CXCR4 and its ligand, Sdf-1α, were found to be involved 
in the metastasis of esophageal cancer in an in vivo 
model.[24] The role of CXCR7 and CCR5 in esophageal 
cancer is poorly understood but in breast cancer they 
are involved in proliferation and metastasis.[25,26] Hence, 
these chemokines serve as important metastatic genes 
in the case of esophageal cancer. Down-regulation was 
noticed in expression of CXCR4, CXCR7, CCR5, and 
Sdf-1α in Ch-Np-treated CAF, implying anti-metastatic 
activity of Ch-Np. Further support to our hypothesis of 
anti-metastatic activity of Ch-Np was provided by the 
Scratch Assay in which treated CAFs did not spread in 
the scratched area, indicating loss of metastatic activity.

In conclusion, chitosan is a biopolymer which has been 
extensively studied for its ability to encapsulate the 
drug molecule within it. In our study we have shown 
anti-tumor and mainly anti-metastatic ability of Ch-Np 
on esophageal CAF. Decrease in the various genes by 
chitosan shows that it is a promising drug molecule in the 
treatment of metastatic cancer. Hence, chitosan should 
not be considered only as a carrier of drug molecules but 
should be considered as a drug itself. Also, in order to 
better treat ESCC, it is important to study the stromal cell 
fraction and its molecular mechanism so as to develop 
molecular targeted therapy. Encapsulation of an anti-
cancer drug within Ch-Np could work as a dual stratagem 
against cancer, targeting both cancer and CAFs. Hence, 
future clinical and pharmacological studies with Ch-Np 
need to be done.
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Aim: The aim of the study is to investigate the impact of the cytochrome P450 2E1, which is the most efficient CYP450 family 
member in generating reactive oxygen species (ROS), on cellular energy metabolism of breast cancer cells and therefore the 
effects of CYP2E1 on breast carcinogenesis. Methods: The estrogen receptor positive MCF-7 and the triple negative MDA-
MB-231 breast cancer cells were used as experimental system to estimate ROS generation in these cells overexpressing CYP2E1 
and treated with the glycolytic inhibitors 3-bromopyruvate or 2-deoxyglucose in the presence or absence of the CYP2E1 inhibitor 
chlormethiazole. Adenosine triphosphate (ATP) assay was used to measure ATP production and lactate assay to quantify the efflux 
of lactic acid in breast cancer cells treated with the CYP2E1 inhibitor chlormethiazole, the mitochondrial membrane potential 
and cell viability assays were employed to assess the pathway of cellular energy production and cellular death respectively after 
treatment of MCF-7 and MDA-MB-231 with the CYP2E1 activator acetaminophen or the CYP2E1 inhibitor chlormethiazole. 
Results: The results indicated increased ROS generation in breast cancer cells overexpressing CYP2E1. ROS generation was 
differentially regulated in breast cancer cells upon treatment with the CYP2E1 inhibitor chlormethiazole. Chlormethiazole 
treated MCF-7 cells exhibited reduced lactate efflux implying that CYP2E1 directly or indirectly regulates the glycolytic rate 
in these cells. Furthermore the mitochondrial membrane potential of both MCF-7 and MDA-MB-231 cells was differentially 
affected by the CYP2E1 activator acetaminophen versus the CYP2E1 inhibitor chlormethiazole providing additional support for 
the involvement of CYP2E1 in energy metabolic pathways in breast cancer. Conclusion: Results presented in this study provide 
evidence to suggest that CYP2E1 regulates cellular energy metabolism of breast cancer cells in a manner dependent on cell type 
and potentially on the clinical staging of the disease therefore CYP2E1 is a possible breast cancer biomarker.
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INTRODUCTION

Reactive oxygen species (ROS) such as superoxide, hydroxyl 
radical, and hydrogen peroxide are metabolic by-products 
leaking from the complexes I and III of the mitochondrial 
respiratory chain.[1] Generation of high ROS levels is 

detrimental for the cells as it can lead to DNA damage and 
oxidation of proteins and lipids changing their functions.[2] 
Accumulating evidence indicates that apart from their 
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harmful effects ROS act as second messenger signalling 
molecules regulating numerous pathways including cell 
cycle,[3] autophagy,[4,5] apoptosis,[6] endoplasmic reticulum 
(ER) stress[7] and cellular energy metabolism.[8,9]

Sources of intracellular ROS generation include both 
organelles such as mitochondria, ER and peroxisomes as 
well as enzymes such as the NADPH oxidases, xanthine 
oxidase, lipoxygenases and cytochrome P450 enzymes, 
which produce ROS through their enzymatic activities.[10] 
CYP450 enzymes are mainly involved in the phase I 
metabolism of a wide range of exogenous and endogenous 
compounds oxidizing them to form more hydrophilic 
molecules thereby facilitating easier clearance.[11] In the 
case the monooxygenation reaction catalysed by CYP 
enzymes is uncoupled from the NADPH reaction instead 
of a monooxygenated substrate production of ROS 
occurs.[12] The CYP450 family member CYP2E1 is the 
most active enzyme of the family in terms of generating 
ROS sometimes inducing production of oxygen radicals 
even in the absence of substrates.[13]

Apart from the liver CYP2E1 gene expression has been 
detected in other tissues such as breast, lung, kidney 
and hematopoietic tissues[13] and has been reported to 
be over expressed in malignant compared to normal 
tissues.[14-17] CYP2E1 overexpression in cancer is 
attributed to the inflammatory conditions present in the 
tumor microenvironment characterised by increased 
inflammatory cytokine production which affects CYP2E1 
gene expression.[18-20] Several CYP2E1 dependent 
mechanisms contributing to tumorigenesis have been 
suggested including formation of toxic intermediate 
derivatives and activated carcinogens.[21-23] CYP2E1 
mediated ROS generation could also contribute to tumor 
development through pathways in which ROS play 
vital role such as DNA damage, enhanced angiogenic 
responses[24] autophagy[4,25,26] ER stress[27] and unfolded 
protein response (UPR).[28] Furthermore, research in our 
laboratory has indicated that CYP2E1 is differentially 
expressed in a manner dependent on the genetic background 
and the stage of breast cancer, regulating oxidative stress 
response and metastasis.[29]

Cancer cells produce energy predominantly through 
aerobic glycolysis -- a phenomenon also called Warburg 
effect -- rather than oxidative phosphorylation even in the 
presence of oxygen and functional mitochondria.[30] The 
Warburg effect is induced in cancer cells by increased 
cellular glucose uptake stimulated by ROS mediated 
upregulation of gene expression of glucose transporters 
such as GLUT-1.[31] On the other hand, experimental 
evidence supports the view that increased glycolytic 
conversion to pyruvate leads to ROS generation[32] 
suggesting the existence of an interrelation between ROS 
generation with glycolysis and vice versa.[9,33]

Taken together, the above mentioned observations allow 

the hypothesis that overexpression of CYP2E1 and the 
resultant elevated ROS production might regulate cellular 
energy metabolism in cancer cells pointing out CYP2E1 
as a potential cancer biomarker. The understanding of the 
interplay between CYP2E1 -- ROS generation -- cellular 
energy metabolism can provide important conclusions 
towards establishing novel breast cancer biomarkers 
and overcoming drug resistance. The estrogen receptor-
positive MCF-7 and the triple negative MDA-MB-231 
[estrogen receptor-negative, progesterone receptor-
negative and human epidermal growth factor receptor 2 
(HER2)-negative] breast cancer cells were used in this 
study to evaluate the impact of the CYP2E1 mediated ROS 
generation on the energy metabolism of these cells.

METHODS

Cell culture
The human breast carcinoma cell lines MCF-7 and MDA-
MB-231 [obtained from the European Collection of Cell 
Cultures (ECACC)] were maintained in Dulbecco’s 
modified Eagle’s medium (Sigma-Aldrich, Gillingham, 
UK), supplemented with 10% foetal bovine serum (Gibco, 
Paisley, UK) and 1% penicillin/streptomycin (Lonza, 
Allendale, NJ, USA) at 37°C in a humidified atmosphere 
containing 5% CO2. Cells were treated with 100 µM 
3-bromopyruvate (3BP) (Sigma-Aldrich) for 3 h, 20 
mmol/L 2-deoxyglucose (2DG) (Sigma-Aldrich)  for 24 h, 
2.5 mmol/L acetaminophen (APAP) (Sigma-Aldrich) for 
3 h and 20 μM chlormethiazole (CMZ) (Sigma-Aldrich) 
for 16 h.

Transient transfection
Transient transfections were carried out using the polyfect 
transfection reagent (Qiagen, Crawley, UK), according to 
the manufacturer’s instructions. Constructs used for ectopic 
expression included the pcDNA™3.1 (Invitrogen) and the 
pCI-neo-CYP2E1 (kindly provided by Dr. Cederbaum, 
Mount Sinai School of Medicine, New York).[29]

Measurement of ROS
Cells were grown until they reached 80% confluence 
prior to transient transfection and different treatments. 
ROS levels were measured using flow cytometry as 
described previously.[29] Cells were transiently transfected 
with the indicated constructs and 16 h after transfection 
they were harvested and incubated with 1 mL of APC-
H7-conjugated CD20 antibody (BD Biosciences, Franklin 
Lakes, NJ, USA) to detect only the cells ectopically 
expressing CYP2E1. Cells were then incubated with 
H2DCFDA (Invitrogen, Carlsbad CA, USA) in the dark 
at 37°C for 30 min and subjected to flow cytometry using 
CYAN-ADP flow cytometer (Dako, Glostrup, Denmark) 
following the fluorescence profile of the H2DCFDA and 
APC-H7 probes.

Adenosine triphosphate (ATP) assay
ATP levels were measured using the ViaLight plus kit 
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(Lonza, Slough, UK), based on the bioluminescent 
measurement of ATP present in cells. ATP monitoring 
reagent (AMR plus) was prepared by adding assay buffer 
into the vial containing the lyophilized AMR and incubated 
at room temperature for 15 min for complete rehydration. 
Cells were lysed in 50 μL of cell lysis reagent for 10 min. 
A total volume of 100 μL of cell lysate was added to a 
luminometer plate and 100 μL of AMR plus was added to 
the appropriate well. The plate was then incubated at room 
temperature for 2 min and values were obtained from the 
luminometer.

Lactate assay
To measure the lactate efflux MCF-7 and MDA-MB-231 
breast cancer cells were grown in 6 well plates and left 
untreated or treated with CYP2E1 specific inhibitor CMZ. 

Media was collected in a 96 well plates after treatment. Two 
microlitre of this media was mixed with 60 µL of lactate 
reagent and incubated at room temperature for 15 min 
and the absorbance was recorded at 540 nm. Lactic acid 
standard solutions (Trinity Biotech, Ireland) were used to 
plot the standard curve and the concentration of lactic acid 
present in the media was calculated accordingly. Lactate 
production rates were expressed as mmol/L.

Mitochondrial membrane potential
Mitochondrial transmembrane potential (Δψm) 
was measured using the cationic dye JC- 1 (5, 5, 6, 
6-tetrachloro-1,1,3,3-tetraethylbenzimidazolcarbocyanine 
iodide) (ChemoMetec, Allerod, Denmark) using the 
NucleoCounter® NC-3000™ system. Cells were grown in 
6-well plates and treated with the CYP2E1 activator APAP 

Figure 1: ROS generation in MCF-7 and MDA-MB-231 cells ectopically expressing CYP2E1. MCF-7 and MDA-MB-231 cells were transiently transfected 
with a CYP2E1 expressing or the empty vector PCDNA3. ROS levels were determined using H2DCFDA fluorescent dye and flow cytometry only in the cells 
ectopically expressing CYP2E1 (co-transfected with CD20). FACS data were analyzed using Beckman Coulter Summit 4.1 software. (A) Histograms displaying 
ROS levels after transient transfection of CYP2E1 or pcDNA3 as indicated. Green coloured histograms represent ROS levels in cells transfected with CYP2E1 
and black histograms represent ROS levels in cells transfected with PCDNA3; (B) bar graphs representing ROS levels generated in cells transfected with 
PCDNA3 and CYP2E1 as indicated. Data are average of three independent experiments. ROS: reactive oxygen species; CYP: cytochrome P450
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Figure 2: CYP2E1 mediated ROS generation in breast cancer cells under diverse stress conditions. Graph indicating ROS levels generated in 3BP, 2DG 
and CMZ treated MCF-7 (A) and MDA-MB-231 (B) cells. Error bars represent mean ± SEM from three independent experiments. Statistical analysis was 
performed by one-way ANOVA followed by Tukey post hoc for multiple pair-wise comparisons. One asterisk indicates P < 0.05 and two asterisks P < 0.005. 
ROS: reactive oxygen species; CMZ: chlormethiazole

Figure 3: ATP production and lactate efflux in MCF-7 and MDA-MB-231 cells treated with the CYP2E1 inhibitor CMZ. MCF-7 and MDA-MB-231 cells were 
either left untreated or treated with the CYP2E1 specific inhibitor CMZ. ATP production (A and B) was determined using the ViaLight™ plus kit (Lonza, 
Slough, UK) and lactate efflux (C and D) using the lactate reagent (Trinity Biotech, Dublin, Ireland). Data are average of three independent experiments ± 
SEM; **P < 0.005. ATP: adenosine triphosphate; CMZ: chlormethiazole
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or the CYP2E1 inhibitor CMZ. After treatment, cells 
were stained with JC-1 and DAPI (ChemoMetec, Allerod, 
Denmark). Cellular JC-1 monomers and aggregates are 
detected as green and red fluorescence, respectively. 
Mitochondrial depolarization and apoptosis are revealed 
as a decrease in the red/green fluorescence intensity 
ratio. Necrotic and late apoptotic cells are detected as 
blue fluorescent (DAPI) cells. After staining cells were 
loaded on an 8-chamber NC-Slide A8™ and samples were 
analysed using the NC-3000™ system and the amount of 
blue, green and red fluorescence of the individual cells was 
quantified.

Cell viability assay
Cell viability was measured using the NucleoCounter® 
NC-3000™ system. Cell viability assay was used to detect 
changes in the intracellular level of (reduced) thiols. 
Cells were seeded in 6 well plates and cultured until they 
reached 80% confluence prior to different treatments. After 
the treatments, cell culture medium was aspirated and 
500 μL of cell dissociation buffer was added to cells for 
dissociation from culture plates. Five hundred microlitre 
of complete culture medium was added to quench the 
toxicity of dissociation buffer after cell dissociation. 

Then cells were stained with solution 5 as described by 
the manufacturer. Solution 5 (ChemoMetec, Allerod, 
Denmark) contains three different stains, each one of 
them staining either all nucleated cells (DAPI), dead cells 
(Propidium iodide) or viable cells (VB-48) (ChemoMetec, 
Allerod, Denmark) and the intensity of the stain depends 
on the GSH level. After staining, cells were loaded into an 
8-chanmber NC-slide. Samples were analysed using the 
NC-3000™ system.

RESULTS

The role of CYP2E1 in ROS generation in breast cancer 
cells has been investigated by our and other groups 
indicating that overexpression of this cytochrome P450 
family member in breast cancer cells coincides with 
elevated ROS levels implying that CYP2E1 is one of the 
intracellular sources of ROS.[29,34] To confirm that this 
is the case in the triple positive MCF-7 and the triple 
negative MDA-MB-231 cells CYP2E1 expressing vectors 
were transiently transfected and the ROS levels in mock 
and ectopically expressing CYP2E1 cells were followed as 
described in Materials and Methods. Increased ROS levels 
were recorded in both cell lines ectopically expressing 

Figure 4: Mitochondrial membrane potential (Δѱ) in breast cancer cells treated with the CYP2E1 activator APAP or the CYP2E1 inhibitor CMZ. Breast 
cancer cells were left untreated or treated with either the CYP2E1 inducer (APAP) or the CYP2E1 inhibitor (CMZ). Mitochondrial membrane potential 
(Δѱ) was determined using JC-1 and DAPI fluorescent dye (ChemoMetec, Allerod, Denmark) and the NucleoCounter NC3000. Data were analyzed using 
NucleoView software. (A) Histograms representing the mitochondrial membrane potential (Δѱ) in breast cancer cells under different stress conditions; (B) 
bar graphs representing the effect of APAP and CMZ treatments on mitochondrial membrane potential (Δѱ) in breast cancer cells. Error bars represent 
mean ± SEM from three independent experiments. Two asterisks indicate P < 0.005. APAP: acetaminophen; CMZ: chlormethiazole
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CYP2E1 compared to mock transfected cells [Figure 1B, 
compare bars 2 to bars 1 respectively].

To explore further the effects of CYP2E1 on the glycolytic 
pathway of energy production the glycolytic inhibitors 3BP 
and 2DG were used to inhibit glycolysis in MCF-7 and 
MDA-MB-231 cells either individually or in combination 
with the CYP2E1 inhibitor CMZ and the ROS generated 
under these conditions were monitored as described in 
Materials and Methods. Treatment of MCF-7 cells with 
3BP generated higher ROS levels compared to MCF-7 
cells treated with 2DG [Figure 2A, compare bar 1 to bar 3]. 
Combination of 3BP or 2DG treatment with CMZ resulted 
in dramatic decrease of ROS levels in MCF-7 cells [Figure 
2A, compare bar 2 to bar 1 and bar 4 to bar 3]. In contrast, 
in MDA-MB-231 cells CMZ had marginal effect on that 
observed when cells were treated with the glycolytic 
inhibitors 3BP and 2DG alone [Figure 2B, compare bars 
2 and 4 to bars 1 and 3 respectively] providing additional 

evidence that CYP2E1 exerts cell type dependent effects 
in ROS generation in a manner dependent on the genetic 
background and potentially their invasive potential.

Accumulating evidence supports the notion that 
ROS generation is associated with cellular energy 
production.[31,32,35] Results shown in Figure 1 indicate 
that CYP2E1 overexpression led to elevation of ROS in 
MCF-7 and MDA-MB-231 breast cancer cells implying a 
potential role of CYP2E1 in cellular energy metabolism. To 
test this hypothesis MCF-7 and MDA-MB-231 cells were 
treated with the CYP2E1 inhibitor CMZ and the levels of 
ATP produced under these conditions were determined as 
described in Methods. CMZ treatment of both MCF-7 and 
MDA-MB-231 cells did not have any significant effect on 
the ATP produced under these conditions [Figure 3A and 
3B]. To test whether the ROS levels’ profile observed in 
breast cancer cells was related to lactate production, MCF-
7 and MDA-MB-231 cells were treated with the CYP2E1 

Figure 5: Cell viability of breast cancer cells treated with the CYP2E1 activator APAP or the CYP2E1 inhibitor CMZ. Breast cancer cells were left untreated 
or treated with either the CYP2E1 activator APAP or the CYP2E1 inhibitor CMZ as indicated. Cell viability was calculated using the Vitality kit Assay 
(ChemoMetec, Allerod, Denmark). (A) Histogram representing cell viability under different stress conditions. Dead cells stained with PI are shown in the 
Q1ur gates; (B) bar graph representing the PI positive breast cancer cells treated with either APAP or CMZ. Error bars represent mean ± SEM from three 
independent experiments. Two asterisks indicate P < 0.005. APAP: acetaminophen; CMZ: chlormethiazole
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inhibitor CMZ[36,37] and lactate production was monitored 
as described in Methods. Results shown in Figure 3C 
indicate that inhibition of CYP2E1 in MCF-7 cells resulted 
in reduction of lactate production in these cells whereas 
inhibition of CYP2E1 in MDA-MB-231 cells did not have 
any effect on lactate production [Figure 3D] reiterating the 
concept that CYP2E1 effects are cell type dependent.

It is known that oxidative stress can trigger the 
mitochondrial permeability transition and Δψ collapse 
leading to defects in ATP production.[38] Taking into 
account these observations, we next assessed potential 
changes in the mitochondrial membrane potential in breast 
cancer cells treated with the CYP2E1 activator APAP 
or the CYP2E1 inhibitor CMZ. APAP treatment of both 
MCF-7 and MDA-MB-231 cells led to decrease of Δψ 
compared to untreated cells [Figure 4B, compare APAP 
white (0.652) and black (0.698) bars to UN white (1) 
and black (1) bars]. In contrast, CMZ treatment did not 
exert any effects on Δψ which remained the same as that 
observed in the untreated cells [Figure 4B, compare CMZ 
white and black bars to UN white and black bars]. These 
results indicate a potential role of CYP2E1 mediated ROS 
generation in the process of alterations of mitochondrial 
membrane potential.

Alterations in Δψ might in some cases lead to cell death[39] 
and in order to explore whether that was the case in breast 
cancer cells treated with APAP or CMZ MCF-7 and 
MDA-MB-231 cell death was determined by PI staining 
upon treatment with APAP or CMZ. APAP treatment of 
MCF-7 and MDA-MB-231 cells led to increased cell 
death in both cell lines (MCF-7 cells from 9% to 18% 
and MDA-MB-231 cells from 16% to 20%) [Figure 5B, 
compare APAP white and black bars to UN white and 
black bars]. CMZ treatment of both MCF-7 and MDA-
MB-231 cells did not exert any effects on cell death as 
it did not affect the percentage of PI positive compared 
to untreated MCF-7 and MDA-MB-231 cells [Figure 5B, 
compare CMZ white and black bars to UN white and black 
bars]. Taken together these results indicate that at least in 
part CYP2E1 mediated generation of ROS alters collapse 
of mitochondrial membrane potential determining cell 
survival or death in a cell type dependent manner.

DISCUSSION

Accumulating evidence supports the view that ROS 
generated by CYP2E1 activity mediate cell signalling 
events that promote alterations in the cellular physiology 
and disease development.[40-43] Studies in our and other 
laboratories have indicated diverse levels of CYP2E1 
gene expression in a manner dependent on the genetic 
background and the migratory potential of these 
cells.[16,17,29,34] CYP2E1 overexpression in breast cancer 
cells is involved in the alteration of numerous pathways 
linked to the disease such as cell cycle control, apoptosis, 
autophagy, ER stress and UPR.[29,44,45] In addition to these, 

another pathway that is regulated by the cellular redox 
state is cellular energy metabolism. The interrelation 
between ROS and aerobic glycolysis which is the main 
pathway through which cancer cells produce energy has 
been extensively investigated.[31,32] Since cytochrome P450 
enzymes are one of the endogenous sources of ROS[46,47] it 
was hypothesized that CYP450s might be involved in the 
regulation of cellular energy metabolism.

The role of the CYP2E1 mediated ROS generation in the 
energy metabolism of breast cancer cells was investigated 
in the estrogen receptor positive MCF-7 and estrogen 
receptor negative MDA-MB-231 cells.[48] Given that 
CYP2E1 gene expression is under the transcriptional 
control of factors responsive to inflammation[19,29,49,50] it 
was theorized that inhibition of glycolysis in breast cancer 
cells bearing diverse genetic background would lead to 
alternative CYP2E1 cellular levels and hence dissimilar 
ROS.[42] On the other side inhibition of glycolysis would 
lead to increased ROS generation[31] that could be altered 
by CYP2E1 enzymatic activity.[42,51-53] In accord with 
published results treatment of both MCF-7 and MDA-
MB-231 cells with the glycolytic inhibitors 3BP and 
2DG increased ROS levels in the two cell lines.[33,54,55] 
Combination of either 3BP or 2DG with the CYP2E1 
inhibitor CMZ reduced dramatically the oxygen radicals’ 
levels in the MCF-7 but not in the MDA-MB-231 cells 
[Figure 2] implying that the dissimilar genetic background 
in the two cell lines (wild type ER and p53 in MCF-7 and 
defective ER and mutated p53 in MDA-MB-231 cells) 
determines the differential response of these cells to the 
glycolytic and CYP2E1 inhibitors.[56]

The observation that CMZ decreased ROS generation 
stimulated by 3BP and 2DG treatment in MCF-7 cells 
prompted our interest to explore the possibility that 
CYP2E1 is involved in the process of energy metabolism 
in breast cancer cells. The potential link between CYP2E1 
and energy metabolism was investigated in the MCF-7 
and MDA-MB-231 cells by estimating the ATP production 
after treating these cells with the CYP2E1 inhibitor CMZ. 
Results shown in Figure 3 indicate that CMZ treatment 
did not significantly affect ATP generation in the two cell 
lines implying that if CYP2E1 had inhibitory effect on 
one of the pathways of ATP generation another pathway 
compensates for the loss facilitating cells to meet their 
energy requirements,[57] or CYP2E1 is not involved in 
ATP production in these cells. To answer these questions 
the lactate concentration was determined in CMZ treated 
MCF-7 and MDA-MB-231 cells.[58] CMZ treatment 
reduced lactate efflux in MCF-7 but not in MDA-MB-231 
cells [Figure 3C and 3D] implying that CYP2E1 exerts 
cell type dependent effects on energy metabolism. These 
results are in line with those shown in Figure 2 indicating 
reversion of the effect of the glycolytic inhibitors 3BP 
and 2DG on ROS levels by CMZ in MCF-7 cells, and 
published studies reporting that high ROS levels induce 
hypoxia inducible factor 1 alpha (HIF-1α) thereby 
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inducing lactate dehydrogenase (LDH-A) gene expression 
and hence lactate efflux.[58]

Depolarization of the mitochondrial membrane is 
determined by the gradient of protons across the 
mitochondrial membrane. Opening of the mitochondrial 
permeability transition pore (PTP) permitting influx or 
efflux of protons can lead to mitochondrial membrane 
depolarization. Proteins involved in the regulation of 
the PTP opening are susceptible to redox modifications 
therefore high levels of ROS may lead to PTP opening and 
induce mitochondrial membrane depolarization.[59] Given 
that overexpression [Figure 1] or inhibition of CYP2E1 
altered the redox state of MCF-7 and MDA-MB-231 cells 
[Figure 2] we were interested to study potential changes of 
the mitochondrial membrane potential in breast cancer cells 
attributed to the activation or inhibition of the CYP2E1 
enzymatic activity. Reduced mitochondrial membrane 
potential was observed in both MCF-7 and MDA-MB-231 
cells treated with the CYP2E1 activator APAP whereas no 
changes in mitochondrial membrane depolarization were 
recorded in these cells treated with the CYP2E1 inhibitor 
CMZ [Figure 4].

Cell death through the intrinsic pathway of apoptosis 
is triggered by sustained mitochondrial membrane 
depolarization.[59] To investigate the potential role of 
CYP2E1 in inducing cell death by mediating alterations 
in the mitochondrial membrane depolarization MCF-7 and 
MDA-MB-231 cells were treated with either the CYP2E1 
activator APAP or the CYP2E1 inhibitor CMZ and cellular 
viability was assessed. APAP induced cell death in both 
MCF-7 and MDA-MB-231 cells while CMZ induced cell 
death only in MCF-7 cells [Figure 5] reiterating the view 
that CYP2E1 effects are cell type specific.

Taken together results presented in this study provide 
evidence to support the concept that CYP2E1 regulates 
cellular energy metabolism in a cell type dependent manner 
affecting predominately this pathway in less invasive and 
early stages of breast cancer represented by the MCF-7 
cells. Although these results require validation in an in 
vivo system they endorse the conclusion that CYP2E1 
cellular levels can be a prognostic indicator and a potential 
breast cancer biomarker.
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Neuroendocrine neoplasms include a heterogeneous 
group of neoplasms, representing a spectrum of rare 
neoplasms arising in different organism sites with different 
malignant potential and behavior. They typically occur in 
gastrointestinal and bronchopulmonary tracts.

The incidence and prevalence of these neoplasms showed 
a significant increase in the last four decades leading to a 
rising interest in these tumours with remarkable progresses 
in their both treatment and management. Nevertheless, 
they are still considered rare diseases with a global clinical 
incidence of 3.65 cases/100,000 per year according 
to the National Cancer Institute SEER (Surveillance 
Epidemiology and End Results) registry.[1]

Surgery still remains the primary treatment approach 
mainly depending on tumour size, stage and patients 
performance status. However in loco-regional unresectable 
and/or metastatic disease, curative surgery is generally not 
possible, therefore medical therapy is usually primarily 
considered. Several treatment options are available and 
to date the management of neuroendocrine tumors within 
clinical practice is based on a multimodal therapeutic 
strategy including surgery and other loco-regional 
therapies, somatostatin analogs (SSAs), peptide receptor 
radionuclide therapy (PRRT), cytotoxic agents, biological 
agents (including angiogenesis inhibitors such as sunitinib 
and inhibitors of mammalian target of rapamycin as 
everolimus) with a multidisciplinary approach.[2]

SSAs, including octreotide and lanreotide, represent 
effective options in the presence of carcinoid syndrome, 
but they also have an antiproliferative effect in secreting 
and nonsecreting neuroendocrine tumors.[3,4]

PRRT is an emerging treatment modality for advanced 
neuroendocrine tumors. It is performed in the treatment 

of neuroendocrine tumors, where somatostatin analogues 
(DOTATOC, DOTATATE) are radiolabeled with 177 Lu, 90 Y, 
or 111 In for pre-therapeutic and therapeutic purposes.[5]

There are many cumulative evidences about the 
effectiveness and tolerability of this therapeutic approach, 
especially in gastro-entero-pancreatic neuroendocrine 
tumors.

Neuroendocrine neoplasms therapy also includes cytotoxic 
agents, expecially in symptomatic patients, in progressive 
disease, in case of moderate or poor differentiation and 
more aggressive features. Chemotherapy schedules used 
in this setting include alkylating agents (streptozotocin, 
dacarbazine, and temozolomide), antimetabolites 
(5-fluorouracil, capecitabine), etoposide and platinum 
derivatives (including cisplatin and oxaliplatin).[6]

The availability of new targeted agents, such as everolimus 
and sunitinib, which are effective in advanced and 
metastatic pancreatic neuroendocrine tumors, has provided 
new treatment opportunities.

Despite comprehensive and interesting medical progress, 
the current available therapeutic options are still 
inadequate for gastrointestinal and lung neuroendocrine 
tumors, mainly due to the lack of in-depth knowledge of 
molecular mechanisms and predictive factors.

Prognostic evaluation is mainly based on their morphologic 
features and proliferation index, according to WHO 
classification.[7]

Due to the usually long life-expectancy of these patients, 
many different lines of therapy are performed according to 
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difference status of the disease as well as on timing. Thus, 
despite the sequencing of different therapies represents a 
true challenge in real life, a standard therapeutic sequence 
is still lacking and it is a matter of debate.

Therefore novel strategies are needed, especially for 
refractory and/or recurrent neuroendocrine neoplasms 
that present a poor prognosis. Personalized approaches 
are currently being developed and molecular targets are 
emerging.

Several driver pathways have been investigated and they 
may represent important factors in the carcinogenesis 
process and, therefore, potential targets for new anticancer 
therapies.

In particular, activating mutations have been identified 
several genes, including those of the epidermal growth 
factor receptor, platelet-derived growth factor receptor, 
vascular endothelial growth factor, basic-fibroblastic 
growth factor, transforming growth factor, insulin-like 
growth factor-1, and their receptors, stem cell factor 
receptor. New drugs (including immunotherapy) and 
several combination regimens with new biological agents 
are being developed and studied in recently conducted and 
ongoing trials.

Further investigations could increase our knowledge about 
molecular mechanisms responsible for the neuroendocrine 
neoplasms heterogeneity, about tumor interactions with 
adjacent healthy tissue and as regard its variegated 
response to treatments, to guarantee the development of 
new promising therapies.

This special issue on neuroendocrine neoplasms aims to 
summarize the present knowledge about the treatment of 
these tumors highlighting available evidences as well as 
new biological perspectives on biological and targeted 
therapies, also including case reports.
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Neuroendocrine tumors (NETs) encompass a broad spectrum of malignancies all derived from neuroendocrine cell lineage, 
affecting many different organs including the gastrointestinal (GI) tract, the endocrine pancreas, the thyroid, the skin and the 
respiratory tract. These tumors as a group are very heterogeneous, with varying characteristics attributed to each tissue of 
origin and tumor subtype. The pathogenesis of the different subtypes of NETs is not fully understood, but recent studies suggest 
the Notch signaling pathway may be dysregulated in these tumors either by under or overexpression of Notch receptors and/or 
ligands, or by disruption of pathway functionality through other means. Notch receptors can function as tumor suppressors in 
some cellular contexts and oncogenes in others which may, in part, account for the wide range of phenotypes present in NETs. 
Cancer stem cells are present in these tumors and may be responsible for the high rate of chemotherapy resistance, recurrence 
and metastasis. The heterogeneity of NETs suggests that to fully understand the role of Notch signaling and the therapeutic 
implications thereof, a comprehensive and systematic analysis of Notch expression and function across all NET subtypes is 
required. Here we outline the current knowledge base with respect to current therapies and Notch signaling in neuroendocrine 
tumors of the lung, skin, thyroid, GI tract and endocrine pancreas.
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INTRODUCTION

Neuroendocrine tumors (NETs) are a heterogeneous 
group of neoplasms that arise from the neuroendocrine 
cells of the gastrointestinal (GI) tract, endocrine pancreas, 
thyroid, skin, lung, adrenal gland and other tissues. These 
tumors are typically slow-growing, yet pose a significant 
threat due to high metastatic potential. In many cases, 
patients initially present with advanced metastatic disease 
resulting in poor outcomes and low 5-year survival rates. 
An understanding of the mechanism(s) of tumorigenesis 
and metastasis is required for target identification and new 
therapeutic development, since many NET subtypes have 
no curative options beyond surgical resection.

In recent years, studies have suggested that the Notch 
signaling pathway may be involved in the pathogenesis 
of NETs. Notch signaling has been studied for many 
years in the context of cancer and as these pathways are 
dissected, the complexity of Notch signaling becomes 

more and more evident. Notch signaling is classified into 
two broad categories: 1) canonical signaling, wherein 
Notch receptors regulate transcription through CSL (CBF-
1/Suppressor of Hairless/LAG-1), also known as RBP-
Jk, and can play an oncogenic or tumor suppressive role 
depending on context, or 2) non-canonical, which functions 
through interplay with other signaling networks including 
phosphatidylinositol 3’ kinase (PI3K)/Akt, mTOR, NF-
kB and beta-catenin.[1-6] In NETs, interactions with these 
pathways as well as complexes between canonical Notch 
target hairy enhancer of split 1 (Hes1) and achaete-schute 
complex-like 1 (ASCL-1) have been reported.[7-14] Many 
of these pathways can be pharmacologically modulated 
for translational research and eventually for experimental 
therapy of NETs, once the role of Notch signaling in 
these tumors is more clearly elucidated. Here we review 
the current state of NET therapies, the role of canonical 
and non-canonical Notch signaling in these tumor types, 



                                                                                                       Journal of Cancer Metastasis and Treatment ¦ Volume 2 ¦ August 17, 2016 ¦280

and the role of cancer stem cells in NET pathogenesis, 
chemoresistance and recurrence.

NOTCH SIGNALING

The Notch signaling pathway is an evolutionarily 
conserved, critical component of basic cellular 
processes such as proliferation, stem cell maintenance, 
and differentiation during both embryonic and adult 
development. The canonical Notch signaling pathway has 
been well-studied and typically depends on the binding of 
a Notch receptor to its ligand residing on a neighboring 
cell. This ligand binding promotes the separation of 
the extracellular subunit from the transmembrane 
subunit, which is followed by cleavage of the receptor’s 
transmembrane subunit by ADAM metalloproteases 
(primarily ADAM-10) and gamma secretase. The latter 
cleavage releases the active form of Notch, the Notch 
intracellular domain (NICD). The NICD then translocates 
into the nucleus and binds to the transcription factor 
CSL (CBF-1/Suppressor of Hairless/LAG1), also known 
as RBP-Jk, to control expression of Notch-regulated 
genes.[15-18] Ligand-independent activation of Notch 
cleavage has been reported in some contexts, notably 
breast cancer stem cells, where it is mediated by activation 
of ADAM-17 via the Sphingosine 1-phosphate pathway.[19]

Different species contain different numbers of Notch 
isoforms. Drosophila contains one Notch receptor, C. 
elegans has two redundant receptors, and mammals contain 
four Notch receptors, Notch1-4. Notch receptors contain 
an extracellular domain that includes multiple epidermal 
growth factor (EGF)-like repeats in varying numbers 
that are involved in ligand binding. The intracellular 
portion of Notch transmits cellular signals and contains 
an RBP-Jκ Association Module (RAM) domain, a nuclear 
localization signal (NLS), a seven ankyrin repeat (ANK) 
domain and a transactivation domain that contains 
conserved proline/glutamic acid/serine/threonine-rich 
(PEST) motifs. For a comprehensive review of known 
Notch ligands, see.[17] In mammals, Notch ligands include 
Delta-like1 (DLL1), Delta-like3 (DLL3) and Delta-like4 
(DLL4), which are homologous to Drosophila Delta, 
along with Jagged1 (JAG1) and Jagged2 (JAG2), which 
have homology to Drosophila Serrate. Notch ligands have 
multiple EGF-like repeats in their extracellular domains 
and all contain an N-terminal DSL (Delta/Serrate/LAG2) 
motif that, along with the first two EGF-like repeats is 
required for ligand-receptor interaction. Jagged ligands 
contain almost twice the number of EGF repeats as well 
as an additional cysteine rich region compared to DLL 
ligands. The intracellular portion of all Notch ligands 
lacks major homology with the exception that some, but 
not all, ligands contain multiple lysine residues and a 
C-terminal PDZ (PSD-95/Dlg/ZO-1) domain.

In addition to the well-studied canonical signaling, Notch 
signaling can also occur in a non-canonical fashion that 

is independent of CSL and can be ligand-dependent or 
independent.[1,20] Compared to canonical Notch signaling, 
knowledge of non-canonical Notch mechanisms is 
limited, with the majority of studies performed in cancer 
and immune system cells.[1] Non-canonical Notch 
pathways present an interesting new avenue of study and 
may reveal new targets for therapeutic intervention in the 
translational setting.

One mechanism of non-canonical Notch signaling occurs 
through the Wnt/β-catenin pathway in cancer and the 
immune system. The Wnt/-catenin pathway regulates 
cell pluripotency and cell fate decisions, and aberrant 
functions or mutations in β-catenin have been associated 
with a number of cancers and other human diseases. Non-
canonical Notch signaling can result in an antagonistic 
interaction between Notch signaling and Wnt/β-
catenin[2,20,21] that disrupts the regulation of developmental 
and disease processes.[20] This results in an inverse 
relationship between elevated levels of membrane-bound 
Notch and lower levels of active β-catenin[20] leading to 
negative regulation of Wnt signaling.[4] One example of 
this crosstalk is the loss of Notch1 in the epidermis of mice, 
which results in activated Wnt/-catenin signaling and the 
formation of hyperplasia and cancer -- both of which can 
be reversed by the introduction of exogenous NICD.[22]

Non-canonical Notch signaling is also involved in the 
activation and proliferation of CD4+ T cells in the immune 
system as well as in the tumor-promoting effects of 
interleukin-6 (IL-6).[1,23] These events rely on NF-κB and 
demonstrate crosstalk with other cellular pathways in 
the absence of canonical Notch signaling. Studies have 
demonstrated that even in the absence of CSL, CD4+ 
T-cell activation and proliferation through NF-κB requires 
NICD playing a major role in the signature CBM complex 
(CARMA1, MALT1 and BCL10).[24] The NICD can also 
activate a non-canonical signaling cascade via mTORC2 
and Akt as a means of transmitting extracellular nutrient 
sensing cues to promote cell survival.[5,25] Notch signaling, 
both canonical and non-canonical, is regulated by a 
myriad of known and unknown binding partners as well as 
posttranslational modifications. Comprehensive reviews 
of Notch signaling are available.[18,26,27]

NETs - ENTEROPANCREATIC

The annual incidence of enteropancreatic NETs is 
2-5/100,000 patients in the United States and recent studies 
suggest that this incidence will continue to rise in the 
coming years.[21,28-30] Overall survival (OS) for metastatic 
pancreatic and small bowel NETs is 24 and 56 months, 
respectively.[29] Enteropancreatic NETs, or NETs that form 
in the pancreas or the gut (also called carcinoids), can be 
categorized as functional or non-functional depending on 
their level of hormone release. Pancreatic NETs can hyper 
secrete insulin (insulinoma), glucagon (glucagonoma), 
somatostatin (somatostatinoma), pancreatic polypeptide 
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(PPoma) or vasoactive peptide (VIPoma) and those in the 
GI tract can secrete high levels of gastrin (gastrinoma). 
The classification of NETs clinically is based on 
immunohistochemical staining for low molecular weight 
keratins, chromogranin and somatostatin, as well as an 
assessment of Ki-67 index from within the region of 
highest mitotic density.[31] Other observable factors such 
as anatomical site, histology, grade, level of differentiation 
and hormone secretion are also used but this phenotypic 
classification system has led to confusion in both the 
clinical and research settings due to the molecularly 
heterogeneous nature of these diseases. For clinical trial 
purposes, enteropancreatic NETs have historically been 
grouped together in clinical trials, with enrollment open 
to all patients with gut NETs regardless of subtype. It 
is now recognized that NETs must be subdivided into 
pancreatic and non-pancreatic subgroups to reduce 
heterogeneity in clinical trials[32] and that progression free 
survival (PFS) may be a more relevant primary endpoint 
in clinical trial design than OS because most patients 
have indolent disease.[33] Additionally, a key predictor of 
outcome in enteropancreatic NETs is the degree of tumor 
differentiation. Well-differentiated tumors have a better 
prognosis than poorly differentiated tumors, which can 
have a 5 year overall survival of less than 4%.[30]

Enteropancreatic NETs are relatively slow-growing and 
traditional chemotherapy regimens have limited efficacy.[34] 
The selection of therapy is driven by the staging, location 
of the tumor and symptom profile. Surgery is often used 
in the management of NETs for both curative (localized 
disease) and palliative care (widespread metastases). First 
line therapy for enteropancreatic NETs is somatostatin 
analogs (SSAs),[34] with VEGF pathway inhibitors, 
mTOR inhibitors or peptide receptor radionuclide therapy 
(PRRT) as additional options. Many of these compounds 
are currently in clinical practice and/or clinical trials and 
have exhibited moderate success. SSAs such as octreotide, 
lanreotide and pasireotide help control symptoms of 
hormone hypersecretion (carcinoid syndrome), and more 
recently have been noted to have anti-proliferative effects 
on well or moderately differentiated NETs.[35,36] For 
example, the PROMID trial (NCT00171873) examined 
metastatic midgut NETs[37] and the CLARINET trial 
(NCT00353496) focused on pancreatic, midgut or 
hindgut NETs,[38] both noting prolonged PFS in the SSA 
treatment arms compared to placebo. The NETTER-1 trial 
(NCT01578239) uses radiolabeled SSA ([177Lu-DOTA0, 
Tyr3] octreotate) in PRRT for a localized anticancer therapy 
in patients with inoperable, somatostatin receptor positive 
metastatic midgut NETs with the primary endpoint of PFS. 
The RADIANT-3 trial (NCT00510068) demonstrated an 
increased median PFS in patients treated with the mTOR 
inhibitor everolimus/RAD001 (11 months compared to 4.6 
months for placebo) in patients with advanced pancreatic 
NETs.[39] Finally, the oral tyrosine kinase inhibitor 
sunitinib was studied in a prospective trial in patients with 
advanced, well differentiated pancreatic NETs. PFS was 

11.6 months in the sunitinib group compared to 5.5 months 
in the placebo arm.[40] The RADIANT-3 and the sunitinib 
study both resulted in FDA approval of these drugs for 
patients with pancreatic NETs. The RADIANT-4 trial 
(NCT01524783) further confirmed the role of everolimus 
in adult patients with advanced, progressive, well-
differentiated, non-functional endocrine tumors of the lung 
or gastrointestinal tract.[41] Patients receiving everolimus 
had a 7.1 month increase in PFS compared to placebo.[41] 
A comprehensive review of carcinoid and NET clinical 
trials is available.[33] The heterogeneity of NETs requires a 
deeper understanding of tumorigenic mechanisms and drug 
function that will guide future therapeutic development, 
patient management strategies and eventually, genomics-
driven clinical trial design.

Genetic syndromes account for 15-20% of NETs. The 
most common syndromes include multiple endocrine 
neoplasia type 1 and type 2A/B (MEN1 and MEN2A/B), 
von Hippel-Lindau syndrome (VHL), neurofibromatosis 
type 1 (NF1) and tuberous sclerosis complex (TSC), and in 
each of these syndromes, specific loss- or gain-of-function 
mutations have been identified in causative genes. The 
remaining 80-85% of NETs is considered sporadic and 
genome-wide studies have been performed in an attempt 
to understand driver genetic mutations. Jiao et al.[42] 
performed whole exome sequencing of 10 pancreatic NETs 
that resulted in the identification of somatic mutations in 
a number of known cancer-associated genes including 
MEN1, DAXX, ATRX, a number of genes involved in the 
mTOR pathway, and to a lesser extent TP53. Banck et al.[43] 
studied forty-eight well-differentiated, small intestinal 
NETs (carcinoids) by whole exome sequencing and also 
identified somatic mutations in many cancer-associated 
genes including FGFR2, MEN1, HOOK3, EZH2, MLF1, 
CARD11, VHL, NONO, SMAD1, FANCD2 and BRAF, yet 
only 21 genes were in common with a subsequent study 
that analyzed an additional 55 well-differentiated small 
intestinal NETs.[44] Upon further comparison with the Jiao 
study,[42] only 17 genes with somatic mutations found in 
small intestinal NETs were in common with pancreatic 
NETs.[44] These data highlight that this group of tumors 
needs to be carefully studied, subgrouped and analyzed 
to account for heterogeneity in terms of site of origin, 
level of differentiation and underlying driver mutations. 
Interestingly and despite the somewhat disparate results, 
all of these studies highlight the putative role of chromatin 
remodeling, perhaps in concert with Notch signaling, in 
the etiology of enteropancreatic NETs.

A popular model of cancer formation is that tumors are 
dependent on a subset of highly tumorigenic cells, so-
called cancer stem cells, for initiation, maintenance and 
propagation.[45] Cancer stem cells have been identified 
in a number of solid tumors[46-48] and leukemias,[49] and 
are noted for their pluripotency, unique complement of 
cell-surface antigens, ability to self-renew, and ability 
to form xenografts in immunocompromised mice from 
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very small numbers of cells. Cancer stem cells are often 
chemoresistant, mediate tumor recurrence, and recruit the 
host immune system through a variety of mechanisms to 
support tumor cell growth and metastasis.[45]

Cancer stem cells have been identified in gastrointestinal[50] 
and pancreatic NETs.[51] In gastrointestinal NETs, a 
population of stem cells was identified based on ALDH 
positivity which is required for chemoresistance and 
enhances self-renewal.[50] ALDH+ cells exhibit anchorage-
independent growth and have elevated expression of Src, 
Erk, Akt and mTOR. Because therapies directed towards 
the Akt/mTOR pathway are already clinically validated in 
NETs, the investigators focused on Src and treated mouse 
xenografts with anti-Src siRNA. This treatment resulted in 
a 91% decrease in tumor mass and suggested an additional 
treatment avenue for gastrointestinal NETs.[50] In pancreatic 
NETs, stem cells have been isolated that co-express the 
cell-surface protein CD90 and aldehyde dehydrogenase 
A1 (ALDHA1), as well as CD47 which serves as a flag to 
evade the immune system.[51] These stem-like cells form 
tumors in mice and the treatment of tumor-bearing mice 
with anti-CD47 antibody therapy inhibits tumor growth, 
prevents metastasis and prolongs survival. Combination 
therapy with anti-CD47 and anti-EGFR (expressed by 
the majority of pancreatic NETs) in the preclinical setting 
demonstrated improved efficacy over anti-CD47 antibody 
therapy alone[51] and supports the notion that treatment of 
human pancreatic NETs with stem cell specific antigens 
will yield clinically significant results.

NETs in general remain significantly understudied with 
respect to molecular mechanisms of pathogenesis, and 
particularly Notch signaling. Mechanistically, Notch may 
contribute to carcinogenesis by inhibiting differentiation, 
promoting cellular proliferation and/or inhibiting 
apoptosis, yet few studies have comprehensively examined 
these endpoints with respect to the four Notch receptors 
and their ligands in NETs. The available studies suggest 
a tumor suppressive function for Notch1 in cells derived 
from the neuroendocrine lineage. This is consistent with 
role of Notch in Drosophila neurogenesis, where Notch 
restricts differentiation towards the neuronal lineage. The 
loss of Notch in Drosophila embryos results in uncontrolled 
ectodermal differentiation down the neuronal lineage.[52,53] 
It is plausible that loss of Notch signaling would allow 
NET cells to acquire or maintain a partially differentiated 
neuroendocrine phenotype while retaining the ability to 
proliferate. For example, recent studies[11,12,54-57] report that 
Notch1 signaling is minimal or absent in gut carcinoids, 
medullary thyroid carcinoma (MTC) and pulmonary 
typical and atypical carcinoids. Yet these same cancers 
express high levels of human achaete-scute homolog 1 
(hASH1), a basic helix loop helix transcription factor that 
is regulated by Notch signaling. The aberrant expression 
of hASH1 and the arrest of NET cells at an early stage of 
differentiation may be due to decreased Notch1-activated 
expression of Hes1 and Hes5 which both facilitate 

degradation of hASH1.[57] Transient overexpression of 
NICD in BON1 cells resulted in increased proliferation 
and dose-dependent increases in Hes1. In contrast, 
immunohistochemistry for Notch1, Hes1, Hey1, pIGF1R 
and FGF2 antibodies on a tissue microarray of 120 well 
differentiated NETs arising from the pancreas (n = 74), 
ileum (n = 31) and rectum (n = 15), demonstrated elevated 
Notch1 expression in 100% rectal, 34% of pancreatic, and 
0% of ileal NETs, and Hes1 expression in 64% of rectal, 
10% of pancreatic and 0% of ileal NETs,[58] exhibiting 
significant variability in Notch1 signaling across different 
tissue types. There is limited information on other Notch 
receptors or the ligands involved in Notch signaling in 
NETs and a comprehensive analysis of Notch expression 
patterns across all enteropancreatic NET subtypes is 
required to fully understand the variability and potentially 
redundant functions of Notch receptors and ligands.

The ability of Notch to behave as an oncogene or tumor 
suppressor depending on cellular context is driven in part 
by the availability of coactivators and corepressors. CSL 
coactivators such as MAML, SKIP and p300 are well 
known to activate transcription of Notch target genes by 
binding to NICD. Conversely, in the absence of NICD, 
corepressors also regulate transcription in specific ways 
and canonical Notch corepressors include SMRT,[59] 
SIRT[60] and LSD1 (histone lysine demethylase),[61] among 
others (reviewed in[62]). Epigenetic regulation by Notch 
activator and repressor complexes containing histone 
acetyltransferases, histone demethyltransferases, histone 
methyltransferases, etc. actively remodel the chromatin at 
Notch-responsive target genes and provide an additional 
layer of reversible regulation.[63] Chromatin sites accessible 
to Notch NICDs are also influenced by transcriptional 
regulators that can act as cofactors or inhibitors.[64-66] 
A recent report by Liefke et al.[63] demonstrates that the 
histone demethylase KDM5A/RBP2 is a key component 
of the CSL repressor complex. Data from our laboratory 
demonstrates that RBP2 is upregulated in gastrointestinal 
NETs and in liver metastases from primary NET tumors, 
suggesting that RBP2 may be actively repressing canonical 
Notch activity (Crabtree, et al. 2016 Oncogenesis in press).

NETs - PULMONARY

Pulmonary NETs are an equally diverse set of NETs 
that fall on a continuum from well-differentiated typical 
carcinoid (TC), to less differentiated atypical carcinoid 
(AC), to highly malignant, poorly differentiated small cell 
lung carcinoma (SCLC) and large cell neuroendocrine 
carcinoma (LCNECs).[67] Features distinguishing these 
groups include size, with TC and AC defined as ≥ 0.5 cm, 
and histologic characteristics such as organoid growth 
patterns with uniform cytologic features. These tumors 
contain a moderate amount of eosinophilic cytoplasm 
and nuclei containing finely granulated chromatin, 
which is coarser in AC than in TC. Prominent nucleoli 
are also present in AC, but not in TC. New 2015 WHO 
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clinicopathological criteria also define the mitotic index of 
these tumors (number of mitoses per 2 mm2 in the area 
of highest mitotic activity with the most viable tumor 
cells).[68,69] The mitotic index of typical carcinoid is < 2, 
atypical carcinoid is 2-10, whereas SCLC and LCNECs 
have mitotic indices > 10.[67,68] Lung tumors can also 
be distinguished by grade, with TC classified as low 
grade, AC as intermediate grade and SCLC/LCNECs 
as high grade.[68,69] Identity of these tumors is typically 
confirmed by immunohistochemistry using the cellular 
proliferation Ki-67, as well as neuroendocrine markers 
such as synaptophysin, chromogranin A and neural cell 
adhesion molecule (NCAM) to distinguish SCLC from 
non-small cell lung cancer (NSCLC).  TC have no necrosis 
and Ki-67 ≤ 5%, AC can have focal necrosis and Ki-67 
≤ 20% and SCLC have Ki-67 > 50%. Pulmonary NETs 
may also exist, albeit at much lower incidence than other 
pulmonary NETs, as heterogeneous, combination tumors 
consisting of mixtures of SCLC and LCNEC, or SCLC 
and NSCLC with neuroendocrine differentiation.[67] These 
mixed phenotypes may indicate clonal selection and/or 
phenotypic plasticity of a pluripotent cancer stem cell.

Pulmonary NETs have a low incidence in the US, with a rate 
of 1.6/100,000 individuals. TCs comprise 1-2% and ACs 
make up only 0.1-0.2% of all pulmonary tumors, whereas 
SCLC and LCNET make up 20% and 1.6-3%, respectively. 
Overall survival is good for the well-differentiated TC 
tumors (92-100% OS) and moderate for AC (61-88% OS), 
whereas the higher grade, poorly differentiated SCLC and 
LCNET have a grim prognosis with OS as low as 5%.[70] 
There are limited treatment options for pulmonary NETs 
and the only curative therapies for TC and AC is surgery. 
These tumors are historically refractive to chemotherapy 
and exhibit response rates as low as 22%.[71] In the case 
of advanced disease, such as that seen with patients 
initially presenting with SCLC and LCNEC, surgery is 
rarely performed and systemic chemotherapy is the first 
line treatment. Combination etoposide plus carboplatin 
chemotherapy has high response rates (about 90%) 
but within 1 year the majority of tumors recur and are 
refractory to further treatment.[71] mTORC1 inhibitors 
(everolimus, temsirolimus) have been used in combination 
with standard of care chemotherapy, but these compounds 
exhibited only moderate efficacy with the liability of dose-
limiting toxicities.[72] mTOR inhibitors have also been 
combined clinically with SSAs in the RADIANT-2 trial 
(NCT00412061) that included enteropancreatic NETs as 
well as pulmonary TC and ACs. Subgroup analyses from 
this study found a median PFS of 5.6 months for the few 
TC and AC patients who received only the octreotide 
LAR and no advantage for the patients receiving the 
combination therapy.[73] A follow-up trial called the LUNA 
trial (NCT01563354) is a prospective, randomized, open-
label, three-arm design to study advanced lung (TC and 
AC) and thymic NET response to pasireotide LAR, 
everolimus or both in combination. The RADIANT-4 trial 
(NCT01524783) enrolled adult patients with advanced, 

progressive, well-differentiated, non-functional endocrine 
tumors of the lung or gastrointestinal tract to receive 
everolimus or placebo with the primary endpoint of PFS.[41] 
Patients receiving everolimus had significantly improved 
median PFS of 7.1 months compared to placebo.[41] 
Sunitinib was studied in a phase II trial in patients with 
relapsed or refractory SCLC and the treatment was poorly 
tolerated and resulted in limited gain in PFS.[74] Tyrosine 
kinase inhibitors such as imatinib have also been studied in 
pulmonary NETs with disappointing results.[75]

The genetic basis of pulmonary NET formation has been 
explored in recent years. There are many cases of targeted 
analysis identifying inactivating mutations in TP53, RB1 
and PIK3CA genes.[76-79] Genome-wide studies have 
been performed[80-83] to identify copy number alterations, 
somatic single nucleotide variants and alterations in gene 
expression associated with SCLC. From these studies, 
potential driver mutations were identified in cancer-
associated genes such as TP53, RB1, CREBBP, EP300, 
MLL and the SOX family. A separate study conducted 
whole genome sequencing of 110 SCLC and identified 
biallelic inactivation of TP53, RB1, CREBBP, EP300, 
TP73, RBL1/2, as well as inactivating mutations in Notch 
family genes in 25% of cases.[83,84]

As with pancreatic NETs, cancer stem cells provide a 
plausible mechanism for drug resistance, recurrence and 
metastasis of SCLC. However, due to limited availability 
of human clinical samples, the majority of the work to 
identify markers of SCLC has been performed in cell 
lines by isolating side populations of cells with stem-
like features. Using the SCLC cell lines NCI-H82, H146 
and H526, Salcido et al.[85] isolated a population of cells 
with high rates of proliferation, efficient self-renewal and 
decreased cell surface expression of CD56 and CD90. 
These isolated cells also overexpress many genes associated 
with cancer stem cells and drug resistance, including genes 
involved in the Notch signaling pathway.[85] In a separate 
study, a side population of cells was isolated from lung 
cancer cell lines established from primary tumors.[86] This 
side population was strongly positive for CD44 and co-
expressed CD90, while having mesenchymal morphology, 
resistance to irradiation, and increased expression of stem 
cell related genes Nanog and Oct4.[86] CD133 is a common 
cell surface antigen in SCLC stem cell populations and 
was upregulated in cell populations as one of several stem 
cell markers in six separate studies from various SCLC 
cell lines.[87-92] In one of these studies, it was found that 
CD133+ cells express increased neuropeptide receptors 
which revealed an avenue for therapeutic intervention.[90] 
Subsequent testing of neuropeptide receptor antagonists 
revealed that one of the analogs, Peptide 1, decreased 
cell growth and increased apoptosis in SCLC cell lines. 
Further, Peptide 1 produced a significant reduction in 
tumor volume in mouse xenograft models, exhibiting very 
few CD133 positive cells after treatment, compared with 
tumors treated with etoposide.[90] In other studies, inhibitors 
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were selected due to known pathway involvement in 
SCLC. For example, a dual mTORC1/2 and class I PI3K 
inhibitor VS-5584 was tested in SCLC xenograft models 
and a PDX model established from a SCLC lymph node 
metastasis, resulting in significant decreases in tumor 
burden, decreased tumor-initiating frequency and marked 
depletion of cancer stem cells.[93]

The Notch signaling pathway is of increasing interest in 
SCLC and as with enteropancreatic NETs, Notch signaling 
in the lung is tissue type and cell context dependent. Notch 
signaling can promote the growth of NSCLC, yet inhibit 
the growth of SCLC.[94,95] The tumor phenotype in SCLC 
may be driven via Notch3 expression, which is decreased 
in SCLC compared to non-tumor lung tissue as measured 
by immunohistochemistry.[96] SCLC may be the result of 
deregulated Notch in cell fate decisions that determine 
differentiation towards the epithelial Clara, ciliated and 
pulmonary neuroendocrine cell lineages.[97] In mouse 
models with allelic series deletion of Notch1, 2 and 3, all 
three Notch receptors were required in an additive manner 
to regulate the abundance of neuroendocrine cells in the 
lung, whereas only contribution from Notch2 was required 
for Clara/ciliated cell development.[98]

Over the years, many targeted therapies have been 
developed to modulate the Notch signaling pathway, 
including neutralizing antibodies, decoy ligands, blocking 
peptides, natural compounds and -secretase inhibitors 
(reviewed in[18]). The Notch 2/3 neutralizing antibody 
tarextumab, inhibits tumor growth in mice in a variety of 
epithelial tumors, but also in SCLC xenograft tumors,[99] 
suggesting that Notch2 and/or Notch3 inhibition can 
be therapeutic in the clinical setting. A novel way of 
exploiting decreased Notch signaling therapeutically is by 
targeting Notch ligands that are frequently overexpressed 
even in tumors with low or absent canonical Notch 
signaling. This approach was pioneered in SCLC, which 
frequently expresses high levels of DLL3. Because DLL3 
can function as a Notch inhibitor by retaining Notch 
receptors in the cytoplasm or by cis-inhibition, a DLL3 
mAb conjugated with a DNA damaging toxin was used 
as a highly effective chemotherapeutic in preclinical PDX 
models of SCLC. These experiments resulted in complete, 
durable responses 5 months post treatment. The naked 
mAb had no therapeutic activity, suggesting that DLL3 
inhibition alone is not sufficient for tumor regression in 
SCLC.[14] In other studies, it has been proposed that, in 
addition to the primary SCLC progression as a result of 
TP53 and RB1 alterations, secondary transitions from non-
small cell lung carcinoma to SCLC can occur following 
chemotherapy. This implies phenotypic plasticity from 
an epithelial to a neuroendocrine lineage can occur under 
treatment-imposed selection. A recent publication by 
Meder et al.[13] demonstrates that this process is mediated 
by the Notch-ASCL1-RB-P53 signaling axis.

Paralog-specific effects add yet another layer of complexity 

to Notch signaling, since not all Notch receptors are 
created equal. Notch receptors are not always redundant 
and in some cases their functions are not only independent 
but opposite. Notch1 and Notch2 have opposite effects on 
Akt in NSCLC.[100] In Luminal B breast cancer, Notch1 and 
Notch4 have similar effects on endocrine resistance but 
act through completely different sets of downstream genes 
and produce different cellular phenotypes[101] (Espinoza 
and Miele, unpublished). Notch1, 3, and 4 are oncogenic 
in the breast, while Notch2 has been described as a tumor 
suppressor in breast cancer cell lines.[102] The mechanism 
of these paralog-specific effects is unknown but may 
involve non-canonical signals, such as the inhibitory role 
of Notch4 on SMAD[103] or the stimulatory role of Notch1 
on NF-κB.[104] The oncogenic activity of Notch4 in the 
mouse mammary gland is independent of CSL and is 
therefore completely or at least partially non-canonical.[105] 
Another explanation for paralog-specific effects may 
be in quantitative signal intensity of the different Notch 
ligands. For example, constitutively activating mutations 
in Notch1 and Notch2 are equally oncogenic in a subset 
of triple negative breast cancer (TNBC),[106] despite the 
fact that Notch2 has been described as a tumor suppressor 
in TNBC cell lines.[102] Therefore, the absolute number of 
NICD molecules available as a result of overproduction 
or decreased turnover may dictate different phenotypic 
consequences. Additionally, paralog-specific effects may 
also be achieved by selective activation of chromatin 
sites with different affinity for Notch NICDs, epigenetic 
modifications by NICD binding partners that alters binding 
site availability, or by a combination of canonical and 
non-canonical effects that depends on NICD abundance. 
In short, the role of paralog-specific effects has been 
poorly characterized in NETs and is an area in need of 
further study.

NETs - SKIN

Merkel cell carcinoma (MCC) is a rare, aggressive 
cutaneous NET that occurs most frequently in the elderly 
and/or the immunosuppressed, although more than 90% of 
MCC patients have no known immune dysfunction.[107] It is 
seen primarily in light-skinned individuals and has a male 
predominance of 2:1.[108] MCC occurs most frequently in 
sun-exposed areas of skin, particularly the head and neck, 
followed by extremities and then the trunk. In 80% of cases, 
MCC is associated with the Merkel cell polyomavirus 
(MCPyV).[109,110] Infection with MCPyV is not sufficient to 
induce tumorigenesis[111] and additional events including 
loss of cellular immune surveillance are required for 
oncogenic transformation. The MCPyV large T-antigen 
is oncogenic in MCC by binding the retinoblastoma 
protein and promoting cell cycle progression.[112] The 
small T-antigen of MCPyV acts downstream of the mTOR 
signaling pathway by maintaining hyperphosphorylation 
of 4E-binding protein (4EBP1), resulting in dysregulated 
cap-dependent translation in MCC.[113] Patients with 
MCPyV negative MCC tumors have increased DNA 
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damage signatures at the genetic level, presumably as a 
result of UV exposure.[114,115]

MCC is highly metastatic and the 5 year survival rate 
is dependent on the stage at which original diagnosis is 
made. Patients with local disease at diagnosis have a 5 
year OS of 63-87%, those with regional nodal involvement 
39-42% and 0-18% for patients with widespread, distant 
metastases.[116] The annual incidence of MCC in the US 
is increasing, with an estimated 1,600 patients diagnosed 
per year.[117] The increase in incidence is attributed to 
population aging, more known risk factors associated with 
this cancer (such as increased aggregate sun exposure), 
and increased diagnostic power with cytokeratin 20 
immunohistochemical staining, which is positive in 88-
100% of MCC cases.[118]

There are no FDA-approved agents for the treatment 
of MCC, nor are there established, standard of care 
chemotherapy regimens.[109] Current first line therapies 
for localized disease include surgical resection followed 
by postoperative radiation therapy. Radiotherapy plays 
a significant role in both the curative setting, and 
palliative care setting when used as a monotherapy in 
advanced metastatic MCC.[119] Systemic chemotherapy 
regimens used for SCLC are employed and typically 
include a combination of a platinum agent (cisplatin or 
carboplatin) and topoisomerase inhibitor (etoposide)[120-122] 
or combination cyclophosphamide, doxorubicin and 
vincristine therapy (CAV therapy).[122] Cytotoxic 
chemotherapies do not produce durable responses and 
are associated with significant toxicity, highlighting 
the need for targeted, mechanism-based therapies. 
Immunohistochemical analysis of MCC tumors has led 
to development and use of several new mechanism-based 
therapies including SSAs (octreotide, lanreotide),[123,124] 
pan-receptor tyrosine kinase inhibitors (pazopanib),[125] 
PI3K inhibitors,[126,127] vitamin D receptor agonists,[128] 
small molecules to downregulate Survivin,[129,130] anti-
PD-L1 antibody therapy,[131] and an antibody conjugate 
linking a maytansinoid microtubule assembly inhibitor to 
CD56 (lorvotuzumab mertansine).[132] Many of these are 
now in clinical trials for MCC and an excellent review of 
future potential therapeutic options and current clinical 
trials for MCC can be found in ref.[118]

In addition to immunohistochemistry, genomic studies 
have also been applied to MCC to identify new therapeutic 
targets and understand the mechanism of tumorigenesis 
in both MCPyV positive and negative cases. Gene panel 
studies on 15 MCPyV negative and 12 MCPyV positive 
MCC samples identified mutations in TP53, KIT, PIK3CA 
and EGFR genes, with RB1 mutations only identified 
in the virus negative samples, suggesting that the 
dysregulation of the RB pathway may be a critical step 
in tumorigenesis.[133] Targeted sequencing of 17 MCC 
patient samples with unknown virus status, identified 
mutations in TP53, RB and NOTCH1, among others.[134] 

Exome sequencing studies performed on small numbers of 
formalin-fixed, paraffin-embedded MCC samples and also 
identified RB1 in MCPyV negative tumors.[135] Another 
small study conducted on 4 MCPyV positive tumors 
identified somatic mutations in PDE4DIP, as well as genes 
within the DNA damage response (PRKDC, AURKB, 
ERCC5, ATR and ATRX) and epigenetic modifying 
enzymes (MLL3).[136] Harms et al.[115] performed a slightly 
larger study of whole exome sequencing of 9 MCPyV 
negative and 7 MCPyV positive MCC samples. Known 
mutations were identified in TP53, RB1 and PIK3CA 
along with novel activating mutations in oncogenes 
like HRAS, loss-of-function mutations in PRUNE2 and 
NOTCH family genes, and mutations disrupting the PI3K 
signaling pathway in the MCPyV negative tumors.[115,137] 
Further, the MCPyV negative tumors also had a higher 
overall mutational burden and were characterized by a 
prominent UV-signature pattern with C > T transitions 
making up 85% of the mutations. MCPyV positive tumors 
had a much lower mutational burden and were lacking the 
UV signature, suggesting that MCPyV negative tumors 
have increased susceptibility to UV damage.[115] The most 
comprehensive study to date included exome sequencing 
of 49 MCC samples (21 positive, 27 negative).[114] This 
study confirmed the previous report that the signature of 
MCPyV negative tumors is very different than the MCPyV 
positive tumors. MCPyV negative tumors have a higher 
mutation burden, frequent mutations in TP53 and RB1 
and additional mutations in genes involved in chromatin 
modification (ASXL1, MLL2 and MLL3) and DNA damage 
pathways (ATM, MSH2, BRCA1). Interestingly, both 
MCPyV positive and negative tumors have mutations 
predicted to activate the PI3K pathway (HRAS, KRAS, 
PIK3CA, PTEN and TSC1) and to inactivate the Notch 
signaling pathway (Notch1, Notch2),[114] suggesting these 
pathways as putative points for intervention in MCC 
regardless of viral status.

As discussed for SCLC and enteropancreatic NETs, another 
possible point of intervention is by targeting cancer stem 
cells. However, in the case of MCC, the cell of origin is 
still under debate. Based on early observation of MCC and 
the similarity of expression patterns for neuroendocrine 
and epithelial markers, it was presumed that MCCs arise 
from the Merkel cell, part of the somatosensory system 
located within the basal epidermis. However, with the 
observations that Merkel cells and MCC are found in 
different regions of the skin and exhibit differential 
expression of marker proteins, new data are challenging the 
concept that MCCs arise from Merkel cells.[138] One theory, 
based on pathologic diagnosis of MCC suggests a role for 
pluripotent stem cells in the dermis as the cells of origin, 
facilitated by UV irradiation and MCPyV infection.[139] 
Another study proposes that MCCs arise from pro/pre-B or 
pre-B cells based on terminal deoxynucleotidyl transferase 
and PAX5 expression, as well as the preference for 
polyomaviruses to preferentially infect undifferentiated 
stem cells or progenitor cells.[140] However, in the absence 
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of experimental evidence supporting a stem cell origin, 
more lineage tracking studies are needed to identify the 
cellular origin of MCC.

Notch signaling has been an area of active investigation 
in MCC as a result of the genome-wide studies that have 
highlighted the Notch pathway as one of key interest, with 
somatic single nucleotide variants identified in Notch1, 
and Notch2 that were independent MCPyV status.[114] The 
inactivating mutations detected in Notch genes were located 
in the EGF-like and ankyrin repeat regions, consistent with 
loss-of-function events characterizing a tumor suppressive 
role for Notch in MCC.[115] Further, the data on Notch and 
other genes dysregulated in MCC are common with SCLC, 
suggesting that these pathways are also cornerstones 
of neuroendocrine differentiation in epithelial cells.[114] 
Another study examined the Notch signaling pathway as 
a target of microRNA-375, which is highly overexpressed 
in well-differentiated MCC cell lines yet strikingly 
downregulated in highly aggressive, undifferentiated 
MCC cell lines.[141] miR-375 overexpression caused post-
transcriptional repression of Notch2 and RBPJ resulting 
in decreased cell proliferation, migration and invasion 
in vitro. This led to the conclusion that miR-375 is a 
putative regulator of cancer cell aggressiveness through 
inhibition of Notch signaling.[141] In contrast, Panelos et 
al.[142] performed immunohistochemical studies of Notch1 
expression in MCC and found 30/31 cases had Notch1 
cytoplasmic and membrane expression in greater than 
50% of cells. These data contradict the data in other NETs, 
including other data on MCC, which suggest Notch1 is a 
tumor suppressor in MCCs.

NETs - THYROID

Medullary thyroid carcinoma (MTC) is a NET that 
originates from the thyroid C-cells and express high 
levels of calcitonin, chromogranin A, synaptophysin 
and achaete-scute complex-like 1 (ASCL1). MTCs are 
relatively slow growing tumors that comprise 1-2% of 
all thyroid cancers and have a 10 year median survival 
of 65%.[143,144] The majority of these tumors are sporadic, 
but they can be hereditary and arise with other NETs 
as a part of MEN2A/2B or as familial MTC. Gain-of-
function mutations in the RET tyrosine kinase gene (most 
commonly M918T) are the known driver mutation in the 
majority of these tumors.[145,146] Those tumors that are 
RET mutation negative frequently have RAS mutations 
– and the presence of these mutations appears mutually 
exclusive.[147,148] As with other NETs discussed above, 
there are no curative therapies for MTC. Surgery is the 
first line of treatment for localized disease, but there are no 
therapeutic options for patients who present with regional 
or widespread metastases, highlighting the critical need 
for additional therapeutics.

Several promising new directed therapies for MTC are in 
development or clinical trials. As with other NETs, SSAs 

and mTOR inhibitors have been studied in MTC, and 
have shown preliminary efficacy in small trials.[149,150] One 
ongoing trial (NCT01625520) is examining the efficacy 
of SOM230/pasireotide alone and in combination with 
everolimus in progressive metastatic or postoperative 
persistent MTC. More recently, new drugs that targets 
both PI3K and mTOR have been developed, with 
BEZ235 showing efficacy in preclinical studies of thyroid 
cancer.[151] Antibody therapy is also in development for 
MTC. Carcinoembryonic antigen or CEA is an antigen 
expressed by MTC cells and an anti-CEA monoclonal 
antibody combined with autologous hematopoietic stem 
cell rescue has shown promise in a phase 1 study in rapidly 
progressing metastatic MTC.[152]

Tyrosine kinase inhibitors are also in development and 
AMG706/motesanib was studied in locally advanced or 
metastatic, progressive or symptomatic MTC in a single-
arm phase 2 study.[153] Despite the 81% of patients in this 
trial that achieved stable disease, there was no placebo or 
standard of care arm, making the interpretation of drug 
efficacy and toxicity a challenge. Axitinib was also studied 
in a small trial of locally advanced MTC (n = 6), and resulted 
in 5/6 or 83% of patients with stable disease > 16 weeks.[154] 
However, as with the motesanib trial, the single-arm study 
design, as well as the small number of MTC patients 
included makes the trial results difficult to interpret. The 
ZETA and EXAM trials studied two additional compounds, 
vandetanib and cabozantinib, in advanced, unresectable, 
locally advanced or metastatic MTC. The first randomized, 
double-blind, placebo controlled study (ZETA trial; NCT 
00410761) tested vandetanib and detected an increase in 
PFS (30.5 vs. 19.3 months for placebo) in the 331 patients 
recruited to the study. Stratification of the patients by RET 
mutation suggested that there was an improved response 
in patients with RET M918T mutation and also in MTC 
cases with no RET mutation identified.[155] These data 
led to FDA and EMA approval for vandetanib for the 
treatment of symptomatic or progressive, unresectable, 
locally advanced or metastatic MTC. The EXAM trial 
(NCT00704730) was a randomized, double-blind, 
placebo controlled study of cabozantinib in advanced 
and progressive MTC. This study recruited 330 patients 
and reported a median PFS of 11.2 months for treatment 
versus 4.0 months in controls.[156] The responses in this 
trial were similar regardless of RET mutational status, and 
the results from this trial led to FDA and EMA approval 
of cabozantinib for progressive, metastatic MTC. Another 
tyrosine kinase inhibitor, regorafenib which has been 
approved for treatment of metastatic colorectal cancer, 
is now being studied as a second or third line therapy in 
MTC (NCT02657551). For recent, more comprehensive 
reviews of new molecular therapies and thyroid cancer 
clinical trials including those for MTC, see.[143,157]

Although the genetic gain-of-function RET mutations are 
well established as the basis for MTC, additional genetic 
studies have been performed to understand the etiology of 
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RET mutation negative MTCs, and endocrine syndrome-
related MTCs. Exome sequencing of 17 sporadic MTCs 
identified the expected mutually exclusive RAS and 
RET mutations, but no other commonly occurring driver 
mutations.[148] Exome sequencing of MTCs associated 
with MEN2A also identified the expected RET mutations, 
but also suggested that low frequency mutations such as 
those found in EIF4G1 may also play a role in MEN2A-
associated tumorigenesis by indirectly altering the RET 
pathway.[158] A similar study was undertaken by Smith 
et al.[159] in MTCs lacking an identifiable RET mutation. 
Interestingly, this group found a recurrent mutation in 
the ESR2 gene which encodes the estrogen receptor beta 
(ER). Estrogen receptor alpha (ER) and ER can form 
heterodimers and bind to estrogen response elements 
to regulate gene expression.[160] Alternatively, ER can 
antagonize the transcriptional activity of ER.[161-163] The 
RET gene contains three ERE sites that were shown to 
be actively regulating RET gene expression in vitro. The 
authors propose that this may be a novel mechanism by 
which the RET gene is regulated in RET mutation-negative 
familial MTC.[159] Heilmann et al.[164] performed genomic 
profiling of MTC cases during the course of clinical 
care and in addition to the expected RET mutations, 
also identified amplifications of CCND1, FGF3, FGF19 
and CDKN2A. The authors propose that these may be 
cooperating driver mutations impacting chemoresistance 
and disease outcomes.

Cancer stem cells have been identified in MTC cell lines 
that are strongly positive for the cell surface antigen 
CD133 by immunohistochemistry.[165] Interestingly, cell 
lines with the M918T RET mutation produce the highest 
number of CD133+ stem-like cells.[165] This population of 
stem-like cells may also be involved in chemoresistance. 
In a study by Kucerova, CD133+ cells from MTC cell lines 
were no more chemoresistant than the parent population of 
cells. However, once the CD133+ cells were implanted in 
mice as xenografts and treated with 5-fluorouracil (5-FU), 
there emerged a new CD133+ stem-like cell population 
that was resistant to subsequent 5-FU therapy and retained 
these chemoresistant properties in culture.[166] MTCs are 
relatively resistant to the radioactive iodine therapies used 
for follicular and poorly differentiated thyroid cancers, 
and one group treated MTC stem cells with all-trans-
retinoic acid (ATRA) to sensitize these cells to radioiodine 
therapy. The stem cells identified and treated with ATRA 
increased their uptake of iodine by 8 fold, suggesting 
that ATRA pre-treatment followed by radioactive iodine 
therapy may be a new treatment modality for MTC.[167] 
Finally, co-expression of CD133 and CD44 in MTC by 
immunohistochemistry was correlated with decreased 
overall survival in a cohort of 51 MTC patients, compared 
to those with no co-expression of these two markers 
implying that CD133 and CD44 can be used as prognostic 
markers for overall survival.[168]

At the molecular level, MTC cells express a variety of 

proteins including calcitonin and chromogranin A, as well 
as ASCL1 (also important in pulmonary NETs). Notch is 
one of the pathways regulating the production of ASCL1, 
especially during development. Notch1 expression is absent 
in MTC and overexpression of the Notch intracellular 
domain decreases proliferation of MTC cell lines,[55] 
consistent with its role as a tumor suppressor. Activation of 
Notch in MTC by pharmaceutical means became possible 
when valproic acid was reported to activate Notch in 
neuroblastoma cells[169] and subsequent work demonstrated 
that valproic acid increased Notch1 signaling and induced 
apoptosis in MTC cells.[170] Using a mouse model system, 
Jaskula-Sztul et al.[171] demonstrated that activation of the 
Notch signaling pathway may be a therapeutic strategy for 
MTC. This same group expanded our knowledge of Notch 
signaling in MTC by upregulating Notch3 in vitro and in 
vivo via NICD3 and the pharmacological HDAC inhibitor 
ABA3. They demonstrated that Notch3, like Notch1, can 
alter the neuroendocrine phenotype in MTC, resulting 
in decreased proliferation and loss of NET markers.[172] 
Resveratrol treatment of MTC cells suppresses growth, 
induces apoptosis and reduces expression of chromogranin 
A and ASCL1 as a result of upregulation of Notch2.[173] In 
similar studies, thiocoraline treatment in vitro increases the 
expression of Notch1 and Notch2 isoforms, as well as the 
downstream Notch target genes HES1, HES2 and HEY1, 
while expression of HES6 decreased.[174] Taken together, 
these studies indicate a clear role for Notch signaling in 
MTC therapy.

CONCLUSION

The role of Notch signaling in NETs remains incompletely 
understood. Further study is required to understand how 
this pathway impacts tumorigenesis and chemoresistance 
in this diverse tumor group. There is evidence that different 
Notch isoforms act as tumor suppressors in some NETs 
but not others and paralog specific effects are understudied 
and remain unclear. The significant genetic heterogeneity 
of NETs suggests that individual molecular subtypes must 
be studied separately to dissect the roles of Notch signaling 
components and their potential therapeutic implications.
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In neuroendocrine tumors (NETs), liver metastases (LM) represent the most crucial prognostic factor, irrespective of the primary 
tumor site. At diagnosis, about 65-95% of gastroenteropancreatic neuroendocrine tumors (GEP-NETs) show hepatic metastasis. 
Management strategies of LM are heterogeneous and range from systemic therapy to liver-directed procedures. The type of systemic 
therapy used is dependent on the grade and proliferation of the tumor and includes somatostatin analogues, interferon, m-Tor 
and tyrosine kinase inhibitors, and chemotherapy. Angiographic liver-directed techniques, such as transarterial embolization/
chemoembolization and selective internal radiation therapy, offer excellent palliation for patients with liver-predominant disease. 
In highly selected cases, liver transplantation and peptide receptor radionuclide therapy are considered. The relatively low disease 
incidence and the diversity of presentation have led to a lack of well-conducted randomized controlled trials comparing the 
efficacy of different treatment options. Experience indicates that surgery is the only treatment that offers potential for cure. For 
unresectable lesions, the absence of data from rigorous trials limits the validity of many publications that detail management. In 
this review we will discuss the existing approaches for hepatic metastases from GEP-NETs.
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INTRODUCTION

Neuroendocrine tumors (NETs) are rare neoplasms 
originating from diffuse neuroendocrine cells. Even 
though site of origin could sometimes be unknown, NETs 
frequently involve any part of the gastrointestinal tract 
(including endocrine pancreas), bronchopulmonary tree, 
thyroid, and thymus and have a wide range of malignant 
potential. The rapid evolution of clinical and pathological 
findings has hampered a systematic classification of this 
inhomogeneous family of tumors. The last World Health 
Organization (WHO) classification was published in 
2010.[1] Basically, NETs are classified according to tumor 
differentiation and site of occurrence. Highly aggressive, 
poorly differentiated neoplasms were defined as Grade-3 
neuroendocrine carcinomas (NECs) when originating 
from the gastrointestinal tract, or as small- or large-cell 
NECs when appearing in the lung.[2] Well- to moderately 
differentiated neuroendocrine neoplasms (WMD-NEN) 

are a highly heterogeneous group of tumors comprising 
low-grade (G1) and intermediate-grade (G2) NETs of 
the gastrointestinal tract, typical and atypical carcinoids 
of the lung and thymus, and other cancers such as 
medullary thyroid carcinoma and pheochromocytoma/
paraganglioma.[1,2] Finally, NETs could be associated with 
paraneoplastic syndromes or with a supranormal production 
of hormones responsible for specific syndromes.

The gastroenteropancreatic NETs (GEP-NETs) are the most 
common NETs. Due to their relatively indolent course, 
they are frequently diagnosed in an advanced stage,[3,4] with 
the development of liver metastases (LM) being the most 
frequent clinical occurrence.[3-5] Metastatic spread to the 
liver may be accompanied by a wide spectrum of clinical 
presentations, from asymptomatic disease incidentally 
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discovered during radiologic workup for other reasons, 
to debilitating symptoms caused by acid hypersecretion, 
serotonin syndrome, or carcinoid syndrome. In any case, 
the vast majority of patients with hepatic involvement will 
die of liver failure.

The management of patients with LM from GEP-NETs 
remains a matter of debate. It involves several specialties: 
surgery, medical oncology, radiotherapy, interventional 
radiology, and nuclear oncology. Despite the great number 
of options, there is no general consensus on the optimal 
treatment sequence in metastatic patients.

In this review, we focus on the most recent findings about 
management of LM from GEP-NETs.

SURGERY

Patients with pancreatic NETs frequently present with 
LM.[6] Treatment for LM includes a wide panel of 
treatments with the aim of achieving the best long-term 
result in overall survival (OS). NETs LM have been 
classified morphologically as type I (single metastasis), 
type II (isolated bulk metastasis accompanied by smaller 
deposits), or type III (disseminated metastatic spread).[7] 
Surgery can play a role for type I LM, whereas medical 
treatment is always the treatment of choice for type III 
LM.[7,8] The management of type II LM should be carefully 
evaluated, tailoring treatment to each individual patient. In 
metastatic pancreatic NETs (pNETs), 5-year survival rate 
is around 40-60%.[9-11]

Radical surgery, including resection of primary tumor 
and LM, improves survival rate up to 46-86% at 5 years 
and 35-79% at 10 years.[6,12,13] Nevertheless, only 15-20% 
of patients with LM are suitable for radical resection 
due to the multifocality of the lesions or the inability to 
preserve an adequate amount of parenchyma following 
resection.[14] Nowadays in referral centers, resections 
of up to 70% of total liver volume may be carried out 
with relatively low mortality rate (0-5%) and acceptable 
morbidity (30%).[15] For surgery with curative intent, 
the European Neuroendocrine Tumor Society (ENETS) 
have proposed the following criteria: (1) resectable G1-
G2 liver disease with acceptable morbidity and less than 
5% mortality; (2) absence of right heart insufficiency; (3) 
absence of unresectable lymph node and extra-abdominal 
metastases; (4) absence of diffuse or unresectable 
peritoneal carcinomatosis.[16] Neuroendocrine carcinomas 
(NECs) that are G3 are usually not amenable to resection 
owing to their aggressive biology, high recurrence rates, 
and the consequent need to establish disease control.[17] 
In the presence of unresectable metastatic disease, the 
role of debulking surgery (R2) is still controversial. In 
selected cases surgery may improve the quality of life 
or relief from symptoms when medical treatment has 
failed.[18] Several nonrandomized series have documented 
the benefits of either complete or cytoreductive surgical 

resection, compared with nonresectional treatment. They 
show a 74% 5-year survival for resection, compared 
with 30% for angiographic techniques. The Cochrane 
systematic reviews[19,20] did not identify benefit of liver 
resection, either in terms of complete resection (R0 or R1) 
or cytoreduction (R2). Despite poor data, surgery is the 
main treatment of choice because it is the only approach 
with intent to cure. Whether cytoreductive surgery (90% 
resection) should be done when alternative nonsurgical 
treatment options are available is unknown.[8]

In case of bilateral liver disease, different surgical 
approaches can be performed, including a 2-staged liver 
resection. Another technical option is occlusion of the 
portal vein in the tumor-bearing liver lobe, either by 
radiological portal vein embolization than with surgical 
portal vein ligation before surgery.[21,22]

LIVER  TRANSPLANTATION (LT)

In patients affected by NETs with unresectable LM, LT 
can be proposed due to the relatively low biological 
aggressiveness and slow growth of the majority of low-
grade NETs. In the last 15 years, short-term outcomes have 
improved because of better selection of transplantation 
candidates, refinement of surgical techniques, and the 
introduction of novel immunosuppressive regimens. 
Moving from their former experience with hepatocellular 
cancer, the Milan group observed improved outcomes of 
LT for NETs LM patients, prospectively applying strict 
inclusion criteria: (1) well-differentiated NETs (Ki67 < 
5%); (2) portosystemic tumor drainage; (3) patient age 
< 55 years; (4) stable disease for at least 6 months; (5) 
pretransplant R0 primary tumor resection; (6) hepatic 
tumor involvement < 50% of total liver volume; and 
(7) absence of extrahepatic disease.[23] The two largest 
retrospective multicenter studies have shown that in 
the absence of poor prognostic factors, LT is associated 
with satisfactory outcomes. In particular, a European 
multicenter study included a large retrospective cohort of 
213 patients who underwent LT for NET LM from 1982 
to 2009. At a median follow-up of 56 months, 17% of 
patients died from early or late complications of LT, and 
the 5-year OS rate was 52% with a disease-specific survival 
rate of 30%.[24] A study from the United States included 
85 patients who underwent LT from 1988 to 2012. One, 
three, and five-year survival rates were 83%, 60%, and 
52%, respectively, and half of deaths were due to recurrent 
disease. Synchronous major primary tumor resections 
(i.e. pancreatoduodenectomy, small bowel resection with 
distal pancreatectomy, multivisceral transplant) appeared 
to contribute to worse outcomes.[25] In other single-center 
series, the 5-year OS rates ranged from 33% to 90%, and 
disease-free survival rates ranged from 11% to 77% at 5 
years.[26-29] Despite these experiences, firm evidence on 
this issue is still scarce because only 0.3% and 0.2% of 
transplants are performed for such indications (data from 
the European Liver Transplant Registry and the United 
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Network for Organ Sharing database.[30] Moreover, the 
optimal timing of transplantation (e.g., whether stable 
disease needs to be observed for a certain amount of time) 
and selection criteria (including development of patient-
specific biomarkers to identify those who gain a long-term 
benefit from the procedure) are still debated.

THERMAL  ABLATION (TA)

The most widely applied TA modalities in the liver 
include radiofrequency (RF), microwave (MW), laser, 
cryoablation, and high-intensity focused ultrasonography. 
TA is often used alone or in conjunction with operative 
resection in the treatment of both primary and secondary 
hepatic malignancies. RF and MW ablation involves direct 
insertion of ablation probes into the region of a tumor, 
followed by application of several cycles of hyperthermic 
energy to induce cell death. MW ablation is thought 
to be more effective than RF ablation because a shorter 
time is needed for each ablation, and higher intratumor 
temperatures can be reached. Use of TA requires real-time 
ultrasonography guidance. The United States Food and 
Drug Administration has approved TA for the treatment of 
primary and metastatic tumors of the lung and liver.[31]

RF ablation has been used for relief of symptoms of hepatic 
metastases of insulin- or serotonin-secreting NETs[32] and 
favorable 5-year survival rates after liver resection.[33] 
More than a dozen lesions can be treated in a single 
patient, and many patients tolerated repeated ablations for 
recurrent disease.[33] To date, no randomized trials have 
been undertaken to study whether surgical techniques such 
as liver resection and/or RF ablation are more effective 
than hepatic artery embolization or radio embolization, 
peptide receptor radionuclide therapy (PRRT), or medical 
systemic treatments in patients with NET and LM.

PERCUTANEOUS  LIVER-
DIRECTED  TECHNIQUES  WITH  A  
CYTOREDUCTIVE  AIM

In NET patients with liver disease only or with liver-
dominant metastases, loco-regional approaches such 
as ablative techniques or intra-arterial therapies can be 
proposed in place of upfront surgery with a cytoreductive 
aim, leading to lesion resectability and a 5-year survival 
rate of 50%.[34-36]

In particular, it is well known that NET hepatic metastases 
are characterized by a high rate of vascularization, 
as opposed to many other liver primary or secondary 
malignancies. Vascularization of NETs LM depends mostly 
on the hepatic artery, whereas normal liver parenchyma has 
a unique dual blood supply from both the proper hepatic 
artery (20-40%) and the portal vein (60-80%).[37]

Arterially directed interventional strategies, such as 
transarterial embolization (TAE) and transarterial 

chemoembolization (TACE) with a radiologically 
controlled percutaneous technique have been widely 
investigated and adopted during the past decade for the 
treatment of NETs LM. These strategies have generated 
encouraging outcomes in term of survival, response, and 
quality of life.[38] Indications included well-differentiated or 
moderately well-differentiated (Grade 1 or 2) unresectable 
symptomatic liver lesions (due to tumor bulk), excessive 
hormone production, and rapid progression of liver 
disease.[39] Hepatic TAE, usually performed using lipiodol, 
obtains ischemia and necrosis of neoplastic cells by selective 
catheterization and obstruction of the hepatic artery 
supplying tumor lesions.[40] On radiologic evaluation, TAE 
has been shown to improve biophysical markers, palliate 
symptoms, and shrink tumor lesions.[41] In contrast to TAE, 
TACE combines blockage of the tumor blood supply with 
intra-arterial administration of cytotoxic drugs. In clinical 
practice, TACE is preferred over TAE in patients with NET 
with the worst prognostic factors, such as foregut origin 
(lung or pancreas) and poorly differentiated NETs.[42] 
Several different chemotherapeutic agents have been used 
in this setting (doxorubicin, streptozotocin, gemcitabine, 
mitomycin C, 5-FU, or cisplatin) along with either a 
transient or permanent embolic agent like ethiodized oil 
or lipiodol.[43] This treatment has shown effective results 
in patients with metastatic liver disease, with reported OS 
values of 3-4 years and objective response of about 75%. 
Notably, response to TACE is higher when treatment is 
used as a first-line therapy and liver involvement is lower. 
Combining results obtained with TAE and TACE, the rates 
of symptomatic responses ranged from 39 to 95%.[44-47]

An accurate multicentric retrospective review on 100 
patients with NETs LM who submitted to TACE (n = 49) 
or TAE (n = 51) showed comparable rates of symptom 
control (88% vs. 83%, respectively), similar toxicities, 
and comparable survival outcomes (median OS: 25.7 
vs. 25.5 months, respectively). These data suggest that 
the two techniques should be considered comparable.[48] 
Future trials focusing on the evaluation of either the 
efficacy of different intra-arterial techniques or the role of 
a combination of loco-regional approaches with systemic 
therapies are needed.

SELECTIVE  INTERNAL  RADIOTHERAPY  
(SIRT)

Percutaneous angiographic techniques should be used 
in patients with Grade 1 or 2 tumors who have liver-
predominant disease. The best treatment effect is 
achieved in patients with < 50% hepatic involvement 
and no extrahepatic disease. SIRT is a targeted approach 
that delivers glass or resin microspheres labeled with 
90Yttrium (Y-90) that is primarily a beta particle emitter. 
Y-90 hepatic arterial administration is emerging as a 
promising treatment modality in the management of NETs 
patients with LM.[49,50] Down-sizing/down-staging of 
hepatic tumors as a bridge to subsequent surgical treatment 
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appears promising. Even though Y-90 radio-embolization 
may achieve a survival benefit, especially in patients 
presenting with significant tumor shrinkage, however, this 
technique is not easily available, especially in outlying 
hospitals.[51]

Long-term outcome analysis after SIRT indicated treatment 
response in 62.7% of the patients, disease stabilization in 
32.5%, and a survival rate of 45.0% at 3 years. Findings 
from an international multicenter prospective treatment 
registry showed that safety and response rates of SIRT 
and TACE were similar when evaluated at 6 months.[52] At 
12 months, the group receiving SIRT had a significantly 
lower response rate than the group receiving TACE 
(46% vs. 66%).[46] It should be noted that portal vein 
thrombosis and impaired liver function are not considered 
contraindications to SIRT, as they are for TACE and 
TA. Adverse events associated with SIRT included lung 
shunting of beads, radiation gastritis, duodenal ulceration, 
and hepatic fibrosis. Finally, the SIRT procedure is not 
considered pharmaco-economically advantageous.[53]

PRRT

PRRT is a form of molecular targeted therapy which uses a 
small peptide (a somatostatin analog similar to octreotide) 
coupled with a radionuclide emitting beta radiation. This 
therapy can be proposed only to patients with somatostatin 
receptor expressing NETs. In phase II studies PRRT was 
demonstrated to obtain objective response rates in 20-35% 
of treated patients.[54-57] Thus, it could have a potential role 
as a cytoreductive preoperative therapy, as demonstrated 
by several case reports in patients with GEP-NETs.[55-57] 
The most important positive predictive factor for response 
to PRRT was the ratio of radiolabel uptake on diagnostic 
scans (normal to tumor). In a retrospective analysis, 
complete and partial tumor remission was reported in 
2% and 28% of 310 patients, respectively, who received 
177Lu-DOTATATE treatment for various histologic types 
of metastasized NETs.[58] Of those patients, 89% had 
hepatic metastases, with extensive and moderate liver 
involvement in 27% and 62%, respectively. The median 
time to progression was 40 months, and the median OS 
from the first treatment cycle was 46 months. The OS from 
initial diagnosis was 128 months, yielding a survival benefit 
of 40 to 72 months compared with historical cohorts.[58] 
Extensive hepatic metastatic involvement is a significant 
negative predictive factor for progression-free survival 
(PFS) or OS with PRRT.[58] A phase-3 trial comparing PRRT 
and octreotide was presented at the 2015 18th-ECCO-40th-
ESMO Congress.[59] In this first prospective randomized 
study in patients with progressive metastatic midgut NETs, 
177Lu-DOTATATE was superior to octreotide 60 mg in 
terms of PFS (not reached vs. 8.4 months, P < 0.0001) and 
overall response rate (19% vs. 3%, P < 0.0004). Interim 
analysis suggests increased OS (13 vs. 22 deaths), to be 
confirmed by final analysis. The combination of PRRT 
with radiosensitizing chemotherapy has been considered 

a promising strategy to enhance resectability of metastatic 
lesions.[60] 5-FU or capecitabine has been used in many of 
the numerous trials investigating the effects of external 
beam radiotherapy with chemotherapy. Also, Y-90 labeled 
antibody radioimmunotherapy in combination with 5-FU 
as radiosensitizer was found to be feasible and safe.[18] 
The combination therapy of PRRT and oral everolimus 
was less effective than 177-Lu-DOTATATE only in the 
rat pancreatic CA20948 tumor model.[61] Despite the low 
toxicity, a caveat is the limited access to this therapy in 
Europe, the USA, and Japan. Rare side effects of treatment 
can adversely affect the kidney and bone marrow.

SYSTEMIC  TREATMENT

Immunotherapy
A potential role of interferon alpha (IFNα) has been 
explored in several studies: an older comprehensive 
review reported an overall response rate of 20%,[62] 
whereas some small-sized retrospective and randomized 
trials have reported an improvement of PFS and OS.[63-65] 
However, these benefits in outcome were not confirmed in 
other studies.[66] The combination of IFNα with continuous 
infusion of 5-fluorouracil was explored in a phase-II study 
of patients with rapidly progressive NETs, and an overall 
response rate of 41.6 was achieved.[67] Other studies 
enrolling limited patient series have demonstrated the role 
of immunotherapy/immunochemotherapy in obtaining a 
significant shrinkage of LM from NETs.[68-70] However, 
further investigations are needed to better define whether 
immunotherapy or immunochemotherapy could have a 
role as a neoadjuvant strategy in NETs.

Biotherapy
In well- and moderately differentiated somatostatin 
receptor expressing NETs, the mainstay of treatment 
consists of somatostatin analogue (SSA) administration, 
made manageable with long-acting repeatable (LAR) 
formulations.[71] Therapy with SSAs represents 
the standard of care in patients with metastasized, 
nonresectable midgut NETs, pancreatic NETs, or NETs of 
unknown origin, whether associated or not with hormone 
hypersecretion and regardless of the hepatic tumor burden. 
Randomized phase-III, multicenter trials demonstrated 
that LAR octreotide and lanreotide depot can significantly 
prolong PFS in a heterogeneous population of patients 
with GEP-NETs.[72,73] Therapy with SSAs, however, 
did not demonstrate reduction of tumor load. The best 
clinical response obtained in all these studies was disease 
stabilization.

PROMID trial enrolled 85 treatment-naive patients with 
well-differentiated G1 advanced midgut or unknown 
origin NETs, randomizing them to receive either 
placebo or intramuscular octreotide LAR every 4 weeks 
(Sandostatin LARTM). Patients treated with octreotide LAR 
presented a longer time to tumor progression (14.3 vs. 6 
months) and a higher disease stabilization rate (66.7% 
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vs. 37.2%).[72] CLARINET trial, a double-blind, phase-III 
study, randomized 204 patients with well- or moderately 
differentiated, Octreoscan-positive, nonfunctioning GEP-
NETs to receive lanreotide depot 120 mg monthly versus 
placebo. SSAs therapy obtained a significant improvement 
in PFS, with a median time not reached in the experimental 
arm versus 18 months in the placebo group. The estimated 
rates of PFS at 24 months were 65.1% in the lanreotide 
group and 33% in the placebo group. No information on 
disease control rate was reported.[73]

Recently, the clinical activity of the new SSA pasireotide 
has been evaluated in an open-label, phase-II study 
enrolling advanced pancreatic and extrapancreatic Grade 
1 and 2 NETs.[74] Median PFS of the 29 treated patients 
was the primary endpoint of the study and was 11 months. 
According to the RECIST criteria, one patient obtained a 
partial response and 17 experienced disease stabilization, 
for a disease control rate of 64%. In all the above-reported 
trials, treatment with SSAs resulted in low cytoreductive 
activity as demonstrated by the low objective response 
rates reported (around 5%). This finding was recently 
confirmed in an extensive review.[75] Thus, while SSAs 
can be considered the mainstay of treatment in well- or 
moderately well-differentiated NETs, both functioning or 
not, when a disease control is needed, there is no evidence 
to support the use of SSAs in the “neoadjuvant” setting.

Targeted therapies
Recently, novel targeted therapies such as everolimus and 
sunitinib have been introduced in the clinical management 
of G1 and G2 NETs.

Following exciting preclinical data demonstrating mTOR 
signaling pathway activation in NET cells, everolimus was 
extensively studied in cancer patients.[76-78]

A randomized, phase-III, double-blind study (RADIANT-3) 
enrolled 410 patients with locally advanced or metastatic 
well- to moderately differentiated pancreatic NETs, 
comparing the PFS of patients treated with everolimus 
10 mg/day to that of patients receiving placebo. The 
study met its primary endpoint as patients treated with 
everolimus presented a longer median PFS (11.0 vs. 4.6 
months). Response rate was low, with only 5% of the 
patients randomized to receive everolimus achieving a 
partial response.[79] Similar encouraging results have been 
obtained in the phase-III placebo-controlled RADIANT-2 
study enrolling patients with well- and moderately 
differentiated locally advanced or metastatic NETs and 
carcinoid syndrome. Patients receiving everolimus plus 
SSA (octreotide LAR) presented a longer PFS than those 
treated with octreotide LAR plus placebo (16.4 vs. 11.3 
months, P = 0.026). Overall response rate was similar in 
both groups, with 2% of patients achieving a partial response 
and 82% disease stabilization.[80] The advantages of treating 
patients with everolimus have recently been confirmed in 
a randomized, double-blind, placebo-controlled, phase-

III RADIANT-4 trial. The study evaluated everolimus 
efficacy in patients with advanced, well-differentiated 
NETs of different origin and with nonfunctional disease. 
Patients in the everolimus arm of the study presented a 
significant improvement in PFS (11.0 vs. 3.9 months).[81] 
Interestingly, according to subgroup analysis, the positive 
treatment effect was confirmed irrespective of the extent 
of liver metastasis. Objective responses were recorded in 
four (2%) patients receiving everolimus and in one patient 
(1%) receiving placebo. Disease stabilization was the best 
overall response in 165 patients (81%) in the everolimus 
group, compared with 62 patients (64%) in the placebo 
group. The findings of these three studies were consistent 
with the role of everolimus in prolonging PFS and not in 
achieving tumor shrinkage. Thus, everolimus cannot be 
proposed as a preferred therapy in the neoadjuvant setting.

The activity of sunitinib, a multityrosine kinase inhibitor 
of vascular endothelial and platelet-derived growth factor 
receptors, was explored in a double-blind, placebo-
controlled, phase-III trial enrolling 171 patients with 
advanced, well-differentiated progressing pancreatic 
NETs.[82] The study met its primary endpoint, as median 
PFS of patients receiving sunitinib was significantly longer 
than that of patients treated with placebo (11.4 vs. 5.5 
months). In contrast to what was observed in patients with 
renal cell carcinoma,[83] tumor shrinkage rate in patients 
with pancreatic NET was low; only 9% of those treated 
with sunitinib achieved an objective response according to 
the RECIST criteria.

The high rate of vascularization of NETs led to initial 
interest in angiogenesis inhibition as a promising field 
of research. Furthermore, an overexpression of vascular 
endothelial growth factor (VEGF) has been observed in 
both carcinoid and p-NET (either in serum or in tissue), 
thus making VEGF and VEGFR excellent targets to be 
inhibited.[84] The anti-angiogenetic agent bevacizumab has 
been investigated combined with IFNα in a randomized 
phase-II trial of 44 patients with advanced (unresectable 
or metastatic) carcinoid tumors. Patients were randomized 
to receive 18 weeks of single agent bevacizumab or IFN. 
At disease progression or after 18 weeks of treatment, 
patients were allowed to receive the combination of these 
two treatments. The results obtained in the bevacizumab 
arm were encouraging; a partial response was achieved in 
18% of the patients, with a better 18-week PFS than in the 
IFN group (95% vs. 67%, respectively).[85] However, even 
though bevacizumab monotherapy has been associated 
with improvement in response rate and survival, the 
results obtained in terms of tumor shrinkage were not 
encouraging, probably because of the cytostatic rather than 
cytotoxic effect of antiangiogenic therapies. Therefore, 
the role of bevacizumab-based combination therapy has 
been evaluated, mostly with chemotherapy agents or with 
mTOR inhibitors in the management of advanced GEP-
NETs. In the randomized phase-II study CALGB80701 
(Alliance), patients with metastatic pNETs were randomly 
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treated with everolimus or everolimus plus bevacizumab. 
The overall response rate was 31% and 12% for the 
combination treatment and everolimus alone, respectively. 
The current evidence from this available clinical trial 
suggests that combination strategy was more active but not 
more effective in terms of PFS.[86]

Chemotherapy
While chemotherapy is the standard of care for aggressive, 
poorly differentiated (G3), advanced, or metastatic NECs,[87] 
it could represent a therapeutic option in symptomatic 
and progressive well- or moderately differentiated NETs. 
Notwithstanding a relatively high number of agents 
which have been demonstrated to be active in this latter 
tumor setting (platinum salts, 5-fluorouracil, doxorubicin, 
streptozotocin, temozolomide, and capecitabine), the best 
chemotherapeutic strategy remains controversial.[88]

As far as unresectable or metastatic pancreatic NETs 
are concerned, polychemotherapy was more active than 
monotherapy, with a response rate in this latter group 
lower than 20%. A retrospective study evaluating the 
combination of streptozotocin (STZ) with doxorubicin 
and 5-fluorouracil (5-FU) reported a response rate of 
39%, with a median response duration of 9.3 months. The 
2-year PFS rate was 41%, and the 2-year OS rate was 74%. 
Tumor burden clearly affected survival outcomes in both 
univariate and multivariate analyses. In fact, the PFS rate 
at 2 years for patients with LM involving ≤ 75% of the 
parenchyma was 41%, whereas all 12 patients with LM 
involving more than 75% of the organ had experienced 
disease progression by 14.2 months (P = 0.01). At 2 years, 
the OS rate for patients with LM ≤ 75% was 83%, whereas 
all 12 patients with LM more than 75% had died at 15.5 
months (P = 0.0001).[89]

The combination of temozolomide with capecitabine was 
demonstrated to be more active and better tolerated than 
STZ-based regimens. In a retrospective study enrolling 
metastatic pancreatic NETs, objective response rate of 
temozolomide combination was reported to be 70%. It 
has to be noted, however, that in this study only 30% of 
the patients had moderately differentiated (G2) tumors.[90] 
The combination of octreotide LAR 20 mg, metronomic 
capecitabine, and intravenous bevacizumab was explored 
in the XELBEVOCT phase-II study enrolling 45 patients 
with well- to moderately differentiated NETs from various 
primary origins (pancreas, intestinal tract, lungs, and 
unknown site). Objective response rate was 17.8% with 
a median PFS of 14.9 months. This study demonstrated 
that the combination of SSA plus capecitabine and 
bevacizumab was active and well tolerated in this group 
of patients.[91]

Finally, a retrospective study evaluated the combination 
of 5-fluorouracil, dacarbazine, and epirubicin in patients 
with well-differentiated NETs originating from pancreas, 
intestine, stomach, gallbladder, kidney, or an unknown 

site. Chemotherapy was well tolerated and outcome results 
were encouraging. Tumor shrinkage was obtained in 44% 
of the patients, with a median duration of response of 12 
months. Objective response rates recorded in pancreatic, 
gastrointestinal, and extradigestive NETs were 58%, 25%, 
and 36%, respectively. Interestingly, disease control was 
achieved in 83% of the patients progressing at the time of 
study inclusion. Median PFS was 11 months and OS was 
21 months.[92]

Notwithstanding this body of evidence, the number of 
patients enrolled in each study was relatively low, thus 
preventing any definitive conclusion on which could be 
the best chemotherapeutic strategy for each subset of 
patients. New multicenter, well designed, randomized 
clinical trials are needed.

CONCLUSION

About one in seven patients diagnosed with digestive NETs 
presents with metastatic disease at the time of diagnosis, 
with the liver being the most frequently involved organ. 
Moreover, 25% to 90% of patients who are nonmetastatic 
at diagnosis are expected to develop metastases during the 
course of the disease. In clinical practice, hepatic failure 
represents the primary cause of death in these patients. 
Surgery is the only technique that may permit curability of 
liver involvement. Thus, all treatments should primarily be 
focused on tumor shrinkage, especially when unresectable 
liver lesions could become resectable if reduced in size. 
When complete resection is not possible, treatment goals 
should be tumor control and symptom relief.

Complete resection of primary and metastatic disease (when 
possible) and surgical debulking of symptomatic diseases 
are standard procedures for G1 and G2 NETs. To patients 
with Grade 1 or 2 NETs (either pNETs or gastrointestinal 
NETs) with LM and without extra-abdominal metastasis 
and peritoneal carcinomatosis, surgery permits the best 
results in terms of recurrence-free survival and outcome. 
Unfortunately only 10-25% of patients can be directly 
submitted to surgical resection. These considerations 
suggest that “neoadjuvant strategies” should be explored in 
patients with liver-confined metastatic disease. Despite the 
proven efficacy of different systemic treatment strategies 
for metastatic NETs (SSAs, PRRT, chemotherapy, or target 
therapies such as everolimus, sunitinib, and bevacizumab), 
none of these approaches resulted in significant tumor 
shrinkage. Few studies have explored systemic therapies 
in the neoadjuvant setting. Unfortunately, trial designs, 
inhomogeneous inclusion and exclusion criteria, and the 
relatively low number of patients have hampered definitive 
conclusions in this patient setting.

Further research is needed to determine the value of these 
medical treatments as a cytoreductive strategy against LM 
from NETs. Moreover, loco-regional approaches to LM, 
such as radiofrequency ablation, laser ablation, or intra-
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arterial therapies (embolization/chemoembolization), may 
be useful in reducing tumor burden only in selected cases. 
Application of the concept of tumor response as defined by 
RECIST or WHO criteria in patients with metastatic NETs 
is worthy of mention. Often it is difficult to select the target 
lesions to be monitored over time. Furthermore, necrosis 
or hemorrhage within other clinical occurrences may be 
misinterpreted as a stable disease instead of a response.

In conclusion, while surgical management of resectable 
LM from NETs is a standardized procedure, there is no 
consensus on the best therapeutic strategy for all other 
patients. For example, it is a matter of debate whether 
incomplete surgical resection of bulky but asymptomatic 
metastasis from NETs is preferable to systemic biotherapy. 
Extremely promising recent data have been reported in 
the Radiant 4 trial, suggesting that novel therapies (in 
particular the mTOR inhibitor everolimus) will play an 
increasingly important role in the management of advanced 
LM irrespective of the extent of liver metastasis.

Large prospective studies are needed to evaluate the 
optimal management of hepatic metastases from NETs, 
defining common guidelines and allowing the choice of 
the best treatment strategy for each individual patient.
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INTRODUCTION

Gastroenteropancreatic neuroendocrine tumors (NETs) 
are a heterogeneous group of neoplasms derived from the 
diffuse endocrine system in the gastrointestinal tract and 
pancreas. The WHO classification classifies these tumors 
into three principal categories with different malignant 
behavior: NETs with Ki67 ≤ 2% (G1 NETs), NETs with 
Ki67 3-20% (G2 NETs) and neuroendocrine carcinomas 
(NECs) with Ki67 > 20% (NECs G3).[1]

In the last few decades, the increasing incidence of 
these diseases has aroused much interest resulting in 
improvements in available therapeutic options and new 
clinical trials. In fact, treatment options for NETs have 
increased in number and this is definitely an advantage for 
patients. However, criteria for defining timing, priority and 
sequence of different therapeutic options are still debated.

The optimal therapeutic sequence should be based on the 
evaluation of at least three major issues:

(a) Tumor characterization:
Primary site: pancreatic and small bowel NETs should 
be considered different diseases in terms of both risk 
of tumor progression and overall survival;

Histological diagnosis: conventional immunohistochemistry 
evaluation and Ki67 assessment are needed to classify 
the disease according with WHO classification, as well as 
define tumor grading;

Disease staging: conventional contrast enhanced 
computed tomography (or magnetic resonance 
imaging) should be performed together with functional 
imaging (68 Ga-PET or Octreoscan) to stage the disease 
according with the ENETS staging system.

(b) Patient’s clinical status:
Performance status;

Presence of symptoms resulting from tumor-related 
secretion of active substances, in the case of a 
“functioning tumor”;

Prior treatments and comorbidity, which may reduce 
therapeutic options.

(c) Defining the objectives of care:
The only curative option is represented by radical surgery;

In most patients, since curative surgery is not feasible, 
medical treatment is needed to treat advanced 
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unresectable disease;

In “functioning tumors” the symptomatic control is a 
major therapeutic goal;

In advanced end-stage disease, palliative symptomatic 
therapies are required to maintain patient’s quality of life.

In the present paper, some controversial issues on the 
therapeutic approach for NET patients will be discussed.

SURGICAL  THERAPY

Small incidental non-functioning pancreatic 
NETs (pNETs): should they always be removed?
Surgical treatment of pNETs must always be planned and 
adapted to each individual patient considering several 
variables, including patient characteristics and disease 
stage. Some studies have recently suggested tumor diameter 
as the main criterion for surgery with radical intent.[2,3] For 
pNETs ≤ 2 cm, and in the absence of symptoms and/or 
suspected metastatic lesions, a conservative wait-and-see 
approach may be adopted in selected cases, scheduling a 
clinical and radiological follow-up.[4-7] Pancreatic NETs ≤ 
2 cm of diameter have a risk of “malignancy” of about 
6%, while 5-year disease mortality is 0%.[4] In the small 
and sporadic non-functioning pNETs, the mean overall 
tumor growth (difference between size at last follow-
up and initial size) was 0.37 (+/-1.67) mm.[7] Mean 
growth per month was 0.010 (+/-0.051) or 0.12 mm per 
year corresponding to a growth percentage of 1.5% (+/-
5.5) from the initial tumor size per year. The incidental 
diagnosis and the absence of symptoms seem to correlate 
with a better prognosis in this subgroup of patients.[2] 
Histological confirmation of tumor neuroendocrine origin 
by endoscopic ultrasonography with tissue sampling is 
required before planning a patient’s management. The 
primary tumor localization is an additional major factor 
to determining the surgical approach. Finally, the patient’s 
comorbidities and willing should always be considered in 
the surgical management of pNETs.

Despite recent progress, morbidity remains significant, 
indeed, it is necessary to carefully evaluate the type 
of surgery, the risks of surgery and the risks related to 
tumor growth in advance. Based on these considerations, 
conservative non-surgical management may be proposed 
in selected patients with small, incidental non-functioning 
pNETs.

Pancreatic NETs with liver metastases: should 
the primary tumor be resected?
The presence of metastases is the main factor associated 
with mortality in pNET patients. Surgical options for 
patients, including those with metastatic disease, include 
different procedures such as curative liver and pancreatic 
resection, primary resection, local ablative techniques, 
and liver transplantation. In these cases, patient selection 

must be meticulous and consider several prerequisites 
including: (a) the presence of well‐differentiated lesions; 
(b) the absence of extra‐abdominal disease; and (c) the 
absence of diffuse peritoneal carcinomatosis.[8]

In the literature, clinical studies suggest that there is a 
possible benefit in terms of survival when performing 
surgical removal of primitive pNETs if metastases are 
present.[9] However, in the retrospective studies that 
evaluated the role of surgery in pNETs with unresectable 
liver metastases, there is a selection bias for patients 
related to the localization of primary tumors and the 
type of surgical approach, the patient status in terms of 
comorbidity, age and performance status.[9] In the Partelli et 
al.[10] paper, the 5-year overall survival (OS) after surgical 
resection was 76% with an increase to 88% after curative 
resection. Although palliative surgery was associated with 
an improved outcome, surgical management should be 
reserved in highly selected patients due to the high risk of 
peri/postoperative complications.

Small intestinal NETs (SI-NETs) with liver 
metastases: should the primary tumor be 
resected?
Surgical treatment of SI-NETs is affected by disease clinical 
presentation. For SI-NETs diagnosed as stage I-III, the 
choice of therapy is always surgical bowel resection with 
lymphadenectomy.[11-13] Curative resection of the primary 
tumor and regional lymph node metastasis site improves 
long-term outcome, with a 100% 5-10 year survival for 
patients with stage I and II tumors and more than 80% for 
patients with stage III jejuno-ileal NETs.[14] In the presence 
of synchronous liver lesions, surgical treatment is still 
highly debated. A recent systematic review[15] analyzed 
the studies in the literature on the surgical resection of 
the primary tumor in patients with SI-NETs and distant 
metastases. Although it was not possible to conduct a 
meta-analysis of these works, the conclusions suggest 
improved survival after surgical removal of the primary 
tumor in patients with metastatic unresectable disease and 
a reduction in local complications (bleeding, perforation, 
and occlusion). In association with the intestinal resection, 
cholecystectomy should be performed in order to prevent 
gallstones due to long-term treatment with somatostatin 
analogue.[16]

MEDICAL  THERAPY

Being characterized by a relatively long OS, multiple 
sequential therapies are adopted in digestive NETs although 
the best sequence for these patients is not well defined.

Somatostatin analogs (SSAs):  are they indicated 
for all NET patients?
SSAs clearly represent the first-line treatment for patients 
with functioning NETs. As far as non-functioning tumors 
are concerned, SSAs can control tumor proliferation, as 
shown by two randomized clinical trials. The PROMID 
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study[17] described, in 42 metastatic patients treated by 
octreotide long-acting repeatable (LAR) 30 mg, a median 
progression-free survival (PFS) of 14.3 months vs. 6 
months of the 43 cases enrolled in the placebo group. The 
more recent CLARINET trial[18] showed, in 101 patients 
with digestive NET using lanreotide 120 mg, a median 
PFS not reached vs. 18 months of the 103 included in the 
placebo group. Both studies highlight the increased anti-
proliferative activity of these drugs in patients with low 
Ki67 (G1 NETs or G2 NETs with Ki67 < 10%), stable 
slow-growing disease, and high somatostatin receptor 
expression as assessed by functional imaging. Alternative 
medical treatments should be considered if these criteria 
are not satisfied.

Peptide receptors radionuclide therapy (PRRT):  
is there a place as a first-line approach?
PRRT acts with the same molecular mechanism as SSAs, 
but the somatostatin analog is radiolabeled with Y90 or 
Lu177, performing an “in loco” radiotherapy. This well-
tolerated treatment is able to inhibit tumor growth in up to 
50-70% of digestive NETs.[19-21]

Results from the first Phase III, multicenter randomized 
clinical trial (RCT) comparing Lutathera® vs. Octreotide 
in patients with inoperable, progressive, somatostatin 
receptor-positive G1-G2 small intestinal NETs 
(NETTER-1 trial) have been recently presented at the 
last ECC (Vienna, September 2015) (www.clinicaltrials.
gov NCT01578239).[21] They showed that, in 230 patients 
enrolled, the median PFS was not reached in the PRRT-
treated group vs. 8.4 months obtained by SSA [hazard 
ratio (HR): 0.21, P < 0.0001]. This data supports the 
benefit of this therapy in metastatic small intestinal NETs, 
and hopefully will help achieve official registration of 
this drug.[21]

All international guidelines (ENETS, NANETS, ESMO, 
and NCCN) consider PRRT as a valid option in patients 
with advanced NETs; however, there are no solid 
data supporting where PRRT should be placed in the 
therapeutic sequence. A recent multicenter Italian study 
on the compassionate use of everolimus in advanced 
NETs highlighted the increasing risk of severe toxicity in 
patients who had been previously treated with PRRT or 
chemotherapy, thus suggesting the early use of everolimus 
in patients with advanced NETs.[22] Furthermore, Bajetta et 
al.[23] treated patients with everolimus in combination with 
octreotide LAR as first line approach in advanced NETs 
and showed that in this setting, this combination treatment 
is very effective with disease control being reached in 
92% of patients. This therapy also has an excellent safety 
profile, with only one single grade 4 adverse event in 
the population of 50 patients enrolled.[23] Conversely 
in a relatively small series of NET patients treated with 
everolimus after previous failure of PRRT, Kamp et al.[24] 
reported an overall safety profile similar to that presented 
in the randomized clinical trials. However in this trial, 

severe kidney toxicity was observed in 4.2% of patients, 
a toxicity not reported in the regulatory trials, where no 
patients pre-treated with PRRT had been enrolled. To date, 
no conclusive data on the optimal therapeutic sequence 
involving PRRT is available and caution should be used 
when considering everolimus therapy in patients who have 
previously received PRRT.

Targeted therapies: everolimus or sunitinib 
first?
Another relevant option for digestive NETs is targeted 
therapy. Recent trials have demonstrated the activity of 
the mTOR inhibitor everolimus (RAD001, Afinitor®, 
Novartis Oncology) against tumor growth. In the 
RADIANT-3 trial,[25] a phase III placebo-controlled 
study enrolling advanced pNETs, everolimus provided a 
significant prolongation in median PFS vs. placebo (11 
and 4.6 months; 207 and 203 patients, respectively). The 
results of this trial led to approval by the U.S. Food and 
Drug Administration (FDA) and the European Medicines 
Agency (EMA) for the treatment of locally advanced, 
metastatic or unresectable pNETs.[24] Its activity has also 
been reported in progressive, well-differentiated, non-
functioning lung and non-pancreatic digestive NETs, 
based on the findings of the RADIANT-4 RCT.[26] This 
study showed a significant benefit with everolimus in 
these patients, with median PFS being 11 months in the 
treatment arm (n = 205) vs. 3.9 months in the placebo 
group (n = 97) (HR: 0.64, P = 0.037).[26] The most 
common adverse events reported in the phase III RCTs 
(Radiant 3-4) (> 30%) were stomatitis (62%, 64%), 
rash (37%, 49%), fatigue (31%, 31%) and diarrhea 
(27%, 34%), while grade 3/4 treatment-related adverse 
events were stomatitis (7%, 7%), anemia (1%, 6%), and 
hyperglycemia (5%, 5%). Overall, grade 3-4 toxicity 
was reported in approximately 5-8% of patients. This 
data suggests caution when using everolimus in patients 
with diabetes, in whom an optimal glucose control is 
mandatory before beginning the treatment.

Sunitinib (Sutent®, Pfizer) is another targeted therapy, 
effective for the treatment of advanced pNETs. It is an 
antiangiogenic, pan-receptor tyrosine kinase inhibitor, 
acting against multiple targets including VEGFR, 
PDGFR, c-KIT, Flt-3 and RET. In the phase III RCT 
published in 2011, it prolonged PFS to 10.2 months vs. 
5.4 with placebo.[27] The most common adverse events 
reported in the sunitinib trial were diarrhea (59%), 
nausea, fatigue, vomiting (35%) and fatigue (32%), while 
the most frequent grade 3/4 treatment-related included 
neutropenia (12%), hypertension (10%), and palmar-
plantar erythrodysesthesia (6%). Notably, because 
patients with severe cardiac comorbidities had not been 
enrolled in this study, caution should be exercised when 
using sunitinib in patients with a significant cardiac 
history (e.g., arrhythmia, coronary artery disease, 
cardiomyopathy, uncontrolled hypertension). Grade 3-4 
toxicity was present in up to 12% of patients.



            Journal of Cancer Metastasis and Treatment ¦ Volume 2 ¦ August 17, 2016 ¦ 307

The choice of which targeted agent should be used first 
still remains a challenge for physicians dealing with 
advanced pNETs. No comparative study of everolimus 
versus sunitinib in this setting is available yet. Thus, 
since phase III trials have demonstrated a similar 
efficacy in terms of PFS, the choice is mainly based on 
the evaluation of other elements, including the toxicity 
profile, patients’ comorbidity, and physician’s expertise 
with these drugs. An additional point of interest that 
should be considered, besides the physician’s personal 
clinical experience when managing these drugs, is the 
larger population of NET patients treated with everolimus 
in comparison with sunitinib reported in the literature. In 
fact, more than 600 advanced NET patients have been 
treated in the RADIANT trials,[25,26,28] in comparison with 
the 86 patients included in the sunitinib trial.[27]

G3 NECs: is platinum-based chemotherapy 
always required?
According with the WHO 2010 classification,[1] the 
group of G3 NECs were identified with a proliferation 
index (Ki67) > 20% (or > 20 mitotic count per 10 HPF). 
International guidelines[29] suggest the use of platinum-
based systemic chemotherapy in G3 NEC patients due 
to the rapidly metastatic behavior of these tumors, and 
the extremely poor prognosis in comparison with other 
NETs with lower proliferative activity (G1 and G2). 
However, this category constitutes a heterogeneous 
group of diseases, including both well-differentiated and 
poorly differentiated tumors based on morphological 
features, with different implications in terms of patients’ 
prognosis and therapeutic approach.[30,31] Overall, 
median PFS reported with platinum-based first-line 
approach ranges from 4 to 9 months.[31] However, this 
data mostly derives from non-randomized trials, with 
small series of patients evaluated by a retrospective 
design approach, and usually enrolling a heterogeneous 
series of patients in terms of therapeutic schedules and 
biological features of the tumor (primary site, staging, 
Ki67 index).

Data reported by the Nordic group study[31] proposes to 
consider G3 NECs with Ki67 < 55%, as a different entity 
that exhibits less aggressive behavior and responds well 
to platinum-based chemotherapy, in comparison with 
other G3 NECs. This specific subgroup of patients might 
be considered as a separate disease in which therapeutic 
approaches other than platinum-based should be tested. 
Indeed, the role of everolimus in G3 NECs is under 
investigation in phase II trials in several different clinical 
settings (MAVERIC- EudraCT: 2014-003951-72, www.
clinicaltrials.gov, NCT0211380, www.clinicaltrials.gov 
NCT02248012).

Further prospective studies are required before 
considering therapeutic options based on targeted agents 
as the standard treatments in G3 NECs.

Locoregional therapies: is there an impact on 
patients’ survival?
In some cases (especially with a functional syndrome) 
when a complete resection is not possible, debulking 
surgery can be performed to improve prognosis and quality 
of life. This approach can be based on the combination 
of surgery on primary and secondary tumors and loco-
regional treatments (i.e., trans-arterial liver embolization, 
TAE; trans-arterial chemoembolization, TACE; 
radiofrequency ablation). Embolization is contraindicated 
in patients with portal vein thrombosis, liver insufficiency, 
biliary obstruction or prior Whipple procedure. The 
presence of portal vein occlusion or ascites hepatic tumor 
burden > 75% of the total liver are considered relative 
contraindications.[32] In a retrospective study in patients 
with pNETs, chemoembolization showed better results 
when compared with bland embolization (response: 50% 
vs. 25%, respectively).[33] However, no clear difference 
between TAE and TACE in terms of clinical outcome has 
been reported so far.

Another experimental approach to metastatic disease is 
selective internal radiation therapy (SIRT), based on the 
intra-arterial deliver of Yttrium-90 microspheres to the 
lesions. Although results seem appealing, they are from 
retrospective series, and a recent study comparing this 
technique to TAE and TACE over a 10-year period did 
not show any advantages of SIRT in terms of time to 
disease progression.[34]

The wide range in response rates and survival duration 
in various studies in terms of patient population and 
tumor profile, the extent of liver involvement, and 
the presence of extra-hepatic metastases is reflection 
of the heterogeneous tumor biology of this disease. 
Gupta et al.[33] found that patients treated with liver 
embolization with carcinoid tumors had a higher 
response rate (66.7% vs. 35%; P < 0.0001), longer time 
to progression (TTP) (22.7 months vs. 16.1 months, P 
< 0.046), and better OS (33.8 months vs. 23.2 months; 
P < 0.012) compared to patients with pNETs. Roche et 
al.[35] found non-pancreatic NETs (P < 0.006), absence 
of extra-hepatic lesions (P < 0.03), unresected primary 
(P < 0.012) and TACE as first-line (P < 0.028) were 
significant for complete response to liver emoblization, 
and less hepatic involvement (< 30%) significantly 
improved morphological response (P < 0.016). There 
is no conclusive evidence in the literature that the loco-
regional therapies improve survival rate.

CONCLUSION

Despite recent advances in the knowledge of digestive 
NETs, there are still many controversial aspects about 
the management of these patients. There is a dire need 
for further multicenter studies designed to clarify gray 
areas such as the sequence of medical therapies in patients 
with advanced disease, the opportunity for a conservative 
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follow-up in small incidental tumors of the pancreas, 
the optimal approach to NEC G3 tumors with well 
differentiated morphology, liver ablative therapies, and 
surgery in the context of metastatic disease.
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Merkel cell carcinoma (MCC), first described in 1972, is an aggressive primary cutaneous carcinoma able to incorporate both 
epithelial and neuroendocrine features. MCC mainly appears in individuals in their eighth decade and it is related to a high 
mortality rate. The etiology of this rare disease is not well-understood but ultraviolet radiation exposure, immune suppression, 
and aging have a consistent role in its pathogenesis. Usually, clinical lesions appear as asymptomatic coloured dermal nodules. 
The tumour can involve lymph nodes but further evaluation with imaging is recommended. The common approach for localized 
disease is surgical. This work reports a case of an 86-year-old man with locally advanced MCC where, based on clinical 
experience, oral mono-chemotherapy with single-agent etoposide was chosen as first-line therapy. A complete objective response 
was achieved in 2 months.
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INTRODUCTION

Merkel cell carcinoma (MCC) is a rare, aggressive, 
neuroendocrine carcinoma of the skin that originates from 
Merkel cells of the dermoepidermal junctions, although 
some recent work proposes pluripotent dermal stem cells 
to be origin of this neoplasm.[1]

The annual incidence is 0.6 per 100,000 persons[2] but 
is apparently increasing in the last years thanks to more 
accurate diagnostic pathology techniques, an aging 
population, increased sun exposure, and improved registry 
tools.

MCC has a high mortality rate, the overall 5-year survival 
rates ranging from 30% to 64%.[3]

Males are more often affected than females, the median 
age at diagnosis being 76 years.[2] It is extremely rare in 
children, with only a few cases reported in literature.

Ultraviolet radiation exposure, chronic immune suppression 
(especially from chronic lymphocytic leukemia, human 
immunodeficiency virus, and prior solid organ transplant) 
and the Merkel cell polyomavirus are the main risk factors 
involved in the tumour pathogenesis.[4] Concerning the 

latter, many reports described a strong correlation between 
infection and carcinogenesis, although the presence of the 
virus itself is not sufficient to induce MCC.

Clinically, the lesion appears as a fast-growing, painless, 
solitary dermal nodule, firm, non-tender, coloured from 
red to violet; rarely does it present as an ulceration.

Skin of the face, arms and lower limbs are the most 
common sites of localization whereas the trunk and oral 
and genital mucosa are rare.[2]

Typical clinical features are summarized in the acronym 
“AEIOU” proposed by Heath et al.[5]: asymptomatic, 
expanding rapidly, immunosuppression, older than age 50 
and ultraviolet-exposed site.

The approach to disease management includes 
with a complete physical examination followed by 
imaging. Treatment strategies are best considered in 
a multidisciplinary board consultation. The surgical 
approach, when negative margins are possible and the 
disease is not disseminated, should be the first choice 
followed, when the risk assessment contemplates it or 
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specific lymph nodes are involved, by adjuvant radiation 
therapy within 4 weeks. Adjuvant chemotherapy in 
regional disease could be considered depending on clinical 
judgment. In cases of disseminated disease, chemotherapy 
represents first line therapy; the choice of the agents to be 
taken based on clinical judgment and experience.

Here we present a case of MCC in an elderly man. The 
patient is consented and agrees with this publication.

CASE  REPORT

An 86-year-old man presented with a purple-violaceous 
mass with vegetations in the left pre-auricular region, 
extending to the maxilla and involving the parotid area 
[Figure 1]. The lesion had been enlarging for more than 
three months. The patient had no history or evidence of 
comorbidities, apart from gallbladder stones and allergy 
to penicillin. An incisional biopsy was performed MCC.

The neoplasm involved dermis and hypodermis; 
histology showed a dense infiltrate of small tumour 
cells with hyperchromatic nuclei and lacking cytoplasm. 
Immunohistochemistry was consistent with the diagnosis 
of MCC.

The immune histochemical phenotype of the dermal-
located malignant cells was characterized by dot-like focal 
positivity for Cytokeratin 20 (CK20+), diffuse positivity 
for synaptophysin(+), cytokeratin AE1/AE3, CD99+, and 
strong nuclear positivity for Ki-67 (+100%). There was 
negative staining for chromogranin, CEA-, TTF1-, CD56-, 
S100-, CD20-, CD79a-, CD3-, CD23-, CD5-, CD10-, and 
Cyclin D1-.

The tumour was classified MCC, T2, locally advanced. 
No other abnormalities were detected in the laboratory 

studies. Computed tomography (CT) scans showed no 
involvement of local lymph-nodes or distant metastases.  
Based on these clinical findings, the history, and on his 
age, an oral chemotherapeutic treatment was proposed. 
The patient started oral etoposide with the dosage schedule 
of 50 mg/m2 per 10 days followed by 7 days rest.

After one month of treatment the tumour showed a 
significant response [Figure 2]. There were side effects or 
laboratory abnormalities.

By 2 months there was evidence of complete objective 
response [Figure 3]. Considering the results, therapy was 
held. Adjuvant radiation was then given.

DISCUSSION

First described as trabecular carcinoma in 1972 by 
Toker,[6] MCC represents an aggressive, primary 
cutaneous carcinoma incorporating  both epithelial and 
neuroendocrine features. The diagnosis is made by clinical 
evaluation and biopsy, although other small round cell 
tumors may be considered. For this reason a complete 
immunohistochemistry panel is needed for the correct 
diagnosis. Cytokeratin 20 (CK-20), a marker of epithelial 
origin, is a very sensitive marker for MCC[7] since it is 
positive in 89-100% of cases. Together with negativity 
of transcription factor 1 (TTF-1), it provides the greatest Figure 1: Merkel cell carcinoma at time of first evaluation

Figure 2: Response to therapy after 1 month of treatment

Figure 3: Complete clinical response after 2 months
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sensitivity and specificity to exclude small cell lung 
cancer,[8] although N-specific enolase, synaptophysin, and 
chromogranin-A represent markers of neuroendocrine 
origin with possible positivity. In our case, pathology 
and immune-histochemical markers, along with clinical 
features confirmed the diagnosis.

MCC generally shows a malignant behaviour, with regional 
lymph-nodes as well as distant metastasis being frequently 
involved. Twenty-five percent of patients present with 
lymphadenopathy and 5% with a distant metastasis. Skin, 
lung, nervous system, bone, and liver are the most frequent 
secondary locations.[9] For this reason lymph-nodal 
examination should be performed. Additionally, PET/CT 
is often useful for complete staging.

Surgery plays the key role for clinically localized MCC and 
a complete surgical excision with 2 cm safety margin, if 
feasible, seems to be the best treatment approach. Adjuvant 
radiation with 50 Gy to the tumour bed and regional lymph-
nodes is also recommended, especially for advanced local 
and regional disease.[10] When surgery is not feasible, 
radiation therapy alone, or combined with alternative 
therapy (e.g., chemotherapy) should be considered.

Presently, there is no first-line chemotherapy established 
for MCC, since no controlled randomized trials exist. Only 
retrospective case series and case reports are available.

The chemotherapy regimens used have combined 
carboplatin or cisplatin with etoposide, cyclophosphamide 
with vincristine, doxorubicin, bleomycin, or 5-fluorouracil.

Despite a good initial response, early recurrences are the 
rule. In a retrospective analysis including a wide number 
of patients, adjuvant chemotherapy was linked to a worse 
overall survival compared to patients who did not received 
chemotherapy.[3]

In our patient, considering locally advanced disease, 
age, and patient’s history, we decided to start mono-
chemotherapy with oral etoposide.

Previously, one group achieved complete responses in 3 
out of 4 MCC patients treated with oral etoposide, two of 
whom had rather long remissions (16 and 36 months).[11]

Our patient achieved a complete objective response in 
a short period of time. However, long term follow-up is 

needed to rule out possible recurrence.
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Neuroendocrine neoplasms (NENs) are a heterogeneous group of rare tumours often producing high levels of hormones and 
causing symptoms. There are a number of different types of NENs. They usually arise as advanced and low/intermediate grade 
only in a minority of cases, as high grade. Treatment depends on which type and may include surgery, interventional radiology, 
and systemic treatment, including chemotherapy, somatostatin analogs, interferon α2b, peptide receptor radionuclide therapy, and 
only for pancreatic neuroendocrine tumors, molecular targeted agents, including everolimus and sunitinib. The aim of the article 
is to review the medical approaches with somatostatin analogs and chemotherapy. The treatment of NENs is mainly based on their 
biological characteristics of aggressiveness and functional features, such as symptoms and endocrine markers.

Key words: Neuroendocrine neoplasms; somatostatin analogs; chemotherapy; peptide receptor radionuclide therapy; molecular 
targeted agents

Access this article online

Quick Response Code:
Website: 
www.jcmtjournal.com

DOI: 
10.20517/2394-4722.2016.38

This is an open access article distributed under the terms of the Creative 
Commons Attribution-NonCommercial-ShareAlike 3.0 License, which allows 
others to remix, tweak, and build upon the work non-commercially, as long as 
the author is credited and the new creations are licensed under the identical 
terms.

For reprints contact: service@oaepublish.com

How to cite this article: Spada F, Valente M. Review of recents 
advances in medical treatment for neuroendocrine neoplasms: 
somatostatin analogs and chemotherapy. J Cancer Metasta Treat 
2016;2:313-20.

Received: 20-06-2016; Accepted: 18-07-2016

INTRODUCTION

Neuroendocrine neoplasms (NENs) are a group of 
tumours arising from various different epithelial cells 
with patterns of neuroendocrine differentiation, usually 
from the gastrointestinal tract and the bronchopulmonary 
system.[1] The World Health Organization (WHO) 
2010 classification distinguishes this class of diseases 
between well differentiated and poorly differentiated 
neuroendocrine carcinomas.[2] The choise of appropriate 
treatment depends on their biological and morphological 
characteristics, functional status, and disease stage. Surgery 
is the best option for resectable tumours, whereas in cases 
of locoregional unresectable and metastatic disease, 
therapeutic options include somatostatin analogs (SSAs),[3] 
inhibitors of the mammalian target of rapamycin,[4-6] 
receptor tyrosine kinase inhibitors,[7,8] chemotherapy,[9] and 
pepetide receptor radionuclide therapy (PRRT).[10]

In recent years, strong evidence has emerged of an 
antiproliferative effect of SSAs on NENs, thought to occur 
via direct and indirect mechanisms.[11] The direct mode of 
action involves interaction with somatostatin receptors 
on tumor cells leading to activation of phosphotyrosine 
phosphatases[12] and modulation of the mitogen-activated 
protein kinase signaling pathway.[13] The indirect 
antiproliferative effect occurs through inhibition of 
expression of growth factors, such as insulin-like growth 
factor and vascular endothelial growth factor.[14] Activities 
of SSAs are mediated by interaction of somatostatin 
with a series of five receptors (SSTRs) encoded by five 
different genes belonging to the class of receptors linked 
to transmembrane G-proteins, able to inhibit cAMP. 
Therapeutic activity is achieved through interaction 
with two of the five SSTRs and, more precisely, with 
subtypes 2 and 5, for which there is the highest affinity.[15] 

Dr. Francesca Spada has been actively involved in clinical and research activity of NETs at IEO (Milan) since 2009, where 
she is currently quality coordinator of IEO ENETS Center of Excellence for GEP NETs. She is involved in educational program 
in NETs particularly as a secretary of NET Italian Guidelines. She is member of the some scientific societies: AIOM, ItaNET, 
ESMO, ENETS, NANETS.
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Octreotide and Lanreotide are the two SSAs adminsitered 
by injection. Octreotide was the first SSA for the treatment 
of hormone-producing pituitary, pancreatic and intestinal 
neuroendocrine tumors (NETs).[16] Lanreotide has a similar 
mechanism of action, also displays high-affinity binding for 
types 2 and 5, has low affinity for types 1 and 4 and medium 
affinity for type 3.[17]

Several chemotherapy agents have been employed, 
either as single-agent or in combination for advanced-
stage disease in poorly differenctiated NENs,[18,19] but 
also in well- and moderately differentiated tumors in 
advanced disease.[20-22] These agents are streptozotocin, 
doxorubicin, 5-fluorouracil, cisplatin, etoposide, and 
dacarbazine. Recently, some new chemotherapeutic agents 
have come available, such as temozolomide, oxaliplatin, 
capecitabine, irinotecan, and gemcitabine. Also a new 
way of chemotherapy administration is metronomic 
chemotherapy.[23,24] This overview details the evolution of 
SSAs and various chemotherapy combinations and their 
application to the management of NENs.

SOMATOSTATIN ANALOGS

In 1972, at the Salk Institute in La Jolla, California, a 
growth hormone (GH)-releasing antagonist (SST) was 
incidentally identified in the sheep hypothalamus during 
the search for a GH releasing hormone.[25,26] Crude 
extracts of sheep hypothalamus added to in vitro anterior 
pituitary cells caused an inhibition of GH secretion. After 
purification, a single compound accounting for all the GH-
release inhibiting acitivity of the crude extract was isolated, 
and its primary structure, a 14-amino acid peptide, was 
identified.[26] The SST neuropeptide family (also known 
as somatostatin release-inhibiting factors) comprises 
peptides that originate from different post-translational 
processing of a 116 amino acid precursor (pre-proSST), 
which is encoded by a single gene located in humans on 
chromosome 3q28. Pre-proSSA is  processed to pro-SST 
(96 amino acids), which is further cleaved to produce two 
bioactive proteins, the predominant, but functionally less 
active SST molecule consisting of 14 amino acids (SST-
14), and a larger more potent molecular form, SST-28.[27] 
Twenty years after the discovery of SST in 1972, molecular 
cloning lead to the identification of its receptor structure.[28] 
Subsequently, it became apparent that in mammals, 
SST mediates its inhibitory effects through binding to 
at least five high-affinity G-protein-coupled membrane 
receptors.[29] Somatostatin (SST) and its analogs (SSAs) 
inhibit multiple cellular functions, including secretion, 
motility and proliferation and its action is mediated by 
somatostatin receptors sst1-5. These five receptors bind 
the natural peptide with high affinity, but only sst2, sst3 
and sst5 bind the short synthetic analogues used to the treat 
neuroendocrine tumours (NET). SSAs have been used 
successfully to treat functional gastro-entero-pancreatic 
(GEP) NETs for more than a quarter of a century.[3] The 
main reason of the use of SSAs is the expression of 

somatostatin receptor subtypes in 80-90% of GEP-NETs 
according to autoradiographic or scintigraphic studies.[30,31] 
The biological effects of SSAs occur in relation to receptor 
subtype interaction. Inhibition of secretion appears to be 
largely mediated via the effects of the sst2 subtype, and 
all commercially available SSAs have appreciable affinity 
for sst2. However, proliferation in endocrine tissue may 
be mediated via other receptor subtypes. In patients with 
well-differentiated, slow-growing tumours, SSAs may be 
considered the first-line treatment with relatively good 
objective response rates and an excellent safety profile. 
The most used formulations of SSAs are long-acting-
release (LAR) Octreotide (10-20-30 mg) and Lanreotide 
autogel (60-90-120 mg). These drugs are very effective 
at controlling tumor-related symptoms in the so called 
“functioning tumors” (symptomatic responses occur 
in 60-100% of patients).[32] Furthermore, they are able 
to significantly decrease specific tumor markers (i.e. 
urinary 5-hydroxy indole acetic acid and circulating 
Chromogranin A) in greater than 50% of patients. They 
are well-tolerated and safe, with a high tolerability rate 
even through a long period of treatment. Side effects, 
which occur in 20-50% of cases, are usually mild and do 
not require drug discontinuation. The most frequent side 
effects are the development of gallstones, pain at the site of 
application, abdominal pain, flatulance, nausea, asthenia, 
and glucose intolerance.[32] First-line systemic therapy for 
NETs often consists of SSAs such as octreotide acetate 
(Sandostatin®; Novartis Pharmaceutical Company, East 
Hanover, NJ, United States) or lanreotide (Somatuline®; 
Ipsen Pharmaceuticals, Paris, France). These drugs, 
initially developed to palliate the symptoms of Carcinoid 
Syndrome, have an inhibitory effect on secretion of 
gastrointestinal hormones (i.e. serotonin). Accumulating 
data indicate that SSAs are also capable of inhibiting NET 
growth[33,34] and have been demonstrated in numerous 
studies to represent the best available agents to induce 
symptomatic relief in patients with somatostatin receptors 
(sstr)-positive, hormone-producing NETs. The symptoms 
they control differ depending on tumour location and 
which amines/peptides are produced, but include sweating, 
flushing, diarrhea, and bronchospasm. There has been a 
controversy regarding the relative efficacy of octreotide 
and lanreotide. Most studies include both primary and 
secondary treatment with no stratification of the cohort 
before analysis. Although it is generally considered that the 
available SST analogs have a similar efficacy in treating 
hormone induced NET symptoms, some differences in 
response may exist.[3]

OCTREOTIDE

Octreotide (SMS201-995) was the first available SSAs and 
was introduced into clinical practice in 1983 for treatment 
of hormone-producing pituitary, pancreatic, and intestinal 
NETs.[16] As octreotide is incompletely absorbed after oral 
administration, its efficacy relied upon intravenous or 
subcutaneous injection. The standard dose of octreotide 
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varies from 0.1 mg to 0.3 mg subcutaneously two to three 
times daily, but doses up to 3 mg/day may be necessary for 
symptom control. The LAR formulation of octreotide is 
commonly used for the chronic management of symptoms 
in patients with carcinoid syndrome. Standard doses are 
20 mg to 30 mg, intramusculary, every 4 weeks. Dose and 
frequency may be further increased for symptom control 
as needed. Therapeutic levels are not achieved for 10 
to 14 days after LAR injection. Short-acting octreotide 
(usually 150-250 mcg subcutaneously 3 times daily) can 
be added to octreotide LAR for rapid relief of symptoms 
or for breakthrough symptoms.[35,36] A randomized study 
comparing daily injection with octreotide to octreotide LAR 
every 4 weeks in the symptomatic treatment of 93 patients 
noted at least as good symptomatic efficacy for depot 
octreotide at various dosages (10, 20, 30 mg) compared 
to subcutaneously octreotide.[37] The recommendation to 
consider octreotide in patients with large tumor burden or 
progressive disease is based on the results of the PROMID 
study, a placebo-controlled phase III trial of 85 patients with 
metastatic midgut neuroendocrine tumors. This showed 
median time to tumor progression of 14.3 and 6 months in 
the octreotide LAR and placebo groups, respectively (P = 
0.000072).[34] After 6 months of treatment, stable disease 
was observed in 66.7% of patients in the octreotide LAR 
group and in 37.2% of patients in the placebo group. 
Results of long-term survival of patients in the PROMID 
study were recently reported.[38] Median overall survival 
(OS) for was not significantly different at 84 months in 
the placebo arm and not reached in the octreotide arm 
[heart rate (HR) 0.85; 95% confidence interval (CI) 0.46-
1.56; P = 0.59]. However, post-study treatment included 
octreotide in 38 of 43 patients in the placebo arm, possibily 
confounding interpretation of long-term survival results. 
Currently, the maximum Food and Drug Administration-
approved dosage and administration of octreotide long-
acting repeatable (LAR), indicated for severe diarrhea/
flushing episodes associated with metastatic carcinoid 
tumors and VIPomas, is 30 mg every 4 weeks.[39] A 
recent physician expert consensus panel highlighted the 
appropriateness of using standard dose SSAs for control 
of hormonal symptoms and tumor growth in patients with 
advanced carcinoid tumors, as well as increasing dose/
frequency of SSAs in treatment of refractory carcinoid 
syndrome.[33] The panel also recommended that increase 
in the dose/frequency of SSAs be considered for patients 
with radiographic progression, particularly in cases where 
disease was previously stabilized at a lower dose.

LANREOTIDE

Lanreotide (BIM 23014) has a similar mechanism of 
action as octreotide, also displaying high-affinity binding 
for types 2 and 5 receptors, low affinity for types 1 and 4, 
and medium affinity for type 3.[17] Lanreotide is a long-
acting SSA analog administred every 10-14 days and 
has a similar efficacy to octreotide in the treatment of 
NETs. Studies have shown it to be effective at controlling 

symptoms in patients with carcinoid tumors, gastrinomas, 
and vasoactive intestinal peptide tumors (VIPomas).[40-42] 
A new slow-release depot preparation of lanreotide, 
“Lanreotide Autogel” administered  subcutaneously at a 
dose of 60, 90, or 120 mg once a month was thereafter 
produced. The international phase III ELECT trial 
randomized 115 patients with carcinoid syndrome who 
were either naive to or responsive to octreotide to receive 
120 mg of lanreotide or placebo.[43] Although the pre-
defined difference in percentage of days the patients used 
rescue octreotide was not met, the panel believes that 
the difference seen (34% in the lanreotide arm vs. 49% 
in the placebo arm; P = 0.02) was significant enough 
to warrant use of lanreotide for symptom control. The 
recommendation that lanreotide be considered for control 
of tumor growth in patients with clinically significant 
tumor burden or progressive disease is based on results of 
the CLARINET study. The CLARINET study randomized 
204 patients with locally advanced or metastatic non-
functioning pancreatic or intestinal neuroendocrine tumors 
to receive either lanreotide or placebo and followed 
patients for progression-free survival (PFS). Results 
showed that treatment with lanreotide for 2 years resulted 
in an improvement in PFS over placebo (PFS not reached 
vs. 18 months; HR 0.47; 95% CI 0.30-0.73; P < 0.001).[44]

No clear consensus exists on the timing of octreotide 
or lanreotide initiation in asymptomatic patients with 
metastatic neuroendocrine tumors and low tumor 
burden. Although initiation of octreotide or lanreotide 
can be considered in these patients, deferring initiation 
until evidence of tumor progression is seen may also be 
appropriate in selected patients (National Comprehensive 
Cancer Network Guideline 2015).

PASIREOTIDE

Pasireotide (SOM 230) has high affinity for SSTR1, 2, 3, and 
5, and displays a 30- to 40-fold higher affinity for SSTR1 
and SSTR5 than octreotide or lanreotide.[45] Octreotide and 
Lanreotide have been used to treat acromegaly successfully 
because 90% of GH-secreting pituitary tumours express 
SSTR2 and SSTR5. However, given that pasireotide has 
40-fold higher affinity and a 158-fold higher functional 
activity for SSTR5 than octreotide, pasireotide may be 
more effective than octreotide in acromegaly.[46] In phase II 
clinical trials, pasireotide has been demonstrated to inhibit 
GH secretion from pituitary tumours, control symptoms of 
the carcinoid syndrome associated with metastatic NETs, 
and inhibit ACTH secretion in Cushing’s Disease.[47]

CHEMOTHERAPY

NENs usually arise as advanced and of low/intermediate 
grade and only in a minority of cases as high grade.[48] 
Prognosis depends on the histological differentiation, 
staging, and grade.[49-51] Most are non-functioning and 
metastatic at diagnosis.[52] Gastro-entero-pancreatic NENs 
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(GEP NETs) are classified on the basis of their proliferation 
rate as assessed by either mitotic index (MI) and/or nuclear 
Ki67 (WHO 2010).[53] Low-grade or G1 are those with 
0-2% Ki67 and/or < 2 MI per 10 high power fields (HPF), 
intermediate-grade or G2 those with 3-20% Ki67 and/or 
2-20 MI per 10 HPF, high-grade or G3 those with > 20% 
Ki67 and/or > 20 MI per 10 HPF. G1 and G2 are called 
neuroendocrine tumors (NETs) and G3 neuroendocrine 
carcinomas (NECs). This terminology is only valid 
for GEP NETs. According to the WHO classification 
(2004),[54] lung NETs are classified as: typical carcinoids, 
with < 2 mitoses per 10 HPF and lacking necrosis; atypical 
carcinoids, with 2-10 mitoses per 10 HPF and/or punctate 
necrosis; large cell neuroendocrine carcinomas, with > 10 
mitoses per 10 HPF (median 70), coarse nuclear chromatin 
and extensive necrosis; and small cell carcinomas with > 
10 mitoses per 10 HPF (median 80), even chromatin and 
extensive necrosis. Therapeutic options include local 
treatments such as surgery, as well as interventional 
radiology and systemic treatments, such as chemotherapy, 
SSAs, interferon α2b, peptide receptor radionuclide 
therapy and, as only for pancreatic NETs, molecular 
targeted agents  including everolimus and sunitinib.

Chemotherapy in neuroendocrine carcinomas
Chemotherapy is the most common treatment approach 
in advanced NECs. Although these neoplasms appear 
relatively chemosensitive their prognosis is dismail. 
Cisplatin [Compound Danshen Dripping Pills (CDDP)]/
etoposide [vepeside-16 (VP-16)] is the most often proposed 
regimen chemotherapy based on the assumption that the 
clinical behavior of NECs is similar to that of lung small 
cell carcinomas. The literature, however, is rather scant in 
this regard and is limited to studies rather dated. In 1991, 
Moertel et al.[55] treated 45 metastatic NENs patients, 14 
of which derived from GEP tract. The regimen consisted 
of VP-16 130 mg/m2 per day for 3 days and CDDP 45 mg/m2 
per day for 2 days, on days 2 and 3, every 3 weeks. Only 18 
patients had a NEC. The rate of objective tumor responses 
was clearly different between NECs (67%) and NETs 
(7%). In NECs the time to tumor progression (TTP) was 
11 months and OS 19 months, reflecting a still unfavorable 
prognosis. Since then, CDDP/VP-16 has been considered 
the standard regimen in NEC.[55] In 1999, in a retrospective 
French analysis, 53 patients with advanced NENs received 
CDDP 100 mg/m2 per day + VP-16 100 mg/m2 per day for 
3 days, every 3 weeks. Forty-one patients had NEC and 
20 a neoplasm arising from the GEP tract (13 pancreatic). 
This was first-line chemotherapy in 70% of NEC. The 
response rate, once again, was clearly different between 
NECs (42%) and NETs (9%). Median PFS survival was 
9 months in NECs and 2 months in NETs. However, OS 
was 15 months in NECs and 18 months in NETs.[56] A third 
study included 36 patients with advanced NEN of which 
only 9 were NECs, while the remaining 27 NENs were 
included only due to their rapid clinical progression. The 
regimen was VP-16 100 mg/m2 per day for 3 days + CDDP 
45 mg/m2 per day for 2 days, every 4 weeks. Response rate 

(RR) was similar between NECs (40%) and NETs (33%).[57] 
In a more recent Eastern retrospective analysis, 21 
untreated patients with NECs of hepato-biliary-pancreatic 
tract (with 10 pancreatic NECs), CDDP was administered 
at 80 mg/m2 day 1 and VP-16 at 100 mg/m2 per day for 3 
days, every 3 weeks. RR was 14%, but with a short PFS 
(1.8 months) and OS (5.8 months) and high toxicity.[58] To 
date, some questions still remain: first, the potential role of 
alternative regimens to platinum-based chemotherapy, and 
then the homogeneity of the category of NECs in terms 
of biological aggressiveness and chemosensitivity. About 
any alternative regimens, the experts have suggested 
that carboplatin instead of cisplatin or irinotecan instead 
of etoposide are acceptable options for extrapulmonary 
NECs.[18] This is based on data from small cell lung cancer 
rather than experiences in the NECs, although in a recent 
Scandinavian retrospective analysis of over 200 patients 
with advanced GEP NECs treated with chemotherapy, the 
platinum-based regimens (particularly cisplatin versus 
carboplatin) did not influence the response and survival in 
a statistically significant way.[19] In this analysis the patients 
with Ki67 < 55% were less responsive (15% vs. 42%; P = 
0.001) but lived longer (14 vs. 10 months; P < 0.001) than 
those with Ki67 > 55 %. On this basis, in patients with 
NEC and Ki67 < 55% it is possible to consider alternative 
chemotherapy regimens than those which are platinum-
based. Such observations, while respecting the existing 
classifications, could be a starting point for research to 
define, within the NECs group, a different category of 
neoplasms, less aggressive and that, therefore, could be 
treated in a different way from that usually proposed. A 
recent retrospective publication reported the results about 
the treatment with CDDP + Irinotecan in 16 patients 
with advanced GEP NECs. The response rate was 51%, 
median PFS 5.5 months, and OS 10.6 months.[59] A further 
subgroup of patients with GEP NENs G3 (WHO 2010) 
is represented by morphologically well-differentiated 
neuroendocrine neoplasms while having Ki67 > 20% and/
or mitosis > 20/10 HPF. Recent reports suggest that these 
tumors have a better prognosis than other GEP NECs and 
are less responsive to conventional chemotherapies.[60,61] 
Second-line chemotherapy after platinum-containing 
regimens has not been well defined. Reports of literature 
are very scarce. FOLFIRI regimen was administered in a 
series of 19 patients with GEP NECs who had received 
platinum-based chemotherapy as first-line. Objective 
response rate (ORR) was 31% and tumor control was 
62%.[62] In another published experience, temozolomide 
was used as second line, alone or in combination with 
capecitabine +/- bevacizumab. Response rate was 33%, 
with a median duration of 19 months, PFS 6 months and 
OS 22 months.[63]

Chemotherapy in neuroendocrine tumors
In NETs, chemotherapy may be considered in therapeutic 
strategy because it can contribute to tumor and symptom 
control by reducing extent of disease. Therapy based on a 
single-agent chemotherapy have shown ORR usually not 
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higher than 20%, and so these are generally reserved to 
chemonaïve patients when the clinical condition does not 
allow therapy with multiple agents. Poly-chemotherapy 
regimens have shown greater activity as evidenced by 
numerous phase II studies and retrospective analyses. 
Drugs with activity in this setting belong to the class of 
alkylating agents [streptozotocin dacarbazine (TMZ)], 
anti-metabolites (5-fluorouracil, capecitabine) and, 
more recently, oxaliplatin. Streptozotocin (STZ) is one 
of the drugs most commonly proposed in patients with 
pancreatic NETs (pNETs), but it is not marketed in Italy. 
It has been much criticized due to its toxicity, especially 
renal and because some studies have reported very high 
ORR but based on often questionable evaluation methods 
of response. The most reliable study[64] had 84 pNETs 
patients treated with a combination of 5-fluorouracil (5-
FU), adriamicin, and STZ with a 39% partial response 
(PR) but 20% had moderate-to-severe toxicity, especially 
in terms of neutropenia and asthenia.

Dacarbazine has been used in a mixed population in Italy 
in combination with 5-FU and epirubycin with 30% partial 
response rate.[65] The same combination used in a mixed 
population of patients, predominantly pretreated, with low 
grade tumors and an intermediate proliferation index. The 
result was a good disease control and the demonstration 
that chemotherapy may also be active in patients with non 
pNETs, GEP, NETs, and non-GEP NETs.[20]

Recently, new combinations have been tested in phase II 
trials. Temozolomide is an alkylating agent used in NETs due 
to its oral use. There are some retrospective and prospective 
studies showing activity but, because of the small number 
of patients involved and the variety of regimens used, it is 
difficult to recommend the best regimen. Interesting results 
have emerged from a retrospective analysis published 
in 2011 in association with capecitabine in pNETs naïve 
for any type of chemotherapy.[66] The high response rate 
(70%) and low toxicity led to a prospective phase II 
study conducted in the US to validate this combination. 
Methylguanine-methyltransferase (MGMT) is an enzyme 
that acts by methylating oxygen in position 8 of guanine, 
allowing repair of damage induced on DNA and making 
the expression of the enzyme inversely proportional to the 
response to the TMZ itself. In a retrospective analysis of 97 
patients with NETs (pancreatic, intestinal, lung carcinoid 
tumors) treated with TMZ, the authors showed that the 
lack of expression of MGMT is more common in pNETs 
than in carcinoids and demonstrated a partial response 
rate of 34% in pNETs and only 2% in carcinoids.[21] These 
observations suggest that the state of MGMT could be 
a potential predictor of response to alkylating agents in 
NETs and therefore that studies of MGMT in tumor tissue 
are needed.

As regards the platinum derivatives, in 2006 a clinical 
study conducted by Italian Trials in Medical Oncology[22] 
evaluated the combination of capecitabine and oxaliplatin 

on a group of heterogeneous NENs in terms of the site 
of primary tumor and biology (well differentiated, 
progressive on biotherapy, poorly differentiated). This 
study indicates that oxaliplatin may be effective, both in 
digestive NETs and extra-digestive, especially low-grade. 
The role of oxaliplatin was studied by another group[67] in 
a retrospective analysis of a heterogeneous population in 
terms of primary tumor, biology, and disease progression 
at baseline. All patients except one had a low-grade 
tumor according to 2000 WHO classification but Ki67 
was only available in 4 of 20 patients. There was a RR 
of 84%, 7 months for PFS and 23 months for OS. More 
recently, another group explored the activity and toxicity 
of oxaliplatin-based chemotherapy in an Italian muticenter 
“real world” study. A heterogeneous population of 78 
NENs with well-detailed tumour characterization was 
analyzed between 1999-2013 and found that an oxalipatin-
based regimen to be active and well-tolerated, including in 
previously treated patients.[68]

Metronomic chemotherapy
The various way of chemotherapy administration currently 
represents an interesting issue. The NENs are highly 
vascularized neoplasms so angiogenesis plays a key role 
in the growth of these tumors. For this reason, metronomic 
chemotherapy, defined as continuous administration 
of a low-dose chemotherapeutic drug, could have an 
antiangiogenic-reducing effect. One group 5-FU with 
octreotide LAR, reaching 23 months TTP in patients 
with GEP NETs.[69] The same group has also shown that 
expression of thymidylate synthase, an enzyme involved 
in the metabolism of 5-FU, reduces time to progression 
(TTP) and OS in patients with GEP NETs treated with 
5-FU.[70] A phase II single arm trial with metronomic 
capcitabine in combination with octreotide LAR and 
bevacizumab has been used in patients with intestinal 
NENs.[23] The study was conducted from 2006 to 2009 in 
5 centers and included 45 patients with well/moderately 
differentiated, locally advanced or metastatic disease, 
from various origins. Some were chemonaive and were 
progressing on SSA or radioreceptor therapy. Metronomic 
capecitabine was administered at a fixed dose of 2,000 
mg per day in combination with octreotide LAR 20 mg 
every 4 weeks and bevacizumab at 5 mg/kg, intravenously, 
every 2 weeks. There was a > 80% (PR + stable disease), 
especially in patients with GEP NENs, but when responses 
were analyzed for the primary tumor site a higher RR 
in patients with pancreatic neuroendocrine neoplasms 
(pNENs) was observed than those with extrapancreatic 
NENs. Temozolomide was used with a metronomic 
schedule as well. The dose was 100 mg daily continuously 
in combination with bevacizumab and octreotide LAR in 
a group of 15 patients with low-grade NEN (Ki67 < 20%) 
of various origins, functioning and non-functioning, and 
progressive on at least first-line therapy. Partial responses 
were 57% with 9 months TTP.[24] It is noteworthy that 47% 
of patients had pNEN and 67% had an NEN with Ki67 less 
than or equal to 5%. The authors conclude that the very 
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high RR suggested that prolonged administration of TMZ 
can induce a depletion of MGMT in favor of TMZ itself. 
Despite study limitations (small number, heterogeneity), 
the high RR suggests the need to investigate this schedule 
in a more homogeneous population (as for primary tumor 
site and biological characteristics) in order to confirm the 
effectiveness of TMZ based-chemotherapy and validate 
the predictive role of MGMT.

Chemotherapy in thoracic NETs
Due to their rarity, thoracic NENs (typical and 
atypical carcinoids) are usually included in studies 
with chemotherapy designed for NENs derived from 
other anatomical regions. Thus, there is no standard 
chemotherapy regimen for thoracic NENs and any 
therapeutic results do not appear homogeneous. Moreover, 
given their low proliferative activity, carcinoids are 
generally considered to be chemo-resistant.[71] Single-
agent chemotherapy has shown no more than 20% overall 
ORR, so mono-chemotherapy is suggested for pretreated 
patients or patients with poor performance status or 
severe comorbidities. Older phase II or III trials have been 
published but they were not considered homogeneous in 
terms of population and response evaluation criteria due 
to poorly definition. The drugs mostly used as single-
agent are 5-FU, CDDP, carboplatin, irinotecan, TMZ, 
gemcitabine, VP-16, doxorubicin, STZ, dacarbazine, 
paclitaxel, docetaxel, and pemetrexed. Poly-chemotherapy 
is able to produce a radiological PR in only 5-10% of 
patients, but with symptomatic responses in 40-60% 
of cases. However, these results are extrapolated from 
studies including patients with NENs derived from any 
anatomical site, reducing the levels of trial evidence, 
even for well-conducted study, and with low probability 
of bias. A specific study of bronchial carcinoids was 
recently published[72] that examined TMZ as monotherapy 
in 31 progressive metastatic bronchial carcinoid patients. 
The treatment was active, showing 66% ORR, and well 
tolerated. However, combining regimens with other agents 
should be further studied.

CONCLUSION

In conclusion, many drugs have shown activity but many 
questions still remain: which drugs to use, which schedule, 
timing and, above all, which predictors can guide clinicians 
in the choice of chemotherapy. Despite the complexity and 
the heterogeneity of these tumors, the main challenge in 
the near future will be to design clinical trials that will 
answer these questions. It is also very important that 
the therapeutic decision only be achieved as part of a 
multidisciplinary program.
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INTRODUCTION

Neuroendocrine neoplasms (NENs) represent a group of 
heterogeneous and infrequent tumors, with an estimated 
incidence of 5.86 per 100,000 per year,[1] that most 
frequently originate from neuroendocrine cells of the 
upper airways, the small intestine, the duodenum and the 
pancreas.[2] NENs are generally asymptomatic in the early, 
localized stages (with the exception of a small minority of 
NENs, represented by so-called functioning NENs, which 
actively secrete bioactive substances and can present 
with related signs and symptoms, such as flushes and 
diarrhea). Functioning NENs are often discovered after 
the development of symptomatic metastases elsewhere 
in the body,[2,3] which occur most frequently in the lymph 
nodes, liver, and bones.[4,5] NENs may exhibit a variety of 
biological behaviors in that they may be aggressive and 
rapidly growing or indolent[6] and a long survival time (on 
the order of years) is not uncommon in patients with slowly 
progressing tumors.[7] The majority of NENs express 
somatostatin receptors (SSTR) on the cell membrane,[8] 
which makes them ideal targets for both functional 
imaging and therapeutic applications with radiolabeled 
somatostatin analogues (SSAs).[4,9] The level of SSTR 
expression appears to depend on tumor differentiation, 
with increased numbers of receptors expressed in well-
differentiated NENs compared to poorly-differentiated 

NENs.[10] Tracers which exploit SSTR expression 
(68Ga-DOTA-peptide) therefore have been employed 
in the diagnosis and staging of well-differentiated 
neuroendocrine tumors (NETs). Poorly-differentiated 
neuroendocrine carcinomas (NECs), which exhibit a 
higher proliferative activity and a loss of neuroendocrine 
features including the expression of SSTRs, are more 
suited to the use of 18F-Fluoro-2-deoxyglucose (18F-FDG) 
imaging.[8] In fact, reported 18F-FDG sensitivity is low in 
well-differentiated NETs,[11] and significantly improved 
in poorly-differentiated NECs.[12] Therefore, it has been 
hypothesized that 18F-FDG-based molecular imaging may 
differentiate between more biologically aggressive NENs, 
which exhibit greater 18F-FDG uptake, and more slowly-
growing NENs, which exhibit less intense 18F-FDG uptake. 
However, retrospective reports evaluating the prognostic 
value of 18F-FDG have provided discordant results.[13,14]

18F-FDG AND 68GA: BIOLOGICAL AND 
TECHNICAL ASPECTS

18F-fluoro-2-deoxyglucose (18F-FDG)
18F-FDG is the most commonly used radiopharmaceutical 
tracer for PET imaging in clinical oncology.[15] It is a 
glucose analogue labeled with positron-emitting 18F. The 
compound is taken up into cells by glucose transporter 
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proteins. Once internalized, 18F-FDG is phosphorylated to 
18F-FDG-6-phosphate which cannot be further metabolized 
and remains trapped in the cell.[16]

High rates of glycolysis are found in many malignant 
tumor cells.[17] Compared with normal cells, malignant 
cells have an increased number of cell surface glucose 
transporter proteins and increased intracellular 
glycolytic enzyme levels, including hexokinase and 
phosphofructokinase.[15,16] In clinical practice, therefore, 
18F-FDG is often used to distinguish malignant from 
normal tissues, to stage many types of neoplasms, and to 
detect recurrence after treatment.[18] Moreover, 18F-FDG 
uptake, reflecting glucose metabolism, has been associated 
with higher cellular proliferative activity, increased tumor 
aggressiveness, and a less favorable prognosis. However, 
it should be noted that the uptake of 18F-FDG varies greatly 
for different tumor types and increased 18F-FDG uptake is 
not necessarily specific for neoplasms. Increased 18F-FDG 
uptake may also be due to inflammatory processes, 
muscle contraction and brown fat activation.[8,15] From 
the technical point of view,18F-FDG is administered 
via intravenous injection (standard doses: 10-20 mCi of 
18F-FDG, 0.14-0.21 mCi/kg of body weight)[19] and images 
are acquired approximately 60 min after injection to allow 
18F-FDG clearance from the blood pool and sufficient 
18F-FDG uptake in the target tissues (18F-FDG half-life is 
109 min).[15] In order to minimize competitive inhibition 
of 18F-FDG uptake by glucose, patients should be fasted 
for at least 6 h prior to 18F-FDG injection. Blood glucose 
levels are routinely assessed before starting the imaging, 
and 200 mg/dL is considered the maximum cutoff point.[16] 
Adequate pre-hydration is important to reduce 18F-FDG 
concentration in urine and to reduce radiation dose to the 
patient.[16]

68Ga-DOTA-peptides
68Ga-DOTA-peptides are radiolabeled SSAs capable of 
specifically binding to SSTR, which are overexpressed 
on the surface of NET cells,[16] thus permitting functional 
imaging and therapeutic targeting of NETs.[20] Five different 
SSTR subtypes have been identified (SSTR1 to SSTR5), 
but SSTR2 is the predominant receptor subtype in NETs.[21] 
Many 68Ga-DOTA-peptides have been developed for PET 
imaging of NETs.[8] The most widely employed in the 
clinical setting are 68Ga-DOTANOC ([DOTA0,1-Nal3]-
octreotide), 68Ga-DOTATATE ([DOTA0,Tyr3,Thr8]-
octreotide), and 68Ga-DOTATOC ([DOTA0,Tyr3]-
octreotide).[8] The major difference among these 
compounds relies on a slightly different affinity to SSTR 
subtypes. Although all 68Ga-DOTA-peptides can bind to 
SSTR2, 68Ga-DOTATOC and 68Ga DOTANOC also bind 
to SSTR5, and 68Ga-DOTANOC has additional affinity for 
SSTR3.[22] Physiological 68Ga-DOTA-peptides uptake is 
evident in liver, spleen, pituitary, thyroid, kidneys, adrenal 
glands, salivary glands, stomach wall, intestine, and 
pancreas.[23] In particular, a physiological focal location of 
uptake is in the pancreatic uncinate process, which must 

be considered in imaging interpretation.[8] Moreover, as 
SSTRs are also expressed in peritumoral vessels and in 
inflammatory and immune cells, false-positive findings 
may be constituted by non-NETs and inflammatory 
diseases.[8] That being stated, the reported sensitivity and 
specificity of PET/CT with 68Ga-DOTA-peptides in the 
diagnosis of NETs are 96% and 100%, respectively.[24] 
Such outcomes are superior to that obtained with 
somatostatin receptor scintigraphy (SRS) and CT in NENs 
diagnosis, staging, and restaging.[25] The synthesis of 68Ga-
DOTA-peptides is relatively easy and does not require 
an on-site cyclotron. 68Ga (physical half-life 68.3 min) is 
eluted from an in-house 68Ga generator (physical half-life 
270.8 days by electron capture) that allows a continuous 
tracer production.[8] 68Ga-DOTA-peptides are administered 
via intravenous injection and images are acquired between 
45 and 90 min after injection.[8] The activity administered 
in adults is 1.5-3 MBq per kg (100-200 MBq).[8] To avoid 
possible SSTR blockade, patients undergoing PET/CT 
with 68Ga-DOTA-peptides should stop SSAs treatment, 
with an interval time depending on the type of drug used 
(1 day for short-acting SSAs and 3-4 weeks for long-acting 
SSAs).[8] No fasting before the injection of radiolabeled 
SSAs is needed.[8]

FOCUS ON 18F-FDG AND 68GA PET/CT IN 
NENs

At present, 18F-FDG PET/CT is not routinely recommended 
for NENs imaging. The generally slow-growing behavior 
of this tumor type led to the hypothesis of a lower glycolytic 
activity compared with many other malignancies, and 
accordingly, of a lower sensitivity for 18F-FDG PET in this 
setting. This notwithstanding, 18F-FDG PET/CT shows a 
positive result in about 60% of NEN patients.

18F-FDG and 68Ga PET/CT and primary tumor 
site
NENs which arise in the thoracic region have a higher 
proportion of high-grade versus low-grade NENs (18-
23.0% vs. 1-2.0% of all lung neoplasms), as has been 
reported in a review by Fisseler-Eckhoff and Demes.[26] In 
this context it should be observed that poorly differentiated 
NENs are usually 18F-FDG-avid and demonstrate less 
68Ga-DOTA-peptide uptake. Among indolent, low-grade 
thoracic NETs, i.e. typical bronchial carcinoids, a low 
glucose turnover is common.[27] In these histotypes, 68Ga-
DOTA-peptide PET/CT demonstrates a superior diagnostic 
power over 18F-FDG PET/CT, being able to correctly 
discriminate endobronchial neoplasms from adjacent 
atelectasis. The good correlation of 18F-FDG and 68Ga-
DOTATATE uptake with tumor grade in pulmonary NETs 
justifies their clinical use as an aid in the identification, 
both at initial staging and during follow-up and evaluation 
of treatment results, of the presence of aggressive tumors 
or dedifferentiated areas within a low grade neoplasm.[28]

NENs which arise in the gastro-entero-pancreatic (GEP) 
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area show a higher proportion of low-grade versus high-
grade malignant neoplasia.[29] Among GEP-NENs, midgut 
NENs are low-grade in more than half of cases (G1), 
whereas pancreatic NENs are more evenly distributed with 
regard to Ki-67 labeling index and consequently tumor 
grade.[30] It should be noted that higher grade NENs tend 
to show a significant uptake of 68Ga-DOTA peptides and, 
conversely, significantly lower 18F-FDG avidity.

18F-FDG PET/CT is positive in 97% of patients with 
high-grade thoracic NENs (SCLC),[31] in 75% of patients 
with low-grade thoracic NENs (carcinoids),[32] in 53-
57% of patients with pancreatic NENs and in 29% of 
gastrointestinal low-grade NENs (carcinoids).[33]

18F-FDG and 68Ga-DOTA-peptide PET/CT and 
tumor grade
The WHO grading system defines 3 categories of NENs 
based on mitotic count and Ki-67 proliferative index (G1, 
mitotic count < 2 cells/10 high-power fields (HPF) and Ki-
67 index ≤ 2%; G2, mitotic count 2-20 cells/10 HPF or Ki-
67 index 3-20%; and G3, mitotic count > 20 cells/10 HPF 
or Ki-67 index > 20%).[34,35] Tumors with higher Ki-67 
expression display an increased proliferative activity and 
are associated with a less favorable prognosis.[36] 18F-FDG 
PET/CT gives an index of cellular glycolytic activity, but 
it has also been hypothesized that it may reflect also tumor 
proliferation, based on correlations of 18F-FDG uptake 
with the number of S-phase cells.[37] As expected, the 
proportion of patients with a positive 18F-FDG PET scan 
was found to be markedly higher in patients harboring 
high-grade, highly-proliferating NECs compared with 
patients with well-differentiated, slowly-proliferating 
NETs (83% vs. 12,5%).[12] In a surgical series of pancreatic 
NENs, 18F-FDG PET SUV max (maximum standardized 
uptake value) significantly correlated with tumor grade 
(Spearman rank correlation 0.584; P = 0.0018), and the 
sensitivity, specificity, and accuracy of differentiating 
G3 tumors from G1/G2 tumors were 100.0%, 62.5%, 
and 66.7%, respectively.[34] When well/moderately and 
poorly differentiated NENs are considered together, both 
68Ga-DOTATATE and 18F-FDG PET/CT positivity seem 
to correlate with tumor grade: a higher uptake of 68Ga-
DOTATATE has been described in low-grade compared 
with high-grade tumors (P = 0.019) and, conversely, a 
higher uptake in high-grade compared with low-grade 
NENs (P = 0.029).[38] When considering only intermediate 
and low-grade tumors, only 18F-FDG PET/CT maintained 
a significant correlation with tumor grade, showing higher 
tracer uptake in intermediate versus low-grade NENs. On 
the contrary, 68Ga-DOTATATE PET/CT showed similar 
uptake values in G1 and G2 NENs.[38] That notwithstanding, 
even in G1 NETs the rate of 18F-FDG PET/CT positivity 
may be high.  For example, in a prospective series of 98 
patients with NENs, 18F-FDG PET/CT was positive in 40% 
of patients with G1 NETs (Ki-67 labeling index < 2%), 
70% of patients with Ki-67 labeling index 2-15% and 93% 
of patients with Ki-67 labeling index > 15%.[39] Although 

some studies fail to demonstrate such a relationship,[11,14] 
these observations suggest overall that 18F-FDG PET/
CT may provide information on tumor grade in NENs, 
showing a high accuracy in the distinction of NECs from 
NETs, and promising outcomes in the stratification of 
well-/moderately-differentiated NETs.[40]

ROLE OF DOUBLE TRACER PET/CT AT 
DIAGNOSIS

Diagnostic workup and staging
68Ga-DOTA-peptide PET/CT is considered fundamental in 
the diagnostic workup in patients with suspected thoracic 
and/or GEP NETs.[41]

SSTR-based PET studies with 68Ga-labeled SSAs (68Ga-
DOTA-peptides) represent the evolution of SRS with 111In-
pentreotide which emerged in the late eighties as the gold 
standard in diagnosing, staging and follow-up of patients 
with NET,[4,42] with reported sensitivity and specificity 
ranging between 60-99% (except only for insulinomas 
which show a low SSTR2 expression)[8] and 85-98%, 
respectively.[4,43,44] Despite these encouraging results, which 
were superior to those achieved by CT or MRI,[4,45,46] SRS 
was limited by a low spatial resolution and an inability 
to precisely localize neoplastic lesions, especially prior to 
the introduction of SPECT/CT hybrid systems.[8] These 
shortcomings have been overcome by the development of 
68Ga-labeled SSAs suitable for PET imaging. PET studies 
with 68Ga-labeled SSAs have several advantages over SRS 
including better diagnostic accuracy for the detection of 
lung and bone lesions, higher affinity for SSTR2, higher 
spatial resolution, lower radiation exposure, better patient 
comfort, and faster reporting. Results are typically available 
within a few hours rather than 24 or even 48 h for SRS 
with 111In-pentreotide. Results also have the possibility 
of quantifying radionuclide biodistribution which includes 
the potential to use data for monitoring the response to 
anticancer agents.[4,47,48] Combining PET and CT scans 
additionally increased the diagnostic accuracy, as CT 
provides complementary anatomic information.[25] Among 
the various 68Ga-labeled SSAs, 68Ga-DOTATOC shows a 
particularly high affinity for SSTR2 which permits even the 
detection of small lesions with lower SSTR expression.[4,49] 
68Ga-DOTATATE and 68Ga-DOTANOC are also clinically 
useful because of their high affinity to SSTR2 and, of 
particular importance, to SSTR3 and SSTR5 for 68Ga-
DOTANOC.[4,50,51] In a meta-analysis on the diagnostic 
performance of SSTR-based PET or PET/CT in patients 
with suspicious thoracic and/or GEP NETs, sensitivity and 
specificity of PET or PET/CT with 68Ga-DOTA-peptides 
in detecting NETs on a per patient-based analysis ranged 
from 72% to 100% and from 67% to 100%, with pooled 
estimates of 93% (95% CI: 91-95%) and 91% (95% CI: 
82-97%), respectively. The area under the ROC curve was 
found to be 0.96, demonstrating that SSTR-based PET or 
PET/CT with 68Ga-DOTA-peptides are accurate diagnostic 
methods in NET diagnosis.[41] Being able to detect NET 
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lesions at a significantly higher rate than conventional 
imaging with CT and/or MRI, 68Ga-DOTA-peptides PET/
CT is particularly useful in “difficult” situations, such as the 
identification of the primary tumor in metastatic patients 
after failure of conventional imaging,[4,8,52] the detection of 
small metastases not always detectable by CT or MRI,[4,52] 
or the characterization of lesions of uncertain nature after 
conventional imaging. For these reasons, it is generally 
required, for example, to guide the selection of patients 
towards those who are potential candidates for radical 
surgery or for liver resection with curative intent.[4,22] In 
the preoperative staging, 68Ga-DOTATOC PET provides 
additional information that significantly influences surgical 
management in around 20% of patients.[53,54]

On the other hand, 18F-FDG PET is not routinely used in 
NENs imaging,[39] on the assumption that, due to the low 
proliferation rate and low metabolic activity generally seen 
in NETs, 18F-FDG PET would have a low sensitivity and 
would not provide additional information to conventional 
CT and SSTR-based imaging.[11,38] Indeed, 18F-FDG-based 
functional imaging demonstrates a low overall diagnostic 
sensitivity for NENs (58% for 18F-FDG PET,[39] 66% 
for 18F-FDG PET/CT),[38] and in general, SSTR-based 
functional imaging with 68Ga-DOTA-peptides has superior 
accuracy in NENs diagnosis and staging compared with 
18F-FDG PET/CT. Nonetheless, it is known that one of 
the main limitations of SSTR-based PET/CT with 68Ga-
DOTA-peptides lies in the detection of poorly differentiated 
NECs, which frequently show a low expression of SSTRs 
on cell membrane. Such limitation can be overcome by 
combining the use of 18F-FDG with 68Ga-DOTA-peptides. 
The combination of 68Ga-DOTATATE PET/CT and 
18F-FDG PET/CT improves the diagnostic accuracy over 
single tracer-PET/CT. Indeed, Kayani et al.[38] reported a 
sensitivity of 82% for 68Ga-DOTATATE PET/CT alone 
and of 66% for 18F-FDG PET/CT alone compared with 
92% for double tracer (68Ga-DOTATATE plus 18F-FDG) 
PET/CT.

Prognostic relevance
Combining 18F-FDG PET/CT with 68Ga-DOTA-peptides 
PET/CT can provide additional prognostic information.

A high SSTR expression does not represent per se a 
prognostic parameter in terms of PFS.[55] 18F-FDG uptake, 
conversely, seems to be related to higher Ki-67 index, 
higher proliferation rate and worse prognosis.[12,14]

In a first study by Pasquali et al.,[12] a positive 18F-FDG 
PET scan was associated with early progression and a 
shorter survival. Ninty-three percent of patients with a 
positive 18F-FDG PET scan had a progressive disease 
within 6 months vs. 8,7% of patients with a negative 
18F-FDG PET scan. Similarly, 95% of patients with a 
positive 18F-FDG PET scan were alive at 2 years vs. 42% 
of patients with a negative 18F-FDG PET scan. These 
observations were confirmed by Binderup et al.[39] in 

their prospective study conducted on 98 NEN patients. 
18F-FDG PET/CT positivity (both in terms of positive/
negative and quantified by SUVmax) was an independent 
prognostic factor for the prediction of overall survival 
(OS) for NEN patients. With a hazard ratio (HR) of 10 
for risk-of-death for patients with FDG-positive compared 
with FDG-negative foci, this test exceeded the prognostic 
value of “conventional” parameters such as Ki-67 labeling 
index and the presence of liver metastases. Similarly, a 
statistically significant difference in PFS between the 
18F-FDG-positive and the 18F-FDG-negative group was 
found. Additionally, comparable results were obtained in 
another study with long-term follow-up, demonstrating an 
overall 4 year survival rate of 0% in patients with a positive 
18F-FDG PET scan versus 87% in patients with a negative 
18F-FDG PET scan.[56] These findings have been confirmed 
by a prospective study of patients with metastatic NENs 
in which a correlation was noted between 18F-FDG PET 
positivity and worse prognosis in terms of shorter OS and 
PFS. OS was 95% and 95% at 1 and 2 years, respectively, 
for patients with a negative 18F-FDG PET scan, versus 
72% and 42% at 1 and 2 years, respectively, for patients 
with a positive 18F-FDG PET scan. PFS was 87% and 75% 
at 1 and 2 years, respectively, for patients with a negative 
18F-FDG PET scan, versus 7% and 0% at 1 and 2 years, 
respectively, for patients with a positive 18F-FDG PET 
scan.[2]

18F-FDG PET may be useful even in a non-metastatic 
setting, to predict the prognosis in surgical patients. In 
a study conducted on patients with pancreatic NENs 
18F-FDG PET SUVmax correlated with tumor grade and 
also appeared to be significantly related to postoperative 
disease-free survival (P = 0.0463).[34]

Predictive relevance
Predicting the course of a metastatic NEN is difficult. 
Aggressive treatment should be proposed to all patients 
in good overall health with high-grade NECs because of 
their rapidly progressive behavior. Different therapeutic 
strategies may instead be proposed to patients with well-
differentiated NETs, which may show a variable range of 
malignant behavior. Due to the fact that available treatments 
may have significant long-term toxicity, it is important to 
distinguish between rapidly progressive NENs, for which 
active treatment is necessary and relatively indolent NENs, 
which may be treated more conservatively.

68Ga-DOTA-peptide PET/CT, depicting the amount of 
SSTR expression on NEN cells, has been proposed as a 
predictive tool for both SSAs treatment and PRRT.[22,57] 
While SSTR-based functional imaging positivity is not 
required before the start of SSAs therapy, it is a basic 
requirement for PRRT with beta-emitting radiolabeled 
SSAs.[3,8,22,58] Due to its pharmacokinetics, PRRT is 
effective only in SSTR-expressing lesions.[59] SUVmax 
measured on PET imaging with 68Ga-DOTA-peptides 
exactly correlates with the number of SSTR on tumor 
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cells and a higher SSTR expression is a rough predictor 
of response to PRRT.[55,60] Clinical studies demonstrated 
higher tumor remission rates after PRRT in patients with 
a high baseline SUVmax on 68Ga-DOTA-peptide PET/CT 
versus patients with a lower baseline SUVmax on 68Ga-
DOTA-peptide PET/CT.[59]

Therefore, patients with positive 18F-FDG PET/CT 
but negative 68Ga-DOTA-peptide PET/CT cannot be 
effectively targeted with PRRT, as the negative 68Ga-
DOTA-peptide PET/CT indicates that the obligatory target 
is not expressed. Such patients, who frequently harbor 
high-grade NECs, may benefit instead from conventional 
chemotherapy[61] or, in selected cases, from biologic 
agents such as everolimus or sunitinib.[62,63] Conversely, if 
patients have 18F-FDG-avid lesions which retain sufficient 
SSTR expression as evidenced by concordant 18F-FDG 
and 68Ga-DOTA-peptides uptake, these sites of aggressive 
disease can potentially be targeted with PRRT.[64] Indeed, 
it has been reported that many such patients, including 
those who have failed conventional therapies,[64] have 
remarkable responses to PRRT, although with shorter 
PFS[55] compared to patients without a positive 18F-FDG 
PET/CT scan.  In a study conducted on patients with 
metastatic, well differentiated (G1-G2) NETs, undergoing 
177Lu-DOTATATE PRRT, the disease control rate 
was significantly higher in patients who had a negative 
18F-FDG PET/CT scan after 177Lu-DOTATATE PRRT 
(100%) versus patients who had a positive PET scan after 
177Lu-DOTATATE PRRT (76%).[55] Moreover, PFS was 
significantly lower in patients who had a positive 18F-FDG 
PET/CT scan, of whom 48% had progressive disease (PD) 
after a median follow-up of 20 months, versus patients 
who had a negative 18F-FDG PET/CT scan, of whom 26% 
had PD after the same follow-up time.[55] In a study on 
patients with metastatic well-differentiated NETs,[65] of the 
42 patients who had pretreatment 18F-FDG PET imaging, 
31 patients had a positive 18F-FDG PET scan (SUVmax > 
2.5) with an average survival time of 18.9 months (range 
1.4-45.8 months) and 11 patients had a negative 18F-FDG 
PET scan (SUVmax ≤ 2.5) with an average survival time of 
31.8 months (range 7.4-42.9 months). Survival in patients 
with a negative 18F-FDG PET scan was significantly longer 
than in patients with a positive 18F-FDG PET scan (P = 
0.001 with 95% confidence interval).[65]

It has been proposed that these patients could benefit from 
the adjunct of radiosensitizing chemotherapy with 5-FU to 
PRRT[66] and trials are ongoing to assess this hypothesis.

Heterogeneity description
The histopathological classification of NENs is limited by 
an intrinsic bias when applied to patients with metastatic 
disease.  The tissue obtained from needle biopsy of a 
single lesion is not necessarily representative of the 
all the cells in that tumor, or all the tumor lesions in all 
tumor sites[38,39,55] given that NENs display a particularly 
high heterogeneity.[34] Accurate tumor grading for 

prognostication and risk stratification would theoretically 
require multiple biopsies from different tumor sites and in 
different moments over time through the evolution of the 
disease, but obviously this is not always possible.[34,55]

Functional imaging can non-invasively and simultaneously 
visualize in real-time all metabolically active tumor 
sites in the whole body.[39,55] While 68Ga-DOTA-peptides 
avidity is a feature of well-differentiated disease, 18F-FDG 
avidity tends to be associated with more aggressive, de-
differentiated disease.[66] Variable tracer uptake at different 
lesion sites within the same patient is a relatively common 
finding, and reflects the wide spectrum of differentiation of 
some NENs, where heterogeneity of cellular differentiation 
may be present even within one single tumor lesion.[12,38]

This observation, while suggesting caution in the 
interpretation of Ki-67 indexes obtained from biopsy 
samples, on the other hand reflects the potential ability of 
PET/CT to map cellular heterogeneity. Consistently, the 
prognostic value of 18F-FDG PET/CT positivity exceeded 
that of “conventional” parameters such as Ki-67 labeling 
index and presence of liver metastases in the study of 
Binderup et al.[39] Similarly, 18F-FDG PET/CT was found 
to be more sensitive than pathologic differentiation and 
Ki-67 labeling index in the early prediction of rapidly 
progressive disease in the report of Garin et al.[2] A total 
tumor population characterization using a combination 
of 18F-FDG PET/CT and 68Ga-DOTA-peptides PET/CT 
seems a clinically useful approach,[52] being able to map the 
entire degree of tumor differentiation in the same patient 
at different time points throughout the natural course of 
disease.[22,38,52]

ROLE OF MOLECULAR IMAGING IN 
THE EVALUATION OF RESPONSE AFTER 
TREATMENT

Early prediction of therapy response in cancer patients is 
essential to guide therapy and avoid the side effects and 
costs of ineffective therapies.

68Ga-DOTATOC PET/CT was found to be superior to 
standard imaging with CT and/or MRI in the detection of 
primary tumor recurrence in pretreated patients in whom 
tumor recurrence was suspected during the follow-up 
period (8/40 vs. 2/40, P < 0.001).[4]

The role of 68Ga-DOTATOC PET/CT in evaluating 
treatment response after PRRT is debated. Some authors 
reported that decreased 68Ga-DOTATATE uptake after 
finishing the first cycle of PRRT significantly correlated 
with symptom improvement and a longer TTP in patients 
harboring well-differentiated NETs.[67,68] In other studies, 
68Ga-DOTATOC PET was not found to be superior to CT 
in the assessment of response to SSTR-targeted PRRT.[69] 
For this reason, early variations in SUVmax of 68Ga-
DOTATOC PET actually cannot be used as a surrogate 
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marker of response. However, the persistence of high 
levels of 68Ga-DOTATATE uptake during treatment with 
SSAs can suggest the continuation of cold SSAs treatment 
in patients with stable disease and/or to switch to PRRT in 
patients with signs of clinical/radiological worsening.[52]

18F-FDG PET/CT may be useful, instead, in the evaluation 
of patients with dedifferentiated tumor recurrences[69] and 
of patients who had 18F-FDG-avid lesions at diagnosis 
in whom changes in 18F-FDG SUV between pre-therapy 
baseline and intratherapy follow-up scans may be an 
indicator of response to treatment. In this context it may 
be useful to refer to a standardized set of rules which 
can be employed to objectively assess tumor response 
to treatment such as PERCIST criteria which were 
developed for quantitative PET evaluation of changes 
in tumor metabolic activity induced by anticancer 
treatments.[70] For instance, the use of these criteria has 
shown to be clinically useful in the evaluation of patients 
with SCLC.[71]

CONCLUSION

Double-tracer PET/CT is a useful tool in the management 
of NENs.

Parameters that may influence the decision of the clinician 
to request a double-tracer PET/CT study are include 
tumor grading, primary tumor site and clinical setting (i.e. 
resectable vs. advanced disease, etc.).

68Ga-DOTA-peptide PET/CT is routinely employed in the 
setting of low- and intermediate-grade NENs; 18F-FDG 
PET/CT has a more debated role in the management of 
NENs. Besides its established role in the management of 
highly proliferating neoplasms, it can be a useful tool even 
in more indolent tumors.

Double-tracer PET/CT may have not only diagnostic, but 
also predictive and prognostic applications. Double-tracer 
staging shows a higher overall accuracy than conventional 
imaging and can provide prognostic information. A 
possible predictive role of nuclear medical imaging has 
been suggested, but has not yet been fully validated. 
Although 68Ga-DOTA-peptide PET/CT has been found 
in several studies to be a strong predictor of response to 
PRRT, the role of 18F-FDG PET/CT as a predictive factor 
is still under investigation.
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Neuroendocrine tumors (NETs) represent a spectrum of rare neoplasms arising in different organism sites. Depending on the 
site of onset, they also can be distinguished using lab exams (secreting vs. nonsecreting), clinical symptoms (functioning vs. 
nonfunctioning), behavioral, morphological characteristics (tumor cells’ architectural growth patterns, mitotic and Ki-67 index, 
presence of necrosis), and grade of cellular differentiation. The aim of this review is to focus on the main signaling pathways 
targeted by medical treatments of advanced sporadic gastro-entero-pancreatic (GEP) and bronchopulmonary (BP) neuroendocrine 
neoplasms. The scientific literature regarding treatment of advanced GEP and BP-NETs has been extensively reviewed using 
MEDLINE and PubMed databases, selecting principal and more recent research articles, clinical trials, and updated guidelines. 
Somatostatin analogues represent a valid approach to control symptoms in functioning tumors and to inhibit tumor progression 
in certain categories on the basis of the typical somatostatin receptor expression observed in NETs. The pathogenesis of NETs 
has been the subject of increased interest in recent years. Many driver mutations pathway genes have been identified as important 
factors in the carcinogenesis process and, therefore, as potential targets for new anticancer therapies. Activating mutations have 
been shown in epidermal growth factor receptor, stem cell factor receptor, platelet-derived growth factor receptor, vascular 
endothelial growth factor, basic-fibroblastic growth factor, transforming growth factor, insulin-like growth factor-1, and their 
receptors. Effective M-Tor inhibition pathway modulation has led to the approval of drugs in this field such as everolimus.  New 
drugs and several combination regimens with targeted and newer biological agents are being developed and tested in recently 
conducted and ongoing trials.
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INTRODUCTION

Neuroendocr ine  neoplasms  typ ica l ly  occur  in 
gastrointestinal and bronchopulmonary tracts. Gastro-
entero-pancreatic neuroendocrine neoplasms (GEP-
NENs) originate from neuroendocrine cells of the 
gastrointestinal tract and pancreatic islets.[1]

Three-tiered grading systems have been proposed 
for GEP-NENs classification, according to their 
morphological features and ki-67 index:[2] neuroendocrine 
tumors (NETs), involving G1 (ki67 < 3%) and G2 (ki67 ≥ 
3 and ≤ 20%) neoplasms, and neuroendocrine carcinomas, 
G3 with ki67 > 20%. Neuroendocrine carcinomas show 
worse prognosis, and platinum-based chemotherapy is 
currently considered the standard of care.[3,4]

Identification of many driver mutations in pathway genes 
involved in the pathogenesis of well- and moderately-
differentiated NENs has promoted the development of 
specific targeted therapies.[5-7]

Conversely, bronchopulmonary NETs are approximately 
20-25% of all lung malignancies.[8-12] On the basis 
of 2004, World Health Organization classification, 
pulmonary NETs can be divided into three groups:[13]  
carcinoid tumors (typical carcinoids/atypical carcinoids) 
(1-2%), large-cell neuroendocrine (LCNEC) (3%), and 
small-cell carcinomas (SCLC) (15-20%). According to 
immunohistochemical markers, these neuroendocrine 



                                                                                                       Journal of Cancer Metastasis and Treatment ¦ Volume 2 ¦ August 31, 2016 ¦330

entities are further summarized into 2 groups based 
on their grade of biological aggressiveness: well-
differentiated neoplasms including typical and atypical 
carcinoids, and poorly differentiated ones involving 
LCNEC and SCLC.

Despite comprehensive and notable medical progress, 
therapeutic options are still inadequate for gastrointestinal 
and bronchopulmonary (BP) neuroendocrine tumors, 
due to the lack of in-depth knowledge of molecular 
mechanisms and predictive factors. This review aims 
to summarize the current knowledge about pathways 
involved in advanced, sporadic well- and moderately 
differentiated GEP-NETs and in BP carcinoids, 
highlighting available evidences on biological and 
targeted therapies.

SHORT SYNTHETIC ANALOGUES OF 
SOMATOSTATIN

The primary treatment objective for patients with NETs 
is cure. Symptom control and limitation of disease 
progression represent the secondary goals. The traditional 
first and only possible radical approach is surgery. 
However, NETs are frequently diagnosed in advanced 
stages when curative surgery is generally not possible. 
Medical management with the principal objective of 

relieving symptoms and, in recent years, of suppressing 
tumor growth and spread is a necessary option for 
advanced NETs that are unsuitable for surgery.[14]

Among medical therapies, Short synthetic analogues 
of somatostatin (SSAs) represent one of the possible 
options in the presence of carcinoid syndrome. SSAs 
include octreotide, lanreotide, vapreotide, seglitide, 
and pasireotide. SSAs’ affinity for the distinct receptor 
subtypes is different than that of native somatostatin.[15-17] 
Five different somatostatin receptor (SSTR) subtypes have 
been characterized in humans (SSTR1-SSTR5) [Figure 1].
[18-22] SSTR2 represents the principal target for octreotide, 
lanreotide, vapreotide, seglitide, and pasireotide. 
Furthermore, pasireotide shows a higher binding capacity 
towards SSTR1, activating also SSTR 3 and 5.[23-25] For 
this reason, different SSAs show a distinct affinity with 
their own ligands, eliciting various biological and clinical 
activities[16] in the same cell type through the activation 
of subsets of disparate intracellular mediators.[23,24,26] 
Nevertheless, the natural ligands of SSTR1-5 can bind all 
somatostatin receptors with high affinity.

SSTRs were expressed in over 80% of well-differentiated 
GEP-NENs. SSTR in particular has been observed to 
predominate in both gastrointestinal-NENs (90%) and 
primitive-NETs (P-NETs), especially in gastrinomas, 

Figure 1: Principal pathways involved in carcinogenesis and progression of NENs. EGFR: epidermal growth factor receptor; VEGFR2: vascular endothelial 
growth factor receptor 2; IGF1R: insulin-like growth factor 1 receptor; SSTR: somatostatin receptors; SOS: save our souls; PI3K: phosphoinositide 3-kinase; 
PIP2: phosphatidylinosital biphosphate 2; PIP3: phosphatidylinosital biphosphate 3; PTEN: phosphatase and tensin homolog; MEK: methyl ethyl ketone; 
ERK: extracellular signal-regulated kinase ; AKT: protein kinase B; mTOR: mammalian target of rapamycin; MAPK: mitogen-activated protein kinase
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glucagonomas, and VIPomas (80-100%).[27,28] However, 
insulinomas express SSTR in 50-70% of cases, showing a 
prevalence of SSTR5 mRNA expression that is positively 
correlated with aggressive pathological characteristics.[29]

SSTR2 is usually expressed in NENs, and its loss could 
be highly correlated with the dysregulation of tumor 
proliferation, consequently promoting tumor growth.[30,31]

SSTR1 and SSTR5 are less expressed in NENs and 
correlate with a major risk of angioinvasion and distant 
metastasis. SSTR3 is even less present, and SSTR4 is 
almost absent.[32-34]

Reductions of receptor density, changes in their subtype 
pattern, and probably also their downregulation seem to 
be a consequence of tumor dedifferentiation. Thus, the 
presence of SSTRs might also be useful as a specific 
predictor of prognosis.[16] However, any significant 
association between the expressed receptors subtypes and 
the primary tumor site at onset is observed in relation 
to high and heterogeneous expression of SSTRs, or to a 
specific hormone secretion.[35-37]

SSTR functioning appears different and dependent on 
the presence in several types of cancer cell, various 
distributions on cellular surface, and intrinsic features 
(ability of desensitization, internalization, and cross 
talk).[26,38] However, their activity causes a blockage 
of cellular survival, proliferation, differentiation, and 
hormone secretion, except for SSTR4, promoting cell 
mitosis through overregulation of Mitogen-activated 
protein kinase/extracellular signal-regulated kinase 1/2 
(MAPK/ERK1/2) pathway.

In fact SSTR1 acts on starting MAPK pathway; SSTR2 
augments Src homology region 2 domain-containing 
phosphatase-1 and epidermal growth factor receptor 
(EGFR) activity, over-regulates p21 and Rb, reducing 
MAPK activity and blocking cellular proliferation. p53 
and Bax, involved in apoptosis, are induced by SSTR3. 
It also blocks vascular endothelial growth factor receptor 
(VEGFR). Finally, protein tyrosine phosphatases are 
targeted by SSTR5.[18,39]

The role of SSAs, as mentioned, is to reduce active 
symptoms and to have an antiproliferative effect in 
secreting and nonsecreting neuroendocrine tumors. 

Table 1a: SSAs approved for NETs treatment

Author/trials Regimen Patients enrolled Results Adverse reactions 
(grade > 3)

Rinke et al.[49] Arnold et al.[28] 

PROMID (Phase III)
Octreotide vs. placebo Advanced GEP or NETs 

of unknown origin 
mTTP: 14.3 vs. 6 

months; SD: 64% vs. 
37.2%

Diarrhea

Caplin et al.[50] Clarinet (Phase 
III)

Lanreotide vs. placebo Advanced GEP or NETs 
of unknown origin 

mPFS: NR vs. 18 
months

Diarrhea

Filosso et al.[57] Octreotide Metastatic atypical 
bronchial carcinoid with 

carcinoid syndrome 
(diarrhea)

RR = 60% None

GEP: gastro-entero-pancreatic; NETs: neuroendocrine tumors; mTTP: median time to progression; mPFS: median progression free 
survival; SD: stable disease; NR: not reached; RR: response rate

Table 1b: SSAs not yet approved for NETs treatment

Author/trials Regimen Patients enrolled Results Adverse reactions 
(grade > 3)

Wolin et al.[53] (Phase III) Pasireotide vs. octreotide Advanced GEP- NETs mPFS: 11.8 vs. 6.8 
months; SD: 60.8% vs. 

42.3%

Hyperglycemia, diarrhea

SSAs: short synthetic analogues of somatostatin; NETs: neuroendocrine tumors; GEP-NETs: gastro-entero-pancreatic neuroendocrine 
tumors; mPFS: median progression free survival; SD: stable disease

Table 1c: Drug not yet approved for the treatment of refractory carcinoid syndrome
Author/trials Regimen Patients enrolled Results Adverse reactions (grade >3)
Kulke et al.[54] Telotristat Metastatic GEP-NETs with 

carcinoid syndrome
Reduction of BMs: 30% Gastrointestinal symptoms: nausea, 

vomiting, or abdominal discomfort
Pavel et al.[55] Telotristat Metastatic well-differentiated 

NETs with carcinoid syndrome 
(diarrhea)

Reduction of BMs: 
43.5%

Gastrointestinal symptoms: nausea, 
vomiting, or abdominal discomfort

GEP-NETs: gastro-entero-pancreatic neuroendocrine tumors; mTTP: median time to progression; mPFS: median progression free 
survival; BMs: bowel movements; RR: response rate
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If presented on tumor cells’ surface, the blockage of 
SSTRs operates directly on cell proliferation, stimulating 
antimitotic and apoptotic activities. SSAs also induce cell 
growth inhibition with indirect activities (not requiring 
SSTR neoplasm expression),[40-44] such as angiogenesis 
inhibition and immunomodulation mechanism, mediated 
by stimulation of the production of natural-killer cells and 
blockage of growth factors.[45-48]

The results of two international studies (PROMID, 
using octreotide, and CLARINET trial, using lanreotide) 
represent the principal reason for using SSAs as first-
line medical and systemic therapy in GEP tumors or 
neuroendocrine tumors of unknown origin, especially 
for data about progression-free survival (PFS).[49,50] As 

shown by Rinke et al.[49] in the PROMID study, advanced 
midgut NENs gained an advantage in time to progression, 
response rate, and risk reduction of tumor progression 
from use of octreotide long-acting release (LAR) 
compared to placebo. Furthermore, octreotide LAR also 
extends overall survival (OS), but only in the subgroup of 
patients with metastatic midgut NETs and a low hepatic 
load (≤ 10% at study entry)[51]. [Table 1a]

Recently, the CLARINET trial enrolled nonfunctioning 
GEP-NENs randomized to receive depot lanreotide 
or placebo and demonstrated an improvement in PFS 
for patients in the treatment arm [Table 1a]. Due these 
significant data, octreotide LAR and depot lanreotide 
have been approved as treatment for patients with newly 

Table 2: Principal studies with inhibitors of mTOR

Author/trials Regimen Patients enrolled Results Adverse reactions 
(grade > 3)

Yao et al.[64] RADIANT-1

(Phase II)

Stratum 1: everolimus 
Stratum 2: everolimus 
plus octreotide LAR

Metastatic P-NETs after 
progression

Stratum 1: mPFS: 9.7 
months

Stratum 2: mPFS: 
16.7 months

Stomatitis, diarrhea

Pavel et al.[66] RADIANT-2 
(Phase III)

Everolimus plus 
octreotide LAR vs. 

placebo plus octreotide 
LAR

Advanced NETs with carcinoid 
syndrome after progression

mPFS: 16.4 vs. 11.3 
months

Stomatitis, diarrhea, 
fatigue

Fazio et al.[67]

RADIANT-2 (Phase III)-
exploratory analysis

Everolimus plus 
octreotide LAR vs. 

placebo plus octreotide 
LAR

Low- to intermediate-grade 
advanced lung NETs

mPFS: 13.6 vs. 5.6 
months

Stomatitis, rash, 
diarrhea,  fatigue

Yao et al.[65] RADIANT-3 
(Phase III)

Everolimus vs. placebo Advanced P-NETs after 
progression

mPFS: 11.0 vs. 4.6 
months

Stomatitis, diarrhea, 
fatigue, nausea, rash

mTOR : mammalian target of rapamycin; P-NETs: primitive neuroendocrine tumors; mPFS: median progression free survival;
LAR: long-acting release

Table 3: Anti-IGF-R1 drugs in NETs

Author/trials Regimen Patients enrolled Results Adverse reactions 
(grade > 3)

Naing et al.[99]

(Phase I)
Cixutumumab plus 

temsirolimus 
Advanced solid tumors pre-

treated (neuroendocrine tumors) 
 

SD = 47% Hyperglycemia, 
hypertriglyceridemia, 
hypercholesterolemia, 

thrombocytopenia, 
mucositis 

Rothenberg et al.[100]

(Phase I)
Ganitumumab Advanced solid tumors pre-

treated (neuroendocrine tumors)
PR = 20%
SD = 80%

Diarrhea

Strosberg et al.[101]

(Phase II)
Ganitumumab Metastatic progressive 

carcinoid or P-NETs
No objective responders 
by RECIST. mPFS = 6.3 
months: 10.5 months for 

carcinoid patients, and 4.2 
months for P-NET patients. 

OS rate at 12 months = 
66%: mOS = NR

Hyperglycemia, 
neutropenia, 

thrombocytopenia, 
infusion reaction

IGF: insulinlike growth factor; NETs: neuroendocrine tumors; SD: stable disease; PR: partial response; P-NETs: primitive 
neuroendocrine tumors; RECIST: response evaluation criteria in solid tumors; mPFS: median progression free survival; OS: overall 
survival;  mOS: median overall survival; NR: not reached
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diagnosed, recurrent, and advanced neuroendocrine 

tumors in progressive disease, irrespective of site of 

primary tumor, hormone-secreting status, and presence 

of symptoms.

Table 4: Anti-angiogenic drugs in NETs

Author/trials Regimen Patients enrolled Results Adverse reactions 
(grade > 3)

Faivre et al.[115]

(Phase I)
Sunitinib Metastatic solid 

tumors pre-treated: 
(neuroendocrine tumors)

ORR = 20% Fatigue, hypertension

Kulke et al.[116]

(Phase II)
Sunitinib Carcinoid or pancreatic 

neuroendocrine tumor not 
candidates for curative 

surgery

SD = 82.9% in 
carcinoid patients. 

SD = 68.2% in P-NETs
mTTP in carcinoid 

tumors = 10.2 months 
mTTP in P-NETs = 7.7 

months
OS rate at 12 months 
in carcinoid patients: 

83.4% OS rate at 
12 months 81.1% in 

P-NETs

Fatigue, hypertension, GI 
hemorrhage, pulmonary 

embolism, increased lipase, 
cardiac congestive failure, 
cerebrovascular accident, 

hyponatremia

Raymond et al.[117]

(Phase III)
Sunitinib vs. placebo Low- and intermediate-

grade advanced P-NETs
mPFS = 11.4 vs. 5.5 

months
ORR = 9.3% vs. 0

OS rate = 25% vs. 10%

Diarrhea, nausea, vomiting, 
fatigue

Yao et al.[118] (Phase 
II)

Octreotide plus 
bevacizumab vs. 
octreotide plus 

pegylated IFN α2b

Metastatic or unresectable 
carcinoid tumors

SD = 77% vs. 68%
PFS rate: 95% vs. 68%

Granulocytopenia, headache, 
hypertension

Chan et al.[120]

(Phase II)
Bevacizumab plus 

temozolomide
Locally advanced or 

metastatic NETs
ORR = 15% (33% in 
P-NETs and 0% in 
carcinoid tumors)

mPFS = 11.0 months 
(14.3 for P-NETs 
vs. 7.3 months for 

carcinoid tumors). mOS 
= 33.3 months (41.7 for 
P-NETs vs. 18.8 months 

for carcinoid tumors)

Lymphopenia, thrombocytopenia

YAO et al.[121]

(Phase II)
Everolimus alone 

with the combination 
of everolimus and 

bevacizumab

Advanced P-NETs ORR = 26% -

Ahn et al.[123] (Phase 
II)

Pazopanib Advanced GEP NENs, not 
amenable to loco-regional 

therapies

ORR = 18.9%
SD =56.8%

DCR = 75.7%

Proteinuria, neutropaenia, 
hypertension, diarrhea, anorexia, 

abdominal pain, AST/ALT 
elevation

Pazopanib plus 
octreotide

Metastatic or locally 
advanced grade 1-2 

carcinoid tumours or 
P-NETs

ORR= 21.9% of 
P-NETs

ORR = 0% in GI-NETs 
PFS: 14.2 months in 

P-NETs,
PFS = 12 months in 

GI-NETs

Hypertriglyceridemia, 
thrombosis.

ORR: overall response rate; SD: stable disease; P-NETs: primitive neuroendocrine tumors; GI: gastrointestinal; OS: overall survival; 
mPFS: median progression free survival; mOS: median overall survival; GEP NENs: Gastro-entero-pancreatic neuroendocrine 
neoplasms; DCR: disease control rate; IFN: Interferon; AST/ALT: aspartate transaminase/alanine transaminase; GI-NETs: 
gastrointestinal neuroendocrine tumors; PFS: progression free survival
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Pasireotide, a new somatostatin analogue, may represent 
an effective therapeutic option in tumors that are 
refractory to octreotide or lanreotide.[52] In a phase III 
randomized, blinded study, pasireotide showed symptom 
control comparable to octreotide but with an improved 
PFS (P = 0.045).[53] [Table 1b]

Another drug, telotristat etiprate, inhibitor of serotonin 
synthesis, was studied in patients with carcinoid 
syndrome characterized by diarrhea. Kulke et al.[54] 
and Pavel et al.[55] conducted a prospective single-arm 
study in patients with functional tumor and diarrhea (≥ 4 
bowel movements/day) not well controlled by octreotide. 
Telotristat etiprate was shown to reduce both the 
frequency of bowel movements and biochemical markers 
of carcinoid syndrome [Table 1c].

In contrast ,  there are  no val idated prospect ive 
clinical trials that guide the treatment of advanced 
bronchopulmonary carcinoids. Small retrospective 
mono-institutional data and subgroup analysis of some 
multicentric trials involving gastro-entero-pancreatic 
NETs represent the only available results. In particular 
SSAs seem to produce tumor stabilization in about 30-
70% of patients with low-grade BP-NETs.[56]

Filosso et al.[57] demonstrated that octreotide is effective 
in reducing symptoms of carcinoid syndrome and urinary 
5-hydroxyindoleacetic acid values in patients with 
liver metastases of radically resected atypical bronchial 
carcinoid. The efficacy of the drug seemed to be related 
to the expression of SST2 somatostatin receptors in the 
pathologic tissue, as demonstrated by polymerase chain 
reaction method [Table 1a]. In the setting of thoracic 
NETs, the first multicentric randomized prospective 
trial investigating either pasireotide in combination with 
Mammalian target of rapamycin (mTOR) inhibitor or 
pasireotide alone is still ongoing.

mTOR INHIBITORS

Everolimus, mTOR inhibitor, represents another important 
option for NETs treatment. In fact, mTOR has been 
identified as a kinase activated in the Ras/Raf, MAPK, 
Phosphoinositide 3-Kinase (PI3K)-Protein Kinase B 
(AKT) pathway of GEP and BP-NETs.[58] [Figure 1]

Recently, overexpression of mTOR and/or its pathway 
targets has been shown to be very common in GEP-
NETs, resulting in higher proliferative activity and 
adverse clinical outcomes.[59,60] Furthermore, somatic 
mutations of PI3K are individuated in a minority of 
P-NETs and are described also in bronchopulmonary 
carcinoids. PI3K/AKT/mTOR pathway, then, is especially 
switched on among P-NETs promoting the principal 
cellular functions.[61-63] Currently, a phase Ib trial with 
everolimus in association with PI3K inhibitor is ongoing 
(ClinicalTrials. Gov Identifier: NCT02077933).

Tumorigenesis and metastatic power in NENs seem to be 
conditioned by a great number of intracellular pathways, 
as transduction mechanisms involving receptor tyrosine 
kinases and G-protein coupled receptors. mTOR and 
Jun N-terminal kinase seem to modulate their action by 
contributing to increased cell growth and number.

Everolimus plus octreotide demonstrated a benefit in PFS 
for GEP-NETs patients with progressive disease. These 
data emerged from the phase II RAD001 in advanced 
neuroendocrine tumors trial (RADIANT-1).[64] [Table 2]

Everolimus is currently approved for the treatment 
of P-NETs in progressive disease, with or without 
concomitant SSAs therapies, on the basis of the results 
achieved from RADIANT-3 trial.[65] [Table 2]

A large prospective phase III multicentric study 
(RADIANT-4) investigating the efficacy of everolimus 
vs. placebo in progressive GI and BP-NETs has recently 
been completed. Everolimus has received approval for 
this indication in early 2016.

The mTOR inhibitors have rapidly become of clinical 
interest in thoracic NETs. Everolimus (alone or in 
combination with SSAs) was effective, according to 
exploratory analysis of low- to intermediate-grade 
advanced lung NETs in the large multicentric phase 3, 
randomized, placebo-controlled RADIANT II study. 
These clinically significant data reinforce the necessity of 
further research of everolimus treatment regimens in this 
patient setting.[66,67] [Table 2]

For this reason, the LUNA trial, exclusively enrolling 
patients with thoracic NETs after disease progression, has 
been performed and awaits definite data consolidation. It 
has examined the efficacy of everolimus in monotherapy, 
everolimus in association with pasireotide, or pasireotide 
alone. (ClinicalTrials. Gov Identifier: NCT01563354) 

Another mTOR inhibitor, temsirolimus, was investigated 
in NETs without any report of success.[68] However, a 
resistance to mTOR inhibition and a greater propensity 
toward further metastasis was observed and seems to 
be related to the loss of another fundamental target, 
phosphatase and tensin homologue (PTEN).[69-73] PTEN is 
localized in the cytosol and in the nucleus, blocking PI3K 
activity in the cytosol and securing the genome in the 
nucleus. Its starting through internalization correlates with 
to a reduction of AKT.[74-76] PTEN is frequently mutated 
in P-NETs and its low expression correlates with high 
grading.[77] In particular, low expression in cytosol of lung 
NETs indicates a category of patient with poor prognosis.[78]

IGF1 INHIBITORS

Insulin growth factor 1 (IGF1), a factor involved in 
tumor progression, is secreted by neuroendocrine 
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neoplasms.[79-80] IGF-1 receptors (IGF-1R), binding 
IGF-1, activate signals inside normal neuroendocrine 
cell, through components of the PI3K/Akt/mTOR 
and the Ras/Raf/MEK/ERK pathways,[82-86] inducing 
cellular proliferation and over-regulating antiapoptotic 
activity.[81] [Figure 1] IGF-1 receptors, then, are usually 
overexpressed in NETs,[87-90] especially in symptomatic 
and functioning ones. This represents a possible role 
in tumorigenesis of GEP and bronchial NETs and a 
potential target for therapy.[91-93] The rationale for the 
use of IGF1R inhibitors depends on their theoretical 
capability to reduce AKT phosphorylation induced by 
mTOR inhibitors.[94-96]

I n  t h i s  r e g a r d ,  c i x u t u m u m a b ,  a  f u l l y  h u m a n 
immunoglobulin G1 monoclonal antibody competitively 
binding IGF-1R, is in the early phases of clinical 
progress.[97] Cixutumumab is still studied in association 
with octreotide LAR in an ongoing phase II study 
enrolling patients with progressing metastatic P-NETs 
and midgut carcinoid tumors.[98] Also, the combination 
of cixutumumab, everolimus, and octreotide is being 
evaluated in a phase I trial conducted in patients with 
advanced low- or intermediate-grade neuroendocrine 
tumors for which standard curative measures do not exist  
(Clinical Trial: NCT01204476). Another similar phase 
I trial was performed in advanced cancer patients, with 
candidates receiving temsirolimus with cixutumumab. The 
preliminary results showed good tolerance.[99] [Table 3]

Similarly, ganitumumab, another fully human monoclonal 
antibody against IGF-1R, is undergoing evaluation 
in clinical trials. Rothenberg et al.[100] demonstrated 
encouraging activity and good tolerance in a phase I trial 
including previously treated metastatic NET patients 
[Table 3]. Strosberg et al.[101] performed a phase II study 
of ganitumumab in patients with metastatic progressive 
low- and intermediate-grade carcinoids or P-NETs. 
This trial showed a good tolerance of ganitumumab, 
but no objective responders [Table 3]. Further studies 
are necessary to deepen the role of cixutumumab and 
ganitumumab and to identify other IGF-1R targets.

VEGF AND ITS RECEPTOR INHIBITORS

Neuroendocrine neoplasms, especially for midgut and 
P-NETs and bronchial carcinoids, are highly vascularized 
and overexpress vascular endothelial growth factor 
(VEGF) and its receptors.[102,103] Four VEGF forms are 
individuated and examined: VEGF-A, VEGF-B, VEGF-C, 
and VEGF-D,[104-108] with a different affinity to their three 
own receptors.[109-113] [Figure 1] For these reasons, the 
interest of angiogenesis inhibition was encouraged.

The small molecule tyrosine kinase inhibitor (TKI) 
sunitinib has been studied as a targeted therapy option 
in NENs. Based on these results in term of response rate 
that were observed in phase I trial with sunitinib,[114,115] 

Kulke et al.[116] conducted a phase II trial evaluating 
the efficacy of sunitinib in GEP-NETs. They showed a 
significant antitumor activity in P-NETs vs. carcinoid 
tumors and good tolerance. In addition, in a phase III trial 
involving low- and intermediate-grade advanced P-NETs, 
Raymond et al.[117] demonstrated a better PFS in the arm 
of sunitinib compared to placebo. The improved PFS did 
not depend on previous treatments or concomitant SSAs. 
Therefore, sunitinib is approved for the treatment of 
P-NETs after disease progression.

Considering the importance of VEGF in the pathogenesis 
of NENs, bevacizumab, an anti-VEGF antibody, has 
been used either alone or in combination with other drugs 
with favorable results. A phase II trial, in particular, 
enrolled patients with advanced carcinoid tumors with 
stable doses of octreotide to receive either bevacizumab 
or pegylated Interferon α2b. Bevacizumab showed 
superiority in objective responses, reduction of tumor 
blood flow, and PFS.[118,119] Bevacizumab in association 
with temozolomide in patients with metastatic NETs also 
showed a major response rate, PFS, and OS in P-NETs.[120]

In another recently completed phase II study, everolimus 
and bevacizumab were shown to be associated with an 
overall tumor response rate of 26% and good tolerance in 
advanced P-NETs.[121] Therefore, a further phase II trial 
will compare everolimus alone with the combination of 
everolimus and bevacizumab in patients with P-NETs, in 
order to find  supplementary function of antiangiogenetic 
agents in this setting of patients (ClinicalTrials. Gov 
Identifier: NCT01229943). Randomized studies of anti-
VEGF TKI should also be evaluated in patients with 
advanced carcinoid tumors.

Pazopanib is an oral bioavailable, multitargeted tirosine 
kinase inhibitor (VEGF receptors 1, 2, and 3), involved 
in reducing neoplastic growth and dissemination.[122] 
Ahn et al.[123] demonstrated, in a non-randomized, open-
labeled, single-center phase II trial, that pazopanib in 
monotherapy was as effective as the other available 
targeted therapies, not only in P-NETs, but also in GI 
NETs [Table 4]. Phan et al.[124,125] found that pazopanib 
in combination with octreotide LAR depot was more 
effective in advanced G1-G2 P-NETs than in advanced 
carcinoid tumors [Table 4].

Other trials with pazopanib, and with other multitarget 
agents such as famitinib (c-kit, platelet-derived growth 
factor receptor (PDGFR), VEGFR2, VEGFR3, Flt1 and 
Flt3 inhibitor), regorafenib (c-Raf; BRAF, VEGFR-1,2,3; 
PDGFRα, Fibroblast Growth Factor Receptor (FGFR)-
1; c-kit; RET; Flt-3 inhibitor), and nintedanib (VEGFR, 
FGFR, PDGFR inhibitor) are ongoing. Some of them 
are also enrolling patients with bronchopulmonary 
NETs (Clinical Trial: NCT01280201; NCT01994213; 
NCT02259725; NCT02399215).[126-128]
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EGF AND ITS RECEPTOR AND TGFα

EGFR/AKT/mTOR pathway activation could be shown 
in all entities of NETs and was observed especially in 
tumors with high grading and poor prognosis. Typical 
and atypical bronchopulmonary carcinoids[129] and 
gastrointestinal-neuroendocrine tumours (GI-NETs) and 
P-NETs present and over-regulate EGFRs.[130] [Figure 
1] Papouchado et al.[131] in particular, described a higher 
presence of EGFR (> 91%) in GI-NETs, especially rectal 
NETs, than in P-NETs (< 25%).

An elevated presence of EGFR and transforming 
growth factor alpha (TGFα) in P-NETs was observed 
by Srivastava et al.[132] An elevated amount of secreted 
TGFα was detected in cultures of carcinoid tumors and 
pheochromocytomas, and the administration octreotide 
and anti-EGFR monoclonal antibodies seemed to 
reduce the secretion and the proliferative effect of 
TGFα.[133] Krishnamurthy et al. [134] showed a high 
expression of TGFα in GI NETs (72%) without any 
correlation with tumor size, grading, and other pathologic 
features, but only depending on the technique used 
(immunohistochemistry or northern blot analysis).[133] In 
rectal NENs TGF-α expression seemed to be increased 
in lesions larger than 5 mm and tumors with higher Ki67 
index.[135] Despite the heterogeneity of these results, 
EGFR and its signal transduction pathways (RAS-RAF-
MAPK) might represent an interesting target for the 
treatment of NETs.

In fact, a synergistic effect in determining apoptosis in 
atypical carcinoid cell lines was demonstrated by the 
association of epidermal growth factor (EGF) receptor 
inhibitors (erlotinib) with everolimus in in-vitro 
studies.[129]

A phase II trial evaluated gefitinib in 96 pretreated 
patients affected by GEP-NETs achieved prolonged 
disease control with rare objective responses; the study 
drug was well-tolerated.[136]

OTHER TYROSINE KINASE INHIBITORS 
AND IMMUNOTHERAPY

Beta fibroblast growth factor (bFGF) and c-kit/Platelet 
Derived Growth Factor (PDGF) inhibitors are being 
developed, based upon the variable expression of bFGF, 
c-kit and PDGF in NETs.[137-139]

Despite little systematic and rigorous in-depth analysis 
of immunotherapy in NETs (interferon and dendritic 
cell vaccines), the recent progress in targeting of 
Cytotoxic T lymphocyte antigen-4 and PD-1 provide 
opportunities for future advances.[140] Further studies 
are necessary to examine the variable expression of 
PD-1, PD-L1/L2 in NENs.

CONCLUSION

The predictive and prognostic characteristics of NETs 
are still under investigation to individuate a pattern 
of peculiar molecular genetic alterations in each 
kind of neoplasm. The aim is to find a correlation of 
specific abnormalities implicated in carcinogenesis and 
dissemination that may provide potential targets for 
tailored biotherapy.

In GEP and lung NETs, carcinogenesis and dissemination 
often involves SSTRs, mTOR/Akt/PI3K and PTEN, 
IGF-1, VEGF, EGF, TGF, FGF and c-kit/PDGF and its 
corresponding receptors, markers whose established 
value may more thoroughly define an appropriate course 
of treatment.
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Neuroendocrine tumors are rare neoplasms arising primarily in the gastrointestinal tract and lung. The liver is the most common 
site of metastases, but these tumors can rarely metastasize to atypical sites. Surgery is the only curative approach while the 
optimal medical treatment is debated. From this perspective, a multidisciplinary approach for each single case becomes very 
important. In this report we describe the case of a male affected by a single intraorbital metastasis from a midgut well differentiated 
neuroendocrine tumor. The patient refused surgical removal and therefore he was at first treated with stereotactic radiotherapy 
and systemic treatment with a somatostatin analog (SSA). After achieving a stable disease for four months he underwent primary 
tumor resection. Six years after the initial diagnosis, the patient is currently stable and receiving SSA at standard dose.
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INTRODUCTION

Neuroendocrine tumors are rare neoplasms derived from 
enterochromaffin cells, which are primarily found in the 
gastrointestinal tract and lung.[1,2] Liver is the most common 
site of metastasis, however as survival is increasing by 
improved treatment options, new metastatic patterns 
have emerged.[3] Ocular metastases, considered “a rarity 
in the rare,” have now been described in neuroendocrine 
tumors.[4,5] Considering the rarity of these tumors, it is clear 
that a multidisciplinary approach is necessary in order to 
obtain the best therapeutic outcome for each single patient. 
Here, we present a case where the integrated use of local-
regional and systemic treatments resulted in long-term 
disease stabilization, preserving the quality of life.

This case raises important issues. Considering the favorable 
general prognosis despite the advanced stage, treatments 
that maintain a good quality of life are the fundamental 
issues for these patients. Therefore, the alternative loco-
regional treatments alone (stereotactic radiotherapy) 
or in combination with systemic therapy, or systemic 

somatostatin analog (SSA) therapy alone may constitute 
valid treatment options towards the goal of long-term 
disease stabilization and improved quality of life.

CASE REPORT

We report the case of a 65-year-old male patient, in 
good general conditions, with a past medical history of 
hypertension, diabetes mellitus and ischemic heart disease.

He presented in September 2009 complaining the recent 
onset of right exophthalmos.

A computed tomography (CT) scan of the head and 
neck documented the presence of a retroocular lesion 
with a maximum diameter of 28 mm, invading both the 
intraconal and the extraconal space and causing optic 
nerve impingement. A biopsy of the lesion was performed 
in November 2009 through endoscopic endonasal 
approach and the pathologic examination diagnosed well-
differentiated neuroendocrine tumour cells.
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The physical examination confirmed a slight right eyeball 
ptosis without significant visual function impairment; 
neither symptoms nor signs of carcinoid syndrome were 
present, the laboratory routine blood tests as complete 
blood count, kidney and liver function tests and electrolyte 
levels resulted in range.

The thorax and abdominal CT scan showed a lobulated 
mass with a maximum diameter of 37 mm at the ileocecal 
valve level. A magnetic resonance imaging of the brain, 

head and neck confirmed the presence of the previously 
described lesion, occupying the great part of the right 
orbit and dislocating the optic nerve, though maintaining 
a cleavage plan from its meningeal structures [Figure 1].

The Octreoscan showed pathological uptake of the tracer 
in the right intraorbital space and in the right iliac fossa. 
An endoscopic biopsy of the sub mucosal lesion found on 
the ileocecal valve during a pan colonoscopy confirmed 
the primary site of the well differentiated, neuroendocrine 

Figure 1: Intraorbital localization of well-differentiated neuroendocrine tumour (G1) of the ileo-cecal valve. MRI of the brain, head and face MRI: sagittal 
(A) and coronal (B) views. Lesion occupying the great part of the right orbit, and dislocating the optic nerve, though maintaining a cleavage plan from its 
meningeal structures. MRI: magnetic resonance imaging

Figure 2: Well-differentiated neuroendocrine tumor (G1) of the ileo-cecal valve. (A) Mucosal ulceration (arrow, X10); (B) positivity of neoplastic nests for 
Chromogranin A (CgA) in the submucosa (X10); (C) muscolar layer neoplasitic invasion and positivity for CgA (X4); (D) piercing serosa positivity for CgA 
(arrow, X10); (E) serotonin stains the enterochromaffin cells (EC) (X20); (F) mindbomb homolog 1/ki-67 proliferation index below 2% (arrow, X40)
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tumour. Serum tumour markers such as neuron specific 
enolase and chromogranin A (CgA) resulted in range. The 
diagnostic work-up was therefore suggestive for a single, 
intraorbital metastasis from midgut well differentiated 
neuroendocrine tumour.

The patient was evaluated for radical resection of 
the intraorbital lesion through a transcranial excision 
(exenteratio orbitis), but the patient refused the orbitotomy.

He therefore underwent two 4-week courses of stereotactic 
radiotherapy to the right orbital metastases (4,000 cGy 
in 20 fractions) and he started a systemic treatment with 
Lanreotide Autogel (ATG) (fl 120 mg, 1 fl i.m. q 28 d).

The patient remained stable with persistent right 
exophthalmos and conjunctivitis, but without any vision 
deterioration after two months of radiation therapy and SSA.

He continued the SSA as maintenance treatment and 
after four months he underwent primary tumour resection 
with right hemicolectomy and lymphadenectomy. 
The pathology report confirmed a well-differentiated 
neuroendocrine tumour of ileocecal valve, G1, pT3, N1, 
M1 according to the ENETS/UICC TNM classification. 
The immunohistochemical analysis showed wide 
positivity for CgA, synaptophysin; serotonin and CDX2 
[Figures 2 and 3].

Six years after the first diagnosis, the patient is continuing 
maintenance medical treatment with Lanreotide ATG 120 
mg every 28 days, since stabilization of the disease.

DISCUSSION

The therapeutic strategy for neuroendocrine neoplasms 
(NENs) needs to be diversified according to the clinical 
presentation of each single case, and moreover according 
to its biological behaviour, due to the wide heterogeneity 
of these tumors.

Because of this, a multidisciplinary care team is critical 
for patient management starting from the earliest steps of 
the diagnostic workup.

Ocular metastases have been rarely described in 
neuroendocrine tumours; the vast majority of metastases 
affect the uveal tract rather than orbital space, and 
typically occur through haematogenous spread by carotid 
and ophthalmic artery.[4,5] Data regarding survival after the 
diagnosis of orbital metastases of NENs are exceedingly 
rare. Mehta et al.[6] describe a series of 13 patients with 
metastatic orbital carcinoid tumors with overall survival of 
72% at 5 years and 38% at 10 years.

Considering the favorable general prognosis despite the 
advances stage, treatments that maintain a good quality 
of life with the preservation of vision are the fundamental 

Figure 3: Lymph node metastasis from well differentiated neuroendocrine tumour (G1) of the ileo-cecal valve. (A) Metastatic mesenteric lymph node (not microscope 
photo); (B) evidence of nodal compression with serotonin stain (arrow, X4); (C) compression of the nodal parenchima by neoplastic cells (arrow, X4); (D) mindbomb 
homolog 1/ki-67 proliferation index below 2% (arrow). Non-neoplastic lymphocytes (D, oval) as internal control (X40)
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issues for these patients. Therefore in advanced patients 
with orbital metastases, the alternative loco-regional 
treatments alone or in combination with systemic therapy 
may constitute a viable treatment alternative to a surgical 
excision (exenteratio orbitis).[7]

The currently proposed treatment of orbital metastases 
in well-differentiated NETs includes surgery, beam 
radiotherapy, especially for single and symptomatic 
lesions, peptide receptor radiotherapy or systemic medical 
treatment. The integration of local treatment with SSA could 
provide long-term disease control, preserving the patient’s 
quality of life. Although the SSA objective response rates 
are limited (5-10%), these drugs are characterized by high 
rates of disease stabilization, up to 50-60% in clinical 
trials and with optimal profiles of safety and tolerability.[8] 
Moreover, the efficacy of SSA has been recently shown 
by two prospective, randomized, placebo-controlled trials, 
the PROMID and CLARINET studies.[9,10] These studies 
evaluated the impact of SSA treatment (octreotide long-
acting release 30 mg every 28 days and Lanreotide ATG 
120 mg every 28 days), leading to demonstration of their 
antiproliferative effects. The mean time to progression 
in the PROMID trial was 14.3 months in the octreotide 
LAR arm compared to 6 months in the placebo arm.[9] 
In the CLARINET trial, Lanreotide ATG was associated 
with a significant improvement in mean progression free 
survival compared to placebo (progression-free survival 
not reached in the treatment group vs. 18 months in the 
placebo group).[10] Based on these results, the use of SSA 
is recommended for its antiproliferative effect in well 
differentiated NENs with an indolent course in patients 
with both functioning and non-functioning tumors. SSAs 
represent a valid treatment option in cases where good 
quality of life is paramount and in which a surgical 
approach is not accepted, feasible or is contraindicated.

Financial support and sponsorship
Nil.

Conflicts of interest
There are no conflicts of interest.

Patient consent
Obtained.

Ethics approval
The patient was treated within the standards of our institute 
and the report was approved.

REFERENCES

1. Modlin IM, Lye KD, Kidd M. A 5-decade analysis of 13,715 
carcinoid tumors. Cancer 2003;97:934-59.

2. Pinchot SN, Holen K, Sippel RS, Shen H. Carcinoid tumors. 
Oncologist 2008;13:1255-69.

3. Zuetenhorst JM, Taal BG. Metastatic carcinoid tumors: a clinical 
review. Oncologist 2005;10:123-31.

4. Karcioglu ZA. Orbital tumours: Diagnosis and treatment. 2nd ed. 
New York: Springer; 2005. p. 187-9.

5. Peixoto RD, Lim HJ, Cheung WY. Neuroendocrine tumor metastatic 
to the orbit treated with radiotherapy. World J Gastrointest Oncol 
2013;5:177-80.

6. Mehta JS, Abou-Rayyah Y, Rose GE. Orbital carcinoid metastases. 
Ophthalmology 2006;113:466-72.

7. Borota OC, Kloster R, Lindal S. Carcinoid tumour metastatic to 
the orbit with infiltration to the extraocular orbital muscle. APMIS 
2005;113:135-9.

8. Modlin IM, Pavel M, Kidd M, Gustafsson BI. Review article: 
somatostatin analogues in the treatment of gastroenteropancreatic 
neuroendocrine (carcinoid) tumours. Aliment Pharmacol Ther 
2010;31:169-88.

9. Rinke A, Müller HH, Schade-brittinger C, Klose KJ, Barth P, 
Wied M, Mayer C, Aminossadati B, Pape UF, Bläker M, Harder 
J, Arnold C, Gress T, Arnold R; PROMID Study Group. Placebo-
controlled, double-blind, prospective, randomized study on the 
effect of octreotide LAR in the control of tumor growth in patients 
with metastatic neuroendocrine midgut tumors. J Clin Oncol 
2009;27:4656-63.

10. Caplin ME, Pavel M, Ćwikła JB, Phan AT, Raderer M, Seedláčková 
E, Cadiot G, Wolin EM, Capdevila J, Wall L, Rindi G, Lanley A, 
Martinez S, Blumberg J, Ruszniewski P. Lanreotide in Metastatic 
Enteropancreatic Neuroendocrine Tumors. N Engl J Med 
2014;371:224-33.



            ©2016 Journal of Cancer Metastasis and Treatment ¦ Published by OAE Publishing Inc. 345

A B S T R A C T

Topic: Neuroendocrine Tumors

Pancreatic neuroendocrine tumor with hypoglycemia and elevated 
insulin-like growth factor II: a case report
Roberta Modica1, Antonella Di Sarno2, Annamaria Colao1, Antongiulio Faggiano3

1Department of Clinical Medicine and Surgery, Federico II University, 80131 Naples, Italy.
2UOC of Oncology, A.O. Dei Colli, Monaldi Unit, 80131 Naples, Italy.
3Thyroid and Parathyroid Surgery Unit, Istituto Nazionale per lo studio e la cura dei tumori “Fondazione G. Pascale” - IRCCS, 80131 Naples, Italy.

Corresponding Author: Dr. Antongiulio Faggiano, Thyroid and Parathyroid Surgery Unit, Istituto Nazionale per lo studio e la cura dei tumori 
“Fondazione G. Pascale” - IRCCS, 80131 Naples, Italy. E-mail: afaggian@unina.it

Pancreatic neuroendocrine tumors (pNETs) can be associated with different clinical syndromes. Insulinoma is the most common 
functioning pNET characterized by hypoglycemia and hyperinsulinemia. The authors report a case of a man presenting with 
hypoglycemia and biochemical features of insulinoma. A pancreatic lesion was found and growth hormone (GH) deficiency 
was also diagnosed associated with an empty sella present on the pituitary magnetic resonance imaging. The disappearance of 
hypoglycemia and normalization of GH secretion after surgical resection of the pancreatic lesion, revealed a rare pNET secreting 
insulin-like growth factor II.
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INTRODUCTION

Pancreatic neuroendocrine tumors (pNETs) represent 
1-2% of all pancreatic tumors and 7% of NETs in general, 
with an incidence of 0.43 per 100,000. Epidemiological 
data show that pNET incidence is increasing, perhaps due 
to more widespread use of diagnostic imaging techniques, 
especially computed tomography (CT) scans, and increased 
physician awareness of this tumor type. Moreover, a high 
prevalence of pNETs is reported in autopsy studies (from 
0.8% to 10%), thus suggesting that they are frequently 
clinically silent. A slight male predominance (55% 
male vs. 45% female) is reported and the median age at 
presentation is around 50 years.[1]

pNETs may be sporadic or part of a genetic syndrome, most 
commonly multiple endocrine neoplasia type 1 (MEN1), 
von Hippel-Lindau disease (VHL), neurofibromatosis type I 
(NF), or tuberous sclerosis complex (TSC). Clinically pNETs 
can be distinguished into two groups: functional (F-pNET) 
and nonfunctional (NF-pNET). The majority of pNETs are 
non-functional (90%) and present with symptoms due to 
mass effect or as incidental findings, whereas F-pNETs 
(10%) are characterized by hormone hypersecretion 
with different clinical signs and symptoms. F-pNET are 
distinguished according to the clinical hormonal syndrome 

and the hormone hypersecreted: insulinoma, gastrinoma 
(Zollinger-Ellison syndrome), glucagonoma, VIPoma, 
GHRFoma (growth hormone releasing factor secreting), 
ACTHoma, and somatostatinoma. Among F-pNETs, 
insulinoma is the most common with an estimated annual 
incidence of 1-4 per million patients, representing 35-
40% of all F-pNETs.[1-3] Although rare, insulinoma 
represents the most common cause of hypoglycemia 
related to endogenous hyperinsulinemia, characterized by 
inappropriately high insulin and/or proinsulin and high 
C-peptide concentrations. The presence of hypoglycemia 
together with a pancreatic lesion is usually the clinical 
picture of insulinoma. Nevertheless hypoglycemia 
represents a relatively common biochemical finding, 
which may be due to many causes, thus a careful clinical 
history, together with biochemical and radiological tests, is 
essential to identify the underlying cause. Other subtypes 
of F-pNETs have been reported, although rarely. Diagnosis 
of F-pNET can be challenging, as clinical presentation 
may simulate other more common diseases, thus causing 
delay in diagnosis. Of note, the hormone-excess state in 
F-pNET requires both acute and long term control, since it 
represents a potential life threatening condition along with 
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the treatment of the pNET itself.[4,5]

CASE REPORT

A 64-year-old man presented at our institution because 
of clinical findings suggestive of hypoglycemia. Past 
medical and family histories were unremarkable, except 
for arterial hypertension controlled with angiotensin-
converting enzyme inhibitors; body mass index was 
30 kg/m2. Hypoglycemic episodes had begun 2 years 
before hospitalization and were initially characterized by 
anxiety, irritability, sweating, palpitations and hunger. 
Since then, the patient had experienced a progressive 
worsening of symptoms, complaining of blurred vision, 
nausea, temporary amnesia, and episodic disorientation 
that took place mainly in the morning and disappeared 
after eating. Soon after hospitalization, hypoglycemic 

episodes occurred and hypoglycemia was biochemically 
confirmed with an average 7 h serum glucose concentration 
of 45 mg/dL (normal range 80-120 mg/dL). Hypoglycemic 
episodes fulfilled the Whipple’s triad, characterized by 
signs and symptoms of hypoglycemia, evidence of low 
plasma glucose (< 55 mg/dL) concentration and resolution 
of signs and symptoms after glucose administration. Liver, 
renal and thyroid profiles were within the normal limits. 
An insulinoma was suspected and a 72 h fasting test was 
performed with assessment of glycemia at the beginning and 
every 4 h. Serum insulin and C-Peptide concentrations were 
also assessed at the beginning and in case of biochemical 
and/or clinical hypoglycemia. Serum concentrations of 
glucose, insulin and C-peptide were measured by standard 
methods by using commercially available kits. During the 
test hypoglycemia occurred after 9 h (glucose 40 mg/dL). 
However, the insulin/glucose ratio was 0.1, revealing an 
appropriate insulin secretion. Moreover, a focal lesion 
within the pancreas was detected by endoscopic ultrasound 
(EUS), therefore an insulinoma was suspected. However, 
the evaluation of pituitary function with growth hormone-
releasing hormone (GHRH) plus arginine test pointed 
out a growth hormone (GH) deficiency and magnetic 
resonance imaging (MRI) of the pituitary region revealed 
a partial empty sella. No other pituitary abnormalities 
were observed. An abdominal contrast-enhanced CT 
confirmed a nodular area of 18 mm × 12 mm in the body 
of pancreas, with altered contrast enhancement. An 111In-
DTPA-D-Phe1 octreotide scintigraphy (Octreoscan) 
highlighted a focal epigastric uptake, corresponding to the 
pancreatic nodule. Surprisingly a EUS-guided fine-needle 
biopsy of the pancreatic lesion resulted in a cytological 
diagnosis of moderately differentiated adenocarcinoma. 
Therefore, the patient underwent surgery. Histology 
and immunohistochemistry of the specimen revealed 
a well-differentiated pNET, with Ki67 index of 1%. 
Immunostaining for chromogranin-A and synaptophysin 
was positive, while insulin immunostaining was negative. 
Postoperative course was uneventful and a progressive 
disappearance of the hypoglycemic syndrome occurred. Six 
months after surgery pituitary function was evaluated and 
only partial GH deficiency was evident. The GHRH plus 
arginine test was performed using GHRH (Ferring, Malmo, 
Sweden; 1 μg/kg, iv, at 0 min) and arginine-hydrochloride 
(0.5 g/kg, iv, during the first 30 min) with assessment of 
serum GH concentrations at times 0, 30, 45, 60, 90, 120 min. 
The GH peak during test was 13.6 ng/mL. Twelve months 
after surgery, GH response to stimulation was normal [GH 
peak 30.8 ng/mL; Figure 1], although the empty sella on 
MRI was unchanged. This led to the hypothesis that the 
pancreatic tumor may have been secreting insulin-like 
growth factor II (IGF-II), since IGF-II may suppress GH 
secretion with a negative feedback. To test this hypothesis 
IGF-II concentrations were measured on plasma collected 
before and after pancreatic surgery. IGF-II was assessed by 
using an ELISA, “two-step” sandwich type immunoassay. 
Before surgery, plasma IGF-II was 920 ng/mL and one 
month after surgery, it had decreased to 320 ng/mL (normal 

Figure 1: GHRH + Arginine test for GH: (A) basal test revealing total GH 
deficiency; (B) 6-month postoperative test revealing partial deficiency; (C) 
12-month postoperative test revealing normal GH response. GHRH: growth 
hormone-releasing hormone; GH: growth hormone
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range 108-881 ng/mL). To further confirm these findings, 
immunohistochemical staining was performed for IGF-II 
and the pancreatic tumor specimen was positive for IGF-
II. These findings were consistent with the diagnosis of 
a pancreatic IGF-II-secreting tumor. The patient did not 
experience any other hypoglycemic symptoms during 
follow up and completely recovered after surgery.

DISCUSSION

Hypoglycemia represents a relatively common biochemical 
finding, which may be due to many causes, such as non-
islet cell tumor, drugs, organ failure, endocrine diseases, 
hypopituitarism, or inborn errors of metabolism. A careful 
clinical history, together with biochemical and radiological 
assessments is essential to identify the underlying cause. 
Although rare, insulinoma is the most frequent F-pNET. 
Biochemical criteria for insulinoma comprise documented 
hypoglycemia (plasma glucose ≤ 55 mg/dL), concomitant 
inappropriately high plasma insulin ≥ 3 mU/mL, C-peptide 
≥ 0.6 ng/mL (≥ 0.2 nmol/L), proinsulin levels (≥ 5 pmol/L), 
and no detectable hypoglycemic agent levels or circulating 
antibodies to insulin.[6,7] The 72 h fasting test is considered 
the gold standard for diagnosis of insulinoma. In the 
present case the occurrence of hypoglycemia together with 
a pancreatic lesion lead to suspect an insulinoma.

Hypoglycemia may also occur in large tumors of 
mesenchymal, epithelial, or hematopoietic origin.[8] 
These tumors often secrete incompletely processed IGF-
II, a hormone with higher molecular weight, capable of 
activating the insulin receptor, thus causing hypoglycemia 
with consequent suppression of β cell secretion, lipolysis 
and ketogenesis. The IGF-II in serum is usually synthesized 
in the liver and then it is processed into a mature form 
that is secreted. The incompletely processed IGF-II is a 
smaller complex that can interact with insulin receptors in 
the liver, muscle, and adipocytes, leading to suppression of 
GH and insulin secretion.

Incompletely processed IGF-II affects the hypothalamic-
pituitary axis suppressing GH secretion with a negative 
feedback, with subsequent lowering of GH-dependent 
IGF-I and IGF binding proteins secreted by the liver. 
Therefore, tumors secreting incompletely processed IGF-
II are characterized by an increased total IGF-II to IGF-I 
ratio, suppressed insulin and C peptide, and inappropriately 
low GH.[9] The production of IGF-II represents a very rare 
cause of hypoglycemia. To date this is the second case 
reported of hypoglycemia due to production of IGF-II by 
a pNET.[10] This unusual case highlights the importance 
of taking into account the production of IGF-II in case 

of hypoglycemia and pancreatic lesion when clinical, 
biochemical, and immunohistochemical data are not 
consistent with insulinoma. In our patient, the finding of 
empty sella could have justified GH deficiency, so IGF-II 
was not immediately evaluated. Although insulin was not 
suppressed in our case, the finding of negative insulin and 
positive IGF-II at immunostaining support the hypothesis 
of an IGF-II secreting tumor. Furthermore the prompt 
resolution of signs and symptoms of hypoglycemia soon 
after the resection of the pNET may be attributed to the 
normalization of serum IGF-II levels.
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INTRODUCTION

Neuroendocrine tumors (NETs) are rare but have been 
increasing in incidence.[1] NETs are characterized by 
heterogeneous biological behavior, clinical presentation, 
and course. NETs arise from neuroendocrine cells 
aggregate in classical endocrine glands -- like adrenal, 
pituitary and parathyroid -- but also in the diffuse 
neuroendocrine system (DNES).

An early diagnosis is crucial since lower survival was 
demonstrated in patients with metastatic disease.[2] 
However an interval of many years is reported from earliest 
symptoms to diagnosis. Symptoms are often nonspecific 
and do not lend themselves to identifying the specific 
underlying tumor. In addition, clinical presentations 
are protean and mimic a variety of other non-neoplastic 
diseases.[3] Many specialists may be individually involved 
from earliest signs and symptoms but a multidisciplinary 
team may be the most successsful approach to reduce 
time latency from symptoms to diagnosis and improve 
overall survival.[4] In this context the choice of circulating 
neuroendocrine biomarkers and interpretation of these 

values needs to be carefully considered with respect to 
the clinical presentation and other putative diagnoses.[5,6] 
Many different diagnostic and therapeutic approaches 
are reported in real life NET manage-ment according to 
different physician expertise, accessibility of medical 
care in different countries, and financial reimbursement. 
Translation of guidelines and consensus into clinical 
practice is often difficult because suggestions are not 
always universally applicable.

The aim of our paper was to review current neuroendocrine 
and oncologic scientific society guidelines and position 
statements and provide recommendations for the 
most frequent clinical practice queries on circulating 
neuroendocrine tumor biomarkers.

We searched the National Comprehensive Cancer Network 
(NCCN), North American Neuroendocrine Tumor 
(NANETS), European Society of Medical Oncology 
(ESMO), European Neuroendocrine Tumor Society 
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(ENETS), UK and Ireland Neuroendocrine Tumour Society 
(UKINETS) and Associazione Medici Endocrinologi 
(AME) for neuroendocrine tumor management guidelines 
or position statements using PubMed source. We terminated 
our search including results on 7th January 2016. From 
the PubMed results, we chose guidelines or position 
statements published by scientific societies or institutions 
in USA, Europe and Italy with recognized exper-tise in 
neuroendocrine tumor patient management. We present 
suggestions for clinical practice based on this analysis.

WHY SHOULD CIRCULATING 
NEUROENDOCRINE BIOMARKERS BE 
USED?

The current view of DNES was descending from Feyrter’s 
1938 initial discovery of neurons and endocrine cells 
sharing a common phenotypic program. These cells 
were characterized by the expression of markers such as 
neuropeptides, chromogranins, neuropeptide processing 
enzymes subtilase-like pro-protein convertases (SPC2 
and SPC3) or dense core secretory granules.[7] All of these 
cells can secrete products such as peptides and biogenic 
amines that are tumour specific and may serve as markers 
for the diagnosis and follow-up of treatment.[8] In a few 
cases, clinical presentation is related to a single hormonal 
secretion as in insulinoma and gastrinoma, carcinoid 
syndrome or pheochromocytoma but more frequently 
the diagnosis is incidental or as a result of tumor bulk.[9] 
Circulating tumor biomarkers are readily available and 
should be implemented in clinical practice to diagnose 
and monitor patients with NETs. In fact, seventeen 
different circulating biomarkers have been identified for 
gastroenteric neuroendocrine tumors and more than 30 
gut peptide hormone genes are known, which express 
more than 100 bioactive peptides.[8] In 2010 the World 
Health Organization published the new neuroendocrine 
tumors classification[10] and now there is consensus on 
routinely chromogranin A (CgA) and synaptophysin 
immunohistochemical assessment for neuroendocrine 
diagnosis.[11] On the other hand, the use of a single 
monoanalytical circulating biomarker for neuroendocrine 
tumors management - although frequently recommended 
- is now controversial[12] but, so far, unavoidable in NET 
management while waiting for new promising circulating 
biomarkers to be validated in the future.

WHICH CIRCULATING BIOMARKERS 
HAVE A ROLE IN NEUROENDOCRINE 
TUMOR MANAGEMENT?

The cytoplasm of neuroendocrine cells is occupied by a 
large number of secretory granules of varying electron 
densities, size and shape, and is the storage site of secretory 
products [i.e. serotonin, 5-hydroxytryptamine (5-HT), 
tachykinins and gastrin]. Upon specific stimulation, 
granules are translocated to the cell membrane and their 
content released by exocytosis. Granins are found as major, 

or principal, components of the soluble core of dense-
core secretory granules in neuroendocrine cells and are 
secreted in a physiologically regulated manner. There are 
8 members in granin family and CgA and chromogranin 
B (CgB) are the most clinically interesting.[8] However, 
the precise function of individual granins is dependent on 
the presence of other granins and hormones produced by 
a specific neuroendocrine cell, the presence of proteolytic 
processing enzyme and their inhibitors and activators, as 
well as the density and localization of calcium pumps and 
exchangers.[13] Tumors of neuroendocrine origin usually 
present with increased plasma levels of serum or plasma 
CgA[8] but the sensitivity of CgA measurements in patient 
with NETs is only about 60-90% with a specificity of 
less than 50% due to concomitant therapy with proton-
pump inhibitors (PPIs) or intercurring oncological or 
non-oncological diseases.[14,15] However a recent meta-
analysis demonstrated that abnormally high circulating 
CgA levels are a characteristic feature of patients with 
NETs and could serve as non-invasive diagnostic markers 
of NETs in clinical practice.[16] CgA is considered 
a pan-neuroendocrine marker and notably highest 
concentrations were found in midgut NETs especially with 
liver metastasis.[17-19] Pancreastin is a post-translational 
processing product of CgA and was proposed as useful 
diagnostic marker because more standardized assays and 
lower PPIs exposure interferences than CgA are reported. 
A predictive and prognostic value was also demonstrated 
because pre- and post-surgical levels might better reflect 
neuroendocrine disease burden and outcome.[20] Other 
monoanalyte general neuroendocrine biomarkers used in 
managing NETs such as CgB, the cytoplasmatic glycolytic 
enzyme named neuron-specific enolase (NSE), and 
pancreatic polypeptide (PP) have been used with highest 
levels in small-cell lung cancer, poorly differentiated 
tumors and non-functioning pancreatic tumors, 
respectively, with low diagnostic performance. Also for 
CgB and NSE, sensitivity and specificity performances 
were reported inadequate for diagnosis and prognostic 
universal use[12] according to the National Institutes of 
Health (NIH) biomarker classification system criteria.[21]

Gastrin is a diagnostic marker for Zollinger Ellison 
syndrome characterized by recurrent peptic ulcers and 
secretory diarrhea. Gastrin levels higher than 10 fold upper 
limit of normal in the setting of high gastric acid output is 
suggestive of gastrinoma. Determination of gastrin levels 
after a secretin test increases sensitivity in case of borderline 
levels.[22] Insulin is a specific marker of insulinoma and 
biochemical diagnosis depends on inappropriate insulin 
levels during a fasting glucose tolerance test.[23]

Neuroendocrine tumors may secrete urinary 
5-hydroxyindoleacetic acid (u-5HIAA), a metabolite 
of 5-HT but also vasoactive intestinal peptide (VIP), 
glucagon and somatostatin with specific syndromes such 
as carcinoid syndrome, watery diarrhea, sweet syndrome 
or association of gallstones, diabetes and steatorrhea. Even 
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more rarely, tumors can secrete corticotropn releasing 
factor (CRF) and/or adrenocorticotropic hormone (ACTH), 
growth hormone releasing hormone (GHRH), arginine 
vasopressine (AVP), parathyroid-hormone related peptide 
(PTH-rp) or calcitonin with paraneoplastic Cushing’s 
disease, acromegaly, inappropriate antidiuretic hormone 
secretion syndrome (SIADH).

Calcitonin is a peptide hormone that is normally 
secreted by thyroid C cells, but may be rarely produced 
ectopically by neuroendocrine tumors especially 
pancreatic NETs usually in association with other 
ectopically produced peptides and frequently with 
AVP[24] along with typical clinical symptoms of diarrhea 
and electrolyte disturbance.

Secretion of luteinizing hormone releasing hormone 
(LHRH), erythropoietin, cholecystokinin (CCK), 
renin and glucagon-like peptide 1 (GLP-1) in NETs 
are presented in only a few case reports or miniseries 
papers.[25] Diagnosis of these tumor subtypes is 
sometimes very difficult and so a multidisciplinary 
neuroendocrine team trained to suspect the disease based 
on symptoms is very important for early diagnosis.[6] 
For those paraneoplastic syndromes, the circulating 
biomarkers are not the starting point but the conclusion 
of a very difficult pathway from subtle and misleading 
clinical manifestation and biochemical alteration to 
diagnosis. For example potassium levels and euvolemic 
hyponatremia are ‘per se’ markers of possible ectopic 
Cushing disease or SIAD when presenting in a particular 
clinical context.[26,27]

During the natural course of disease, additional peptides 
could be secreted or co-secreted[28] resulting in different 
overlapping clinical manifestations with potential impacts 
on morbidity and mortality. These possibilities further 
complicate the puzzle that is NET patient management.

ARE CIRCULATING BIOMARKERS 
USEFUL IN THE DIFFERENTIATION 
BETWEEN FUNCTIONAL AND NON-
FUNCTIONAL TUMOURS?

The spectrum of clinical presentation of NETs is highly 
variable. Many are incidental findings, whereas other 
patients present with mass effects of the primary tumour 
or metastases (usually liver). Most NETs are nonfunctional 
or secrete peptides with low biological consequences. 
Approximately 10-20% of NETs are functional and 
present with an associated endocrine syndrome. They 
include tumors that secrete insulin (insulinoma) and 
gastrin (gastrinoma) but more rarely also vasointestinal 
peptide (VIPoma), glucagon (glucagonoma), somatostatin 
(somatostatinoma), antidiuretic hormone (tumor 
responsible of SIAD) adrenocorticotropic hormone 
(ectopic ACTHoma), growth-hormone releasing hormone 
(ectopic GHRHoma), calcitonin (medullary thyroid 

carcinoma), parathyroid hormone (ectopic secretion 
of PTH), vasoactive compounds, including biogenic 
amines (tumor responsible of carcinoid syndrome) and 
catecholamines (pheochromocytoma). In these cases, a 
range of specific peptide hormones may also be measured 
and are useful as diagnostic and prognostic biomarkers. 
Both functional and nonfunctional NETs produce CgA but 
this marker does not distinguish between functional and 
nonfunctional tumors.[2]

WHEN SHOULD BIOMARKERS TESTING 
BE PERFORMED?

Nonspecific circulating NET biomarkers do not have a 
crucial role in NET diagnosis and are not recommended 
for population screening in the absence of strong clinical 
or radiological evidence of tumor presence.[5,6]

CgA is correlated with tumor load and levels tend to be 
highest in metastatic cancer, particularly in the liver.[17] 
Recently however a meta-analysis reported a sensibility 
and specificity of 73% and 95% respectively for CgA with 
higher diagnostic accuracy.[16] u-5HIAA is mandatory 
in patients with carcinoid syndrome but not as useful 
in patients with foregut (bronchial, gastric) or hindgut 
(rectal) NETs or in most patients with pancreatic NETS 
which do not secrete serotonin.[29] Its value is dependent 
on tumor load and only very highly levels (> 5,000 µg/L) 
have been demonstrated to have a prognostic role in 
metastatic disease.[19-30] There is consensus about weak 
diagnostic role for CgA and u-5HIAA in early tumor 
detection for non-functioning tumors.[5,29,31-33]

The significance of NSE is limited in guidelines to poorly 
differentiated tumors but recent reports pointed to a 
possible prognostic role for this marker on progression-
free survival, overall survival, as a marker of treatment 
outcome in well differentiated, advanced pancreatic 
neuroendocrine tumors (pNET) during everolimus 
treatment[34] and more recently as a prognostic marker 
in gastroenteroNETs.[35] For syndromic patients the 
biomarkers should be evaluated according to signs and 
symptoms from the first diagnostic step.[29]

In 2011, the NET Task Force of the National Cancer 
Institute GI Steering Committee recommended the 
inclusion of serial plasma CgA measurements into all 
prospective trials for validation as a prognostic and 
potential biomarker predicting response.[32] All guidelines 
recommend CgA in all NETs at diagnosis and during 
follow up as well as u-5HIAA for carcinoid tumors 
and specific markers according to clinical syndrome in 
functioning tumors. [Table 1]

DO CIRCULATING BIOMARKERS 
CORRELATE WITH TUMOR BURDEN?

Although there are no data showing an absolute 
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Table 1: Comparative practical clinical suggestion for circulating NET biomarkers use in functioning and non-
functioning tumors from NCCN 2.2015, NANETS 2010-2013, ESMO 2012, ENETS 2009-2015-2016, UKINETS 
2012 guidelines and AME posizione statement 2014

Source of 
indications Cromogranin A NSE u-5HIAA

Plasma gastrin, 
insulin,

glucagon, 
somatostatin,

VIP, PP

Others
(plasma 

calcitonin, GHRH, 
IGF1, ACTH, 

PTH-rp)*

NCCN
2. 2015[32]

YES for NENs diagnosis 
and FU

YES for diagnosis
and FU

YES* for diagnosis 
and FU

YES PP in pNEN
for diagnosis and FU

YES* for diagnosis 
and FU

NANENS
2010-2013[29,37-40]

YES GEP-NENs 
diagnosis and FU

(only if + at diagnosis 
and not resected)
SUGGESTED 

THY-BRO NENs
diagnosis and FU

Useful in THY-
BRO diagnosis 

and FU

YES diagnosis
and FU mid-gut 

NENs
YES* others NENs

SUGGESTED**
for diagnosis and FU

(only if significant 
before)

SUGGESTED**
for diagnosis and FU

(only if significant 
before)

ESMO
2012[41-42]

YES GEP NEN diagnosis 
and FU

YES THY-BRO diagnosis 
and FU

YES in THY-BRO
YES in SI-NEN

YES* in 
THY-BRO

YES* for diagnosis 
and FU

NF-pNEN USEFUL 
PP

YES* in THY-BRO
(ACTH-GHRH-

IGF1)

ENETS
2015-2016[11,22,25,31,43,44]

YES GEP-NEN diagnosis 
and FU

USEFUL in NEC 
diagnosis and FU

YES THY-BRO diagnosis 
and FU

Useful in NEC 
diagnosis and FU

YES in SI-NEN
YES* in THY-BRO

YES* for diagnosis 
and FU

YES* for diagnosis 
and FU

UKINETS
2012[33]

YES for NENs diagnosis 
and FU

YES in SI, digiunal,
colon, appendiceal 

NENs

YES* for diagnosis 
and FU

NF-pNEN USEFUL 
PP

YES* for diagnosis 
and FU

AME
2014[5]

YES for GEP-NEN 
diagnosis and follow only 
after diagnosis or strong 

clinical suspicion

YES* diagnosis
YES for FU

if significant before

YES*
NOT PP

in pratical clinical use
YES*

NCCN: National Comprehensive Cancer Network; NANETS: North American Neuroendocrine Tumor; ESMO: European Society 
of Medical Oncology; ENETS: European Neuroendocrine Tumor Society; UKI NETS: UK and Ireland Neuroendocrine Tumour 
Society; NSE: plasmatic neuron-specific enolase; u-5HIAA: urinary 5-Hydroxy-indolacetic acid; NENs: neuroendocrine tumors; 
VIP: vasoactive ntestinal peptide; PP: pancreatic polypeptide; GHRH: growth hormone releasing hormone; IGF1: insulin like growth 
factor 1; ACTH: adrenocorticotropin; PTH-rp: parathyroid-hormone like hormone; YES: recommended; FU: follow up; YES*: 
recommended when clinically indicated; THY-BRO: neuroendocrine thymic and bronchial tumors; GEP-NEN: neuroendocrine 
gastroenteric tumors; SUGGESTED**: suggested a large panel of markers at diagnosis or key point individually tailored; NEC: 
neuroendocrine carcinoma; SI-NEN: small intestine neuroendocrine tumors; NF-pNENs: non functioning pancreatic neuroendocrine 
tumors; NOT: recommend against 

relationship between biomarker level and the degree 
of disease burden, higher levels are frequent in patients 
with metastasis, particularly in the liver. In other words, 
circulating biomarkers may reflect the tumor burden. 
Circulating markers are useful for monitoring specific 
tumors by providing a surrogate endpoint: CgA for 
the majority of cases, pancreastatin for hepatic tumor 
load, and neurokinin A for serotonin-secreting tumors 
of the small bowel.[33] In particular, circulating CgA is 
higher in patients with large metastases compared with 
localized disease or even limited hepatic involvement 

(when assessed as < 25%, 25-50%, > 50%) and correlates 
with survival. In addition, CgA levels are reduced after 
hepatic resection or transplantation. In a retrospective 
study, a CgA decrease of 80% or more was predictive of 
complete symptom resolution and disease stabilization. 
By contrast, reduction of urinary 5-hydroxyindoleacetic 
acid concentrations of 80% or more (or normalization) 
was predictive of symptomatic relief but not of disease 
stabilization.[45]

Despite the fact that gastrinomas show high circulating 
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CgA values even in the absence of liver metastasis, 
gastrin levels are generally proportional to tumor burden 
and highest gastrin levels are present in patients with 
metastatic disease. In addition, gastrin seems higher in 
pancreatic compared to duodenal primary tumors, with 
no discernible difference between sporadic and multiple 
endocrine neoplasia (MEN1) or Zollinger Ellison 
syndrome patients.[46] On the contrary, authors of a recent 
consensus agreed that circulating biomarkers levels in 
patients with neuroendocrine tumors do not correlate with 
tumor grade and do not differentiate low-level malignancy 
from high-grade disease.[12]

SHOULD CIRCULATING BIOMARKERS 
BE USED IN DISEASE FOLLOW UP?

When specific circulating biomarkers are elevated at 
the diagnosis in a patient there is indication to follow 
these over time. If new signs and symptoms emerge, it 
is necessary to test for new paraneoplastic syndromes 
according to clinical presentation.[6]

All guidelines [Table 1] recommend the use of CgA for 
follow up in all NETs even though there is an absence of 
prospective studies supporting its use.

Table 2: Pitfalls and bottlenecks and possible remedies for circulating chromogranin A and gastrin 
interpretation
Pitfalls and 
bottleneck Possible causes Remidies suggested
High CrA levels
during diagnostic 
work up for NETs

Others disease
and cancers
than NETs

Keep in mind non-malignant pathological causes of elevated CrA as severe 
hypertension, systemic inflammatory response syndrome, pulmonary obstructive 
disease, bowel disease renal insufficiency, liver or heart failure, chronic gastritis, 
chronic hepatitis, pancreatitis, Helicobacter Pylori infection, inflammatory bowel 
disease, hyperthyroidism, giant cell arthritis, systemic lupus erythematosous, 
exercise-induced physical stress

Doubtful in accuracy 
determination

Keep in mind malignant pathological causes of elevated CrA others than NETs as 
breast cancer, hepatocellular carcinoma, pancreatic adenocarcinoma, colon cancer, 
ovarian cancer, prostate cancer, medullary thyroid cancer

High individual 
intervariability

Recommend only certificated laboratories with high quality control certification

Drugs
(PPIs)

Complete with imaging according to clinical presentation
Repeat determination if doubtful
Stop proton pump inhibitor 2 weeks before or according with drugs half life

Unexpected 
individual changes 
in patient with 
known NETs

Doubtful in accuracy 
determination

High individual 
intervariability

Different assay and 
normal values in 

different labs

Samples from different 
physiological condition

Consider drugs 
interference (SSA)

Recommend only certificated laboratories with high quality control certification 
and the same laboratory and assay for each patient

Report information on lab and normal reference in patient medical record

Check for possible new drugs or physiological interference (fasting, exercise etc.)

Recommend CrA determination during long acting SSA therapy at regular interval 
after drug injection

If crucial data for diagnosis or therapy management retest in same condition
Compare biochemical, clinical and imaging data

High gastrin levels 
in patient with 
clinical suspicion 
of gastrinoma

Drugs interference
(PPIs)

Concomitant disease 
interference

Stop PPIs under careful patient monitoring (in-patient setting or daily checks) and 
switch to H2 receptor antagonist
If PPIs interruption is not clinically indicated try to tapered the IPPs dose
If the diagnosis is unclear (fasting serum gastrin < 10× increased, gastric pH < 2, 
no tumor imaged), a secretin test is indicated

Consider atrophic gastric, Helicobacter Pylori infection, renal failure, short bowel 
syndrome

NETs: neuroendocrine tumors; PPIs: proton pump inhibitors; SSA: somatostatin analogues
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Table 3: Pitfalls and bottlenecks and possible remedies for circulating u-5HIAA
Pitfalls and 
bottleneck Possible causes Remidies suggested
High u-5HIAA
in patient with 
suspected or 
known NETs

Urinary collection
not correct

Intraindividual
Variation

Doubtful in accuracy 
determination

Others disease

Tryptophan/
serotonin-riche food 
consumption

Drugs interference

Give some written information how to collect 24 h urine and to conserve. If result is 
doubtful and crucial for diagnostic and therapeutic choose repeat

Perform two consecutive 24-h urine collections and take mean value of these two 
especially when collection required for diagnosis or when crucial for terapeutic choose
Recommend only certificated laboratories with high quality control certification

Keep in mind others pathological causes of elevated u-5HIAA as coeliac and Whipple’s 
disease, intestinal stasis and cystic fibrosis

Exclude from the diet from 72 h preceding and during urine collection
plums, pineapples, bananas, eggplants, tomatoes, avocados, walnuts, avocados, kiwi, 
pecans, coffee, tea, cocoa, chocolate, vanilla, sweets and cookies

Keep in mind possible drugs interference. Stop if not contraindicated.
u-5HIAA levels were increased during Acetaminophene, naproxen, coumaric acid, 
phenacetin, diazepam, ephedrine, glyceryl guaiacolate, methocarbamol, reserpine, 
cisplatin, fluorouracil, melphalan, rauwolfia

Give some written instruction on drugs and food restriction and report all drugs in 
medical records

Low u-5HIAA 
in patients with 
known or highly 
suspected NETs

Urinary collection 
not correct
Intraindividual 
variation

Doubtful in
accuracy 
determination

Drugs interference

Alcohol addiction

Possible inhibitory
roles of SSA

The same as for high levels

Keep in mind possible drugs interference. Stop if not contraindicated.  U-5HIAA 
levels were reduced during Chlorpromazine, heparin, imipramine, isoniazid, 
levodopa, monoamine oxidase inhibitors, methenamine, methyldopa, phenothiazines, 
promethazine, tricyclic antidepressants, chlorophenylalanine, corticotrophin, guanfacine, 
imipramine, isocarboxazid, isoniazid, levodopa, MAO inhibitors, moclobemide, 
acetylsalicylic acid, streptozotocina uses

Ethanol reduce u-5HIAA

SSA is known to decrease u-5HIAA. Assays for diagnostic purposes should be made in 
patients not on somatostatin analogues therapy

In the follow up setting urinary samples need to be collected on stable or comparable 
SSA doses

Report in patient medical record type of somatostatin analogue and frequency of 
administration and eventually subcutaneous octreotide performed in the last 24 h before 
determination

NETs: neuroendocrine tumors; PPIs: proton pump inhibitors; SSA: somatostatin analogues; u-5HIAA: urinary 5-Hydroxy-indolacetic acid

SHOULD BIOMARKERS REFLECT 
INTERVENTION?

CgA has been used in gastroenteric NETs as a predictive 
biomarker to identify patients most likely to have 
durable responses to long acting somatostatin analogue 
therapy.[47] Further, early decreases in CgA after 
somatostatin analogues plus everolimus was predictive 
of early response in pNET patients.[34] Increases in CgA 
levels after radical surgery in a large Italian observational 

study was reported to be predictive of tumor relapse 9-12 
months before the clinical and radiological evidence of 
disease recurrence.[48] In a recent paper, CgA was an early 
predictor of recurrence 6 months before radiological 
progression in metastatic NETs.[49] A reduction of > 80% 
in CgA after cytoreductive surgery was shown to predict 
disease control[50] and reduction of CgA was observed 
after successful peptide receptor radionuclide therapy[51] 
and liver transplantation.[52]
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HOW TO AVOID MISINTERPRETATION 
OF CGA, GASTRIN AND U-5HIAA IN 
CLINICAL PRACTICE?

There are many conditions that interfere with CgA and 
u-5HIAA measurements. For CgA there is no universally 
accepted CgA assay and the different methodologies can 
lead to confusing results. Many physiological conditions 
as stress, pregnancy or exercise can increase circulating 
CgA levels and the same is true for many drugs and non-
neuroendocrine diseases. U-5HIAA measurements also 
have inherent pitfalls since they require a 24 h urine 
collection and are subject to interference by dietary 
habits.[2,5,8,9,13-15,29,31,33] Tables 2 and 3 show the most 
important pitfalls and bottlenecks and possible remedies 
in CgA, gastrin and u-5HIAA interpretation and provide 
suggestions to reduce interference in circulating biomarker 
measurements for more accurate tumor management.

MONOANALYTE OR MULTIANALYTES?

The identification of effective biomarkers in patients with 
NETs is a high priority. In a recent Delphi consensus, 
the panel of neuroendocrine experts agreed that an 
acceptable standard for a diagnostic biomarker should 
have a sensitivity of at least 80%, specificity of at least 
90%, and positive and negative predictive values of each 
at 80% or more.[12] In addition, the biomarker should be 
able to provide information regarding the proliferative 
and metastatic capacity of a tumor, the identification 
of surgical and medical treatment effectiveness and 
correlate with patient survival. Unfortunately current 
universal circulating biomarkers are not able to provide 
this standard and, in particular, the role of CgA in the 
diagnosis of neuroendocrine tumors is decreasing.

The principal limitation in the measurement of 
circulating CgA is the absence of a gold standard 
assay and wide variability of results from different 
kits and laboratories. In addition, false positive results 
are reported as a result of other neoplasia (prostate 
and breast cancer and hepatocellular carcinoma) and 
common conditions (kidney, liver or heart failure, chronic 
gastritis, inflammatory bowel disease, PPI use, essential 
hypertension and physical stress). In addition, the current 
biomarkers used for gastroenteropancreatic NETs are 
inadequate for bronchopulmonary NETs and vice versa. 
For these reasons, a multianalyte approach would likely 
be more effective compared to a monoanalyte circulating 
biomarker. To this end, a specific multianalyte assay with 
algorithmic analyses (MAAA) named NETest has recently 
been developed. NETest is a PCR-based, 51-transcript 
signature that is based on correlating and normalizing 
multiple sets of variables that represent gene clusters 
specific to NETs and their biological behavior. The use 
of this blood-based test is proposed to facilitate early 
detection of disease recurrence and to predict therapeutic 
efficacy. The diagnostic performance of MAAAs was 

better when compared to CgA (93-98% vs. 50-80%)[53,54] 
exceeding the performance criteria proposed by an expert 
panel convened to evaluate NET biomarkers. MAAAs and 
NETest in particular may improve diagnostic accuracy 
and offer better interdisciplinary perspective than single 
analyte testing.

IS THERE A CLINICAL ROLE FOR NOVEL 
BIOMARKERS?

Recently, several novel biomarkers for NETs have 
been developed using an integration of genomics and 
technology platforms. In addition to gene transcript by 
MAAAs, circulating tumor cell (CTC) and microRNA 
(miRNA) analyses have been proposed.[12]

Khan et al.[55] showed that the number of CTC detected 
in patients with neuroendocrine tumors was comparable 
to other tumors in which CTC have been shown to have 
prognostic relevance. In this study, 47% of patients with 
midgut (n = 101) and 24% of patients with pancreatic (n 
= 42) tumors had ≥ two CTC detected. Presence of CTC 
was clearly associated with increasing tumor burden 
and weakly with tumor grade. In a more recent, large 
prospective study, the same group demonstrated that 
changes in CTC were associated with response to treatment 
and overall survival in metastatic neuroendocrine tumors, 
suggesting CTC may be useful as a surrogate marker 
to direct clinical decision making.[56] Although there 
is an increasing interest in CTC as a biomarker, recent 
consensus concluded that CTC analyses have several 
technical limitations and need further validation before 
being adopted into routine clinical practice.[12]

There is also increasing interest in miRNAs as clinical 
biomarkers of tumorigenesis, treatment response and 
outcomes, but to date clinical data are scarce and clinical 
application challenging. Similarly, there are several novel 
monoanalyte assays (i.e. connective tissue growth factor 
for carcinoid heart disease (CCN2) or paraneoplastic Ma 
antigen 2 (PNMA2) for small intestinal neuroendocrine 
tumors, but these analyses are not available in clinical 
practice.[12] Further, panelists of the recent Delphi 
consensus gave the strongest support to the use of 
emerging biomarkers in multianalyte technology based 
on genomics.[12]

CONCLUSION

To date, the identification of sensitive, specific and 
reproducible NET circulating biomarkers for the 
prediction, diagnosis, prognosis and classification of 
NETs and to evaluate changes during therapy has been 
limited[12] and remains an unfulfilled unmet medical need 
as defined by the 2007 National Cancer Institute NET 
meeting.[57] There are no specific circulating monoanalyte 
biomarkers for neuroendocrine tumors that fulfill the 
NIH recommended criteria and the search continues for 
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markers with diagnostic and prognostic capabilities. Since 
Feyrter have discovered the neuroendocrine equivalent 
of Pandora’s Box, a unique relationship between these 
various neuroendocrine peptides and different tumors 
has not been found yet.[7] We are hopeful that in the 
era of Precision Medicine, specific circulating markers 
or a multianalyte panel for specific tumor types can be 
developed for NETs giving more reliable diagnostic and 
prognostic information. The road is long and new, robust 
prospective studies in different neuroendocrine tumors 
settings are required before new accurate biomarkers are 
validated and implemented into routine clinical practice.
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Extracellular matrix (ECM) is an essential component of the tumor microenvironment. 
Cancer development and progression are associated with increased ECM deposition 
and crosslink. The chemical and physical signals elicited from ECM are necessary for 
cancer cell proliferation and invasion. It is well recognized that stromal cells are a major 
source of ECM proteins. However, recent studies showed that cancer cells are also an 
active and important component in ECM remodeling. Cancer cells deposit a significant 
amount of collagen, fibronectin, and tenascin C (TNC). Recent studies demonstrate that 
these cancer cell-derived ECM proteins enhance cancer cell survival and promote cancer 
cell colonization at distant sites. ECM-related enzymes and chaperone proteins, such as 
prolyl-4-hydroxylase, lysyl-hydroxylase, lysyl oxidase, and heat shock protein 47, are also 
highly expressed in cancer cells. Inhibition of these enzymes significantly reduces cancer 
growth, invasion, and metastasis. These factors suggest that the cancer cell-derived ECM 
is crucial for cancer progression and metastasis. Therefore, targeting these ECM proteins 
and ECM-related enzymes is a potential strategy for cancer treatment.
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INTRODUCTION

Cancer development and progression require 
extensive reorganization of extracellular matrix.[1,2] 
Extracellular matrix (ECM) is a complex mixture of 
structural proteins, glycoproteins, and proteoglycans, 
which provide not only essential physical scaffolds to 
maintain tissue structure but also various biochemical 
signals to modulate cellular function.[3-5] Altering the 
fine balance of ECM signal is sufficient in the long run 
to induce breast cancer development and progression. 
Increased deposition of collagen and other ECM 
molecules enhances the cancer tissue stiffness.[6-9]

Collagens are the most abundant protein in the 
ECM.[10,11] Collagen fibril has critical function for tumor 
cell growth, migration and metastasis.[12-14] Other ECM 
components, such as hyaluronan, TNC, and periostin 
(POSTN), are also highly expressed in metastatic 
tumor and play important roles in tumor metastasis 
niche.[8,15-18]

Fibroblasts are considered the major source for ECM 
in both normal and malignant tissue.[19] Surprisingly, 
recent studies showed that cancer cells also produce 
a significant quantity of ECM protein during cancer 
progression.[20,21] Dr. Hynes’s laboratory, utilizing an 
elegant proteomic experiment, demonstrated that ECM 
molecules in cancer tissue are deposited by both cancer 
cells and stromal cells.[20,21] ECM proteins, such as 
laminin 5, hyaluronan, and TNC, are highly expressed 
in invasive cancer cells.[22-27] Gene expression analysis 
has identified that ECM protein genes are upregulated 
in drug-resistant cancer cells.[28] Collagen modification 
enzymes, including prolyl-4-hydroxylase (P4H), lysyl-
hydroxylase (PLOD), and lysyl oxidase (LOX), as 
well as molecular chaperone heat shock protein 47 
(HSP47), are highly expressed in cancer cells and are 
associated with tumor metastasis.[29-33]

This review summarizes recent findings about ECM 
microenvironment in solid tumor. The primary focus 
is on the role of cancer cells in ECM synthesis and 
the function of cancer cell-derived ECM in tumor 
progression.

THE EXTRACELLULAR MATRIX

ECM can be classified into two groups: the interstitial 
matrix and the basement membrane.[34] Basement 
membranes are thin layers of ECM that form the 
supporting structure under epithelial and endothelial 
cells.[35] Basement membrane has a distinctive 
composition containing type IV collagen, laminins, 
entactins, and proteoglycans.[7,36] The interstitial matrix, 

which is primarily produced by stromal cells, fills in the 
interstitial space between cells. The interstitial matrix 
is rich in types I, III, V, VI, VII, and XII collagens, as 
well as proteoglycans and various glycoproteins such 
as TNC and fibronectin.[37]

Collagen is the most abundant protein in vivo. Forty-
four collagen genes have been identified in the human 
genome; they generate at least 28 different types of 
collagen. From precursor procollagen to final collagen 
fibril, collagen synthesis process involves several 
important modification enzymes.[10,38] Proline and lysine 
hydroxylation are well characterized modifications 
on procollagen, which are catalyzed by two different 
enzymes: P4H and PLOD. Collagen P4H catalyzes 
the formation of 4-hydroxyproline, which is essential 
to the proper folding of newly synthesized procollagen 
chains.[39,40] PLOD catalyzes the hydroxylation of lysyl 
residues in collagen-like peptides, which is critical for 
the formation of intermolecular crosslinks.[41,42] LOX is 
enzyme-catalyzing formation of aldehydes from lysine 
residues in collagen after collagen secretion, which 
is required for collagen fibril formation.[43,44] HSP47 
is a molecular chaperone that promotes maturation 
of collagen molecules by inhibiting the aggregation 
of collagen in endoplasmic reticulum (ER).[45-47] 
The expression of collagen-modification enzymes 
and molecular chaperone is often associated with 
increased collagen deposition in cancer tissue.[30-33,48-51] 
Enhanced enzyme activities are often associated with 
increased collagen deposition in cancer tissue.

ECM PLAYS IMPORTANT ROLES IN 
TUMOR PROGRESSION

ECM is a major component of tumor microenvironment 
and plays critical roles in cancer development and 
progression. Increased ECM proteins deposition 
and crosslink provide necessary biochemical and 
biophysical cues to promote cancer cell proliferation, 
migration, and invasion.[12,52-54] Laminin-322 is 
specifically localized in the dense fibrotic zone around 
invasive ductal carcinoma, providing a specialized 
microenvironment for guiding tumor invasion.[52] 
Gamma 2 chain of laminin 5 (laminin 5 γ2) is highly 
expressed in invasive mammary, colon, melanoma, 
and sarcoma cancer cells. Laminin 5 plays a role 
in establishing focal adhesions of cancer cells and 
contributes to cancer dissemination.[24-26]

ECM molecules, such as POSTN, fibronectin, 
and hyaluronan, are important components of the 
metastatic niche.[7] POSTN is a secreted extracellular 
matrix protein originally identified from mesenchymal 
cells.[8,16,17] Deletion of POSTN has little effect on normal 
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Table 1: Stroma cells and cancer cells-derived ECM proteins and ECM regulators

Stroma cells References Cancer cells References

Collagens Collagen I

Collagen II

Collagen III

Collagen IV

Collagen V

Collagen VI

Collagen VII

Collagen X

Collagen XI

Collagen XII

Collagen XIV

Collagen XV

Collagen XVI

Collagen XVIII

Collagen XVIIII

Collagen XXIV

Collagen XXVIII

[20,21,66]

[20,21]

[20,21,66,67]

[20,21]

[20,21,53,66,67]

[20,21,66]

[21]

[20,21,66]

[20,21,66]

[20]

[20,21,66]

[20,21]

[20]

[20,21]

[21]

[20,21]

[20]

Collagen I

Collagen II

Collagen III

Collagen IV

Collagen V

Collagen VI

Collagen VII

Collagen VIII

Collagen IX

Collagen X

Collagen XI

Collagen XII

Collagen XV

Collagen XVI

Collagen XVIII

Collagen XIX

Collagen XXII

Collagen XXIV

[20,21,53,65]

[20,21]

[20,21,53]

[20,21,28,65,68]

[20,21,53,63]

[20,21,28,53,68]

[20,21,68]

[20,53,63]

[20,68]

[20,21,53,63]

[20,21,53,63,68]

[20,21,31,63,65]

[20,21,65,68]

[20,21,28,65]

[20,21,65]

[20,21]

[20,21,63]

[20,21,68]

Other ECM glycoproteins Fibrinogen

Dermatopontin

Elastin

Fibronectin1

Laminin α2

Laminin β2

Nidogen-1

Nidogen-2

ECM 1

Fibulin 2

LTBP2

Tenascin N

EMILIN2

TNC

POSTN

Hyaluronan

Thrombospondin-1

SPARC

Vitronectin

[20,21]

[20,21]

[20,21]

[20,21,66]

[20,67]

[20,21]

[20,67]

[21,66]

[21]

[20,21]

[20,21]

[20]

[20,21,66]

[20,66,67]

[21,66]

[21]

[20]

[21,66,68]

[20,21]

Laminin α4

Laminin β1

Laminin β2

Laminin γ2

Fibronectin1

Elastin

LTBP1

LTBP4

Nidogen-1

Nidogen-2

ECM 1

Peroxidasin

TINAGL1

TNC

Hyaluronan

Thrombospondin-1

SPARC

[20,21,28,65]

[20,21,28,65,68]

[20,68]

[20,21,66,68]

[20,21,28,65,68]

[20,21]

[20,21,68]

[20,21]

[20,21]

[20,21]

[20,21,28,68]

[20,21]

[20,21]

[20,21,66]

[20]

[20,21]

[20,53,65,68]

Proteoglycan Asporin

Biglycan

Decorin

[20,21]

[20,66]

[20,21,67]

Biglycan

HAPLN1

Decorin

[20,21,28]

[20,65]

[20,21,53,65,68]
                                                                                                                                                                                                                                                                                                            
                                                                                                                                                                                                        Continued...
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tissue development and primary tumor growth, but it 
significantly suppresses breast cancer metastasis.[8,17] 
POSTN promotes cancer stem cell maintenance and 
lung metastasis by enhancing the WNT signaling 
pathway.[8,17] Fibronectin, a marker of epithelial-
mesenchymal transition, enhances cancer metastasis 
through Src kinase and extracellular signal-regulated 
kinase/mitogen-activated protein kinase pathway.[55] 
Hyaluronan expression is upregulated in breast 
cancer, lung cancer, pancreatic cancer, melanoma 
cancer, and myeloma cancer.[22,23,27] Upregulation of 
hyaluronan is also associated with tumor progression 
and poor prognosis.[15,56,57] Hyaluronan receptor CD44 
promotes survival of disseminated cancer cells during 
metastasis.[58] TNC is an oligomeric glycoprotein 
composed of individual polypeptides with molecular 
weights ranging from 180 kDa to 300 kDa. Expression 
of TNC in breast tumor is associated with lung 
metastasis.[8,16,18] Recent studies reveal that TNC is a 
critical component of metastatic niche and supports 
survival of disseminated cancer cells at secondary 
organs.[8,16,18]

Collagen is the major structural ECM protein in 
tumor tissue. It has been shown that women with 
dense breasts have a four- to six-fold increased risk 
of developing breast cancer, and the dense breast 
correlates with increased collagen deposition and 
crosslink. In addition, the crosslinked and orientated 
collagen in cancer tissue is a reliable marker associated 
with poor survival, regardless of tumor grade and size, 
tumor subtype, ER or PR status, and node status.[12,59] 

The abnormal deposition of collagen in tumor stroma 
promotes cancer progression. Increased collagen VI 
deposition stimulates cancer cell proliferation.[59-61] 
Col5A2 and Col11A1 are highly expressed in invasive 
ductal carcinoma compared to ductal carcinoma in situ. 
Both of them are involved in triggering cancer cells to 
disseminate.[62,63]

Collagen production and deposition is regulated by a 
variety of enzymes, including P4Hs, PLODs, and LOXs. 
Collagen deposition is regulated by hypoxia in tumor 
tissue.[47,48,61] Collagen modification enzymes, P4Hs, 
PLOD, and LOX, are activated by HIF-1α in cancer 
cells.[27,28,40,48] Expression of collagen P4H is significantly 
upregulated in breast cancer. Knockdown of P4HA 
inhibits mammary tumor growth and metastasis to 
lungs, and decreased P4HA activity depresses cancer 
cell alignment along collagen fibers.[31,32,50] PLOD2 
expression is also associated with increased risk of 
mortality in breast cancer patient. PLOD2 is critical 
for breast cancer cell metastasis to lymph nodes and 
lungs because it increases fibril collagen formation 
and increases tumor stiffness.[30] In sarcoma cancer, 
inhibition of PLOD enzymatic activity suppresses 
metastases.[64] Secretion of LOX by metastatic breast 
cancer cells is upregulated in metastasis niche. 
Increased activity of LOX recruits bone marrow-
derived cells (BMDCs) to metastasis niche. BMDCs are 
important in creating a microenvironment for metastatic 
cancer-cell invasion and growth.[43] Increased LOX 
expression results in increased ECM stiffening, which 
is essential for cancer cell expansion.[7] Inhibition 

Stroma cells References Cancer cells References

ECM regulators Cathepsin B

ITIH1

ITIH2

Plasminogen

P4HA1

P4HA2

PLOD2

PLOD3

HSP50

LOXL1

[20,21]

[20,21]

[20,21]

[20,21]

[50]

[50]

[50]

[20,21]

[20,21]

[21]

Cathepsin B

Osteonectin

P4HA1

PLOD1

PLOD2

PLOD3

LOX

LOXL2

LOXL4

HSP50

[20]

[20,68]

[20,21,31,32]

[20,21]

[20,21,30]

[20,21]

[20,21,65]

[20,21]

[20]

[20,21,33]

Secret factors TGFβ1

S100-A9

[20,21,66]

[21]

S100-A13

S100-A4

S100-A6

TGFβ1

[20]

[20,21]

[20,21]

[20,21,65]
ECM1: extracellular matrix protein 1; EMILIN2: elastin microfibril interfacer 2; LTBP1: latent transforming growth factor beta binding 
protein 1; LTBP2: latent transforming growth factor beta binding protein 2; LTBP4: latent transforming growth factor beta binding protein 
4; ITIH1: inter-alpha-trypsin inhibitor heavy chain H1; TINAGL1: tubulointerstitial nephritis antigen-like 1; HAPLN1: hyaluronan and 
proteoglycan link protein 1
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LOX activation reduces collagen fibril formation and 
ECM stiffness, which depresses focal adhesions and 
PI3K activity, and consequently suppresses cancer 
cell invasion.[54] These results indicate that collagen 
modification enzymes P4Hs, PLODs, and LOXs play 
critical roles in cancer cell metastasis.

CANCER CELLS ARE CRITICAL SOURCES 
OF TUMOR ECM

The cellular components of tumor stroma include 
fibroblasts, endothelial cells, fat cells, and immune 
cells. It has been shown that cancer-associated 
fibroblasts produce and regulate the ECM remodeling 
in cancer tissue, and the roles of cancer cells in ECM 
deposition have not been appreciated until recently. Dr. 
Hynes’s laboratory investigated matrisome (ECM and 
ECM-associated proteins) in colon tumor tissues, lung 
tumor tissues, and human breast cancer tissue.[20,21] 
They found that ECM components in tumor matrix 
are derived from cancer cells and stromal cells, 
and many of them are only expressed by cancer 
cells, including Col19A1, Col22A1, Col7A1, LAMA4, 
LAMB1, LTBP1, LTBP3, LTBP4, TINAGL1, and ECM 
regulators galectin 1 (LGALS1) and PLOD1.[20,21] Gene 
expression analysis of drug-resistant breast cancer 
cells has found that 25 ECM components’ genes 
(including collagen, fibronectin, syndecan, and laminin) 
and integrin ligands are upregulated in drug-resistant 
breast cancer cells.[28] Gene expression analysis of 
drug-resistant ovarian cancer cells also discovered 
that molecules in ECM networks, including COL3A1, 
COL5A2, COL15A1, and LOX, among others, are very 

significantly upregulated.[65] Gene expression profile 
studies from other labs also reveal that expression of 
genes involved in synthesis and organization of ECM 
are upregulated in the epithelium of invasive cancer 
cells.[53,63,66-68]

LAMC2 (gamma 2 chain gene of laminin 5) is highly 
expressed in invasive cancer cells in mammary, colon, 
melanoma and sarcoma tumora.[24-26,69] Hyaluronan 
synthesis is increased in a variety types of cancer cells, 
including breast tumor, melanoma tumor, and myeloma 
tumor.[22,23,27] Thrombospondin-1 is expressed in the 
stroma and cancer cells.[70] TNC, a key metastatic niche 
molecule required for the metastasis initiation, is also 
expressed in breast tumor cells and stroma cells.[8,16,18] 
Collagens are mainly synthesized by cancer-associated 
fibroblasts in breast cancer, but cancer cells are also 
an important source of the collagen.[63] In addition, the 
expression of collagen synthesis regulating enzymes 
P4H and PLOD is induced by the HIF-1 pathway in 
cancer cells.[30,31,51,64] We have summarized ECM 
proteins and ECM-related enzymes derived from the 
stroma cells and cancer cells in Table 1. This evidence 
clearly shows that cancer cells are a major source of 
tumor ECM.

CANCER CELL-DERIVED ECM IN CANCER 
PROGRESSION AND METASTASIS

ECM deposited by cancer cells is crucial for cancer 
progression and metastasis. It has been shown that 
inhibition of LOX expression in cancer cell represses 
cell adhesion, migration, and invasion.[29,71] Hyaluronan 

Figure 1: Stroma cell-derived extracellular matrix (ECM) and cancer cell-derived ECM collectively support cancer cell proliferation, 
invasion, and metastasis. ECM: extracellular matrix; BMDC: bone marrow-derived cells; PLOD: lysyl-hydroxylase; LOX: lysyl oxidase
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deposited by cancer cells promotes cell proliferation, 
migration, invasion, metastasis, multidrug resistance, 
and tumor-associated angiogenesis.[15,56,57] TNC that 
is derived from disseminated tumor cells promotes 
lung metastasis by enhancing NOTCH and WNT 
signaling pathways [Figure 1].[8,16,18] In addition, cancer 
cell-derived ECM proteins (fibronectin, collagen, and 
laminin) protect cancer cells from chemotherapy-
induced apoptosis via activation of the PI3k/AKT 
pathway [Figure 1].[72,73]

Cancer cell-derived ECM proteins mediate the cancer 
cell-stromal cell crosstalk. Hyaluronan production by 
stroma fibroblasts is stimulated by factors secreted by 
cancer cells.[74,75] Metastatic niche molecule POSTN is 
secreted by stoma fibroblasts of breast tumor under 
stimulation from the tumor cells that are produced 
TGF-β3 [Figure 1].[8,16-18] Cancer cells also remotely 
recruit stromal cells to create a premetastatic niche 
before metastasis. Cancer cells-derived TNC initiates 
cancer cell metastasis, and then it stimulates stroma 
cell-derived TNC synthesis. Ablation of TNC expression 
in cancer cells at an early time in the metastatic process 
inhibits the outgrowth of lung metastases. Interestingly, 
inhibition TNC expression in cancer cells at a late 
stage of metastasis does not affect micrometastases 
expanding to macrometastases, because metastatic 
cancer cells have already induced TNC expression 
in stromal cells to promote tumor growth.[8,16,18] These 
results indicate that cancer cell-derived ECM molecules 
are critical regulators of the initiation of metastasis 
outgrowth through activating the stromal cells in the 
secondary organs [Figure 1].

CONCLUSION

In summary, tumor cells play critical roles in ECM 
deposition and remodeling during cancer development 
and progression. Accumulated evidence demonstrates 
that ECM molecules deposited by cancer cells 
promote cancer progression by enhancing cell 
survival and proliferation. However, it largely remains 
to be determined how cancer cell-derived ECM is 
regulated and how those ECM proteins function in 
tumor microenvironment remodeling. Answering those 
questions is critical for developing potential cancer 
treatment strategies by targeting the cancer cell-
derived ECM and ECM-related enzymes.
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Peritoneal Carcinomatosis (PC) from metastasization of Gastric Cancer (GC), either 
present at first diagnosis of GC or as recurrence, is considered a fatal disease with no 
hope of definitive cure. Although newer agents like S1 and docetaxel have shown some 
promise, the median overall survival with the current first line chemotherapy is only 8 
to 14 months, and is not greatly improved by adding targeted therapy. A multi-modal 
approach with cytoreductive surgery (CRS) associated with hyperthermic intraperitoneal 
chemotherapy (HIPEC) has been developed along the last two decades in order to tackle 
this problem. It’s an aggressive, combined treatment still under investigation. Studies 
coming from Europe and Far East reported long-term survival with 5-year survival rates 
up to nearly 25% in case of complete cytoreduction. Prophylactic/adjuvant setting is the 
most evidence-based indication for HIPEC in advanced-stage GC patients without PC, 
in order to prevent peritoneal recurrence and to improve overall survival. The rationale 
for immuno treatment in patients with gastric PC is strong. A randomized phase II study, 
combining complete CRS with intraperitoneal catumaxomab is on-going. The detection of 
free peritoneal cancer cells is the more realistic and practical way for the identification of 
patients at risk of carcinomatosis after surgery. The routine use of techniques of molecular 
detection in peritoneal washing appears to be the more sensitive method. Such patients 
are potential candidate for multimodal and locoregional treatments in order to prevent the 
peritoneal recurrence.
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INTRODUCTION

The regional metastatic spread of gastric cancer 
(GC) usually results in peritoneal carcinomatosis 
(PC). When GC patients are explored for potentially 
curative resection, 10-20% of them are found to have 
peritoneal metastases.[1] Furthermore, in case of 
cancer infiltration of the serosal layer of the stomach, 
PC is present at first diagnosis of the cancer in 15-50% 
of cases and peritoneal recurrence develops in 35-60% 
of such patients after radical resection. PC is the only 
site of metastasis in 40-60% of patients.[2,3] Therefore, 
peritoneal metastases alone usually result in death for 
20-40% of patients with GC.[4]

Conventional surgery is not adequate for PC; current 
treatments are systemic chemotherapy and palliative 
therapy, with no hope of cure. In selected cases 
and in experienced centers, the association of more 
aggressive surgery with multimodal loco-regional 
treatments has shown to achieve prolonged survival 
and reduced peritoneal recurrences.[5-7]

PHYSIO-PATHOLOGICAL FEATURES OF PC

The molecular mechanisms by which GC undergoes 
PC are not completely clear. Chemokines (CXC) are 
surely involved. They are small secretory proteins 
controlling migration and activation of leukocytes and 
other types of cell through interactions with a group of 
seven trans-membrane G protein-coupled receptors. 
CXC may also promote growth/survival and metastasis 
of several malignancies.[8-11] There is evidence that 
the axis between CXCL12 (highly expressed in 
peritoneum than in the liver or lymphnodes) and the 
receptor CXCR4 plays a role in the development of 
PC from GC.[12,13] The CXCR4 antagonist AMD3100 
prevents experimental PC  by NUGC4 cells in nude 
mice. In human, the CXCR4 expression in primary 
tumors of patients with advanced GC significantly 
correlates with the occurrence of PC. Furthermore, 
CXCR4-expressing GC cells are preferentially 
attracted to the peritoneum cavity where its ligand 
CXCL12 is abundantly produced. The CXCL12/
CXCR4 axis is influenced by interaction with the 
vascular endothelial growth factor (VEGF).[14] VEGF is 
markedly elevated in malignant ascites and is one of 
the essential elements in the development of PC.[12] 
Such results suggest that the expression of CXCR4 
in biopsy specimen from primary gastric tumors may 
be useful for preoperative evaluation of risks for the 
occurrence of PC. Evaluation of CXCL12 levels in 
intraoperative washing of abdominal cavity in patients 
with advanced GC has been proposed as a predictive 
molecular marker for the risk of PC.

Peritoneal dissemination of free cancer cells happens 
through exfoliation from the tumor and leads to direct 
invasion of the mesothelium. Surgery itself may 
produce intra-operative dissemination of cancer cells 
by severed lymphatics, intraperitoneal blood loss, 
trauma at narrow margins of resection etc.. According 
to the “tumor cell entrapment hypothesis” proposed 
by Sugarbaker PH, immediately after a surgical 
procedure the endoperitoneal free cancer cells 
which are spontaneously exfoliated or iatrogenically 
disseminated adhere to the damaged surface created 
by surgery; they are trapped by fibrin and stimulated by 
growth factors of the wound healing and inflammation 
processes, with tumor cell implant on the visceral and 
parietal peritoneum. The nodule of carcinomatosis in 
this way becomes a hypoxic, and relatively immune to 
systemic chemotherapy, environment.[15]

Tumor cells can also diffuse through the “milky-spots”, 
little cribriform “stomata” present on the peritoneal 
surface, communicating between peritoneal cavity and 
lymphatic vessels, with the function of re-absorption 
of abdominal fluids. Milky spots are mainly composed 
of macrophages and B1 cells; there are compelling 
data to consider the milky spots as unique secondary 
lymphoid organs.[16] The peritoneal free cancer cells 
are trapped during their passage through the spots 
and attacked by inflammatory and immuno-response 
cells, forming a hypoxic nodule.[17] The milky spots 
are mainly localized in the omentum and in the sub-
diaphragmatic areas, which are in fact the preferential 
sites of distribution of peritoneal metastases.[18]

THE TREATMENT OF PC

The PC arising from GC has ever been considered as 
a final stage of the disease, with no chances of cure 
but palliation. The prognosis of PC for GC is very poor, 
worse than that of other metastatic sites,[19,20] with a 
median survival after diagnosis of only 3-7 months and 
5-year survival of 0%.[1,3] The traditional approach by 
surgeons is just palliation, whenever possible.

Systemic chemotherapy
In last 15 years systemic chemotherapy (adjuvant or 
neoadjuvant)[21-26] and adjuvant chemo-radiation[27,28] 
do not have significantly lowered the rate of distant 
metastases, including peritoneal recurrence. In 
metastatic GC, systemic chemotherapy improves 
median survival to only 8-14 months,[29-31] without 
great improving by adding targeted therapy.[32,33] GC 
patients with PC have a significantly reduced rate of 
tumor response to chemotherapy with reported rates 
of response of 14-25%.[34,35] The poor response of 
PC to systemic chemotherapy is due to the presence 
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of the “plasma-peritoneal barrier” which isolates 
the peritoneal cavity from the effects of intravenous 
chemotherapy.[36] Although newer agents like S1 – 
not available for Western Countries patients – and 
docetaxel have been reported to have better results 
against peritoneal metastases, yet the median survival 
even with these drugs is only 18 months.[37,38]

Cytoreductive surgery and hyperthermic 
intraperitoneal chemotherapy
A poor response to systemic therapy provides the 
rationale for a local-regional strategy for treatment. 
The concept is that carcinomatosis is not to be 
considered as systemic but compartment disease, 
which can be attacked by cytoreductive surgery 
(CRS) associated with loco-regional treatments such 
as the hyperthermic intraperitoneal chemotherapy 
(HIPEC).[5-7] During CRS are used well-codified 
peritonectomy procedures with the removal of all 
visible cancer with the affected peritoneum through 
“peritoneal stripping”, always attempting to achieve 
a complete cytoreduction [Figure 1].[39] The aim of 
CRS is the complete macroscopic cytoreduction 
as precondition for HIPEC. The residual disease is 
classified intra-operatively using the completeness 
of cytoreduction (CC) Score. The efficacy of intra-
peritoneal chemotherapy reaches its highest degree 
in absence of visible residual disease (CC-0) or in 
the presence of neoplastic residuals that are less or 
equal to 2.5 mm (CC-1).[40,39] The main theoretical 
advantage of intraperitoneal chemotherapy is that it 
allows the direct application of high local concentration 
of potentially effective drugs with minimal systemic 
exposure and toxicity.[2,5,7]

The neoplastic cells are more sensitive to the heat than 
the normal cells. Hyperthermia has a direct cytotoxic 
effect and an indirect effect by enhancing the action 
of several anti-neoplastic drugs. Experimental studies 
demonstrated that 42-43°C hyperthermia may have 
an important therapeutic effect on tumor tissue when 
applied alone; moreover hyperthermia synergically 
enhances the chemosensitivity of neoplastic cells to 
various antimitotic agents and allows deeper penetration 
of drugs into tumor tissue.[41,42] During procedure of 
HIPEC, the chemotherapeutic agents are added into 
the extra-corporeal circuit as soon as the abdominal 
temperature reaches 41.5-42.5°C [Figure 2].[40]

Postoperative mortality after CRS and HIPEC is 2-4%, 
comparable to that following major gastrointestinal 
surgery. Morbidity is relatively high (25-41%) and 
seems to be related to the extension of CRS rather 
than to the HIPEC itself.[43,6,7] The anastomoses of total 
or subtotal gastrectomy in combination with CRS and 

HIPEC are relatively safe.[44,45]

Currently, CRS with HIPEC is increasingly being used 
as a curative treatment of pseudomyxoma peritonei, 
peritoneal mesothelioma and selected patients with 
PC from colo-rectal or ovarian cancer.[46,5,7] The 
CRS + HIPEC in PC arising from GC is a treatment 
still investigational. Several studies coming from 
Europe and Far East show the possibility of long-
term survival with up to nearly 25% 5-year survival 
rates in case of complete cytoreduction [Table 1]. 
Glehen et al.[54] published in 2010 the results of a 
retrospective French study of 1,290 patients with PC 
treated with HIPEC; 159 of them had PC of gastric 
origin. In patients with a complete cytoreduction the 
1-, 3-, and 5-year survival rates were 61%, 30%, and 
23%, respectively. Completeness of cytoreduction 
was the principal independent prognostic factor at 
multivariate analysis.[54,58] In a systematic review of 

Figure 1: A phase of peritonectomy of diaphragmatic peritoneum; 
the arrows point to some nodules of carcinomatosis

Figure 2: HIPEC procedures for gastric carcinomatosis. Two 
different models of surgical auto-retractors and two different HIPEC-
dedicated devices are shown. HIPEC: hyperthermic intraoperative 
intraperitoneal chemotherapy



                                   Journal of Cancer Metastasis and Treatment ¦ Volume 2 ¦ September 18, 2016 

Mura et al.                                                                                                                                                                            The peritoneal metastases from GC

368

10 published studies including 441 patients who 
underwent CRS and HIPEC in GC carcinomatosis, 
Gill et al.[43] reported median overall survival of 7.9 
months after HIPEC, increasing to 15 months  in case 
of complete cytoreduction. The 5-year survival of all 
patients was 13%. Yang et al.[55] showed in a phase III 
randomized clinical trial the importance of connecting 
CRS with HIPEC, in the treatment of PC of gastric 
cancer origin. The CRS-HIPEC association vs. CRS 
alone significantly increased median survival: 11 vs. 
6.5 months. The prospective randomized clinical 
trial GYMSSA compared patients treated with CRS-
HIPEC and systemic chemotherapy vs. systemic 
chemotherapy treatment alone, demonstrating a 
benefit in terms of survival. With the limitation of a 
small number of patients, it showed a longer median 
overall survival (11.3 vs. 4.3 months) for CRS-HIPEC 
treatment trial arm. No patient in the systemic-
chemotherapy-alone arm lived beyond 12 months.[57]

Those are unexpected outcomes until some years 
ago indeed. Anyway, the results are worse than in 
case of other types of carcinomatosis treated with 
CRS and HIPEC.[5,7] The gastric is a more aggressive 
carcinomatosis, and complete cytoreduction is more 
difficult to achieve. The correct indication is probably 

the limited and resectable PC, where CC-0 is 
achievable.[54]

HIPEC in adjuvant setting
Perhaps the most promising indication for HIPEC is its 
use in case of advanced GC without carcinomatosis 
in patients at risk of peritoneal recurrence. It’s the 
adjuvant (or prophilactic) setting.

PC develops in 60% of patients with serosa-invading 
tumors after curative resection.[59,4] In late ‘90s some 
prospective RCTs evaluated adjuvant HIPEC after 
potentially curative GC resection. In Fujimoto’s 141 
patients, HIPEC significantly reduced the incidence 
of peritoneal recurrence (P < 0.001) and improved 
the survival rate (P = 0.03).[60] Yonemura randomized 
139 patients in three arms, surgery alone, surgery 
plus HIPEC, and intraperitoneal chemotherapy without 
hyperthermia. The 5-year survival was 61% in the 
HIPEC group compared to 43% and 42% in the other 
two groups.[61] Two meta-analysis of RCTs (including 
1648 and 1062 patients, respectively) on HIPEC as 
adjuvant therapy in GC have been published.[62,63]  The 
patients, presenting GC with macroscopic serosal 
invasion but without distant metastases or PC, were 
randomly assigned to receive surgery combined 

Table 1: Survival analysis in GC patients with PC treated with CRS and HIPEC

Authors Patients No. Agent used in 
HIPEC Mortality/morbidity (%) Survival

Fujimoto et al.[47] 15 MMC – 7.2 ± 4.6 mo

Yonemura et al.[48] 41 MMC + CDDP 0-29.3 3-year 28.5%

Fujimoto et al.[49] 48 MMC – 5-year 31%, 8-year 25.4%

Hirose[50] 17 Etoposide 5.8-35-2 1-year survival: HIPEC vs. control: 44.4% 
vs. 15.8%, P = 0.04

Glehen et al.[44] 49 MMC 4-27 5-year survival (overall: 16%, CC0/1: 
29.4%)

Hall et al.[51] 34 MMC 0-35 2-year 45%, (CC0/1) 8% (CC2/3)

Yonemura et al.[52] 107 MMC + CDDP 2.8-21.5 5-year 6.7%

Scaringi et al.[53] 37 (26 with PC) CDDP 3.8-27 median survival: CCR0 vs. CCR2- 15 mo 
vs. 3.9 mo, P = 0.007

Glehen et al.[54] 139 MMC ± CDDP or 
LOHP ± irinotecan 6.5-27.8 5-year 13%, CC0/1 23%

Yang et al.[55] RCT: 34 vs. 34 no 
HIPEC MMC + CDDP 0-14.7 3-year 5.9%, CC0/1 23%

Magge et al.[56] 23 MMC + CDDP 4.3-52.2 1-year 50%, 3-year 18%

Rudloff[57]

GYMSSA trial

RCT: 9 
CRS+HIPEC+cht vs. 7 

cht
Oxaliplatin -

Median OS 11.3 months in HIPEC arm 
and 4.3 months in the cht arm. No patient 

in the cht arm lived beyond 11 months

GC: Gastric cancer; CRS: cytoreductive surgery; HIPEC: hyperthermic intraoperative intraperitoneal chemotherapy; PC: peritoneal 
carcinomatosis; RCT: randomized controlled trial; MMC: mitomycin C; CDDP: cisplatin



                Journal of Cancer Metastasis and Treatment ¦ Volume 2 ¦ September 18, 2016

Mura et al.                                                                                                                                                                            The peritoneal metastases from GC

369

with intraperitoneal chemotherapy or surgery without 
intraperitoneal chemotherapy. In both analyses a highly 
significant improvement in survival and in peritoneal 
recurrence rate was demonstrated for the HIPEC 
group compared to the control group. Recently, a meta-
analysis on effects of intraperitoneal chemotherapy in 
advanced GC was reported by Coccolini et al.[64] They 
imported the data from 20 prospective studies involving 
2,145 patients. Overall suvival was increased when 
intraperitoneal chemotherapy was added to surgery; 
intraperitoneal chemotherapy was found to reduce 
the incidence of peritoneal recurrence and distant 
metastases. In the German S3-guidelines “Diagnosis 
and treatment of esophagogastric cancer” HIPEC as 
adjuvant treatment is reported with Level of Evidence 
I, grade A.[65]

Most of data anyway come from studies that have 
been conducted in Far-Eastern countries, with scarce 
contribute from the western world. Two RCTs about 
adjuvant HIPEC in GC patients are currently on-going in 
Europe. The “GASTRICHIP” is a phase III randomized 
multicentre study evaluating the role of HIPEC with 
oxaliplatin in patients with GC who have either serosal 
infiltration and/or lymph nodal involvement and/
or positive peritoneal cytology treated by a curative 
gastrectomy.[66] Another trial is being conducted by the 
European network of excellence  for gastric cancer. In 
this trial, patients with high risk GC will receive 3 cycles 
of neoadjuvant systemic chemotherapy followed by 

a D2 gastrectomy and then randomized to receive 
HIPEC or no HIPEC.[67] Prophylactic/adjuvant setting 
is the more evidence-based indication for HIPEC 
in advanced-stage GC patients. No peritonectomy 
procedures are needed; post-operative morbidity and 
mortality are the same than surgery alone. Anyway 
a better and “standardized” identification of subset 
of patients at high risk of peritoneal recurrence is 
necessary.[68]

Intraperitoneal immunotherapy
Survival results for the treatment of PC from GC 
remain disappointing even with HIPEC, with 5-year 
survival rates of less than 25% in selected cases 
only. Innovative therapies such as intraperitoneal 
immunotherapy have been recently proposed.

The Chimera it’s a legendary fire-breathing monster 
comprised of a lion, a goat, and a serpent. And chimera 
in genetics is a single animal organism with genetically 
distinct cells from two different zygotes. Chimera, or 
fusion protein, is called in biochemistry a hybrid protein 
made by the splicing of two genes. Catumaxomab is a 
chimeric antibody, consisting in a mouse-derived anti-
EpCAM Fab (fragment antigen-binding) region and a 
rat-derived anti CD3 Fab [Figure 3]. It is characterized 
by its ability to bind to three different types of cells: 
tumour cells expressing the epithelial cell adhesion 
molecule (EpCAM), T lymphocytes (CD3) and also 
accessory cells (Fcγ receptor). In nearly 90% of GC 

Figure 3: Catumaxomab, is a chimeric antibody, consisting in a mouse-derived anti-EpCAM Fab (fragment antigen-binding) region and a 
rat-derived anti CD3 Fab
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the EpCAM antigen is expressed; on the contrary the 
peritoneal mesenchymal cells do not express it.[69] The 
rationale is strong, more evidence on results is needed.

In a randomised study, a clinical effect was obtained 
after intraperitoneal infusion of catumaxomab 
in patients with symptomatic malignant ascites 
secondary to EpCAM+ carcinomas, 66 out of 258 
notably from GC.[69] Heiss and coll randomly assigned 
the patients to paracentesis alone, or to paracentesis 
plus intraperitoneal catumaxomab. Puncture-free 
survival was significantly longer in the group treated 
with catumaxomab compared to that in the control 
group (46 vs. 11 days, P < 0.0001) but median overall 
survival was similar between the two groups: 72 days 
in the catumaxomab group vs. 68 days in the control 
group (n.s).[69]

Elias and his team from Gustave Roussy Institute 
(Villejuif, France), with long-date experience in HIPEC 
for PC, recently proposed a randomized phase II 
study, combining complete cytoreductive surgery with 
intraperitoneal immunotherapy.[70] The main inclusion 
criteria of the protocol are PC of minimum or moderate 
extension and macroscopic resection of all the lesions: 
they just match the experience-based indications for 
HIPEC in PC from GC.[54] As requested for HIPEC, 
the complete resection of all macroscopic disease 
before starting the intra-peritoneal administration of 
catumaxomab is necessary. The immunotherapy could 
therefore efficiently treat microscopic residual disease.

DIAGNOSIS OF INTRA-PERITONEAL FREE 
CANCER CELLS AND IDENTIFICATION 
OF PATIENTS AT RISK OF PERITONEAL 
RECURRENCE

The methods of detecting peritoneal free cancer cells 
represent an area in evolution. It’s well known that 
the positive peritoneal cytology is according to the 
depth in invasion of the gastric wall, and that it has 
a prognostic value.[71,72] In the same way, it’s well 
known that cumulative risk of peritoneal recurrence 
is based on the infiltration of the gastric serosa.[73] 
Cytological examination of peritoneal washing at the 
time of primary tumor resection is frequently positive. 
Free peritoneal cells are associated with an average 
survival of 4 months vs. 21 months for patients with 
negative cytology.[71,74]

According to the 7th edition of the American Joint 
Committee on Cancer positive cytology in the absence 
of visible peritoneal implants is considered as M1 
disease.[75] Peritoneal washing for cytology (better 
during a staging laparoscopy) is mandatory in staging/

treatment algorithm of advanced GC.[76]

The identification of patients at risk of peritoneal 
recurrence and the diagnosis of intra-peritoneal free 
cancer cells are probabilly two aspects of the same 
problem. The majority of patients with positive cytology 
on peritoneal washing develop PC, although it also 
may occur in patients with negative cytological results. 
These observations indicate that conventional cytology 
lacks sensitivity for the detection of residual cancer cells 
and the prediction of peritoneal spread. Many reports 
have emphasized the clinical significance of molecular 
diagnosis using reverse transcriptase-polymerase 
chain reaction analysis for more sensitive detection of 
GC cells in peritoneal washing. Fujiwara[77] analyzed 
the survival of 123 patients with serosa-invading GC. 
The prognosis of the 29 patients with positive cytology 
in the peritoneal washing was very poor, and most 
of them died within 1 year after surgery. Among the 
93 patients with negative cytology (CY0), 49 had a 
positive genetic diagnosis and a significantly poorer 
prognosis than those with negative genetic results. 
More than half of the patients with positive PCR and 
CY0 developed peritoneal recurrence after surgery, 
while almost all patients with negative PCR and CY0 
had no peritoneal recurrence after surgery.[77] These 
results have been confirmed by many studies. All the 
authors concluded that molecular diagnosis based 
on peritoneal washing is useful to predict peritoneal 
recurrence for patients with serosal invasion of GC; 
PCR positivity has significant correlation with overall 
survival and with peritoneal recurrence rate.[78-81] Up 2 
patients of 3 with negative cytology can be positive to 
PCR detection; in other terms, when surgeons perform 
R0 surgery (i.e. no macroscopic, microscopic and 
cytologic residual disease) for advanced GC, there is 
high probability that it’s not true.

Molecular biological techniques are anyway time- and 
labour-intensive, and without yet diffuse application in 
clinical practice. A new rapid gene detection system, 
One-step nucleic acid amplification has been recently 
proposed.[82] It shows potential for routine use in 
the clinical laboratory because of its simplicity and 
rapidity. On the other hand, the molecular detection 
of intraperitoneal GC cells is not only an independent 
prognostic factor, but also provides valuable clinical 
information for choosing the appropriate treatment for 
cytology-negative patients: such patients are potential 
candidate to intraperitoneal therapy, such as HIPEC, 
immunotherapy or both.

CONCLUSION

The peritoneal metastatic spread of GC leads to PC, a 
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very aggressive disease with very poor prognosis. In 
selected GC patients with low peritoneal tumor burden, 
more aggressive multi-modal strategy with CRS plus 
intraperitoneal treatment as HIPEC may achieve long-
term survival results with up to 25% 5-year survival 
rates in case of complete cytoreduction. Moreover, 
there are strong evidences for HIPEC in adjuvant 
setting after radical surgery for preventing PC in high 
risk GC patients. Intraperitoneal immunotherapy, 
when associated with radical surgery, may open very 
interesting perspectives for the future. The detection 
of free peritoneal cancer cells is the more realistic 
and practical way for the identification of patients at 
risk of carcinomatosis after surgery. The routine use 
of techniques of molecular detection in peritoneal 
washing appears to be the more sensitive method. 
Such patients are potential candidate for multimodal 
and locoregional treatments in order to prevent the 
peritoneal recurrence.
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Gliomatosis cerebri (GC) is an uncommon disease, defined as diffuse infiltration of 
neoplastic glial cells involving at least three cerebral lobes. GCs in young population 
are rare. We described a case of 14-year-old woman with GC who did not receive any 
recommended treatment, because the patient’s family refused. The patient had a rapid 
deterioration in 5 months after first symptoms due to intratumoral bleeding. This is the 
first case report of intratumoral bleeding after diagnosis of GC is made, resulting in poor 
outcome. GC may acquire possibility of intratumoral hemorrhage through its development.
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INTRODUCTION

Gliomatosis cerebri (GC) is an uncommon primary 
brain tumor that has quite malignant behavior. It is 

characterized by diffuse infiltration of glioma cells, 
and defined with tumor invasion into more than three 
cerebral lobes.[1,2] It often infiltrates into bilateral 
hemispheres, in some cases, even into the brainstem, 
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cerebellum, and spinal cord, affecting both gray and 
white matter. It is classified as grade IV in World Health 
Organization 2007 criteria, regardless of its histo-
pathological features.

GCs in most cases are seen in the adult population, 
rarely suffering young age group. There are two peaks 
of patients’ age distribution in the second decades and 
forties.[3]

We report here a pediatric patient with GC who 
refused any treatment, subsequently followed by rapid 
deterioration with intratumoral bleeding.

CASE REPORT

A 14-year-old woman presented with generalized 
tonic-clonic seizures following to history of morning 
headache, and mild cognitive deteriorations. She 
had noticed slowly progressing weakness on her 
right face and upper extremity, and numbness on 
her right side.

Neurological examination on admission revealed 
right facial droop and pronator drift on the right 
side. The patient originally was right-handed active 
softball player, but grasping power was weak with 
21 kg on the right and 29 kg on the left at the time. 
Decreased proprioception and touch sensation was 
observed both in upper and lower extremities on 
the right. She was previously healthy and achieved 
normal developmental milestones and scholastic 
achievement up to an onset, but had experienced 
a decline in cognition. Wechsler Intelligence Scale 
for Children (WISC)-IV score shows intelligence 
quotient (IQ) 50.

Fluid-attenuated inversion recovery (FLAIR) and T2-
wighted sequences of magnetic resonance imaging 
(MRI) showed hyperintense signal lesion in the white 
matter of the left frontal, parietal, and temporal lobes 
[Figure 1A and 1B]. Follow up MRI in 2 months later 
showed development of the lesion into the frontal lobe, 
as well as the brainstem and corpus callosum [Figure 
1C and 1D]. MR spectroscopy at the time shows high 
peaks in both chorine (Cho)/N-acetilaspartate (NAA) 
(2.9) and Cho/Creatine (Cr) (2.46), suggesting high 
grade glioma [Figure 1E].

Open biopsy was performed targeting occipito-
temporal mass near posterior horn of the left lateral 
ventricle, which shows solid swelling without contrast 
enhancement on MRI. Hematoxilin and eosine 
staining of specimen shows marked cellularity, with 
marked hyperchromatism and pleomorphism [Figure 
2A]. Neither necrosis nor vascular proliferation was 

detected. Tumor cell infiltration in the peripheral zone of 
a tumor was found [Figure 2B]. Immunohistochemistry 
revealed positive staining for glial fibrillary acidic 
protein, and nuclear staining of p53. MIB-1 proliferation 
index was about 50% [Figure 2C and 2D]. With these 
results, histopathological diagnosis was made as 
anaplastic astrocytoma (grade III). The final clinical 
diagnosis was determined as gliomatosis cerebri due 
to invasion into 3 cerebral lobes and brainstem.

Considering potential poor prognosis of the disease, 
the patient’s parents refused either radiation or 
chemotherapy, and only oral corticosteroid and 
rehabilitation was given to the patient. Five months after 

Figure 1: FLAIR and T2 weighted (T2WI) MR images demonstrating 
hyperintense area into 3 cerebral lobes, corpus callosum, and 
brainstem (A: axial FLAIR; B: coronal T2WI); follow-up FLAIR 
MRI took 2 months after initial symptoms (C: axial; D: coronal); 
MR spectroscopy suggesting high-grade glioma (E); axial CT 
scan demonstrating intratumoral hemorrhage 5 months after initial 
symptoms (F). FLAIR: fluid-attenuated inversion recovery; MRI: 
magnetic resonance imaging; CT: computed tomography
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the initial diagnosis, the patient had sudden respiratory 
arrest with uncal herniation due to intratumoral 
bleeding, and deceased [Figure 1F].

DISCUSSION

A case of pediatric GC which had poor clinical course 
with fatal intratumoral bleeding is presented. Although 
GCs in pediatric ages are rare, and there are no reports 
with large patients groups, a report with 13 GC patients 
under 18 years old showed that 2 years survival rate 
is 67%, and median overall survival is 27 months.[4] 
The report also shows 2 years survival rate of patients 
under 10 years old is only 19%. As such, pediatric GC 
has extremely poor prognosis.

As for treatment of GC in general, whole brain radiation 
therapy (WBRT) with 45-50 Gy is considered as 
standard therapy.[2] Retrospective study of WBRT with 
54.9 Gy in average shows improvement of both overall 
survival (OS: 27.5 vs. 6.5 months) and progression 
free survival (PFS: 16.5 vs. 4.5 months).[2]

Chemotherapy for GC had not been considered as 
effective treatments even combined with radiation 
therapy (RT),[5] but recent growing publications support 
its efficacy to certain extent.[6] Chemotherapy with 
temozolomide is widely used recently, because of 

its safety. It has, however, insufficient effect to GC, 
and combination with RT is considered essential. 
Therefore, RT is recommended even for children who 
potentially have higher susceptibility for radiation.[6]

In the present case, the patient deceased in 5 months 
after initial diagnosis, which is just as short as reported 
in the study in the group without WBRT.[2] This case 
supports the necessity of RT in order to accomplish 
better OS or PFS.

Another reason why this patients had rapid deterioration 
was intratumoral bleeding. GC is classified into 2 
types; type 1 (classical GC) shows infiltration of 
gliomatous cells with no mass lesions, and type 2 is 
categorized ones which develop tumor mass after type 
1 infiltration.[7] In the MRI of GC type 1, it has no or 
very small tumor enhancement with gadolinium and 
low relative cerebral blood volume (rCBV) value in 
perfusion study.[8,9] Both indicate that the tumor has 
low vascularity; therefore it is expected to have small 
chance of intratumoral hemorrhage. To our knowledge, 
there is no report of intratumoral hemorrhage of type 
1 GC. On the other hand, contrast enhancement can 
be seen in some cases of type 2 GC, with increased 
rCBV.[9] From these aspects, type 2 GC may have 
higher possibility of bleeding than type 1.

Figure 2: Hematoxilin and eosine staining of biopsy specimen. Diffuse cellular proliferation with hyperchromatism and pleomorphism (A, 
x400); neither necrosis nor vascular proliferation was detected. Infiltration into brain parenchyma was found (B, x400); positive staining for 
glial fibrillary acidic protein (C, x200), and p53 (D, x200)
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This is the first case report of intratumoral hemorrhage 
of GC after its diagnosis is made. Although not frequent, 
the possibility of intratumoral hemorrhage of GC must 
be kept in mind, especially when no treatment was 
given, or once it become uncontrollable even with RT 
or chemotherapy.

A pediatric case of GC with intratumoral bleeding is 
reported. GC may acquire possibility of intratumoral 
hemorrhage through its development, and may lead to 
catastrophic outcome.
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Aim: The aim of this study was to evaluate the efficacy of treatment related to age in 
metastatic non-small cell lung cancer (NSCLC). We compared young and elders (> 70) 
in the setting of a regional Spanish hospital. We hypothesized that elder benefit as much 
as younger patients from chemotherapy in stage IV NSCLC. The study was limited to 
performance status 0-2. Methods: Clinical and demographic characteristics were reviewed 
form medical records. Type of treatment was collected and compared, as well as benefit from 
treatment, in terms of overall survival. Results: 322 patients (162 young, 160 aged) Elderly 
patients received less active treatment (63% vs. 86%, P = 0.001). Elderly received less 
chemotherapy, less cisplatin-doublets, more carboplatin-combinations and monotherapy 
(P = 0.035). The benefits of treatment were similar, regardless of age. Smoking status 
demonstrated a prognosis impact for elder patients treated with chemotherapy. Those who 
remained active smokers had a lower overall survival in the aged group. In a multivariate 
analysis, the Eastern Cooperative Oncology Group, active treatment and non-smoking 
history were favorable prognostic factors for elder patients. Smoking had not impact 
on young patients. Conclusion: Elderly patients were undertreated in clinical practice. 
Treatment showed similar overall survival despite of age. The impact of smoking seems to 
be more significant in the elderly population.
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INTRODUCTION

Lung cancer remains the most frequent cause of 
cancer-related death worldwide.[1] Elderly patients 
make up a substantial proportion of non-small cell 
lung cancer (NSCLC) patients and their numbers are 
expected to increase.[2] They’ve been significantly 
underrepresented in clinical trials, making it difficult 
to extrapolate clinical trial data.[3] Despite the clear 
benefits to survival, most elderly patients with 
advanced NSCLC are under-treated or do not receive 
chemotherapy.[4,5] In general there is an expectation 
that elderly patients have poor tolerance to treatment.[6] 
Physicians may be reluctant to offer treatment 
known to provoke troublesome side effects due to 
the unwarranted assumption that elderly patients do 
not benefit from cytotoxic therapy.[7,8] Consequently, 
elderly patients are frequently under-treated, and 
only one quarter of elderly patients (> 65 years) with 
advanced NSCLC are reported to receive palliative 
chemotherapy.[4,9] Advanced age has been a prevalent 
reason for not administering treatment, contrary to 
established guidelines.[10-12]

Platinum-based doublet chemotherapy is considered 
to be standard of care for elderly patients with an 
Eastern Cooperative Oncology Group Performance 
Status (ECOG PS) score of 0-1.[13-14] The association 
of a platinum compound with a third-generation 
agent improves survival,[15-16] and seems to be the 
most effective therapeutic choice in such cases. 
Recently, several elderly-specific trials showed that 
chemotherapy is effective and feasible for elderly 
patients with NSCLC.[17-21] National Comprehensive 
Cancer Network guidelines recommend platinum-
doublet chemotherapy in patients with good 
performance status regardless of age.[22] The European 
Organization for Research and Treatment of Cancer/
International Society for Geriatric Oncology also 
recommend the use of carboplatin-based doublets 
in fit elderly patients and single-agent treatment for 
less fit patients.[12] Despite recent developments in 
treatment recommendations for elderly patients, little is 
known about use of these in clinical practice, and very 
limited data are available for elderly patients outside 
of clinical trials. Limited data exist regarding real-
world treatment patterns and outcomes with respect 
to patients with metastatic NSCLC treated at Spanish 
regional hospitals.

We hypothesized that elder benefit as younger patients 
from chemotherapy in stage IV NSCLC. Therefore, 
in this study, we aimed to evaluate the proportion of 
elderly advanced NSCLC patients attended at clinical 
practice who are candidates for standard systemic 

chemotherapy, the actual proportion of patients who 
receive chemotherapy, the actual treatment they 
received and clinical outcome in these patients.

METHODS

We collected on a prospective manner of all patients 
with advanced NSCLC (stage IV) seen at the 
Regional Medical Oncology Unit form the Hospital 
Lluis Alcanyis, Xàtiva since January 2004, creating a 
data base register. Patients collected for this analysis 
accomplished the following conditions: histological 
or cytological confirmation of NSCLC (although we 
accepted radiological diagnosis without histological 
confirmation) in stage IIIB (pleural effusion, prior TNM 
stage), or stage IV of the disease. Outpatient and 
those are suitable for treatment (PS 0-2). We collected 
data on baseline demographics, clinical characteristics 
and a detailed treatment history. Our study period 
covers January 2004 until December 2014. Tumor 
histology was classified on the basis of the 2004 WHO 
classification.[23] Patients were classified respect to 
smoking habits into 3 groups: never smoker, active 
smoker and ex-smoker (if they had quit smoking 
a year or more prior to diagnosis). Data on drug-
sensitive epidermal growth factor receptor (EGFR) 
mutations was collected, since June 1 2010 using 
peptide nucleic acid-locked nucleic acid polymerase 
chain reaction clamp-based testing. When testing was 
not performed the data was recorded as “unknown”. 
Anaplastic lymphoma kinase (ALK) translocations 
have been determined via fluorescence in situ 
hybridization since June 2012.  Studies of K-RAS 
mutation are not performed as part of standard care. 
For surviving patients, final follow up was recorded on 
15th December 2014. Survival time was calculated 
from the time of diagnosis until death or final follow up.

Statistical evaluation was performed using SPSS 
version 20.0 software; unpaired Student’s t-test, Chi-
squared, and Fischer exact test were used according 
to data type. Statistical significance was defined as P < 
0.05; variables were considered to be independent for 
the statistical analysis; continuous data was expressed 
as mean ± standard error. Statistical analyses of 
categorical variables were performed using Pearson’s 
Chi-square test or Fisher’s exact test as appropriate. 
Survival analysis was performed using the Kaplan-
Meier method, and groups were compared using the 
log-rank test. Univariate and multivariate analyses 
were performed using the Cox proportional hazard 
regression analysis.

The institution’s ethical review board approved the 
data base on 2004. Also it approved the review of 
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the records. Informed consent was obtained from all 
individual before inclusion in the data base.

RESULTS

From January 2004 until December 2014, 322 patients 
(162 patients in Group 1 and 160 patients in Group 2) 
were included in the analysis. Clinical characteristics 
and comparison between age groups are shown in 
Table 1. In the elderly group, 30% were octogenarians. 
More elderly patients had a PS of 2 (39% vs. 16%, 
P = 0.00001); and were derived without histological 
confirmation (6% vs. 2%, P = 0.025). Squamous cell 
carcinomas predominate on the elderly (44% vs. 
34%, P = 0.023). The majority of patients had had an 
smoking history (92% of younger patients vs. 82% of 
the elderly, P = 0.001). Most of the elderly patients 
were ex-smokers (62%) while the younger patients 
tended to be active smokers (69%). Smoking habit 
was related to squamous histology in the elderly group. 
Younger smokers developed both squamous cell and 
adenocarcinoma meanwhile, in the elderly group, we 
found a link between the following characteristics: 
female gender, adenocarcinoma, no history of smoking 
and EGFR-mutation (P = 0.00001); 99% of aged 
women were never smokers and there were no elderly 
women with squamous histology. Smoking status was 
unrelated to PS.

No patient in our series had ALK rearrangement 
(analysis started on June 2012). In terms of EGFR 
mutations, 116 patients had unknown status (patients 
diagnosed prior to 2010). In both groups all EGFR-
mutations were found in adenocarcinoma (P = 0.00001). 
No mutations were found in women smokers; never 
smoking predicted EGFR status in women in both age 
groups, while in men this only occurred in the elderly 
(P = 0.0001). In younger men, smoking habit did not 
predict mutation status [Figure 1].

There was a higher percentage of EGFR-mutations 
in the elderly group. In the global series, 25% of 
adenocarcinoma were found to be mutated; 13% in 
younger group, 28% in elderly group (P = 0.01).

Treatment data: Table 2 shows differences in patterns 
of treatment. Patients without histological diagnosis 
didn’t receive treatment in either age group. Of the 
102 elderly patients who received first-line treatment, 
71 (70%) were treated with chemotherapy, 17 (16%) 
with EGFR TKI and 14 (14%) with radiotherapy. Elderly 
patients had received less active treatment (P = 0.0001). 
PS influenced whether treatment was administered or 
not in both groups (P = 0.0001). Performance status 
was an independent predictor, as patients with PS of 
2 did not receive chemotherapy in either group. The 
same proportion of patients with a PS of 2 received 

Table 1: Clinical characteristics of the patients; comparison between age groups
Group 1:

< 70 years old
 162 (50.3%)

Group 2:
> 70 years old

160 (49.7%)
P

Age, years
Mean, range

59 (34-69) 76 (70-91)

Gender
Men
Women

139 (87%)
23 (13%)

142 (88%)
18 (12%) P = 0.266

PS 0-1
PS 2

136 (84%)
26 (16%)

98 (61%)
62 (39%) P = 0.00001

Histology, n (%)
Unconfirmed
Squamous
Adenocarcinoma
Large cell carcinoma
Untyped carcinoma

4 (2%)
55 (34%)
88 (55%)
10 (6%)
5 (3%)

10 (6%)
70 (44%)
59 (37%)
15 (10%)

6 (3%)

P = 0.025
P = 0.023

P = 0.0322
P = 0.53
P = 0.6

Smoking habits:
Never smoker
Active smoker
Ex-smoker

13 (8%)
112 (69%)
37 (23%)

28 (18%)
33 (20%)
99 (62%)

P = 0.0001

EGFR status
Unknown
Mutated
Wild-type

51 (31%)
12 (7%)

99 (62%)

65 (40%)
17 (11%)
78 (49%) P = 0.0001

EGFR status in adenocarcinoma (147)
Unknown
Mutated
Wild-type

(88)
8 (9%)

12 (14%)
68 (77%)

(59)
8 (13%)

17 (29%)
34 (58%)

P = 0.0005

EGFR: epidermal growth factor receptor; PS: performance status
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palliative brain radiation in the two groups (3 and 6; 
10%). Elderly patients received less chemotherapy (P 
= 0.0001) and were more likely to receive palliative 
radiation as sole treatment (81% vs. 5%). In the 
younger group, of the 124 patients with PS 0-1 suitable 
for chemotherapy (excluding 12 patients with EGFR 
mutation); 118 (95%) were treated with chemotherapy. 
In the elderly group, 71 of 98 patients (72%) suitable 
for chemotherapy received this treatment. More elderly 
patients with good PS received palliative radiotherapy 
as sole treatment (4% vs. 8%, P = 0.0001). Overall, of 
the 189 patients that received chemotherapy (58.6% 
of the global series), 62.5% were in the younger group 
vs. 37.5% who were elderly (P = 0.0001). In terms of 
chemotherapy, the elderly received more carboplatin 
combinations (34% vs. 60%), monotherapy (6% vs. 
30%) and were less likely to receive bevacizumab 
combinations (2% vs. 18%) (P = 0.035). All patients 
with EGFR mutation received first line EGFR TKI. Only 
one patient with an EGFR mutation in the elderly group 
had PS 2.

For the global series, overall survival was 8.979 months 
[95% confidence interval (CI) 7.949-10.08] and there 
was no difference between age groups (9.42 vs. 8.48 
months; P = 0.0238) [Figure 2].

According to the univariate analysis using Cox 
proportional hazard regression analysis, the following 
factors were related to better survival: female gender, 
ECOG PS 0-1, adenocarcinoma histology, no history of 
smoking, presence of EGFR mutation, administration 
of treatment, chemotherapy and EGFR-TKI therapy.

Table 2: Treatment date and comparison between age 
groups

Young 
(162)

Elders 
(160) P

Treatment
Yes
No

139 (86%)
23 (14%)

102 (63%)
57 (37%) P = 0.0001

Treatment and PS
PS 0-1
Yes
No
PS 2
Yes 
No

136
136 (100%)
0
26
3 (12%)
23 (88%)

98
95 (97%)
3 (3%)
61
7 (11%)
54 (89%)

P = 0.52

Kind of treatment and PS
PS 0-1 
Chemotherapy
Radiotherapy
EGFR-TKI
PS 2
EGFR-TKI
Radiotherapy

136
118 (86%)
6 (4%)
12 (10%)
3
0
3 (100%)

95
71 (74%)
8 (8%)
16 (18%)
7
1 (15%)
6 (85%)

P = 0.0001

Kind of chemotherapy
Cisplatin-combination
Carboplatin-combination
Monotherapy
Bevacizumab combination

118
48 (41%)
41 (34%)
8 (7%)
21 (18%)

71
4 (5%)
42 (60%)
21 (30%)
2 (2%)

P = 0.035

EGFR: epidermal growth factor receptor; TKI: tyrosine kinase 
inhibitor; PS: performance status

Elderly EGFR mutated

Men never smoker Women never smoker Men smoker Men exsmoker

40%

8%
12%

40%

Figure 1: EGFR mutation and smoking habit in elderly patients. 
EGFR: epidermal growth factor receptor
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Figure 2: Comparison on overall survival between age groups

Figure 3: Comparison: treated versus untreated young patients.
EGFR: epidermal growth factor receptor; TKI: tyrosine kinase 
inhibitor; PS: performance status
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For female patients, never smoking and adenocarcinoma 
histology were related to EGFR-mutation and EGFR-
TKI; only EGFR-mutation remained significant in 
multivariate analysis for overall survival [Table 3].

When we excluded these confounding factors, PS 
0-1 and systemic chemotherapy were independently 
associated with better survival in both groups.

There was a clear benefit associated with administration 
of some treatment in both groups (10.5 vs. 2.5 months 
in the younger group, P = 0.0000 and 11.8 vs. 2.5 

months in the elderly group, P = 0.000) [Figures 3 
and 4]. For those patients suitable for treatment (PS 
0-1), radiotherapy, chemotherapy and EGFR treatment 
when appropriate were also found to provide benefits 
[Figure 5]. No impact on overall survival was found 
with respect to treatment for patients with a PS of 2 (3 
vs. 2.6 vs. 2.3 months; radiotherapy vs. chemotherapy 
vs. EGFR treatment respectively).

Elderly patients were found to benefit slightly from 
chemotherapy (9.9 vs. 10.6 months; no chemotherapy 
vs. chemotherapy respectively, P = 0.42). In terms of 

Table 3: Multivariate analyses
Young (162) Elders (160) P

Age 9.4 (8.0-10.7) 8.4 (6.9-10.00) 0.238
Male
Female

N: 139: SG 8-8 (7.4-10.2)
N: 23. SG: 12.8 (8.8-16.9)

P = 0.069

N: 142. SG: 7.9 (6.4-9.4)
N: 18. SG: 12 (6.7-17.3)

P = 0.014

0.263

PS 0-1
PS 2

N: 136 SG: 10.7 (9.2-12.2)
N: 26. SG: 2.5 (1.3-3.7) 

P = 0.0001

N: 98. SG: 12.3 (10.2-14.5)
N: 62. SG: 2.3 (1.9-2.7)

P = 0.0001

0.259

Never smoker
Smoker
Ex-smoker

N: 13. SG: 15.7 (10.4-21.1)
N: 112. SG: 8.7 (7.2-10.2)

N: 37. SG: 8.8 (6.1-11.5) P = 0.041

N: 28. SG: 13.3 (8-18.7)
N: 33. SG: 5.4 (3.5-7.3)

N: 99. SG: 8.2 (6.4-10) P = 0.001

0.098

EGFR unknown
EGFR mutated
EGFR wild type

N: 25. SG: 9.9 (6.8-12.9)
N: 12. SG: 21.0 (13.7-28.3)

N: 125. SG: 8.1 (6.8-9.4) P = 0.002

N: 33. SG: 8.1 (5.6-10.6)
N: 17. SG: 16.8 (10.2-23.3)

N: 110. SG: 7.3 (10.2-23.3) P = 0.0001

0.112

Squamous
Adenocarcinoma

N: 55. SG: 7.6 (5.8-9.3)
N: 88. SG: 10.9 (8.8-13)

P = 0.018

N: 70.SG: 7.5 (5.6-9.4)
N: 59. SG: 10.1 (7.1-13.1) P = 0.002

0.612

Treated
No treated

N: 139. SG: 10.5 (9-12)
N: 23. SG: 2.5 (1.1-3.8) 

P = 0.00001

N: 102. SG: 11.8 (9.7-13.9)
N: 57. SG: 2.5 (2-3) P = 0.00001

0.19

Chemotherapy
Radiotherapy
EGFR TKI

N: 117. SG: 18.0 (11.9-24)
N: 8. SG: 3.0 (1.89-4.1))

N: 13. SG:19.7 (12.5-26.9)
P = 0.0001

N: 71. SG:10.6 (8.5-12.8)
N: 13. SG: 3.6 (2.4-4.7)

N: 18. SG: 17.8 (11.4-24.2) P = 0.0001

0.365

Combined chemotherapy
Monotherapy
Bevacizumab

N: 89. SG: 9.2 (8.2-13.1)
N: 8. SG: 5.4 (3.3-7.4)

N: 21. SG: 14.5 (10.3-18.6) P = 0.024

N: 48. SG: 10.7 (8.2-13.1)
N: 21. SG: 10.1 (6.3-13.9)

N: 2 SG: 19.0 (12-42) P = 0.248

EGFR: epidermal growth factor receptor; TKI: tyrosine kinase inhibitor; PS: performance status; SG: study group
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Figure 4: Comparison: treated versus untreated elder patients
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Figure 5: Benefit of treatment in terms on overall survival for elderly patients



                                    Journal of Cancer Metastasis and Treatment ¦ Volume 2 ¦ September 30, 2016 

Gironés et al.                                                                                                                                         Age-related efficacy of treatment in metastatic NSCLC

384

platinum-combinations vs. monotherapy, the same 
benefit was found for younger versus elderly patients 
(P = 0.14). Platinum-combinations were found to be 
more effective in younger patients (9.5 vs. 5.7 months; 
platinum vs. non-platinum combinations respectively), 
but no differences were found in the elderly group (10.5 
vs. 10.2 months; combination vs. monotherapy). Few 
patients were treated with bevacizumab and we are 
therefore unable to draw conclusions. No differences 
in survival were found with respect to distinct platinum 
combinations.

Smoking habit had impact on overall survival in elderly 
patients that received chemotherapy (P = 0.006) 
[Figure 6]. Median overall survival for active smokers 
during chemotherapy treatment was 6.5 (95% CI 3.9-
9.1) vs. 12.1 months (95% CI 9.5-14.7), P = 0.011 for 
those who had quit smoking. In addition, smoking had 
an impact on the outcomes of patients who received 
combination therapy in the elderly group; smokers 
treated with platinum-combination had median overall 
survival of 6.9 months (95% CI 4.1-9.6) vs. 12.7 
months in ex-smokers (95% CI 9.4-15.9. Median 
overall survival for patients receiving monotherapy in 
the elderly group was 6.8 months for active smokers 
(95% CI 3.2-13.1) vs. 10.8 months in ex-smokers (95% 
CI 6.4-15.1) (P = 0.014). The relationship between 
smoking status and chemotherapy was not significant 
in the younger group.

DISCUSSION

In this study, we analyzed all elderly patients with 
advanced NSCLC who visited our outpatient hospital 
over a 10-year period, and found that 64% (n = 102) 
received active treatment. The elderly patients treated 
benefit in a similar way that younger counterparts. 

Smoking had an important impact on elderly patients 
treated.

Elderly patients tended to have poorer PS. All of 
the elderly women except one were never smokers. 
With the increasing number of female smokers, it is 
uncertain whether in the future we will see greater 
numbers of elderly women smokers.[24-27] Most 
probably, due to the high sensitivity of women to 
tobacco carcinogens, the tendency will be towards an 
increase of younger female lung cancer patients.[28] 

In any case, never smoker status was significantly 
related to EGFR-mutation in elderly and younger 
women. A higher prevalence of EGFR mutations in 
the elderly has already been described,[29] and, as in 
our series, older age at diagnosis has been reported 
to be an independent predictor of EGFR mutations in 
female never-smokers with adenocarcinoma.[30] In this 
study, in males never smokers, smoking habit was 
related to EGFR mutation in the elderly group only; 
it was not a predictor of EGFR status in the younger 
group. Smoking was related to histology in the elderly; 
squamous cell lung carcinoma was the main histology 
in this group. Adenocarcinoma related to smoking was 
more predominant in the younger group. It should be 
taken into account that the elderly patients were mostly 
ex-smokers. The high incidence of smoking history in 
the elderly has already been described.[31]

Most elderly patients with metastatic NSCLC do not 
receive chemotherapy, as database analyses have 
shown.[4] In our series, elderly patients were less 
likely to receive chemotherapy than younger patients; 
however on analysis of those elderly patients suitable 
for chemotherapy, almost 85% received chemotherapy. 
This is a probably a higher rate of treatment than 
reported in published data.[34] For example, one analysis 
performed by SEER-Medicare,[4] which considered 
elderly patients as those > 66 years, showed that 
only 25.8% received first-line chemotherapy. In 
that study, multivariate analyses indicated that with 
increasing age, comorbidity and poor PS, treatment 
with any chemotherapy and platinum-based doublet 
regimens is less likely to be used. In our series, the 
elderly patients were older than those in the SEER 
analysis (> 70). From a total of 160 elderly patients, 
71 (44.3%) received chemotherapy. This is a higher 
figure than reported in other studies. Platinum-doublet 
chemotherapy regimens have been shown to extend 
survival in fit patients with advanced non-small-cell lung 
cancer.[4] At our study, both, cytotoxic chemotherapy 
and EGFR TKI treatments are feasible and prolong 
survival when comparisons are made with patients 
who do not receive chemotherapy in both groups. It 
seems that the benefit of treatment of elderly patients 
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Figure 6: Differences in overall survival by smoking status in elderly 
patients treated with chemotherapy
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is similar (indeed a little better) to those obtained by 
their younger counterparts.

Doublet platinum-based chemotherapy regimens 
are the standard of care for both adult and elderly 
fit advanced NSCLC patients, with good tolerance 
and only minor effects on quality of life (QoL).[32,33] In 
our study, a high percentage of elderly patients with 
PS 0-1 suitable for chemotherapy did in fact receive 
chemotherapy. Since 2006 we have used geriatric 
assessments to determine suitability for treatment.[34,35] 
All young patients with good PS were treated; but there 
were no differences in overall survival for those elderly. 
Are elderly patients undertreated? Or are younger 
patients overtreated?

The elderly were less likely to receive cisplatin-
combinations and more likely to receive monotherapy. 
Surprisingly we did not find any differences when 
comparing platinum-combinations to monotherapy. 
Monotherapy has been for several years the 
recommended palliative treatment for elderly patients 
with advanced NSCLC.[36] Factors that influence 
whether a patient receives a platinum-doublet or 
single-agent are unclear in the elderly. Over the 
period of study we have found a tendency to prescribe 
monotherapy, probably due to doubts about the benefit 
of platinum-combination until recently. Probably, these 
elder patients were more carefully selected, and we 
do not know whether they would have benefited from 
a platinum-combination. Other authors found that 
platinum-doublet chemotherapy provides greater 
benefits than single agents in the elderly.[4]

It is difficult to make conclusions in the sense that 
this is not a randomized study. Bevacizumab has not 
been specifically studied in older patients.[37] As few 
elderly patients were treated with bevacizumab we are 
unable to draw conclusions. Probably the two patients 
suitable for first line bevacizumab were carefully 
selected. At present we are exploring bevacizumab in 
elderly patients selected using geriatric assessment 
(ClinicalTrials.gov identifier: NCT01980472). For 
chemotherapy combinations (vinorelbine, gemcitabine, 
paclitaxel, pemetrexed, docetaxel) we did not find any 
differences in elderly patients, which leads us to draw 
the conclusion that, as in younger patients, the benefits 
of chemotherapy have reached a plateau.[6,38]

Our results indicate that chemotherapy treatment is 
strongly associated with greater survival. Furthermore, 
the magnitude of this benefit is comparable with that 
seen in clinical trials, or even more so. The closeness 
of these estimates suggests that with adequate 
adjustments for patients’ characteristics, observational 
studies can provide very useful information on the 

effectiveness of treatment.

The same prognostic factors were found for in the elder 
and younger patients; PS 0-1, active treatment, never 
smoker and EGFR mutation, regardless of age. For 
elderly patients, smoking has impact on benefit from 
chemotherapy, as ex-smokers benefit more from both 
combination and monotherapy.

Our analysis raises several questions that deserve 
future study. In particular, we have noted that despite 
gains in treatment rates during the study period, overall 
survival remains poor and smoking continues to be 
a major factor in determinant treatment outcomes, 
although only for the elderly. Our survival results 
indicate that appropriate patients, regardless of age, 
can benefit from aggressive treatment. Additional work 
on smoking is need to further elucidate the role of 
smoking on age and treatment outcomes.

Our study has several limitations. First, this analysis 
was conducted in a single center, so we cannot 
extrapolate our results the overall population with lung 
cancer. Secondly, we have an important selection 
bias, as we only collected data on ambulatory patients. 
However, these are the patients that benefit most from 
chemotherapy. Thirdly, some variables have not been 
collected (median number of chemotherapy cycles, 
chemotherapy lines, and progression-free survival). 
Also, EGFR mutation test and ALK rearrangement 
tests were not fully performed in most patients.

However, this study also has strengths. All data was 
collected from the same oncology unit, and patients 
were all attended by the same oncologist (Dr. 
Gironés). Possible confounding factors for treatment 
(physician bias) have been prevented.[39]  The number 
of cases was relatively high. To date, most studies of 
elderly lung cancer patients have been from subgroup 
analysis of phase III studies or were specific studies for 
elderly patients with fewer patients. Studies with high 
numbers of patients were retrospective.[6,38]

In conclusion, patients do benefit from aggressive 
chemotherapy regardless of their age. Our observational 
data provide an opportunity to understand the effects of 
treatment when applied in routine practice and assess 
whether outcomes are comparable to those obtained in 
clinical trials. Approximately 45% of the elderly patients 
with advanced NSCLC seen at our routine clinical 
practice received active treatment with chemotherapy, 
and this prolonged survival in a similar way to in their 
younger counterparts. The most significant advances 
in median overall survival have been in cases of 
lung cancer unrelated to smoking (EGFR-mutations). 
Unfortunately, smoking remains the main cause of 
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lung cancer in elderly patients. Efforts to prevent the 
initiation of the smoking habit and also to quit smoking 
should be made, regardless of age.
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The authors present a case of histologically benign and incidentally discovered millimetric 
solitary fibrous tumor of the bladder, invisible to radiologic imaging and clinically benign. 
The case came to our attention because of repeated episodes of renal colic. As opposed to 
the present case, solitary fibrous tumor are generally discovered when they reach certain 
dimensions, being slow-growing, painless masses. Such a tumor of the bladder is a very 
rare finding, with less than 20 cases reported, and it has yet to be described with such a 
small size. The main differential diagnoses are discussed. Such tumors with histological 
features of malignancy are also described in the literature. However, the present case had 
a bland appearance so a conservative approach with an excision was adopted. No signs of 
recurrence are present at follow-up.
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INTRODUCTION

Solitary fibrous tumor (SFT) is a rare type of 
mesenchymal tumor described in the years originally 
as hemangiopericytoma, later as SFT.[1-3] A malignant 
histology has been also described in different organs.[4] 
Nevertheless, SFT involving the urinary bladder is a very 

rare finding. We present one case of bladder primary 
SFT of a few millimeters, incidentally discovered.

CASE REPORT

A 72-year-old male patient with repeated episodes of 
renal colic was admitted to the emergency room of our 
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hospital. He underwent an echographic investigation 
that showed only grade 1-2 hydronephrosis. Moreover, 
leucocytosis and elevated C-reactive protein was 
observed. An expulsion therapy was performed.

After 1 week, a computed tomography scan showed 
hydronephrosis with a 10 mm × 8 mm ureteral 
calculus located 4 cm from the bladder neck. The 
patient underwent an endoscopic lithotripsy. During 
the procedure, a 4 mm bladder nodule was seen on 
the mucosa surface, thus removed by the urologist 
and submitted for histologic examination.

This showed a mesenchymal proliferation with 
low cellularity [Figure 1], without atypia [Figure 2] 
and a mitotic index below 1/10 high power field. 
Immunohistochemistry demonstrated strong CD34 
positivity [Figure 3], weak B cell lymphoma (BCL2) 

positivity, and negativity for both S100 and smooth 
muscle actin. Hence, a diagnosis of solitary fibrous 
tumor was formulated.

Among the differential diagnoses, inflammatory 
fibroblastic tumor was ruled out because of poor 
cellularity, activin receptor-like kinase 1 (ALK1) 
negativity, and absence of an inflammatory component. 
Likewise, spindle cell nodule and benign neoplasms 
such as leiomyoma or neurofibroma were excluded for 
morphophenotipic features. Ten months after excision 
the patient had no ecographic sign of recurrence.

DISCUSSION

Extrapleural SFTs are anatomically ubiquitous, as 
documented also by the present case report, and 
occur equally in males and females, primarily in adult 
life, with a wide range of ages, 20 to 70 years.[4,5] 
The ubiquity of SFT supports its mesenchymal origin 
(with fibroblastic/myofibroblastic features).[3] Most 
present as a slow-growing, painless masses. In 
cases of bladder SFT, the most frequent symptoms, 
such as pain, palpable mass, abdominal distention, 
urinary retention, haematuria, constipation, and bowel 
obstruction, are related to compression and local 
invasion of nearby structures.

In the English literature 15 cases have been 
reported,[6,8-11] all with symptoms related to tumor 
volume (up to 12 cm in diameter), and presence of 
radiologic findings.[12-16] Sometimes, a diagnosis of 
malignant soft tissue tumor was considered. Actual 
malignant bladder SFT has been described,[7] while to 
the best of our knowledge, this is the first case of a 

Figure 1: Nodular, small solitary fibrous tumor of bladder mucosa. 
Complete excision was performed (HE, ×10)

Figure 2: Mesenchymal proliferation with low cellularity, without 
atypia, and without mitotic activity (HE, ×40)

Figure 3: CD34: strong, diffuse immunostaining of entire lesion 
(ABC perox, ×10)
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SFT of just 4 mm.

The World Health Organization classification of tumors 
of soft tissue in 2013 identifies the SFTs among the 
tumors with a rarely unpredictable behavior.[17] Indeed, 
although most cases are slow-growing and benign, 
behavior can sometimes be aggressive and distant 
metastasis may occur.[5] However, features more 
frequently related with a poor prognosis are tumor size 
over 10 cm, malignant histology such as high mitotic 
count and necrosis, while  the feature more frequently 
related with local recurrence is the presence of positive 
surgical margins if resectability is difficult.[11]

This is the first description of a very small, 
subcentimeter SFT reported in the literature. Since, in 
our case, no malignant characteristics were present, a 
conservative approach after an endoscopic complete 
resection was adopted. Currently the patient is being 
followed but without recurrence.
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Primary carcinoma of breast is common but breast is a rare site of metastasis and metastases 
from extramammary sites are even rarer. Metastasis to breast from rectal carcinoma is very 
unusual and till now 19 cases of breast secondaries from colorectal carcinoma have been 
reported in literature which include 14 cases where the primary site was colon and remaining 
5 were from the rectum. Here the authors report a case of adenocarcinoma anorectum who 
had completed treatment and after 4 months developed a lump in her left breast which was 
metastatic. Metastatic lesions of breast are usually part of a widely disseminated disease 
but this case presented as a solitary breast metastasis which mimicked as second primary 
cancer of the breast.
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INTRODUCTION

Breast is an unusual site of metastasis.[1] Contralateral 
breast is the most common site from which breast 

metastases are seen, followed by extramammary 
sites, viz. leukemia, melanoma, lymphoma, ovary, 
lung and stomach cancer.[2,3] Breast metastasis 
from extra mammary tumor is rare and accounts for 
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approximately 1.3% to 6.6% of all malignant tumors of 
breast.[4] Metastasis from the colon to the breast were 
first reported by McIntosh et al.[5] and from the rectum 
by Lal et al.[6] in 1999. It is important to differentiate 
metastatic disease to the breast from primary breast 
carcinoma because the management differs in both 
the scenarios.

CASE REPORT

A 49-year-old female presented to oncology out patient 
department with complaints of bleeding per rectum and 
alteration of bowel habit since 1 month. The patient was 
will built and had Eastern Cooperative Oncology Group 
performance score of 1. General physical examination 
was unremarkable. Per-rectal examination revealed 
ulcero-proliferative growth involving posterior wall of 
anal canal was palpable at 4 cm from the anal verge. 
Colonoscopy was done which reported circumferential 
ulcerative growth in distal rectum and anal canal 
[Figure 1]. Contrast enhanced computed tomography 

scan of the whole abdomen was done which showed 
semi-circumferential mass lesion (length 71.9 mm; 
width 30.6 mm; thickness of mass 3.2 mm to 18.5 mm) in 
anorectal region predominantly involving posterior wall 
[Figure 2A and 2B]. All other baseline investigations 
including a complete hemogram, kidney function tests, 
liver function tests, and chest X-ray were within normal 
limits. Biopsy from anorectal mass revealed signet 
ring adenocarcinoma. She underwent pre-operative 
external beam radiotherapy 50.4 Gy in 28 fractions 
with concomitant 5-fluorouracil and leucovorin based 
chemotherapy followed by radical surgery (abdomino-
perineal resection with permanent colostomy) and 
then adjuvant 5-fluorouracil and leucovorin based 
chemotherapy. Patient was disease free for 4 months 
after completion of treatment, and 4 months after 
completion of treatment, she noticed a lump in her left 
breast. On clinical examination a lump was palpable 
approximately 2 cm × 2 cm size in the upper outer 
quadrant of left breast with no axillary and supraclavicular 
lymphadenopathy. Digital mammography of bilateral 
breast was done which revealed oval hyperdense 
mass lesion with lobulated margins in upper outer 
quadrant of left breast [Figure 3]. She then underwent 

Figure 1: Colonoscopy reported circumferential ulcerative growth in 
distal rectum and anal canal as the arrows indicated

Figure 2: (A) Computed tomography scan of abdomen in axial 
section showing semi-circumferential mass lesion in anorectal region 
predominantly involving posterior wall; (B) computed tomography scan 
of abdomen in coronal section showing 71.9 mm mass lesion in anorectal 
region

Figure 3: Digital mammography of bilateral breast showing oval 
hyperdense mass lesion with lobulated margins in upper outer quadrant of 
left breast

Table 1: IHC markers results in our patient
IHC markers Results
CK7 Negative
CK20 Positive in majority of tumor cells
mCEA Positive in majority of tumor cells
ER Negative, normal breast is positive
GCDFP-15 Negative
MUC-2 Positive in many tumor cells
CDX-2 Positive in many tumor cells
Ki-67 30%

IHC: immunohistochemistry; CK: cytokeratin; mCEA: carcinoembryonic 
antigen; ER: estrogen receptor; GCDFP-15: gross cystic disease fluid 
protein; MUC-2: mucin-2; CDX-2: Caudal type homeobox-2
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a whole body 18-fluorodeoxyglucose (18-FDG) 
positron emission tomography scan which showed 
FDG avid soft tissue density lesion of size 4.2 cm 
× 2.8 cm with standardized uptake value (SUV)max 
13.2 in left breast [Figure 4] and hypermetabolic right 
inguinal lymph node SUVmax 5.1 [Figure 5] with no 
other hypermetabolic focus elsewhere in body. Fine 
needle aspiration cytology (FNAC) from left breast 
lump showed single population of atypical epithelial 
cells suggestive of adenocarcinoma. FNAC from right 
inguinal node was also done which reported metastasis 
from adenocarcinoma. Her carcinoembryonic antigen 
(CEA) and carbohydrate antigen-15.3 was done which 
was 26.8 ng/mL (Normal 0-4 ng/mL) and 17.2 u/mL 
(Normal 0-35 u/mL) respectively. In view of isolated 
breast lesion it was considered as second primary 
of the breast and the patient was taken up for left 
modified radical mastectomy. Right iliac and inguinal 
node dissection was also performed for regional lymph 
node recurrence from carcinoma anorectum. Post-
operative histopathology from left modified radical 
mastectomy specimen showed mucin secreting signet 
ring adenocarcinoma with lymphovascular emboli and 
lymphocytic infiltration. Nine out of 16 dissected left 
axillary lymph nodes showed metastasis of signet ring 
adenocarcinoma. Six out of 8 right inguinal lymph nodes 
and 2 out of 4 right iliac lymph nodes showed metastasis 
from anorectal carcinoma. Immunohistochemistry 
(IHC) was performed to ascertain whether the lesion 
was a primary carcinoma of the breast or metastasis 
from anorectal carcinoma. Result of IHC markers 
was as shown in Table 1 and Figure 6. IHC combined 
with morphology favored signet ring cell metastatic 
carcinoma to breast.

DISCUSSION

Breast metastases from colon cancer are very rare and 

they are usually associated with poor prognosis, due 
to disseminated disease.[7] It is of utmost importance 
to distinguish metastatic carcinoma to the breast 
from a primary breast carcinoma.[8] Metastatic spread 
from anorectal cancer occurs both by lymphatic and 
hematogenous routes. Owing to the venous drainage 
into the portal system from the superior hemorrhoidal 
vein, the liver is the most common site of distant 
metastasis. Systemic drainage into the inferior vena 
cava from the inferior hemorroidal plexus may lead 
to metastatic involvement of the lung and bone. 
Metastases to the breast from anorectal carcinoma 
without involvement of any of these organs is a rare 
phenomenon. Schaekelford et al.[8] reviewed 19 cases 
of colorectal carcinoma metastasizing to the breast 
and reported a majority of cases with metastases to the 
left breast 55%, with the right breast 30% and 3 cases 
with bilateral breast metastasis. In our case, patient 
had left breast metastasis similar to the observation 
by Schaekelford et al.[9] The most common site is the 
upper outer quadrant of the breast. They can occur 
as synchronous lesions or may follow the primary by 
months to years. Metastatic breast lesions are typically 
mobile, well demarcated, firm, rapidly growing, discrete 
masses and may be confused with benign breast 
disease due to their often well-circumscribed nature. 
Rarely these lesions may be multiple or bilateral. The 
interpretation is difficult in some cases so a history of 
previous malignancy is important for the radiologist 
in order to evaluate these breast lesions.[10,11] Other 
features suggestive of metastasis to breast are location 
of the lump in either fat or subcutaneous tissue, lack of 
micro-calcification in mammogram and lack of in situ 
disease on histopathological examination.[12,13] The 
correct diagnosis is therefore crucial in these patients 
so as to decide the further management of these 
patients. Histopathology for metastatic lesion may 
be invasive adenocarcinoma, often with mucinous or 
signet-ring cell features, but unlike primary lesion of the 

Figure 4: FDG-PET scan showed FDG avid soft tissue density 
lesion (size 4.2 cm × 2.8 cm SUVmax 13.2) in left breast. FDG-
PET: fluorodeoxyglucose-positron emission tomography; SUV: 
standardized uptake value

Figure 5: FDG avid hypermetabolic right inguinal lymph node 
SUVmax- 5.1. FDG: fluorodeoxyglucose; SUV: standardized uptake 
value



                                    Journal of Cancer Metastasis and Treatment ¦ Volume 2 ¦ September 30, 2016 

Shah et al.                                                                                                                                            Breast metastasis mimicking as second primary cancer

394

breast they lack an in situ component. Lymphovascular 
space invasion may be prominent. This type of unusual 
histopathology in breast with previous history of 
malignancy are suggestive of metastasis. But the final 
diagnosis is established after studying the cytokeratin 
pattern. IHC when performed, tends to be positive for 
colorectal markers like caudal type homeobox-2 (CDX-
2), cytokeratin (CK20), and CEA, and negative for 
breast markers CK7, estrogen receptor, progesterone 
receptor, human epidermal growth factor receptor-2, 
and gross cystic disease fluid protein-15.[14,15] 
Expression of CK7 and CK20 is considered to be most 
helpful in identifying the origin of adenocarcinomas.

Most importantly, the great majority of primary breast 
tumors are CK7-positive and CK20-negative, while 
colorectal carcinomas are usually CK7-negative and 
CK20-positive.[16,17] IHC markers used in our case were 
consistent with these findings as shown in Table 1. The 
strong nuclear positivity with CDX-2 is highly sensitive 
and specific for colonic cancers.[18] In addition, estrogen 
and progesterone receptors are usually negative in 
metastatic breast cancers. A patchy reaction for CK5/6 
and comedo like necrosis can mimic ductal carcinoma 
in situ disease. Histological features such as epithelial 
stratification, high nuclear atypia, significant mitotic 
activity, and positive reactions for CK20 and CDX-2 can 
help to overcome this difficulty. Metastatic carcinomas 
in the breast are associated with a poor prognosis with 
a survival rate of less than 12 months from the time of 
breast tumor diagnosis.[16,19,20]

Metastatic disease in the breast is a marker for 
disseminated metastatic spread, and therefore 

indicates a poor prognosis. Metastases to the breast 
are rare in themselves, and such metastasis occurring 
secondary to a previous anorectal carcinoma makes 
this case very unusual. The liver, lungs and bone are the 
usual sites of spread from colorectal cancers. Breast 
metastases with sparing of these organs is unlikely but 
possible. Our patient presented with an isolated breast 
lump and without any other complaints. She was 
managed considering the lesion to be second primary 
cancer of the breast but post operative histopathology 
with IHC showed it to be metastases. On the basis of 
histopathology showing adenocarcinoma and history 
of previous malignancy alone, the diagnosis of lesion 
being metastasis to breast should not be arrived upon 
and in such patients the importance of IHC to exclude 
the diagnosis of primary breast lesion cannot be 
undermined.
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Aim: Tyrosine kinase inhibitors are part of the armamentarium to treat metastatic renal 
cell carcinomas (mRCC). Costa Rica has approved sunitinib in the first line setting. The 
authors conducted a retrospective study to address the effectiveness and safety profile of 
sunitinib in our population in terms of overall survival (OS) and progression free survival 
(PFS). Methods: The authors analyzed all patients who were treated with sunitinib 
diagnosed with mRCC in the three National Hospitals (Hospital Mexico, Hospital San Juan 
de Dios, and Hospital Calderon Guardia) from February 2007 to June 2015. Demographics, 
safety profile, and efficacy (OS and PFS) were obtained from medical records. OS and PFS 
were calculated using the Kaplan Meier method and a Cox Proportional Model Analysis 
was used when OS and PFS were compared in subset of patients. Results: Seventy-seven 
patients were included; mean age was 58.9 years. Fifty-four patients were male (70.1%). 
The most common histologic type was clear cell carcinoma (87%), followed by papillary 
(9.1%) and chromophobe (2.0%) types. Median OS was 21.0 months [95% confidence 
interval (CI): 13.42-28.58]. Median PFS was 13.7 months (95% CI: 11.24-16.16). Patients 
aged 65 years or older experienced worse PFS and OS than younger patients (median PFS: 
8.2 vs. 17.6 months; P = 0.011) (median OS: 19.0 vs. 29.0 months; P = 0.022). Sunitinib was 
well tolerated and no serious side effects were reported. Conclusion: This is the first study 
in Central America showing that sunitinib, first line, in mRCC is as effective as reported in 
pivotal clinical trials and expanded use studies in terms of PFS and OS.
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INTRODUCTION

Renal cell carcinoma (RCC) accounts for about 3% 
of all adult cancers, is the 8th most common cancer 
in Central America and the 10th worldwide, and the 
clear-cell RCC (ccRCC) is its most frequent histologic 
subtype.[1-4]

Surgery remains the standard of care for localized 
disease, and can often be curative.[5,6] Unfortunately, 
metastatic RCC (mRCC) is found in approximately 
one third of patients.[7] Furthermore, RCC is extremely 
resistant to conventional chemotherapy.[8] That is why 
different treatment strategies had been developed, 
taking into account improvements in understanding 
RCC biology and tumor behavior. RCC is highly 
vascularized due to overexpression of vascular 
endothelial growth factor (VEGF) induced by alterations 
of the tumor suppressor gene, Von Hippel-Lindau 
(VHL), leading to the increase of hypoxia-inducible 
factors 1 alpha and 2 alpha, ending in angiogenesis.[9] 
This has allowed the development of VEGF inhibitors 
such as tyrosine-kinase inhibitors (TKIs), monoclonal 
antibodies against VEGF, and mammalian target of 
rapamycin (mTOR) inhibitors.[5]

In Costa Rica the National Health Care System 
(Caja Costarricense de Seguro Social, CCSS) has 
authorized the use of sunitinib to treat mRCC in first 
line setting.[10] Sunitinib is a multiple TKI, including the 
VEFG receptors (VEFGRs) and platelet-derived growth 
factor receptors, producing a strong antitumor action 
in mRCC[11] and is approved worldwide as upfront line 
treatment of mRCC, with the reporting of significant 
objective response rates and also superiority over 
interferon-alfa in progression-free survival (PFS), with 
a trend to increase overall survival (OS).[12,13]

In this retrospective study we evaluated the 
effectiveness of sunitinib in the Costa Rican population 
in terms of median overall survival (mOS), median 
progression free survival (mPFS) and its safety profile.

METHODS

Patients and study design
This is a retrospective study reviewing the medical 
records from a total of 77 patients treated with sunitinib 
as first-line therapy in mRCC. Data were collected 
between February 2007 and June 2015 in the three 
major hospitals (Hospital San Juan de Dios, Hospital 
Calderon Guardia and Hospital Mexico) in San Jose, 
Costa Rica. All patients were required to be at least 
18 years of age and to have histologically confirmed 
mRCC (regardless of histologic subtype). The Ethics 

Committees in each hospital approved this study.  
All patients received oral sunitinib maleate, 50 mg 
once daily for 4 weeks of a 6-week treatment cycle 
(4 weeks on, 2 weeks off). The dosage was reduced 
in some cases to 37.5 mg daily. Sunitinib was given 
until disease progression or unacceptable toxicity. 
Physical examination and clinical laboratory tests were 
performed approximately one or two days before each 
cycle. Adverse events were registered according to the 
National Cancer Institute (NCI) common terminology 
Criteria for Adverse Events (CTACAE), version 
3.0. Tumor evaluation was performed according 
to Response Evaluation Criteria in Solid Tumors 
(RECIST) version 1.0, this assessment being done 
in accordance with local practices at each hospital. 
PFS was defined as from time of starting sunitinib to 
disease progression or death from any cause (death 
could occur within one month of the last treatment 
dose and was included in the PFS analysis). OS was 
defined as the time from start of sunitinib to death from 
any cause.

Statistical analysis
In this retrospective study we included all patients 
who received sunitinib during the observational period 
of time in Costa Rica. For that reason there were 
neither pre-specified sample sizes nor pre-established 
hypotheses to evaluate. Categorical variables are 
presented as percentages. Continuous variables 
are presented as the mean ± standard deviation. To 
assess the PFS and OS the Kaplan-Meier method 
was used. A Cox Proportional Model Analysis was 
employed to determine differences in the outcome 
variables according to age less or higher than 65 year. 
In addition univariate and multivariate analyses were 
used to explore the association between OS and PFS 
with prognostic factors. A P value less than 0.05 was 
considered statistically significant. Data were analyzed 
using SPSS for Mac version 20.0 (SPSS, Chicago, IL).

RESULTS

A total of 77 patients were included in the study. Patient 
characteristics are described in Table 1. All patients 
received sunitinib as first line treatment, while none 
was previously treated either with cytokines or TKIs. 
With a median follow-up of 18.9 months, mPFS was 
13.7 months [95% confidence interval (CI): 11.24-
16.16 months], and mOS was 21.0 months (95% CI: 
13.42-28.58 months) [Figure 1].

A statistically significant difference was found in 
terms of PFS and OS according to patient age, risk of 
progression as well as risk of death by disease. This 
was higher in patients 65 years or older in comparison 
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to those with less than 65 years. mPFS was 17.6 months 
(95% CI: 10.2-25.0 months) vs. 8.2 months (95% CI: 
0.1-16.4 months); hazard ratio (HR): 1.93 (95% CI: 1.2-
3.2); P = 0.011; mOS was 29.0 months (95% CI: 11.4-
46.5) vs. 19.0 months (95% CI: 11.0-26.9, HR = 1.82; 
95% CI = 1.1-3.1); P = 0.022 [Figure 2]. These findings 
were confirmed in univariate and multivariate analyses 
[Tables 3 and 4], showing that age was an independent 
prognostic factor either for PFS or OS.

There was no difference in PFS by gender or histological 

variant [Table 2]. However, a significant difference 
was found in mOS according to histological subtype 
in favor of ccRCC when compared with non-clear cell 
carcinoma: 26.8 months (95% CI: 20.1-30.5) vs. 14.2 
months (95% CI: 0-29.0); HR: 3.41 (95% CI: 1.6-7.3; 
P = 0.001) [Figure 3]. When univariate and multivariate 
analyses were performed, it was found that ccRCC was 
an independent prognostic factor in terms of OS but not 
PFS [Tables 3 and 4].

Sunitinib was, in general, well tolerated. There were 
17 patients (22%) who received a dose reduction to a 
37.5 mg daily schedule due to grade 1 or 2 toxicities; 
no grade 3 or 4 toxicities were registered. Diarrhea and 
hand-foot syndrome were the most commonly adverse 
reactions described [Table 5].

DISCUSSION

According to international RCC treatment guidelines, 
sunitinib is currently one of the preferred options 
to treat metastatic clear cell renal cell carcinoma 
(mccRCC).[14,15] Its efficacy and safety have been 
evaluated in a phase III pivotal study and the global 
expanded-access trial (GEAT).[16-18] There are few data 
in Latin America regarding the effectiveness of sunitinib. 
In the GEAT trial, it was reported that a subset analysis 
of 348 Latin American patients showed a mPFS and a 
mOS of 12.1 and 16.9 months, respectively.[19,20] The 
final analysis of this global trial including more than 
4,500 patients demonstrated a mPFS of 9.4 months 
and a mOS of 18.7 months.[18] In the present study we 
obtained a mPFS of 13.7 and a mOS of 21.0 months, 
very similar to the results reported globally. This strongly 
suggests that sunitinib has the same effectiveness in 
the Latin American population as previously assessed 
in the pivotal trial and the GEAT, supporting the use of 

Table 1: Patient characteristics
All patients (n = 77)

Median age (years, range)                  58.9 (47.4-70.4)
Patients older than 65 years (%)                         25 (32.4)
Gender (%)
Female
Male

                  23 (29.9)
                            54 (70.1)

ECOG/PS (%)
0
1
2

                           60 (77.9)
                            10 (12.9)

                         7 (9.2)
Histological variant (%)
Clear cell carcinoma
Papillary
Chromophobe
Collecting duct carcinoma

                       67 (87.0)
                               7 (9.1)

                          2 (2.6)
                              1 (1.3)

MSKCC risk classification (%)
Low
Intermediate
High

                        47 (61.0)
                                             25 (32.4)
                                5 (6.5)

Site of metastasis (%)
Lung
Bone
Liver
Central nervous system
Other

                          55 (52.8)
                           19 (18.3)
                           16 (15.3)

                          10 (9.6)
                            4 (3.8)

ECOG: Eastern Cooperative Oncology Group; PS: performance 
status; MSKCC: Memorial Sloan Kettering Cancer Center

Figure 1: (A) Probability of progression-free survival in all patients: 13.7 months (95% CI: 11.24-16.16 months); (B) probability of overall 
survival in all patients: 21.0 months (95% CI: 13.42-28.58 months). CI: confidence interval
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this drug as the standard of care in first line mRCC in 
Costa Rica.

Surprisingly, when analyzed by age, it was found that 
patients aged ≥ 65 years, experienced worse PFS and 
OS than younger patients (< 65), mPFS: 8.2 vs. 17.6 
months; (P = 0.011) and mOS: 19.0 vs. 29.0 months 

(P = 0.022). This was seen, as well, when univariate 
and multivariate analyses were performed. These 
findings have not been previously reported. Another 
study[21] published a retrospective pooled analysis from 
1059 patients in six prospective trials. The authors 
found that, across the entire pooled sunitinib-treated 
population in the first line setting, PFS and OS were 
not different in younger and elderly patient aged 70 
and ≥ 70 years, respectively: mPFS was 9.9 vs. 11.0 
months with a HR of 0.89 (95% CI: 0.73-1.09; P = 
0.2629), while mOS was 23.6 vs. 25.6 months, with an 
HR of 0.93 (95% CI: 0.74-1.18; P = 0.5442). Also, the 
GEAT study was not able to identify differences among 
patients by age, either regarding OS or PFS.[18] There 
is no clear explanation to these findings. However, 

Table 2: Progression-free survival and overall survival by gender and histological variant
mPFS mOS

Gender Female 10.8 months (95% CI: 3.1-18.5) 18.0 months (95% CI: 13.2-22.8)
Male 15.2 months (95% CI: 10.9-19.5) 23.0 months (95% CI: 16.2-29.7)

(HR:1.21; 95% CI: 0.71-2.0; P = 0.49) (HR: 1.23 95% CI: 0.71-2.11; P = 0.46)
Histology Clear cell carcinoma 15.2 months (95% CI: 10.8-19.7) 26.8 months (95% CI: 20.1-30.5)

Non-clear cell carcinoma 8.2 months (95% CI: 0-19.5) 14.2 months (95% CI: 0-29.0)
HR: 1.84 (95% CI: 0.9-3.76); P = 0.089 HR: 3.41 (95% CI: 1.6-7.3); P = 0.001)

CI: confidence interval; HR: hazard ratio; mPFS: median progression-free survival; mOS: median overall survival

Table 3: Univariate and multivariate analyses of potential prognostic variables for overall survival
Variable Univariate hazard ratio (95% CI) P value Multivariate hazard ratio (95% CI) P value
Male sex 0.77 (0.44-1.36) 0.372 0.88 (0.49-1.55) 0.659
Clear cell histology 0.29 (0.13-0.63) 0.002* 0.34 (0.16-0.76) 0.008
Age ≥ 65 years 2.15 (1.26-3.69) 0.005* 1.97 (1.14-3.04) 0.015*

CI: confidence interval

Table 4: Univariate and multivariate analyses of potential prognostic variables for progression-free survival
Variable Univariate hazard ratio (95% CI) P value Multivariate hazard ratio (95% CI) P value
Male sex 0.82 (0.48-1.41) 0.497 0.81 (0.46-1.42) 0.464
Clear cell histology 0.54 (0.26-1.12) 0.096 0.62 (0.27-1.31) 0.214
Age ≥ 65 years 2.21 (1.31-3.72) 0.003* 2.21 (1.30-3.76) 0.003*

CI: confidence interval

Table 5: Sunitinib-related toxicities*
Frequency (%)

None 24 (31.2)
Diarrhea 12 (15.6)
Fatigue 1 (1.3)
Hand-foot syndrome 11 (14.3)
Hypertension 2 (2.6)
Not reported 27 (35.1)

*Only grade 1 and 2 toxicities were reported

Figure 2: (A) Probability of progression-free survival according to age: less than 65 years: 17.6 months (95% CI: 10.2-25.0) and 8.2 months 
(95% CI: 0.1-16.4) in patients older than 65 years. HR = 1.93 (95% CI: 1.2-3.2); P = 0.011; (B) probability of overall survival according to 
age, 29.0 months (less than 65 years) (95% CI: 11.4-46.5) vs. 19.0 months (older than 65 years) (95% CI: 11.0-26.9) (HR = 1.82; 95% CI: 
1.1-3.1); P = 0.022. CI: confidence interval; HR: hazard ratio
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this could be due to intrinsic characteristics of the 
Costa Rican population. To address this observation, 
a different statistical analysis in this subset of patients 
was performed, including performance status, dosage 
received, and MSKCC risk. However, it was not 
possible to find a strong correlation with any of these 
factors. Thus, it could be possible that this is specific 
for Latin Americans. Further study might be warranted.

In accordance the pivotal sunitinib phase III trial, 
the GEAT study, and other mainly retrospective 
studies involving small number of patients[16,18,22-25] no 
differences by gender in terms of OS or PFS in the 
present study were found.

Sunitinib has shown only modest activity for the 
treatment of advanced and/or metastatic non-clear 
cell RCC, mPFS reported from 11 of 12 studies in a 
recently published systematic review ranged from 1.6 
to 8.9 months and mOS in 9 studies in the same review 
ranged from 12 to 22 months. Both mOS and mPFS 
are less than reported for mccRCC.[26] Interestingly, 
the present study obtained, in non-clear cell RCC, 
a mPFS of 8.2 months and a mOS of 14.2 months, 
keeping in line with the global literature. However, 
when an exploratory analysis comparing PFS and 
OS by histological variant was performed, mPFS for 
mccRCC was not statistical different from non-clear 
cell mRCC. Nevertheless, mOS was significantly 
superior in favor of mccRCC (26.8 months vs. 14.2 
months), a finding also confirmed in univariate and 
multivariate analyses. The explanation of this PFS, 
taking into account numerous confounders such small 
number of patients in the non-clear cell mRCC arm 
and possible patient selection bias, is that 7 patients 
had papillary histology and 1 had a chromophobe type, 
both histologies having demonstrated to be responders 
to TKIs.[27,28] With these findings, the use of sunitinib in 

either non-clear cell mRCC or mccRCC in the Costa 
Rican population can be supported.

Regarding the safety profile, sunitinib was well 
tolerated, with diarrhea and hand-foot syndrome being 
the most common adverse events, with no grade 3 or 4 
toxicities. In the GEAT study, diarrhea and fatigue were 
the most common side effects reported, and hand-foot 
syndrome was only in the 8th position.[18]

Although this study has some limitations due to its 
retrospective design and relatively small sample size, 
it provides real-world effectiveness of this treatment in 
this particular population.

In conclusion, sunitinib exerts important activity in 
mRCC in the Costa Rican population, demonstrated 
a mPFS and a mOS similar to pivotal and expanded 
access trials. Sunitinib seems to be more effective 
in younger patients than in patients aged 65 or more 
years. It is also well-tolerated regardless patients age.
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Spontaneous metastatic clostridial myonecrosis is a rare condition caused by Clostridium 
septicum. The underlying lesion is usually either a colonic neoplasm or leukemia. The 
authors reported a 67-year-old female who presented with acute abdomen secondary to a 
perforated sigmoid cancer and who developed gas gangrene in her right leg. Unfortunately, 
despite all resuscitative measures, she died. The authors reviewed the literature; the 
diagnosis of metastatic myonecrosis was based on a high index of suspicion, development 
of bullae containing gram-positive rods, and subcutaneous crepitus (although this was 
a late sign). Treatment involves aggressive fluid replacement, high doses of intravenous 
penicillin, high concentration of oxygen, and surgical debridement, and/or amputation. 
The mortality remains very high, despite all the above measures.
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INTRODUCTION

Metastatic clostridial myonecrosis is an uncommon 
complication of malignancy, particularly of the 
gastrointestinal tract, and of leukemia. Without 
treatment the mortality rate reaches 100% within 
48 h.[1-4] A number of reports have demonstrated the 
association between atraumatic clostridial infection 
and internal malignancy.[5]

We reviewed the literature, which demonstrated the 
paramount importance of early diagnosis and institution 

of early aggressive management. We reported a 
case of a 67-year-old woman who developed sudden 
myonecrosis in her right thigh secondary to perforated 
large bowel cancer.

CASE REPORT

A 67-year-old female was admitted to a district general 
hospital via a general practitioner referral, complaining 
mainly of pain in the epigastrium for the past four days. 
Pain became worse and more constant on the day of 
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admission, radiating to her chest. The patient claimed 
milder episodes of similar attacks for the past four 
months. The pain was associated with nausea, but 
no vomiting, no change in her bowel habits, and no 
significant weight loss.

Her past medical history involved rheumatoid arthritis, 
hypertension, and rheumatic heart disease. She was 
receiving azathioprine and bendroflouazide for her 
hypertension.

On examination, the patient appeared toxic, pale but not 
jaundiced, and very restless. She had a temperature of 
38.7°C, her blood pressure was 108/61 mmHg, and her 
pulse was 100 per minute, regular but weak. Examination 
of her heart revealed a fine diastolic murmur and a small 
splinter hemorrhage in the right ring finger. There was 
no evidence of heart failure. Abdominal examination 
revealed tenderness in the epigastric area and guarding 
in the right upper quadrant along with a palpable left 
lobe of the liver. Rectal examination was normal with no 
evidence of blood.

Results of the patient’s biochemical tests showed 
sodium 128, potassium 3, urea 5, creatinine 83, 
aspartate transaminase 66, alanine transaminase 25, 
layered double hydroxide 781, alkaline phosphatase 
150, C reactive protein 351, bilirubin 30, hemoglobin 
8.8, and white blood count 5,300. The chest and 
abdominal radiographs were normal with no evidence 
of air under the diaphragm. The initial impression was 
of possible acute cholecystitis or peritonitis. The patient 
was resuscitated with intravenous fluids and oxygen 
and was given intravenous penicillin, gentamicin, and 
clindamycin.

Despite the aggressive resuscitation, the patient’s 
condition deteriorated. A small area of dusky blue 
discoloration about 6 cm × 4 cm appeared in the 
right popliteal fossa; this area was noticed to expand 
gradually. The leg became increasingly painful, and 
bullae appeared in the same area. Fine subcutaneous 
crepitation was noted in the same leg and was 
confirmed by plain X-ray [Figure 1], demonstrating 
gas in the soft tissue. Diagnosis of gas gangrene was 
established based on an aspirate from one of the 
blisters, which revealed gram-positive rods. Orthopedic 
involvement was sought; a decision was made to take 
the patient for hind-quadrant amputation, along with 
an exploratory laparotomy and possible Hartmann’s 
procedure. Unfortunately, the patient did not survive 
the anesthesia and experienced cardiac arrest during 
induction.

The postmortem study revealed a perforated 4-cm 
sigmoid colon cancer with evidence of peritonitis, and 

a second primary cecal cancer 6 cm in diameter. There 
was evidence of metastases in liver, lungs, and para-
aortic nodes. The report also confirmed the presence of 
gas gangrene in the right thigh as well as the presence 
of subacute bacterial endocarditis.

DISCUSSION

Nontraumatic clostridial myonecrosis secondary to an 
underlying bowel cancer is a fulminant and often fatal 
infection caused by Clostridium septicum.[4,6] This is in 
contrast to most other cases of clostridial septicemia 
which are caused by Clostridium perfringens.[1,7] The 
mortality is high even with aggressive management, 
and it can reach 100% if not treated within 48 h.[3,4]

In a review by Kornbuth et al.[7] of 162 cases of 
spontaneous C. septicum infection from the years 
1945 to 1987, 34% of patients had colorectal cancer 
while 40% had a hematologic malignancy. In 37% of 
the patients, the malignancy had not been diagnosed. 
Distant myonecrosis had an even greater association 
with occult colon cancer (see Table 1 for causes of 
metastatic clostridial gangrene[8]).

Pathogenesis
Myonecrosis is caused by Clostridia organisms, which 
are gram-positive rods that sporulate and are found 
in the soil.[1,3,7] C. septicum is more aerotolerant[8] 
and the inoculum required for infection is 300 times 
smaller than that of C. perfringens.[7] It is commonly 
found as a normal inhabitant of the gastrointestinal 
and genitourinary tracts.[1,9] The spores usually exist 
for years and vegetate when conditions become 
optimal. C. septicum, however, is an opportunistic 
pathogen in humans, gaining entry to the bloodstream 
via breaches in the mucosa. This may be due to tumor 
necrosis[4] or necrotizing colitis in patient with leukemia 

Figure 1: Plain radiograph of the right thigh. Arrows show 
subcutaneous gas from gas-forming organism
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or cyclic neutropenia.[5] Presumably, the anaerobic 
glycolysis and the acidic milieu within a tumor provide 
a favorable environment for the germination of the 
clostridial spores.[5] The affinity for necrotic tissue is not 
specific for malignant tissue only, as demonstrated by 
Thiele et al.[5] where spores of Clostridia were injected 
in necrotic tissue other than tumor and were found to 
germinate. This study may explain the predilection of 
C. septicum for patients with necrotic colon cancer, 
spontaneous bowel perforation, chemotherapy 
treatment, surgery, or medical procedure such as 
endoscopy or barium enema. Once established, C. 
septicum may either cause a locally invasive infection 
or spread via the bloodstream to distant skeletal 
muscle (causing myonecrosis) or to other organs[4] 
(producing abscesses that may be indistinguishable 
from metastasis).[3] Clostridial organisms produce 
toxins that are responsible for the rapid spread and 
systematic toxicity of these infections.[3] C. septicum 
is believed to produce four toxins, one of which is 
hemolysin, which is oxygen stable. In addition, it also 
produces a deoxyribonuclease, a hyalurinidase, and 
oxygen labile hemolysins. Secondary toxicity may 
result from the products of tissue breakdown such 
as creatinine phosphokinase (CPK).[3] Diabetics,[5,6,9] 
on the other hand, seem susceptible to developing 
spontaneous gas gangrene. This is most likely due 
to their propensity to develop focal tissue ischemia 
and acidosis secondary to atherosclerosis and 
microangiopathic vascular disease, which allow the 
circulating Clostridia organism to propagate in the 
hypoxic area. On the other hand, suppurative infection 
without signs of myonecrosis or toxemia is the most 
common form of clostridial disease.[5]

The following is a histotoxic classification of gas 
gangrene (based on MacLennan’s monograph):[5]

I. Traumatic:

A. Simple contamination (no clinical evidence of 
sepsis)

B. Anaerobic cellulitis (local gas gangrene, with 
healthy muscle not invaded, e.g. pressure sores, 
diabetic foot ulcer)

C. Anaerobic myonecrosis (classical, with invasion of 
living muscle)

II. Nontraumatic or idiopathic[9,11] (typically arising from 
visceral intra-abdominal catastrophes, such as 
perforated cecal cancer)

A. Anaerobic cellulitis
B. Contiguous myonecrosis
C. Metastatic myonecrosis

Clinical course
Gas gangrene is a rapidly spreading infection.[7] It can 
advance as fast as 2 cm per hour. The incubation 
period varies from 6 h to 2 days.[1] The bacilli produce 
several exotoxins, which can destroy the host tissue 
and increase permeability. The resultant necrosis, 
edema, and ischemia favor clostridial reproduction in 
which more toxins are released, and a cycle ensues.

Carbon dioxide and hydrogen are liberated during 
the process, which opens fascial planes and 
facilitates spread. The pathogenesis of subcutaneous 
emphysema from disruption of the gastrointestinal 
tract depends on localized bowel wall weakness,[12] 
the anatomic site, and an increased pressure gradient 
between the bowel lumen and extramural tissue. The 
perforation occurs at a point of weakness in the bowel 
wall where vigorous peristaltic movement produces 
a large pressure gradient, precipitating rupture of 
the disease site. When subcutaneous emphysema 
occurs, it is usually confined to the anterior abdominal 
wall. From there it passes to the lower extremity via 
the femoral canal or along the iliopsoas muscle to 
its insertion into the lesser trochanter of the femur. 
The gas then spreads freely along the fascial planes 
towards the knee.

The two main types of gas-forming inflammatory 
processes[11,13] are:

1. Emphysematous cellulitis; accounts for the vast 
majority of gas-forming infection in hospital 
practice.

2. Emphysematous myositis (gas gangrene).

Patients usually complain of severe pain,[2] 
disproportionate pain,[3,6,14] and sometimes describe 
the sensation as “heavy”.[3,15] Patients are usually 

Table 1: Underlying conditions in nontraumatic clostridial 
gangrene[8]

Gastrointestinal factors
Colon tumor
Ulceration of mucosa
Chemotherapy
Radiation
Instrumentaion
Bowel infarction
Intestinal surgery
Diverticulitis
Necrotizing enterocolitis
Ileitis or colitis
Fecal impaction
Intussusception
Volvulus
Straining at stool

Systemic factors
Leukemia
Lymphoproliferative disorder
Diabetes mellitus
Metastatic tumor (nongastrointestinal) with  chemotherapy
Neutropenia
Cirrhosis
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anxious,[2] restless, apprehensive, and tachycardic 
but normotensive. Gas in the tissue is a late sign;[2,6,15] 
it may be absent altogether.[2,5,14] Gas in the tissue is 
neither a sensitive nor a specific sign of clostridial 
infection.[5] It can be found with E. coli, Streptococcus, 
Proteus, Enterococcus, Staphylococcus, Klebsiella, 
Pseudomonas, and Bacteroides species, particularly in 
patients with diabetes. The skin shows bronze coloration 
around the area involved,[2,15] and bullae develop that 
are filled with mousy-smelling fluid containing gram-
positive rods. Patients usually experience profound 
metabolic acidosis, and hemolysis caused by the 
exotoxins may cause fever, hypotension, disseminated 
intravascular coagulation, and renal failure.

Diagnostic feature
Gram stain from the bullae renders gram-positive 
bacilli[6] without spores and very low leukocyte count. 
The skin[8] around the bullae is purple, reflecting the 
vascular compromise that results from diffusion of 
bacterial toxins in the surrounding tissues. X-ray of the 
affected limb reveals soft-tissue gas[2,3] [Figure 1]; 
however, CT scan has been shown to be a more 
sensitive test.[13] Clinically, the muscle looks dark 
and cooked, and it does not contract when incised.[5] 
Other lab results may reveal evidence of hemolysis, 
hyperbilirubinuria, hyperkalemia, and anemia as a 
result of the release of toxins.[3]

Management
Initial treatment involves high oxygen concentration 
and aggressive volume expansion with intravenous 
isotonic crystalloid fluid.[3] Volume status should be 
monitored via urinary output and central venous 
pressure. Blood should be given sparingly, since it 
will be hemolyzed rapidly. Brummelkamp[16,17] advised 
delay in transfusion till exotoxin production and 
hemolysis are brought under control with hyperbaric 
oxygenation. Vasopressins should be avoided, and 
severe acidosis should be treated with bicarbonate. 
Antibiotics should be started, with penicillin G being the 
antibiotic of choice,[4,5,7,13,15] given in high doses of 20-
40 million units. Alternatively, in the event of penicillin 
allergy, cephalothin, clindamycin, or metronidazole can 
be used. Sodium penicillin is preferable to potassium 
penicillin[2,3,13] because the patient is already at risk of 
hyperkalemia from tissue breakdown.

The use of hyperbaric oxygen for the treatment of 
gas gangrene remains controversial.[7] Brummelkamp 
reported that 21 (81%) of 26 patients with clostridial 
infection who received hyperbaric oxygen survived.[8,16] 
Results from more recent study showed survival of 
70% of patients treated with hyperbaric oxygen and 
30% not treated with hyperbaric oxygen. The rationale 

behind this treatment is that, due to the hypovascularity 
of the infected site, an extremely high concentration 
of dissolved oxygen is necessary to raise the tissue 
pO2. Hyperbaric oxygen is believed to reduce the 
general toxicity of circulating clostridial toxins[8] and to 
limit the spread of infection.[2] In addition, hyperbaric 
oxygen reduces the spore granulation rate and aids 
eradication of the organism both in vitro and in 
vivo.[15] The α toxin production is suppressed at an 
oxygen tension of 250 mmHg. This is achieved by the 
production of oxygen free radicals.[8] Hyperbaric oxygen 
is also believed to protect the viability of healthy tissue 
surrounding an area of progressive necrosis. The 
accepted treatment now is five hyperbaric sessions at 
three atmospheric pressure within the first 48 h,[3] up to 
a total of seven to ten sessions.

Surgical treatment
Surgery remains the critical life-saving intervention and 
should not be delayed in the interest of transferring a 
patient to a facility with hyperbaric oxygen.[7] In the 
absence of adequately debrided wound, antibiotic 
will not prevent gas gangrene.[15] Surgery ranges 
from simple fasciotomy to radical debridement/
amputation.[3,4] In a study on dogs, Domello[18] showed 
that surgery alone or with hyperbaric oxygen left no 
survivors, whereas surgery with antibiotics left 70% 
survivors. Antibiotics alone left 50% survivors.

There is a better outcome when patients undergo 
one hyperbaric session prior to initial debridement, 
and further debridement can be planned between 
subsequent hyperbaric treatments. The deferment has 
the following advantages:

1. The patient has better improved general condition.
2. Surgery is limited to the removal of necrotic tissue 

alone.
3. Necrotic tissue is better demarcated.[2]

When fasciotomy is necessary, the procedure should 
always be performed prior to hyperbaric O2 treatment.[7] 
Even if the diagnosis is in doubt, it is better to begin 
antibiotic and hyperbaric oxygen treatment promptly 
rather than to take a wait-and-see approach.[15] Antitoxin 
has been shown to be of no value in preventing the 
spread of clostridial infection.

Finally, patients who do survive should be screened for 
colonic or hematologic malignancy.[4]

In conclusion, clostridial myonecrosis is a rapidly 
spreading infection which is fatal unless recognized 
early. Purple discoloration in a limb of a sick patient, 
with or without crepitation, should be taken as a 
sinister sign, and early aggressive treatment with 
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fluids, oxygen, antibiotics, and surgical debridement/
amputation should be instituted as soon as the 
diagnosis is suspected.
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Nanoparticle-mediated targeted delivery of drugs might significantly reduce the dosage 
and optimize their release properties, increase specificity and bioavailability, improve shelf 
life, and reduce toxicity. Some nanodrugs are able to overcome the blood-brain barrier that 
is an obstacle to treatment of brain tumors. Vessels in tumors have abnormal architecture 
and are highly permeable; moreover, tumors also have poor lymphatic drainage, allowing 
for accumulation of macromolecules greater than approximately 40 kDa within the tumor 
microenvironment. Nanoparticles exploit this feature, known as the enhanced permeability 
and retention effect, to target solid tumors. Active targeting, i.e. surface modification of 
nanoparticles, is a way to decrease uptake in normal tissue and increase accumulation in 
a tumor, and it usually involves targeting surface membrane proteins that are upregulated 
in cancer cells. The targeting molecules are typically antibodies or their fragments; 
aptamers; oligopeptides or small molecules. There are currently several FDA-approved 
nanomedicines, but none approved for brain tumor therapy. This review, based both on the 
study of literature and on the authors own experimental work describes a comprehensive 
overview of preclinical and clinical research of nanodrugs in therapy of brain tumors.

Key words:
Brain tumors,
nanoparticles,
enhanced permeability and 
retention effect,
active targeting,
blood-brain barrier

ABSTRACT
Article history:
Received: 23-12-2015
Accepted: 25-09-2016
Published: 31-10-2016

Quick Response Code:This is an open access article distributed under the terms of the Creative Commons Attribution-
NonCommercial-ShareAlike 3.0 License, which allows others to remix, tweak, and build upon the work 

non-commercially, as long as the author is credited and the new creations are licensed under the identical terms.

For reprints contact: service@oaepublish.com

Review Open Access

Cerna et al. J Cancer Metastasis Treat 2016;2:407-16
DOI: 10.20517/2394-4722.2015.95 Journal of 

Cancer Metastasis and Treatment
www.jcmtjournal.com

Prof. Tomas Eckschlager, Deputy head for education, head of Laboratory of biology of solid tumors, works in 
Department of Pediatric Heamatology and Oncology, 2nd Medical Faculty, Charles University and University 
Hospital Motol. His main interests are: molecular biology and genetics of pediatric cancer; experimental 
therapy of cancer and research of cancer cell chemoresistance; clinical pediatric oncology and late effects of 
children cancer therapy.



                                         Journal of Cancer Metastasis and Treatment ¦ Volume 2 ¦ October 31, 2016

Cerna et al.                                                                                                                                                                                          Nanodrugs in brain tumors

408

INTRODUCTION

Brain tumors are divided into two groups: (i) primary, 
originating and residing within the brain and (ii) 
secondary (metastatic), originating from a primary 
cancer outside the central nervous system and 
spreading into the brain. Metastatic tumors are more 
frequent than primary tumors in adult patients while 
primary ones are the most frequent solid tumors of 
childhood. The histological spectrum of brain tumors 
in children and adolescents differs from that in adults.[1]

Primary brain tumors represent a heterogeneous 
group as classified according to WHO. According to 
the Central Brain Tumor Registry of the United States 
(CBTRUS) 2005-2009 report, the incidence in the US of 
CNS tumors was 20.6 cases per 100,000 persons/year, 
the incidence of malignant tumors was 7.3/100,000 
persons/year and the incidence of low-grade tumors  
was 13.3/100,000 persons/year.[2]

The most frequent brain tumors in all age groups 
are tumors originating from glial cells - gliomas that 
represent a wide spectrum of tumors ranging from 
slow growing to highly aggressive tumors. WHO 
classifies gliomas within four grades: grade I (pilocytic 
astrocytoma), grade II (diffuse astrocytoma), grade III 
(anaplastic astrocytoma), and grade IV (glioblastoma 
multiforme). The grade III and IV are considered high-
grade gliomas (malignant gliomas) and are associated 
with very poor prognosis. In particular, 5 year survival 
rate of glioblastoma multiforme, which accounts 
for half of primary brain tumors, is less than 10%.[3] 
Brain metastases are the most common intracranial 
tumors in adults, with more than 150,000 cases in 
the USA. In adults with cancer, 8-10% develop brain 
metastases, although the incidence of metastases 
varies considerably among different primary tumor 
types. Lung, breast, colorectal, renal cell cancer or 
melanoma can metastasize to the brain and 70% of 
brain metastases are due to lung and breast cancer.[4,5] 
High-grade brain tumors, such as glioblastoma, and 
brain metastases are often lethal because of their 
invasiveness and resistance to surgical procedures 
as well as chemo- and radiotherapy.[6] The urgent 
need for novel therapies has led to great emphasis 
on the development of new anticancer drugs including 
nanoparticles as cytostatic drug delivery vehicles.

Nanoparticles are structures between one and several 
hundred nanometers in diameter. There are three 
major physical properties of nanoparticles: (i) they 
are highly mobile in the free state; (ii) they have large 
surface areas; and (iii) they may exhibit quantum 
effects due to the movement of electrons. They have 

unique material characteristics, and manufactured 
nanoparticles may find practical applications in a 
variety of areas, including medicine. The nanoparticle-
mediated targeted delivery of drugs might significantly 
reduce the dosage required, increase drug specificity 
and bioavailability, overcome chemoresistance and 
reduce side effects.

The history of therapeutic nanoparticles began in the 
1950s with a polymer-drug conjugate designed by 
Jatzkewitz, followed by Bangham who discovered 
the liposomes in mid-1960s. In 1972, Scheffel and 
colleagues first reported albumin based nanoparticles, 
which formed the basis of albumin-bound paclitaxel 
(Abraxane).[7]

Targeted delivery in cancer therapy is an important 
challenge for oncologists. Nanovectors for drug 
delivery typically contain a core material or matrix, a 
therapeutic payload, and surface modifications in some 
cases. Possible advantages of nanoparticle delivery 
systems over conventional anticancer chemotherapy 
include: (i) protection of drugs from degradation in the 
body; (ii) enhanced absorption into tumor cells; and 
(iii) decreased interaction of drugs with normal cells.[8] 
Ideal properties of nanoparticles for drug delivery are 
shown in Table 1. Nano-based drug delivery carriers, or 
nanocarriers, can consist of a wide variety of materials, 
both organic (polymeric, lipid, protein, or viral) and 
inorganic. The largest nanocarriers are liposomes 
(80-200 nm diameter), polymeric nanoparticles (40-
100 nm) or micelles (20-60 nm); the smallest ones are 
dendrimers (< 10 nm diameter).[9] There have been 
several reports describing the delivery of multiple 
anticancer agents using nanocarriers, some having 
been evaluated in clinical trials. Some nanodrugs have 
been FDA approved.[10] The approved nanodrugs for 
anticancer therapy are given in Table 2.

The blood-brain barrier (BBB) protects brain neural 
tissues and works as a diffusion barrier that impedes 
the influx of toxins and other compounds, including 

Table 1: Ideal properties of nanoparticles for drug 
delivery. Modified from[78,79]

Ideal properties of nanoparticles for drug delivery
  Non-toxic
  Biocompatible
  Biodegradable
  Physically stable in blood
  Prolonged time in circulation
  Non-immunogenic/non-activating neutrophils/non-inflammatory
  Non-trombogenic/non-agregating platelets
  Avoidance of reticuloendothelial system
  Amenable to small molecules, peptides, proteins and nucleic acids
  Inexpensive/easy manufacturing
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drugs, from blood to the brain.[11] Its main components 
are brain endothelial cells, basal membranes, pericytes 
embedded in the basal membrane, and astrocytic end-
feet. The BBB is characterized by the presence of tight 
intercellular junctions, minimal pinocytotic activity, and 
a lack of fenestrations, qualities that distinguish BBB 
endothelial cells from peripheral cells. Endogenous 
and exogenous compounds including drugs may 
cross the BBB by passive diffusion, carrier-mediated 
transport, endocytosis, or active transport. The efflux 
and influx transporters of BBB comprise transporters 
like ATP-binding cassette transporters and solute 
carrier transporters.[12] The different types of transport 
across the BBB are shown in Figure 1.

The inability of drugs to cross the BBB is one of the 
major impairments to developing treatments for 
neurological diseases.[13-16] This highly restrictive, 
physiologic barrier prevents 98% of small-molecule 
drugs and virtually 100% of large-molecule drugs 
from reaching the central nervous system from blood 
circulation. Numerous methods to bypass the BBB 
have been investigated, such as transient disruption of 
the BBB, inhibition of efflux pumps, or transport using 
endogenous transcytosis systems, including receptor-
mediated transcytosis. Nanodrugs are another 

approach to overcoming this obstacle to brain tumor 
treatment.

This review presents a comprehensive overview of 
preclinical in vitro and in vivo research and clinical 
studies of nanodrugs in therapy of brain tumors.

NANOCARIERS FOR ANTICANCER DRUGS

Drug nanodelivery has gained a great deal of 
attention from researchers.[17-19] However, some 
difficulties related to drug delivery may occur, such as 
troublesome solubility and biological availability, short 
time in circulation, and inconvenient biodistribution 
to the target organ. The key features of anticancer 
nanoparticles are principally large size, surface 
properties (e.g. hydrophobicity), and in some cases 
also targeting ligands. The development of a broad 
range of nanoparticles with varying size, composition, 
and functionality has provided a significant resource 
for nanomedicine.

Although nanoparticles avoid renal clearance, they tend 
to accumulate in the mononuclear phagocyte system 
(MPS).[20] Surface conjugation with polyethylene 
glycol (PEG) and other polymers improves particle 

Table 2: FDA-approved anticancer nanodrugs. Modified from[80]

Name Description Indication Approval (year)
DaunoXome Liposomal daunorubicin HIV-releated Kaposi sa FDA 96
DepoCyt Liposomal cytarabin Lymphomatous meningitis FDA 96
Oncaspar PEG asparaginase Acute lymphoblastic leukemia FDA 94
Abraxane Albumin-bound paclitaxel nanospheres Various cancers

Pancreatic ca
FDA 05 EMEA 08, FDA 13

Myocet Liposomal doxorubicin Breast ca Europe + Canada
Marqibo Liposomal vincristin Acute lymphoblastic leukemia FDA 12
Genexol Paclitaxel loaded polymeric micelle Breast ca, small cell lung ca Europe + Korea
Onivyde Liposomal irinotecan Pancreatic ca FDA 15

sa: sarcoma; ca: carcinoma

Figure 1: Mechanisms of transport across the blood-brain barrier. (1) Transcellular diffusion (small hydrophobic molecules); (2) paracellular 
diffusion (small water soluble molecules); (3) carrier-mediated transport (e.g. glucose, amino acids, vinca alkaloids); (4) active efflux 
transport; (5) receptor-mediated transport (e.g. insulin, leptin, transferrin); (6) adsorptive-mediated endocytosis (e.g. albumin, plasma 
proteins). ATP: adenosine triphosphate
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circulation by reducing uptake into the MPS. The 
requirements for nanoparticle properties also depend 
on tumor characteristics, including cancer type, stage 
of disease, and location. Delivering multiple agents 
in vivo is complicated because of their independent 
pharmacokinetics, biodistribution, and clearance. A 
delivery system also has to transport a drug with high 
efficiency to target cells, with minimal toxicity and 
immune response. Drug toxicity can be reduced by 
encapsulating the free drug (e.g. liposomes) or by local 
activation of a pro-drug.[21]

Nanoparticles designed for cancer therapy consist 
of various components, generally a nanocarrier and 
an active agent.[22] Drug-carrier nanoparticles are 
considered as submicroscopic colloidal systems that 
may act as drug vehicles, either as nanospheres 
(the matrix system in which the drug is dispersed) or 
nanocapsules (reservoirs in which the drug is confined 
in hydrophobic or hydrophilic core surrounded by a 
single polymeric membrane).[23]

Nanoparticles as carriers for anticancer drugs 
make them promising candidates to overcome 
chemoresistance of cancer cells, because 
nanoparticles loaded by cytostatic drugs promote 
their cellular uptake and considerably decrease their 
efflux, prolong drug systemic circulation lifetime, and 
enable targeted drug delivery.[26] These particles can 
be modified with various types of materials including 
biomolecules. Altering the organizations of atoms 
can modify the properties of nanoparticles, such as 
elasticity, plasticity, strength, and conductivity.

Nanoparticle systems have unique properties that 
allow for both passive and active targeting of tumors.[27] 
Tumor neovasculature has abnormal architecture and 
vessels are highly permeable. The tumor mass has also 
poor lymphatic drainage, allowing for accumulation of 
macromolecules greater than approximately 40 kDa 
within its microenvironment. Nanoparticles utilize this 
feature, known as the enhanced permeability and 
retention (EPR) effect, to target solid tumors. The ideal 
size range to benefit from the EPR effect is between 
10 and 200 nm. Outside this range, smaller particles 
will be cleared by the kidney, preventing accumulation 
within the tumor site, while larger particles will not 
adequately penetrate the tumor vasculature and 
interstitial space. However, some clinical trials have not 
shown the efficacy of the EPR effect.[28] One possible 
cause of EPR effect failure could be increased 
interstitial pressure in the tumor microenvironment. It 
has also been assumed that the EPR effect cannot 
be employed after an operation. Attempts have been 
made to increase the efficiency of the EPR effect by 

induction of hypertension, by repairing the abnormal 
vasculature, or by targeting of perivascular cells.[28]

Targeting molecules
Active targeting, i.e. surface modification of 
nanoparticles, is a method to decrease uptake in 
normal tissue and increase accumulation in a tumor. 
Strategies for active targeting of tumors usually 
involve targeting surface membrane proteins that are 
upregulated in cancer cells.[25] Targeting molecules are 
typically antibodies or their fragments, aptamers, small 
molecules, or oligopeptides. Nanoparticles coupled 
with surface ligands or antibodies can localize to 
tissue, expressing the associated receptors or antigens 
and improving delivery efficacy.[10] Some ligand 
receptor interactions will facilitate receptor-mediated 
endocytosis, further enhancing payload delivery. 
Surface ligand or antibody coupling can achieve 
densities high enough to interact efficiently with target 
sites, qualities well suited to cancer therapies.

Monoclonal antibodies, particularly IgG, are frequently 
used for targeting. Antigen binding sites represent only 
a small part of the overall size of antibodies. F(ab)2 
fragments retain both antigen binding sites of the 
antibody, coupled by disulfide linkages. Many tumors 
up-regulate growth factor receptors, such as HER2/
neu in certain breast cancers, which can be targeted 
with anti-HER2/neu surface antibodies.[29] Liposomes 
modified with monoclonal antibodies against glial 
fibrillary acidic proteins or human insulin receptors 
have been studied to determine if they cross the 
BBB.[30] Transferrin receptor (TfR) is another primary 
target investigated for receptor-mediated transcytosis 
across the BBB because of its high expression on BBB 
endothelium.[31]

Aptamers are folded single strand oligonucleotides, 
25-100 nucleotides in length, that bind to molecular 
targets.[32] For example, EpCAM-fluoropyrimidine 
RNA aptamer-modified doxorubicin-loaded PLGA-
b-PEG nanoparticles, which bond specifically to 
the extracellular domain of epithelial-cell adhesion 
molecules, have been investigated in non-small lung 
cancer model. Aptamer-conjugated nanoparticles 
in vitro have displayed increased cytotoxicity and 
decreased volume of xenografts compared with non-
targeted nanoparticles.

Small molecules used for targeting include peptides, 
growth factors, carbohydrates and receptor ligands. 
Specific examples of small molecules include folic 
acid, transferrin and the RGD peptides. Example 
of small-molecule targeting protein is an HER2/
neu ligands (AHNP) for targeting of poly (lactide-
coglycolide) nanoparticles with docetaxel, which has 
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been investigated in vitro with HER2+ breast cancer 
cells.[33]

Folic acid (FA) is essential for DNA synthesis, DNA 
repair, and methylation of DNA and is therefore 
necessary for cell survival and proliferation. The human 
folate receptor (FR), a glycosylphosphatidylinositol-
anchored membrane protein of 38 kDa, has high 
affinity for FA, and is currently considered an essential 
component in the cellular accumulation of FA required 
in chemotherapy. FR expression is very low or 
undetectable in most normal cells and tissues, but it is 
upregulated in ovarian, breast, brain, lung, colorectal 
cancers as well as brain tumors.[34,35] Through the 
process of endocytosis, ligand-bound receptor is 
internalized and released from the receptor through 
intravesicular reduction in pH.[36] Ligand-free receptor 
is then recycled to the cell surface. Interestingly, 
covalent conjugation of small molecules, proteins and 
even liposomes to the gamma-carboxyl moiety of FA 
does not alter FA ability to bind to the FR and undergo 
endocytosis by receptor bearing cells. FR-mediated 
liposomal delivery has been shown to enhance the 
antitumor efficacy of doxorubicin both in vitro and in 
vivo, and to overcome P-glycoprotein-mediated multi-
drug resistance.[37]

Transferrin (Tf) is a single-chain iron-transporting 
glycoprotein that supplies iron into cells via receptor-
mediated endocytosis. The TfR is expressed at low 
levels in most normal tissues but is overexpressed 
in many tumor types. The crucial aspect of Tf for 
molecular targeting applications, the binding of Tf to 
TfR on the external surface of tumor cells, is 10 times to 
100 times more effective in tumor cells than in normal 
cells.[38] Drug delivery systems can take advantage 
of this feature, most often by labeling the surface of 
the drug carrier with Tf, which is recognized by, and 
actively transported into, tumor cells. Therefore, Tf-
modified liposomes, nanoparticles and dendrimers 
have been widely investigated in recent years. Despite 
the perceived potential of anti-TfR antibody-drug 
conjugates, a BBB-permeable drug using this approach 
has not yet been introduced for clinical use.[16]

Ferritin protein also self-assembles naturally into 
a hollow nanocage called apoferritin, useful for 
encapsulation of any molecule of interest.[39] Apoferritin 
can be modified with recognition ligands to achieve 
tumor-specific targeting. These extra surface 
modifications can avoid renal clearance and ensure 
EPR effect; however, they also eliminate the intrinsic 
tumor-specific binding of natural ferritin and disturb its 
in vivo performance and biocompatibility due to altered 
surface physicochemical properties of ferritin.

The authors have studied antibody targeted apoferritin 
mediated transport of doxorubicin, in which the surface 
of apoferritin can be modified with antibodies to 
enhance its targeting ability. These studies compared 
the cytotoxic effect of doxorubicin-loaded apoferritin, 
with and without surface targeting antibody anti-GCPII 
(PSMA), with that of free doxorubicin in vitro on prostatic 
cancer cell line (LNCaP) expressing PSMA as well as 
human umbilical vein endothelial cells (HUVEC) as a 
model of nonmalignant cells. The effect of doxorubicin-
loaded apoferritin nanocarriers on cancer and healthy 
cells was similar to that of free doxorubicin. However, 
the real-time impedance-based platform demonstrated 
lower toxicity to HUVEC with doxorubicin loaded 
apoferritin than with free doxorubicin [Figure 2]. Entry 
of doxorubicin-loaded apoferritin nanocarriers with and 
without targeting antibody was higher into LNCaP than 
into HUVEC (Cerna et al., unpublished results).

Oligopeptides are also molecules used for targeting. 
The RGD (Arg-Gly-Asp) oligopeptide is a component 
of the extracellular matrix protein fibronectin and 
promotes cell adhesion and regulates migration, growth, 
and proliferation.[25,40] RGD is known to serve as a 
recognition motif in multiple ligands for several different 
integrins. RGD-containing peptide can be internalized 
into cells by integrin-mediated endocytosis. Recently, 
integrin-mediated carriers have been investigated as 
gene vehicles to enhance gene transfection and as 
vehicles to deliver anticancer agents. The upregulation 
of integrins is known to be promoted by angiogenic 
factors in several cancer types.

NANOPARTICLES IN THERAPY OF BRAIN 
TUMORS

Nanoparticles represent one of the possibilities of 
overcoming the BBB and delivering anticancer drugs 
to the brain. Therapy for brain tumors, particularly 
glioblastoma, using nanoparticles has been the subject 
of several preclinical experiments and clinical studies, 
but no nanodrug is as yet approved for brain tumor 
therapy.

Preclinical studies in brain tumors
Lipid nanoparticles loaded with doxorubicin have been 
investigated as a potential drug carrier to the brain, 
although doxorubicin cannot cross the BBB. The 
pharmacokinetics and tissue distribution of doxorubicin 
were studied in healthy rats, using i.v. administration of 
either free doxorubicin or doxorubicin incorporated into 
solid lipid nanoparticles (NANO DOX) in equivalent 
doses.[42] Several blood samples and tissue samples 
of liver, spleen, heart, lung, kidney, and brain were 
collected. The mean peak plasma concentrations of 
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free doxorubicin were lower than after NANO DOX 
treatment. In all rat tissues except the brain, the 
amount of doxorubicin was always lower after the 
injection of NANO DOX than after the injection of 
free doxorubicin. In the brain, however, NANO DOX 
increased the doxorubicin concentration significantly. 
The same study design, repeated in healthy rabbits, 
showed similar pharmacokinetic behavior and tissue 
distribution parameters.[43] Docetaxel-incorporated 
albumin-lipid nanoparticles (DNPs) in vitro induce 
apoptosis of several cancer cell lines, and in vivo, 
accumulate at the experimental glioma site.[44] This 
phenomenon is believed to be due to EPR effect. 
Liposomes containing temozolomide (TMZ) combined 
with anti-transferrin receptor single-chain antibody 
fragments were found to be more effective than 

free TMZ in both TMZ-resistant and TMZ-sensitive 
glioblastoma cells in mouse models.[45] Moreover, 
these liposomes showed significantly reduced toxicity. 

These results show that these liposomes may be an 
efficient vehicle for delivering BBB-impermeable drugs 
to the brain.

Biodegradable polymer-based nanoparticles and gold 
nanoparticles have both shown promise for delivering 
drugs across the BBB to treat glioma.[46] Gromnicova et 
al.[47] found that glucose-coated gold nanoparticles cross 
brain endothelium three times faster than non-brain 
endothelium. Huwyler et al.[48] investigated daunorubicin-
loaded liposomes with anti-transferrin receptor antibody, 
using an animal model, and found increased brain 
daunorubicin concentration compared with free drug.

Figure 2: Cytotoxic effect of doxorubicin loaded apoferritin with and without targeting antibody anti-GCPII (PSMA) on its surface and free 
doxorubicin on (A) prostatic cancer cell line (LNCaP) expressing PSMA and (B) human umbilical vein endothelial cells (HUVEC)
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Nanoparticles show promise for specific and efficient 
intracerebral delivery of drugs for the treatment of 
glioma.[49] A two-dose regimen of topotecan non-
PEGylated liposomes, locally administered with 
paramagnetic gadodiamide nanoparticles, increased 
survival rates in a U87MG glioblastoma intracranial 
xenograft model compared with controls; the effect 
was topotecan dose-dependent.[50]

Gadolinium nanoparticles enhance MRI monitoring 
and are well tolerated. These nanoparticles can 
penetrate the BBB and be uptaken by the brain tumor 
parenchyma.[51] Metal nanoparticles are also frequently 
integrated with other techniques such as microwave-
induced hyperthermia to further increase their cellular 
transduction.[52] The α-helical right handed coiled coils 
associated with platinum (PtIV) compound showed 
higher toxicity to human malignant glioma cells 
compared with free Pt(IV) in vitro and in vivo, without 
affecting healthy astrocytes in vitro.[53]

Carrier-mediated transport (CMT) can transport 
small molecules from the blood to the brain. 
Receptor-mediated transport (RMT) systems are 
expressed on the BBB and provide transport of large 
endogenous biomolecules[54] [Figure 1]. During RMT, 
macromolecules move across the endothelial cells into 
the brain, due to the expression of several peptide-
specific receptors, e.g. neonatal Fc receptor,[55] low-
density lipoprotein receptor-related protein receptor, 
transferrin receptor,[56] lactoferrin receptor,[57] and 
insulin receptor.[58] Some of the above-mentioned 
receptors have been used for drug delivery as a 
molecular “Trojan horse”. Shilo et al.[59] demonstrated 
that insulin-targeted gold nanoparticles cross the BBB 
after systemic administration.

Gao et al.[60] investigated transferrin-folate doxorubicin-
loaded liposomes. The amount of doxorubicin 
transported across the BBB in the transferrin-folate 
doxorubicin-loaded liposome group of glioma bearing 
rates was sevenfold higher than in the non-targeted 
doxorubicin-loaded liposome-treated group. Boado et al.[61] 
found that fused lysosomal enzyme with anti-human 
insulin receptor monoclonal antibody could deliver 
fusion protein across the BBB at therapeutic levels, 
while free lysosomal enzyme did not cross the BBB. 
Yang et al.[62] tested dual peptide-modified (using low-
density lipoprotein receptor-related protein receptor and 
neuropilin-1 receptor) liposomes loaded with vascular 
endothelial growth factor siRNA and docetaxel; the 
target was human glioblastoma xenografts in mice. 
These dual-modified liposomes showed the highest 
uptake compared with single modified or non-modified 
liposomes.

In another study, cetyl alcohol/polysorbate nanoparticles 
loaded with paclitaxel were more cytotoxic to 
glioblastoma cells and had higher brain uptake in an 
experimental animal model than paclitaxel alone.[63] 
The investigators speculated that nanoparticles may 
limit binding of paclitaxel to p-glycoprotein, causing 
higher brain and tumor cell uptake.

Coated poly (butylcyanoacrylate) (PBCA) nanoparticles 
have been studied as a delivery system for drugs in the 
brain.[64,65] Polysorbate 80 was found to be the most 
efficient modifier of nanoparticles. Transport across the 
BBB of polysorbate 80-coated nanoparticles has been 
presumed to involve receptor-mediated endocytosis 
by endothelias. Polysorbate 80 absorbs plasmatic 
apolipoprotein E (Apo-E) and nanoparticles coated with 
Apo-E are internalized by the LDL uptake system.[66] In 
one study in rats, PBCA nanoparticles with doxorubicin 
increased brain doxorubicin concentrations to levels 
more than 60 times that of free drug, while heart levels 
were very low.[67] In another rat brain model, polysorbate 
80 coated poly-lactic-co-glycolic acid nanoparticles 
loaded with methotrexate-transferrin conjugates 
were investigated and showed better penetration, 
lower organ toxicity and higher anti-tumor activity as 
compared with non-targeting nanoparticles.[68]

Doxorubicin bound to polysorbate-coated nanoparticles 
was associated with significantly longer survival of 
glioblastoma-bearing rats compared with groups treated 
with free doxorubicin or noncoated nanoparticles with 
doxorubicin.[69] Poly-lactic-co-glycolic acid (PLGA) 
camptothecin-loaded nanoparticles were investigated 
in orthotopic murine glioma. Nanoparticles were well 
tolerated and effective against glioma.[70] Cetuximab-
magnetic iron-oxide nanoparticles (IONP) that bind 
to both wild-type EGFR+ and mutated EGFR+ 
patient-derived glioblastoma cells are internalized by 
tumor cells and promote internalization of the EGFR, 
resulting in enhanced apoptosis. Treatment with 
cetuximab-IONPs proved efficacious in orthotopic 
glioblastoma xenografts in mouse and rats, and 
showed a favorable safety profile, as no toxicity to 
healthy immunocompetent mice was observed.[71]

The in vitro and in vivo studies described above 
seem promising for the treatment of brain tumors, 
particularly glioblastoma, the tumor with the worst 
prognosis. The inclusion of the most efficacious and 
safe nanoparticles designed for cancer therapy in 
clinical studies is warranted. Nevertheless, despite 
the successful results of preclinical experiments, the 
progress in applying these strategies in brain tumors 
is still modest when compared with treatments in other 
types of tumors.
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Clinical studies in brain tumors
A phase I clinical study of paclitaxel-Angiopep-2 
peptide-drug conjugate that binds to the low-density 
lipoprotein receptor-related protein-1 receptor 
(GRN1005) has been carried out in patients with 
recurrent glioma grade 2-4. The clinical data show that 
GRN1005 facilitated the penetration of paclitaxel into 
tumor tissue.[72] However, interim analysis of the phase 
II trial did not show therapeutic response.[73]

Transferrin conjugated with diphteric toxin (Tf-CRM107) 
demonstrated in vitro and in vivo toxicity to glioma 
cells and was effective when administrated locally to 
xenografts. Using local administration, low toxicity and 
tumor response were demonstrated in patients with 
recurrent high grade brain tumors in phase I and II 
clinical trials. The response rate was 35% and overall 
survival of responders was 74 weeks.[74] Unfortunately, 
an early phase III clinical trial using this therapy had 
to be terminated due to disappointing preliminary 
results.[75]

In a clinical study of liposomal doxorubicin in patients 
with high-grade gliomas, Fabel et al.[75] found improved 
overall survival than in past trials using conventional 
therapies. Hau et al.[77] demonstrated that pegylated 
liposomal doxorubicin in patients with recurrent high-
grade glioma was efficacious and well tolerated.

These results presented above suggest that some 
nanodrugs may be efficient in therapy of high grade 
brain tumors, a topic of great potential interest for 
clinicians.

FUTURE DIRECTIONS AND CONCLUSIONS

Although the available clinical trial data are limited, 
evidence suggests that nanoparticles have potential in 
diagnosis, operative management and adjuvant therapy 
for brain tumors. Because the field of nanotechnology 
is young, the long-term health effects of nanoparticles 
are currently unknown. More study of nanoparticle 
biodistribution, pharmacokinetics, toxicity and role in 
therapeutic protocols is warranted if nanoparticles are 
to attain regular clinical use.
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A1
Proteomics identification of protein 
biomarkers and signaling pathways for 
prostate cancer radioresistance therapy

Lei Chang1,2, Peter Graham1,2, Jingli Hao1,2, Valerie 
Wasinger3,4, Jie Ni1,2, Julia Beretov1,2,5, Junli Deng1,2, 
Joseph Bucci1,2, David Malouf6, David Gillatt6,7, Yong Li1,2

1Cancer Care Centre, St. George Hospital, Kogarah, Australia;
2St. George and Sutherland Clinical School, Faculty of Medicine, UNSW, 
Kensington, Australia;
3Bioanalytical Mass Spectrometry Facility, Mark Wainwright Analytical 
Centre, UNSW, Kensington, Australia;
4School of Medical Science, UNSW, Kensington, Australia;
5SEALS, Anatomical Pathology, St. George Hospital, Kogarah, Australia;
6Department of Urology, St. George Hospital, Kogarah, Australia;
7Australian School of Advanced Medicine, Macquarie University, Sydney, 
Australia

Background: Radioresistance is a major problem 
in prostate cancer (CaP) radiotherapy (RT). The 
mechanisms of CaP radioresistance are still unclear. 
We have recently developed CaP-RR (radioresistant) 
cell lines which display more aggressive characteristics 
including increased colony formation, invasion ability, 
sphere formation capability, and enhanced epithelial 
mesenchymal transition (EMT) and cancer stem cell 
(CSC) phenotypes. In addition, we found the PI3K/

Akt/mTOR pathway is closely linked with EMT and 
CSCs expression. Therefore, these CaP-RR cells, 
representative of the source of recurrence after 
RT, provide a very good model to mimic the clinical 
radioresistance condition to find biomarkers and 
signaling pathways for CaP radiotherapy.

Aim: The objective of this study was to identify 
candidate proteins and the main signaling pathways 
involved in CaP radioresistance, validate the identified 
potential biomarkers in CaP-radioresistant (RR) 
cell lines and animal xenografts, and perform the 
functional study from a selected candidate. Methods: 
The differential proteins from CaP parental cell lines 
(PC-3, DU145 and LNCaP) and CaP-RR sublines 
(PC-3RR, DU145RR and LNCaPRR) were analyzed 
using LC-MS/MS and identified by a label-free ion 
count approach. Pathways enriched as a result of 
radioresistance were assessed. Identified potential 
markers were validated in CaP-RR cell lines and 
subcutaneous (s.c) animal xenografts by Western 
blotting and immunohistochemistry. In addition, the 
protein fructose-bisphosphate aldolase A (ALDOA) 
was identified as a key protein in radioresistance and 
was selected for radiosensitivity study. Results: A total 
of 309 signaling pathway proteins were identified to be 
significantly different between CaP and CaP-RR cells 



                                                                                                                  Journal of Cancer Metastasis and Treatment ¦ Volume 2 ¦ November 16, 2016

J Cancer Metastasis Treat 2016;2 Suppl 1

418

(P ≤ 0.05, fold differences > 1.5, > 80% power). Among 
these proteins, nineteen are common among three 
paired CaP cell lines and associated with metastasis, 
progression, signaling pathways and radioresistance. 
The PI3K/Akt, VEGF, metabolism and ERK 
pathways were identified to be associated with CaP 
radioresistance. The expression of key proteins from 
the identified pathways was found to be significantly 
increased in CaP-RR cells and s.c animal xenografts 
compared to controls. Furthermore, the downregulation 
of ALDOA combined with RT effectively reduced colony 
capability, induced more apoptosis and increased 
radiosensitivity in CaP-RR cells. Conclusion: CaP 
radioresistance is associated with EMT and enhanced 
CSC phenotypes via activation of the PI3K/Akt/mTOR 
signaling pathway. CaP radioresistance is caused by 
multifactorial traits and several signaling pathways. 
Downregulation of ALDOA increases radiosensitivity 
in CaP-RR cells. Our findings indicate that interfering 
EMT/CSCs, ALDOA and signaling pathways, in 
combination with RT is promising for CaP radiotherapy.

Key words:
Prostate cancer, radiation therapy, radioresistance, 
cancer stem cell, LC-MS/MS, signaling pathway

A2
Tumor-associated fibroblast-conditioned 
medium induces CDDP resistance in HNSCC 
cells

Teresa Bernadette Steinbichler, Jozsef Dudas, Herbert 
Riechelmann

Medical University of Innsbruck, Innsbruck, Austria

Aim: EMT contributes to tumor progression and 
metastasis. We aimed to investigate the effects of EMT 
on Cisplatin resistance in HNSCC (head and neck 
squamous cell carcinoma)-cells. Methods: EMT was 
induced in HNSCC cells using conditioned medium from 
a tumor cell/fibroblast co culture and confirmed with 
vimentin and E cadherin expression analysis at RNA 
and protein level. The tumor cells were alternatively 
treated with 1 ng/mL TGF-β1. The response to 
Cisplatin was evaluated with viability and clonogenic 
assays. Results: Treatment with conditioned medium 
induced a mesenchymal phenotype and increased 
the viability of the tumor cells. Moreover, it doubled 
the IC50 of Cisplatin of SCC-25 cells from 6.2 μmol/L 
to 13.1 μmol/L (P < 0.001). The IC50 of Cisplatin of 
Detroit 562 cells was increased following treatment 
with conditioned medium from 13.1 μmol/L to 26.8 
μmol/L (P < 0.01). Treatment with TGF-β1 induced 
similar phenotypic changes as co-culture conditioned 

medium, but decreased tumor cell viability and did 
not alter Cisplatin resistance. Conclusion: Cell free 
medium from an epithelial tumor cell/fibroblast co-
culture was able to induce EMT in HNSCC cells. 
Co-culture treated HNSCC cells revealed increased 
viability and were less sensitive to Cisplatin treatment. 
TGF-β1 also induced a mesenchymal phenotype, 
but decreased tumor cell viability and did not alter 
resistance to CDDP in HNSCC cells.

Key words:
Cisplatin resistance, tumor-associated fibroblasts, 
tumor microenvironment, EMT

A3
Identifying metabolic biomarkers of 
paediatric glioma cancer stem cells in tumour 
development and drug resistance

Alice Agliano, Maria Vinci, Chris Jones, Gabriela Kramer-
Marek, Martin Leach, Nada Al-Saffar

The Institute of Cancer Research, London, UK

Background: Paediatric glioblastoma multiforme 
(pGBM) is one of the most aggressive forms of cancer 
of the central nervous system in children. There is 
increasing evidence that cancer stem cells (CSC) 
can contribute to the current poor outcome of pGBM 
since CSC play an important role in tumour initiation 
and drug resistance. Much effort has been directed 
at identifying biomarkers able to recognize and select 
CSC. However, this has proven challenging due to 
their continuous evolution during tumour progression. 
Metabolism has been recognized as an important 
regulator of several functions in stem cells and even 
though metabolic aspects of tumour development are 
widely studied, little is known about CSC metabolism. 
Nuclear magnetic resonance (NMR) and positron 
emission tomography (PET) are powerful non-invasive 
imaging tools that can be used to evaluate aspects of 
tumour cell and CSC metabolism.

Aim: To characterise metabolic differences between 
CSCs and non-CSCs that are detectable by NMR and 
PET and to determine how cell signalling pathways 
alter CSC metabolism in order to identify possible 
therapeutic targets to develop CSC-targeted therapies 
for pGBMs. Methods: Cancer cell lines with stem-like 
features (CSLC) have been created following culture 
of a panel of paediatric cell lines, such as SF188 
and KNS42, and primary cells on a laminin substrate 
with specific CSC media supplemented with growth 
factors. CSLC cell lines have been compared to the 
correspondent parental cell line (non-CSLC) grown 
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under standard culture conditions. Metabolism was 
evaluated by NMR and radionuclide uptake. Results: 
In vitro 1H NMR and 18F-FDG-PET uptake studies 
showed that newly established pGBM CSLC express a 
different metabolic signature compared with non-CSLC 
cell lines. Differences have been observed in the levels 
of several metabolites, including lactate, glutamine 
and several lipids involved in the membrane turnover 
such as phosphocholine, glycerophosphocholine and 
cholesterol. These findings correlated with changes 
in the expression of metabolism- and cell division-
associated proteins and genes. The increased gene 
expression of the glycolytic enzymes LDH-A, HK2, 
and Glut-1, suggested that the CSLCs rely mainly on 
aerobic glycolysis. This increased reliance on glucose 
metabolism together with a low mitochondrial activity 
reduced the levels of ROS in CSLCs, a feature that 
has been associated with EMT and pluripotency. 
Moreover, contrary to non-CSLCs, treatment with 
the PI3K/mTOR inhibitor NVP-BEZ235 did not affect 
cell viability or changes CSLCs metabolic signature, 
indicating induced drug resistance of the CSLCs upon 
this treatment. Conclusion: We have shown that 
pGBM CSLCs have different metabolic features from 
non-CSLCs. Improved understanding of mechanisms 
related to CSC drug resistance to PI3K/mTOR 
inhibitors could guide the identification of potential 
targets, leading to development of more effective 
treatments for pGBM.

Key words:
Cancer stem cells, metabolic biomarker, paediatric 
glioblastoma multiforme, nuclear magnetic resonance, 
positron emission tomography, drug resistance

A4
Cancer stem cells in melanoma: a complex 
problem

Caterina A.M. La Porta

University of Milan, Milan, Italy

Cancer progression in humans is difficult to infer 
because we do not routinely sample patients at 
multiple stages of their disease. The identification of 
cancer stem cell (CSC) subpopulations inside tumors 
opens a new perspective on cancer development, 
since it implies that tumors can only be eradicated by 
targeting CSCs. Several markers have been proposed 
in the literature to identify CSCs both in breast and 
melanoma but no consensus has been reached, leading 
to the hypothesis that the CSC phenotype might be 
dynamically switched. Herein we provide quantitative 
evidence of CSCs in melanoma discussing the complex 

network regulating their biological functions.

Key words:
Cancer stem cells, melanoma, complexity, miRNA

A5
Low extracelluar pH inhibits glycolysis 
and decreases transcription factor activity 
responsible for stemness in induced 
pluripotent stem cells

Anja Wilmes1, Caroline Rauch1, Giada Carta1, Georg Kern1, 
Florian Meier2, Wilfried Posch1, Doris Wilflingseder1, Lyle 
Armstrong3, Majlinka Lako3, Mario Beilmann2, Gerhard 
Gstraunthaler1, Paul Jennings1

1Medical University of Innsbruck, Innsbruck, Austria;
2Boehringer Ingelheim, Ingelheim, Germany;
3University of Newcastle, Newcastle, UK

Induced pluripotent stem cells (iPSC) have the potential 
to revolutionize biological experimentation and thus 
the uptake of this new technology is widespread. 
However, culturing iPSC is both time consuming and 
expensive as they require daily medium exchange. 
Our study investigates the reason for this high demand 
on frequent medium replacement.

Two human iPSC lineages were fed at different 
intervals up to 72 h either in a full growth area (FGA) 
or a restricted growth area (RGA). The FGA consisted 
of a well of a 6 well plate coated with Matrigel™ and 
the RGA consisted of a coated coverslip placed in a 
well. Medium was sampled every 24 h and glucose, 
lactate, pH were measured. In addition, flow cytometry 
was employed to investigate cell cycle alterations and 
TransAM assays utilized for cMYC, FOXO1 and p53 
activity.

FGA cultured iPSC that were not fed every 24 h 
had significantly reduced growth rates by day 2 and 
showed increasing cell death by day 3. In contrast, 
RGA cultured cells grew to confluence over 3 days. 
Surprisingly, glucose was not exhausted under any 
condition. Instead, the extracellular pH reached 6.8 
after 72 h in FGA cultures. Reducing medium pH to 
6.8 also inhibited glycolysis, initiated a cell cycle 
block in G0/G1 and decreased in cMYC and FOXO-1 
transcriptional activity.

This study demonstrates that iPSC are susceptible to 
cell culture medium acidification, a likely limiting factor 
in maintenance of proliferative and pluripotent status. 
Culturing iPSC in RGA prevents rapid extracellular 
acidification, by limiting cell numbers, while still 
maintain optimal oxygen diffusion rates and allows 
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longer feeding cycles whilst still ensuring pluripotency. 
These results may provide critical information for scale 
up procedures, e.g. the use of bioreactors, careful 
control of extracellular pH will be important.

Key words:
iPSC, pH, glucose, FOXO1, cMYC, growth arrest
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Mechanisms of radioresistance in prostate 
cells

Fabian Guggenberger1, Holger Erb2, Ira-Ida Skvortsova3, 
Zoran Culig1, Frédéric R. Santer1

1Division of Experimental Urology, Medical University of Innsbruck, 
Innsbruck, Austria;
2YCR Cancer Research Unit, Department of Biology, University of York, 
York, UK;
3Department of Therapeutic Radiology and Oncology, Medical University of 
Innsbruck, Innsbruck, Austria

Background: Prostate cancer (PCa) is one of the 
most commonly diagnosed malignancies in men in 
Western nations. Among androgen deprivation therapy 
(ADT), radiation therapy is an approved treatment 
either for early stage local PCa, but also for metastatic 
M1 stage PCa. However, tumour relapse is a frequent 
event that affects about 80% of patients undergoing 
prior treatment. There is increasing evidence that the 
occurrence of cancer stem cells (CSC) may play an 
important role in therapy resistance, in particular also 
in radioresistance. The occurrence of CD133-positive 
CSCs within the basal, less differentiated layer of the 
malignant prostatic epithelium was demonstrated. 
Those cells were shown to have increased colony 
forming efficacy and less double-strand breaks after 
irradiation due to a higher DNA repair capacity when 
compared to more differentiated populations. Moreover, 
aldehyde dehydrogenase 1 expressing (ALDH1+) 
cells derived from PCa cell lines were shown to be 
more radioresistant than ALDH1- cells and ALDH1 
inhibition lead to increased radiosensibility. However, 
our knowledge on the mechanisms of radioresistance 
of the prostatic basal layer is still limited.

Aim: The aim of this study is to identify a novel 
molecular mechanism underlying radioresistance in 
the prostate basal cell layer containing stem cells. 
Approach: To investigate the effect of irradiation 
exposure on prostate basal cells we irradiated benign 
PrEPs and an immortalised benign, basal prostatic 
cell line (EP156T) for 21 times following a therapeutic 
schedule with either 0, 0.5 or 1 Gray for 5 times per 
week using a linear particle accelerator (LINAC). 
Total RNA was isolated and NextGen transcriptome 
sequencing followed by bioinformatical analysis 

(including pathway analysis) and literature research 
will be performed. Finally, a regulated candidate gene 
will be chosen for further experiments. Methods/
Results: PrEPs obtained from 5 patients receiving 
radical prostatectomy were successfully isolated via 
collagenase digestion from prostate tissue specimens 
and cultured in the presence of a feeder layer. PrEPs 
and EP156T have been characterised by clonogenic 
assays and by label retention assay using FACS 
analysis subsequent to PKH67 membrane labelling, 
which might indicate the presence of stem cells within 
the cultures. The repeated exposition to irradiation 
using the protocol described above for both, PrEPs 
and EP156T cells, is finished and gained total RNA 
from the cultures will be sequenced by the company 
Microsynth. Bioinformatical analysis will be done in 
collaboration with the cancer Computational Biology 
Center (Erasmus MC, Rotterdam, NL). Outlook: Once 
the bioinformatical analysis is finished a careful review 
of literature is performed. Based thereon a candidate 
gene, whose expression is shown to be strongly 
altered by irradiation, is chosen for further experiments 
(e.g. clonogenic assay, knock down, over-expression, 
inhibition) that will test the candidate’s involvement 
in radioprotection and which may have the potential 
as a possible target for radiosensibilisation. This may 
improve co-treatment strategies for future irradiation 
therapy.

Key words:
Prostate cancer, cancer stem cells, primary cells, 
radioresistance
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Cysteine cathepsins and their inhibitors as 
regulators of cancer stem cell dormancy and 
differentiation

Janko Kos1,2, Milica Perišič Nanut2, Mateja Prunk2, 
Urša Pečar Fonović1, Anja Pišlar1, Ana Mitrović1, Jerica 
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Cysteine cathepsins are lysosomal peptidases 
involved in different processes of tumor development 
and progression. There is increasing evidence that 
these enzymes may regulate also homeostasis and 
differentiation of cancer stem cells. In particular, 
cysteine cathepsins K and X were shown to be involved 
in cytokine-induced niche dormancy as well as in 
mobilization process that release cancer stem cells 
from their niches. Cathepsin X has been proposed 
to participate in proteolytic processing of CXCL-12 
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chemokine (SDF-1), which is involved in adhesion 
and migration of cancer stem cells. Additionally, 
cathepsin X cleaves C-terminal ends of enolase and 
profilin, another two proteins that were suggested to 
alter cancer stem cells adhesion, migration and their 
metastatic potential. Cathepsin X also cleaves beta-2 
chain in Mac-1 and LFA-1 integrin receptors and binds 
to alpha-v-beta 5 integrin receptor via RGD motif in 
the pro-region, affecting in this way the adhesion of 
endothelial and tumor cells and presumably cancer 
stem cells. Cathepsin X knock out accelerates a 
progress to senescence in vitro and in vivo via p16, 
p21 and p53 signaling pathway.

The activity of cysteine cathepsins is regulated by 
endogenous protein inhibitors cystatins. Of these, 
cystatin F is the only cystatin that is localized in 
endosomal/lysosomal vesicles. In cytotoxic T cells and 
NK cells its main role is the control of progranzyme 
convertase activity of cathepsins C and H and 
consequently, the granzyme dependent cytotoxic 
function. It is known that cytotoxic function of NK 
cells is suppressed after their interaction with tumor 
cells or cancer stem cells, the status is termed split 
anergy. The mechanism includes cytokine cross-talk, 
however, target cells may also secrete inactive dimeric 
cystatin F which after internalization to NK cells enters 
endosomal/lysosomal vesicles and after activation/
monomerisation inhibits cathepsins C and H and 
down-regulates cell cytotoxicity. Anergized NK cells 
cause differentiation of cancer stem cells by secreted 
cytokines and as a result, differentiated tumors become 
resistant to NK cell-mediated cytotoxicity.

Our results show that some of cysteine cathepsins 
and their endogenous inhibitors have specific roles 
in cancer stem cell functions designating them as 
potential therapeutic targets for improving anticancer 
therapy.
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Hypoxia and expression levels of cancer 
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locally advanced head and neck squamous 
cell carcinoma
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Aim: The outcome after curative treatment of locally 
advanced head and neck squamous cell carcinoma 
(LA-HNSCC) remains unsatisfactory. Except of 
HPV-infection status there is no further established 
biomarker for treatment stratification. Currently, 
treatment decisions are mainly based on the tumor site 
and the TNM system regardless of the heterogeneous 
biology of HNSCC. For identification and validation of 
biomarkers, the German Cancer Consortium Radiation 
Oncology Group (DKTK-ROG) initiated a multicenter 
retrospective/prospective biomarker trial to explore their 
impact on locoregional control (LRC) after postoperative 
(PORT-C) and primary radiochemotherapy. Methods: 
In the multicenter retrospective part of the study, 
355 patients with HNSCC of the oral cavity, oro- and 
hypopharynx were included. All patients received 
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cisplatin-based radiochemotherapy (RCTx) between 
2005 and 2012. The postoperative cohort consisted 
of 195 patients, who were all treated with PORT-C 
because of clinical high risk parameter. The second 
cohort consisted of 160 patients treated with primary 
RCTx. FFPE-material, radiotherapy treatment plans 
and images were centrally collected. Tumor volume 
was segmented on CT-based radiotherapy treatment 
plans. HPV status (p16 overexpression) and CD44 
expression were analysed by immunohistochemistry. 
Gene expression analyses were performed for hypoxia-
associated genes and the potential cancer stem cell 
(CSC) markers SLC3A2, MET and CD44. Results of 
the biomarker analyses, clinical parameters and tumor 
volume were correlated with the clinical outcome. 
Primary endpoint was LRC. Results: Multivariate 
analysis (MVA) revealed the impact of hypoxia and 
expression of CSC markers in HPV(-) HNSCC on LRC 
after PORT-C (hypoxia gene signature: HR 4.54, P = 
0.006; MET: HR 3.71, P = 0.016; SLC3A2: HR 8.54, P 
= 0.037; CD44: HR 3.36, P = 0.054). For primary RCTx 
a significant impact of tumor volume, HPV status and 
expression of CSC markers (tumor volume: HR 2.63, P 
= 0.003, SLC3A2: HR 2.03, P = 0.021; HPV: HR 0.35, P 
= 0.086) on LRC was seen in MVA. A significant impact 
of hypoxia associated gene expression was only 
seen in small tumors (< 25 ccm) (HR 9.2, P = 0.38). 
Conclusion: We demonstrated that the expression 
of CSC markers and hypoxia-associated genes are 
prognosticators for LRC in addition to the HPV-infection 
status in patients suffering from LA-HNSCC, who were 
treated with PORT-C or primary RCTx. After validation 
of these promising results in the currently ongoing 
part of the prospective trial of the DKTK-ROG, along 
with established clinical parameters, they may help 
to further stratify patients for individualized escalation 
and de-escalation strategies.
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Epidermal growth factor receptor activity 
is elevated in glioma cancer stem cells and 
is required to maintain chemotherapy and 
radiation resistance

Lisa Y. Pang, Lauren Saunders, David J. Argyle
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Glioblastoma remains among the most aggressive 
of all human and canine malignancies, displaying 
high mortality rates and limited treatment options. 

We propose that given the similarities between 
canine and human gliomas, such as incidence of 
occurrence, histopathology, molecular characteristics, 
and response to therapy, that canine gliomas are 
a natural model of the human disease. A range of 
human and canine tumours have been shown to 
harbor specific subpopulations of cells with stem cell-
like properties that initiate and maintain neoplasticity 
while resisting conventional therapies. Here, we show 
that both canine and human glioma cell lines contain 
a small population of cancer stem cells (CSCs), and 
by molecular profiling highlight the important role of 
the epidermal growth factor receptor (EGFR) pathway 
in canine CSCs. EGFR signaling is crucial in the 
regulation of cancer cell proliferation, migration and 
survival. To date EGFR-targeted interventions alone 
have been largely ineffective. Our findings confirm 
that specifically inhibiting EGFR signaling alone has 
no significant effect on the viability of CSCs. However 
inhibition of EGFR did enhance the chemo- and radio-
sensitivity of both canine and human glioma CSCs, 
enabling this resistant, tumourigenic population of cells 
to be effectively targeted by conventional therapies.

Key words:
Glioma, cancer stem cells, comparative oncology, 
EGFR
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Glioblastoma (GBM), the most aggressive and common 
primary brain tumor, usually remains refractory to the 
best standard of care, entailing radiotherapy as a 
mainstay, and, often, as the only treatment option. GBM 
radioresistance has been associated with distinctive 
properties of the GBM stem-like subpopulation (GSC): 
after irradiation, while bulk-cells accumulate DNA 
damage and die, stem-like cells efficiently activate 
DNA repair mechanisms and survive, driving tumor 
recurrence. A deeper understanding of the mechanisms 
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of GSC radioresistance is needed, in order to identify 
druggable targets for radiosensitization and long-term 
effective therapeutic response.

By analyzing a large panel of GSCs propagated in 
vitro as neurospheres, we provide evidence that 
radioresistance is significantly higher in GSCs than in 
their differentiated counterpart (including cells derived 
from GSC pseudodifferentiation). We show that the 
levels of radioresistance are similar in GSCs displaying 
different genetic alterations or transcriptional profiles, 
which are characteristic of distinct GBM subtypes 
(classical, proneural, mesenchymal). However, in a 
subset of neurospheres, radioresistance is associated 
with expression of MET, the HGF tyrosine kinase 
receptor. MET expressing GSCs are positively selected 
by ionizing radiation in vitro and, possibly, also in vivo, 
as assessed in a cohort of human patients including 20 
cases of surgically removed primary GBMs and their 
matched recurrences.

We elucidate that MET promotes GSC radioresistance 
through a novel mechanism, relying on AKT activity 
and leading to (i) sustained activation of Aurora kinase 
A, ATM kinase, and the downstream effectors of DNA 
repair; (ii) phosphorylation and cytoplasmic retention of 
p21, which is associated with anti-apoptotic functions. 
We show that MET pharmacological inhibition causes 
DNA damage accumulation in irradiated GSCs, and 
their depletion in vitro and in GBMs generated by 
GSC xenotransplantation. Preclinical evidence is 
thus provided that MET inhibitors can radiosensitize 
tumors and convert GSC positive selection, induced 
by radiotherapy, into GSC eradication.

Key words:
Glioblastoma, glioblastoma stem-like cells, MET 
oncogene, MET inhibitor, radiotherapy, radiosensitization
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Transmembrane protein as potential CD9 is 
glioblastoma stem cell theranostic
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Glioblastomas, the most agreesive brain tumour, is 
presumably maintained by a sub-population of stem-
like tumor cells (GSC) that divide asymmetrically, 
sustaining pool of highly stable stem cells, resisting 
therapy. Targeting these cells thus represents more 
selective approach a need to define specific markers 
that characterize GSC. In the present study, we 
performed transcriptomic analysis of glioblastoma 

tissues compared to normal brain tissues revealing 
sensible up-regulation of CD9 gene.[1] CD9 encodes the 
transmembrane protein tetraspanin which is involved 
in tumor cell invasion, apoptosis and resistance to 
chemotherapy. We validated CD9 gene and protein 
expression showing selective up-regulation in GSC 
from primary biopsies and in primary organotypic 
glioblastoma spheroids as well as in U87-MG and 
U373 glioblastoma cell lines, whereas no or low 
CD9 gene expression was observed in their normal 
counterparts. CD9 silencing in three CD133+ subtypes 
of GSC lines[2] (NCH644, NCH421k and NCH660h) 
led to decreased cell proliferation, survival, invasion, 
and self-renewal ability, and altered expression of 
the stem-cell markers CD133, nestin and SOX2. 
Moreover, CD9-silenced glioblastoma stem cells 
showed altered kinase signaling patterns. Orthotopic 
xenotransplantation of CD9-silenced GSC into nude 
rats promoted prolonged survival. Finally using the 
public REMBRANDT database for brain tumors, we 
confirmed the prognostic value of CD9, whereby a 
more than two fold up-regulation correlates with shorter 
patient survival. Therefore, we propose CD9 for further 
evaluation as a target for GBM treatment.

Key words:
Biomarker, CD9, glioblastoma stem cells, neural stem 
cells, tetraspanin
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Aim: The treatment of ovarian cancer (OC) with 
chemotherapy leaves resistant cancer cells which in 
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a short time re-grow as recurrent cancer. A diverse 
array of resistance mechanisms for chemotherapy 
has been described but none have proven to be viable 
targets in a clinical setting. Cancer stem cells (CSCs) 
are increasingly accepted as the putative mediators 
of chemoresistance and relapse of cancer. This study 
aimed to understand the molecular mechanisms 
involved with chemoresistance and recurrence by 
investigating the roles of CSCs and their associated 
pathways in OC cell lines and tumor cells isolated from 
the ascites of OC patients obtained prior (chemonaive, 
CN) to and after chemotherapy treatment (recurrent, 
CR). Methods: Ascites collected from CN and CR 
OC patients diagnosed with advanced-stage serous 
OC were cultured using a novel in vitro method to 
obtain a distinct population of epithelial tumor cells. 
Flow cytometry and immunofluorescence were used 
to characterize the tumor population. High-resolution 
label-free quantitative proteomic profiling was 
used to define significantly differentially expressed 
proteins between CN and CR tumor cells. KEGG and 
DAVID software’s were used to determine pathways 
associated with CR cells. The mechanisms of survival 
of in vitro cisplatin or paclitaxel treated ascites-derived 
tumor cells as well as cultured OC cell lines were 
determined by in vitro assays and in mouse xenografts. 
In another approach, the expression of embryonic stem 
cell factor Oct4A in primary OC tumors as well as CN 
and CR ascites-derived tumor cells was determined by 
qPCR. The functional role of Oct4A was investigated 
using in vitro assays and in vivo mouse models with 
stable knockdown (shRNA) of Oct4A in an OC cell line. 
Results: Proteomic profiling of CN and CR tumor cells 
showed significant differences in proteins encoding 
for immune surveillance, DNA repair mechanisms, 
cytoskeleton rearrangement, cell-cell adhesion, 
cell cycle pathways, cellular transport, and proteins 
involved with glycine/proline/arginine synthesis in 
tumor cells isolated from CR relative to CN patients. 
Pathway analyses revealed enrichment of metabolic 
pathways, DNA repair mechanisms and energy 
metabolism pathways in CR tumor cells. The treatment 
of ascites-derived OC cells with chemotherapy in 
vitro resulted in a CSC-like residual population with 
increased activation of JAK2/STAT3 pathway. Both 
JAK2/STAT3 activation and CSC-like characteristics 
were suppressed by a low dose JAK2 specific inhibitor, 
Momelotinib, in vitro and in vivo. This also resulted 
in a significantly reduced tumor burden, increased 
disease-free survival periods in mice in vivo. In another 
approach, stable knockdown of Oct4A resulted in the 
decreased expression of CSCs in OC cells and was 
consistent with decreased cell proliferation, migration 
and chemoresistance in vitro. In vivo Oct4A knockdown 
cells produced a significantly reduced tumor burden 

in mice resulting in a significantly increased survival 
period compared to vector control cells. Conclusion: 
The above studies suggest that targeting the CSCs 
may prove a therapeutic option for advanced-stage 
OC patients.
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Radiation therapy is one of the mainstays of curative 
prostate cancer treatment. Nevertheless, the doses 
needed to eradicate prostate cancer are very high 
bearing the potential of side effects in normal tissues, 
and the risk of recurrence after radiotherapy still 
remains substantial in locally advanced disease. 
Tumor relapse after radiotherapy is attributed to 
the population of cancer stem cells (CSCs) which 
survived the treatment. Therefore, analysis of the 
CSC populations might be an important predictive 
tool for radiotherapy and individualized treatment 
selection. However, compelling evidence suggests a 
high plasticity of CSCs imposed by tumor treatment. 
Our study revealed that irradiation causes long-term 
upregulation in the expression of stem cell markers 
and induces tumor cell reprogramming. Furthermore, 
radioresistant and tumorigenic cell populations undergo 
a phenotypic switch during the course of radiotherapy. 
This phenotypic plasticity is associated with genetic 
and epigenetic changes induced by irradiation. Our 
results indicate that irradiation drives methylation of 
histone H3 on the promoter sequence of aldehyde 
dehydrogenase 1A1 (ALDH1A1) leading to the 
activation of gene transcription. We found that inhibition 
of H3 methylation with DZNep triggers apoptosis and 
inhibits tumorigenicity of the radioresistant prostate 
cancer cells as well as leads to their radiosensitization. 
Our studies suggest that radioresistant properties of 
prostate cancer cells are dynamic in nature and that 
combination of irradiation with therapeutic agents 
which prevent tumor cell reprogramming may enhance 
the effectiveness of treatment.
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Aim: There is increasing evidence that human prostate 
cancer is driven by a malignant subpopulation with 
stem-like properties. These cancer stem cells (CSC) 
contribute to tumor-initiation, metastasis, therapy-
resistance and tumor relapse. We hypothesize that 
the determination of CSC-related biomarker in pre-
treatment biopsies of prostate cancer patients is 
correlating with treatment outcome and can be used 
for patient stratification and treatment selection. 
Methods: We generated isogenic radioresistant 
prostate cancer cell lines by applying several fractions 
of 4 Gy over a certain period of time until a total dose 
> 56 Gy (RR). These radioresistant sublines exhibit 
higher expression of CSC marker (e.g. ALDH, CD133, 
CXCR4, ABCG2), epithelial-to-mesenchymal transition 
(EMT) phenotypes, higher self-renewal properties 
(sphere-formation), higher tumorigenicity and higher 
migratory activity. We applied several comparative-
omic approaches, such as genomic, proteomic, 
metabolomic, epigenomic and secretome analysis, 
comparing aldehyde dehydrogenase (ALDH)-positive 
CSCs with the RR sublines to identify novel biomarker 
for prostate cancer radioresistance and to unravel the 
contributing molecular mechanisms. Results: Within 

our first proof-of-principle study, we could show that 
ALDH-positive CSCs are radioresistant and maintained 
directly by the Wnt/β-catenin signaling pathway.[1] 
In addition, we found that irradiation is inducing in 
a dose- and time-dependent manner several CSC 
marker and CSC properties. This irradiation-induced 
CSC-plasticity was attributed to the modulation of 
the histone methylation code.[2] Within the presented 
study we analyzed a panel of secreted cytokines in 
the medium of the radioresistant sublines and found 
for example the CXCR4-CXCL12 signaling to be 
involved in the CSC maintenance and the induction of 
radioresistance in prostate cancer. This was proven in 
a s.c. xenotransplantation model in vivo and in ex vivo 
treated primary prostate cancer biopsies. Conclusion: 
The CXCR4-CXCL12 signaling axis is involved in the 
maintenance of prostate CSCs and is contributing to 
their radioresistant properties.

Key words:
Radiotherapy, cancer stem cells, cytokines, plasticity

References

1. Peitzsch C, Cojoc M, Hein L, Kurth I, Mäbert K, Trautmann F, Klink 
B, Schröck E, Wirth MP, Krause M, Stakhovsky EA, Telegeev GD, 
Novotny V, Toma M, Muders M, Baretton GB, Frame FM, Maitland 
NJ, Baumann M, Dubrovska A. An epigenetic reprogramming 
strategy to resensitize radioresistant prostate cancer cells. Cancer Res 
2016;76:2637-51.

2. Cojoc M, Peitzsch C, Kurth I, Trautmann F, Kunz-Schughart LA, 
Telegeev GD, Stakhovsky EA, Walker JR, Simin K, Lyle S, Fuessel 
S, Erdmann K, Wirth MP, Krause M, Baumann M, Dubrovska 
A. Aldehyde dehydrogenase is regulated by β-Catenin/TCF and 
promotes radioresistance in prostate cancer progenitor cells. Cancer 
Res 2015;75:1482-94.

A15
Oxidative stress, metastasis and melanoma 
stem cell - in vitro and in vivo analysis

Telma Lisbôa-Nascimento, Milene Ormanji, Darcy 
Marinho, Michele Longoni Calió, Vera Lúcia Rigoni, 
Clélia Rejane Antônio-Bertoncini, Alice Teixeira Ferreira, 
Francisco Ribas Bosco

Federal University of Sao Paulo, Sao Paulo, Brazil

Aim: Cancer stem cells play an essential role to 
maintain the tumor size or fuel its growth. In an 
advanced stage of melanoma, the presence of a 
subpopulation of melanoma stem cells (MSC) is 
reflected in the resistance to the therapies and 
development of the metastasis. MSC exhibit an altered 
metabolism when compared to normal melanocyte. 
This alteration increases in the presence of reactive 
oxygen species (ROS), such as superoxide anion 
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(O2._), which stimulating all three stages of cancer: 
initiation, promotion and progression. In this work, we 
analyzed the effects of superoxide anion in MSCs in 
vitro and in vivo. Methods: The study was approved 
by Ethical Committee of the Federal University of Sao 
Paulo, process number: 1523/2008. In this work, the 
melanoma lineage TM5, was cultured in long term 
under specific medium containing: bFGF, EGF, LIF and 
retinoic acid, giving rise to the MSC as we describe 
in literature. We analyze the viability, proliferation and 
survivability of MSCs through techniques such as MTT 
(3-(4, 5-dimethylthiazolyl-2)-2, 5-diphenyltetrazolium 
bromide), flow cytometry, neubauer camera using 
biomarkers as: Brd-U, Bcl-2 and Ki-67, for after, 
evaluate the presence of superoxide anion, through 
dihydroethidium (DHE) and its function in vitro and 
in vitro using the same mentioned techniques and 
confocal microscopy and immunohistochemistry. 
Results: Long-term culture induced the development 
of cells with some stem cells characteristics. We 
named these cells as melanoma stem cells; these 
form an adherent and nonadherent spheres as well 
as they showed an increased pigmentation. MSC 
possess an enhanced ability to survive and adapt after 
changing the culture medium (epigenetic effect). In 
vitro, MSC shows an outgrowth and quiescence state 
and self-renewal. MSC presented less expression 
of Ki-67 when compared with melanoma control 
cells and both: MSC and control cells presents good 
viability. The levels of the O2._ in MSCs are increased 
significantly compared to the melanoma control cells, 
suggesting a possible protection against apoptosis 
in MSCs, because occurred a concomitant increase 
of expression of the anti-apoptotic protein Bcl-2 and 
these cells presented more survival capacity. In 
vivo, occurred a decrease in the levels of O2._, this 
reduction may be involved in increased of malignancy 
of melanoma. It was observed an increasing of the 
expression of the Ki-67 e decreased of the Bcl-2. The 
microenvironment, in vivo, could change the behavior 
of the MSC, increasing its proliferation and migration 
and invasion capacity to the neighboring tissues. 
Conclusion: These results indicate two different 
conclusions: In vitro, O2._ increases and protects 
MSC against apoptosis, and participates in the survival 
of these cells and differentiation process. In vivo, was 
observed the less expression of: O2._ and Bcl-2, and 
the greater expression of Ki-67, suggesting that in vivo, 
the O2._ play an important role in cellular proliferation 
due its interaction with the microenvironment, acting in 
ways that promotes progression and invasion tumor. 
Finally, our results imply that the different levels of 
O2._ acts in different signaling cascades to promote 
cell proliferation or differentiation.

Key words:
Superoxide anion, cancer stem cell, melanoma, 
oxidative stress

A16
Non-alcoholic fatty liver disease and risk for 
hepatocellular carcinoma - do cancer stem 
cells matter?

Jürgen Borlak

Hannover Medical School, Hannover, Germany

Hepatocellular carcinoma (HCC) is a frequently 
diagnosed cancer worldwide and a leading cause of 
cancer mortality. This malignancy results primarily 
from viral liver disease, alcoholic injury, aflatoxins 
and to a lesser extent from genetic disorders such 
as hemochromatosis. Clinical epidemiology studies 
suggest an association between non-alcoholic fatty liver 
disease (NAFLD) and risk for liver cancer. Given the 
epidemic in fatty liver disease the risk for HCC appears 
to be particularly increased in NASH cirrhosis patients.[1]

The mechanisms leading to tumor growth in fatty 
liver disease are unknown, nonetheless may involve 
the complex interplay of adipokines and cytokines 
in promoting hepatocarcinogenesis.[2,3] Importantly, 
research identified a decisive role of hepatic stem cells 
in the development of liver cancer. However, it remains 
enigmatic why stem cells become cancerous (CSC). 
Several landmark papers evidence dysregulation of 
signalling pathways in the control of self-renewal and 
differentiation of hepatic stem cells and include PI3K/
Akt, JAK/STAT, Wnt/β-catenin, hedgehog, Notch, NF-
κB and ABC transporters to influence stemness of 
CSCs.[4,5] Knowledge on these pathways permits the 
development of molecularly targeted therapies.

In my presentation I will report recent findings on the 
regulation of cancer stem cells in steatotic human 
hepatoma cells to mimic the condition of NAFLD. I will 
particularly focus on signalling pathways either linked 
to WNT and Hedgehog signalling, cell cycle regulation 
and chromatin organisation and provide an overview 
on the surplus of putative targets obtained from a 
wide range of cell biology, life cell imaging, genomics 
and computational biology studies. I will also discuss 
the possibilities for therapeutic intervention studies in 
preventing the induction of CSC in NAFLD patients and 
this includes some preliminary findings with dual kinase 
inhibitors obtained from the Botta-lab of Siena, Italy.

Key words:
Non-alcoholic fatty liver disease, hepatocellular 
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carcinoma, steatotic hepatoma cells, tumor growth 
signalling pathways, dual kinase inhibitors
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A17
Metastatic prostate cancer cells are endowed 
with cancer stem cell properties and interact 
with host cells to establish a proinflammatory 
microenvironment conducive to metastasis
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Prostate cancer (PCa) is the second leading cancer 
in American men with an estimated 220,800 new 
cases and 27,540 deaths in 2015. Androgen 
deprivation therapy (ADT) is currently the mainstay 
for advanced PCa patients; unfortunately, most 
treated patients eventually develop the castration-
resistant disease (CRPC). Like most other solid 
tumors, the worst outcome for PCa patients, whether 
treated or not, is development of distant metastasis. 
Although many PCa cell-intrinsic molecules and end-
organ factors have been implicated in the metastatic 
dissemination of PCa cells, the role of primary tumor 
microenvironment and the nature of the metastatic 
PCa cells remain poorly defined. Here we attempt to 
address the two questions by combining experimental 
PCa metastasis models in NOD/SCID mice and cDNA 
microarray-based expression profiling followed by 
extensive functional studies. We first show that PCa 
cells implanted orthotopically (i.e. in the prostate) 
metastasize much more extensively and widely than 
those implanted ectopically (i.e. subcutaneously or s.c). 
Microarray-based gene expression profiling reveals 
that the orthotopically implanted human PCa cells 
upregulate several classes of genes that have been 
implicated in metastasis and include those involved 

in: proteolysis/invasion/angiogenesis, inflammation/
cytokine signaling, and developmental pathways/stem 
cell signaling. Remarkably, mouse-specific microarray 
analysis shows that several classes of host (mouse) 
genes, which include those related to myoepithelial 
and myofibroblast phenotype/cytoskeleton/motility, 
extracellular matrix/matrix remodeling, inflammation/
immune functions, and development/stem cells, are 
significantly upregulated in the orthotopic prostate 
tumors. These findings suggest that the implanted 
human PCa cells reciprocally interact with the host 
prostatic cells (both epithelial and non-epithelial) 
to establish a proinflammatory microenvironment 
highly conducive to PCa metastasis. Further, we 
provide multiple pieces of evidence that metastatic/
metastasizing PCa cells have cancer stem cell 
(CSC) properties. This data not only advances our 
understanding of the biology of PCa development and 
progression but also lays a foundation for developing 
novel therapeutics to target the tumor microenvironment 
as well as rare tumorigenic and metastasis-initiating 
CSCs.

Key words:
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A18
EGF/EGFR pathway is sufficient to 
induce aggressiveness and expression of 
pluripotency markers of patients-derived 
glioblastoma cells
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Aim: Glioblastomas are the most devastating adult 
brain neoplasms. Recurrences are ineluctable, and 
presumed to be due to the glioma-initiating cells 
(GiCs). GiCs exhibit stem-cells properties such as self-
renewal and pluripotency, and are highly tumorigenic. 
EGFR is a hallmark of infiltrative gliomas, and is 
overexpressed in almost 50% of glioblastomas. Our 
objectives were to demonstrate that glioblastoma 
cells are able to interconvert from a differentiated 
state to a stem-like state and conversely depending 
on their environment, and to explore the underlying 
biological mechanisms, particularly the EGF/EGFR/
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ERK pathway. Methods: Tumor cells were dissociated 
from freshly resected human glioblastomas. They 
were characterized for the stem-like markers (CD133, 
Sox2, Oct4, Nanog) as well as for the differentiation 
markers (GFAP) by immunostaining and flow 
cytometry methods. Functionally, cells were assessed 
for their clonal properties in vitro, temozolomide 
sensitivity in vitro, and tumorigenicity in vivo using 
orthotopical xenotransplantations on NOD/SCID mice. 
Results: Spontaneously, most of the cells harbored 
differentiated properties. Functionally, these cells 
did not have clonogenic properties, were sensitive 
to temozolomide (mean surviving cells = 20%), and 
were not able to form a tumor in brain mice. After 
48 h of culture in an EGF enriched medium, the 
differentiated cells acquired stem-like properties. 
They expressed Sox2/Oct4/Nanog, displayed long 
term self-renewal in a clonogenic single-cell assay, 
and became more resistant to temozolomide (mean 
surviving cells = 60%). The xenotransplantation 
of few of these cells led to the development of 
large tumors after 3 months. Interestingly, the de-
differentiation process was quickly reversible, after 
only 4 days of culture in a serum medium. Also, we 
demonstrated that the de-differentiation process was 
inhibited by the adjunction of an anti-EGFR antibody 
(cetuximab) in the EGF medium, suggesting a pivotal 
role of the EGF/EGFR/ERK pathway. This pathway 
was strongly activated during the dedifferentiation 
process. Conclusion: The cellular plasticity concept 
contrasts with the unidirectional commitment originally 
described in the cancer stem cell model. It supplies a 
new comprehensive level on the CiGs’ origins, on their 
resistance mechanisms to genotoxic stresses, and 
on the tumor heterogeneity. These results emphasize 
the importance of targeting specifically the stem-like 
properties of the tumor cells, not only the GiCs, to 
prevent further tumor enrichment in GiCs.
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A19
Cancer stem cell regulatory mechanisms 
change at late stages of skin squamous cell 
carcinoma progression

Victoria da Silva-Diz1, Pilar Simón-Extremera1, Adrià 
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Joan Maria Viñals3, Annie Rodolosse4, Eva González-
Suárez1, Antonio Gómez-Moruno1, Miguel Angel Pujana1, 
Manel Esteller1, Alberto Villanueva1, Francesc Viñals1, 
Purificación Muñoz1
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Cancer stem-like cells (CSC) play key roles in 
long-term tumor propagation and metastasis, but 
their dynamics during disease progression are not 
understood. Tumor relapse in patients with initially 
excised skin squamous cell carcinomas (SCC) is 
characterized by increased metastatic potential, and 
SCC progression is associated with an expansion 
of CSC. Here, we used genetically and chemically-
induced mouse models of skin SCC to investigate the 
signaling pathways contributing to CSC function during 
disease progression. We found that CSC regulatory 
mechanisms change in advanced SCC, correlating 
with aggressive tumor growth, a strong induction of 
the EMT program and enhanced metastasis. β-catenin 
and EGFR signaling, induced in early SCC CSC, 
were downregulated in advanced SCC. Instead, 
autocrine FGFR1 and PDGFRα signaling, which have 
not been previously associated with skin SCC CSC, 
were upregulated in late CSC and promoted tumor 
growth and metastasis, respectively. Finally, high-
grade and recurrent human skin SCC recapitulated the 
signaling changes observed in advanced mouse SCC. 
Collectively, our findings suggest a stage-specific 
switch in CSC regulation during disease progression 
that could be therapeutically exploited by targeting the 
PDGFR and FGFR1 pathways to block relapse and 
metastasis of advanced human skin SCC.

Key words:
Cancer stem cells, skin carcinoma, metastasis, EMT, 
PDGFR, FGFR

A20
The role of α2β1 integrin on prostate cancer 
cell stemness

Marjaana Ojalill1, Elina Taipalus1, Johanna Jokinen1, 
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Tumor microenvironment is acknowledged to be a 
critical component for tumor formation, consisting of 
cancer and stromal cells together with extracellular 
matrix (ECM). During tumor development the normal 
ECM is reorganized and new components synthesized 
by cancer associated fibroblasts (CAFs), this may 
create favorable conditions for cancer cell proliferation, 
invasion and a niche for cancer stem cells. In prostate 
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epithelial/cancer stem cells are identified as CD44+, 
CD133+, α2β1 integrinhigh. Integrin α2β1 is a collagen 
receptor, which proposes that cell-collagen interaction 
is important for the stem cell biology in prostate. 
However the role of specific ECM proteins and cellular 
receptors in regulating prostate stem cells remains 
poorly understood.

Here, we have used primary cultures of prostate-
derived fibroblastic cells, allowed them to generate 
ECM, these matrices and specific matrix proteins 
(collagen I and fibronectin) were used to examine 
prostate cancer cell-line DU145 proliferation and drug 
resistance to widely used anti-mitotic chemotherapy 
drug docetaxel. Sorting cells to sub-populations based 
on their expression of α2β1 integrin allowed us to 
investigate whether higher expression of α2β1 integrin 
is in consistence with theory that cells with high α2β1 
integrin are more resistant to cytotoxic drugs. To study 
thoroughly the role of α2β1 integrin on prostate cancer 
stem cells, we created α2 integrin knock-out of DU145 
cell-line by CRISPR/Cas9 system and compared it with 
wild-type DU145 cells and rescued cells, which were 
transfected with plasmid carrying α2 integrin construct.

Our results present that ECM-cancer cell interaction 
reduced proliferation of cancer cells however according 
to EC50 values had no effect on the resistance to 
docetaxel. The EC50 values on collagen I were 18.8 
± 0.3; on fibronectin: 19.5 ± 0.2; on fibroblast-derived 
ECM: 19.6 ± 0.3. Based on collected data we concluded 
that there was no protective feature of fibroblast-
derived ECM to DU145 cancer cells from docetaxel 
induced cell death. Cells that survived docetaxel 
treatment presented significantly higher expression of 
α2 integrin and CD44, suggesting enrichment of stem-
like cell population. Indeed, the sub-population with 
high expression of α2β1 integrin had slightly better 
survival rates. The ongoing study on whole genome 
sequencing of CRISPR/Cas9 modified DU145 cells 
will reveal the differences in gene expression and may 
bring to light some new properties of integrin signaling.

Key words:
Prostate cancer stem cells, α2β1 integrin, drug 
resistance, CRISPR/Cas9 system, extracellular matrix, 
cancer associated fibroblasts

A21
YAP/TAZ, transcription factors at the roots of 
cancer

Luca Azzolin, Michelangelo Cordenonsi, Stefano Piccolo

Department of Molecular Medicine, University of Padova, Padova, Italy

Tumors are complex tissues and cancer is a disease 
characterized by aberrant differentiation as much 
as it is of disturbed proliferation. Tumor cells are 
phenotypically plastic, and an unsolved issue in 
cancer biology is to what extent the expansion of 
cancer stem cells representation that accompany 
tumor progression is caused by expansion of pre-
existing stem cells or, rather, by a differentiation block 
or even de-differentiation of more differentiated tumor 
cells. Indeed, the molecular mechanisms that preserve 
differentiation or induce cell plasticity in neoplastic or 
normal tissues, as in the case of acquisition of stem-cell 
traits by more mature cells during tissue repair, remain 
unknown. At this meeting, I will present new evidence 
indicating the role of YAP e TAZ, transcriptional effectors 
of Hippo- mechano- and Wnt-signaling, in regulating 
cell plasticity. It appears that these properties of YAP/
TAZ are independent of acquisition of a mesenchymal 
phenotype, require interaction with chromatin and are 
shared by multiple cell type, including non-epithelial 
ones. Notably, in mouse models, YAP/TAZ are 
essential for normal stem cells of breast, pancreas 
and neural tissues when these are activated by tissue 
damage in vivo, or for growth as organoids ex vivo. In 
these are other tissues, this correlate with the genetic 
requirement of YAP/TAZ to initiate tumorigenesis. The 
modalities of YAP/TAZ regulation by Wnt and other 
upstream cues will be also discussed.

Key words:
YAP/TAZ, cancer stem cells, Wnt signalling, cell 
plasticity

A22
Use of 3D spheroid cultures to screen for 
drugs targeting cancer stem cells

Juan Gumuzio, Olatz Leis, Angel G. Martin

StemTek Therapeutics, Derio, Spain

The cancer stem cell (CSC) concept has important 
implications not only for our understanding of 
carcinogenesis, but also for the development of cancer 
therapeutics. There is a growing body of preclinical 
evidence showing that cancer stem cells contribute 
to chemotherapy and radiation resistance in breast 
cancer. The use of drugs that interfere with stem cell 
self-renewal represents the strategy of choice for 
novel effective anti-cancer treatments, but also a great 
challenge because cancer stem cells and their normal 
counterparts share many pathways.

The biology of cancer stem cells has proven complex 
and difficult to translate into effective therapeutic 
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strategies. In order to monitor the effect of test 
compounds on cancer stem cells, a panel of markers, 
preferably easy-to-measure surface markers, must 
be defined. This is, however, cumbersome, since for 
many tumor indications that marker panel is not clearly 
defined, with often non-overlapping combinations of 
markers defining cell populations with cancer stem 
cell activities or tumor initiation ability. This is most 
likely reflecting the changing nature of the stemness 
capacity in tumor cells.

Thus, the question arises as: how do we test 
compounds for anti-cancer stem cell activity? The 
answer is: phenotypic screening. There are indeed 
several functional assays well validated in the scientific 
literature that have been used for years associated to 
the ability of cancer cells to demonstrate stem cell 
behavior. The most relevant is the 3D tumor spheroid 
assay. This assay has been used to uncover and culture 
stem cells from many tissues as well as from tumors. 
There are multiple reports now that show that spheroid 
derived cells are enriched in tumor initiating or cancer 
stem cells, derived from cell lines and from natural 
fresh tumors as well. There are several conceptual 
considerations that need to be taken into account in 
order to apply this assay to cancer stem cells:

1. This assay may be used to assess stem cell content 
only when 3D spheroids are formed through cell growth 
from single cells, not by aggregating cells. Aggregation 
does not impose the growth restriction necessary to 
allow stem cells to differentially survive.

2. Not every tumor and cell line is amenable to spheroid 
growth. This is related to cell adhesion expression 
profile, as some cells will not form spheroids but 
disperse cell clusters. Therefore only validated cell 
lines may be used on the spheroid assay.

3. Care must be taken with cytotoxic compounds. A 
non-specific cell toxic drug will kill cells regardless of 
culture conditions, thus only non-toxic concentrations 
may be used.

The tumor spheroid assay can measure stem cell 
number in the parental population, by looking at the 
number of spheres obtained or sphere forming cell 
frequency through limiting dilution assay.  But it can 
also measure effect on stem cell proliferation by 
measuring sphere diameter upon time.

Here we describe the use of 3D spheroid models 
to profile compound activity against cancer stem 
cells. Furthermore, a case of compounds preventing 
hypoxia-inducible transcription factor (HIFs) activity is 
presented. Recently, HIF transcription factor biology 

has been linked to pathways that regulate stem cell self-
renewal and pluripotency, suggesting a new mechanism 
whereby HIF proteins may drive tumor growth, through 
the generation of tumour-initiating cells or cancer 
stem cells. Therefore, targeting the HIF pathway may 
provide a novel therapeutic avenue to target cancer 
stem cells. We demonstrate that interfering with HIF 
pathway activation prevents mammosphere formation, 
validated through indenpendent confirmation through 
Sox2 promoter activation, Aldefluor® assay and in vivo 
proof-of concept experiments targeting tumor initiation.

The assays performed in this work are part of StemTek 
Therapeutics portfolio of research services, specialized 
in targeting cancer stem cells for drug discovery.
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Cancer stem cells, 3D spheroids, drug development

A23
CD34+ cells in blood and primary tumor foci 
in head and neck squamous cell carcinoma 
patients receiving radiotherapy
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The aim of this work was to elucidate the regularities 
of changes in the frequency of CD34+ hematopoietic 
stem cells (HSCs) circulating in peripheral blood and 
accumulating in primary tumor focus in patients with 
head and neck squamous cell carcinoma (HNSCC) 
after their exposure to the low-LET ionizing radiation 
receiving radiotherapy.

A study group consisted of 35 patients with HNSCC in 
age from 44 to 85 years (mean age 59.5 ± 1.3 years). 
The frequency of HSCs were determined in patients’ 
biopsies and blood cell samples before treatment and 
at 24 h after receiving of the subsequent local dose of 
γ-irradiation of 10 Gy with conventionally fractionated 
dose of 2 Gy daily. Stem cell viability and a number of 
HCS were evaluated in the disrupted and dissociated 
tumor pieces and in blood cell samples by three-color 
FACS analysis using DNA binding dye Hoechst33342 
and anti-CD45 and CD34 antibodies.

The high individual variability in the frequency of 
CD45lowCD34+HSCs was found in the tumor biopsies 
and blood obtained from patients before treatment. The 
median frequency of CD34+ cells before treatment was 
in the blood of 4.9.10-4, in biopsy material is 1.6.10-2. 
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This indicates a significant accumulation of the studied 
cells in the primary tumor. Correlation between initial 
frequency of the HSCs and clinical-morphological 
characteristics of the tumor was not observed There 
was a tendency to the decreased frequency of CD34+ 
cells in the blood samples to 3.6.10-4 (P = 0.1 in 
comparison with the pretreatment frequency) after 
irradiation. High statistically significant correlation was 
observed at the individual level between the frequency 
of these cells before and after exposure (R = 0, 82, 
P < 0.0001). The median frequency of CD34+ cells in 
the tumor, in contrast, was increased to 2.7.10-2 and 
did not correlate with the initial frequency of these 
cells before treatment in this group of patients. The 
results obtained indicate the decrease in migration 
of hematopoietic cells after the first sessions of 
radiation therapy, probably, due to the reduction of 
signals produced by the tumor to the chemotaxis and 
mobilization of these cells from the bone marrow. The 
regulation of the number of intra-tumoral hematopoietic 
cells is a complex process, including their differentiation 
in different types of cells. It is known that ionizing 
radiation disturbs the differentiation process of 
hematopoietic cells which may be to a cause of the 
observed increase in the frequency CD34 + cells in the 
majority of HNSCC patients. In the future, it would be 
of great interest to evaluate the predictive value of the 
number of CD34 + cells before treatment and changes 
in this index during radiotherapy.

Key words:
Head and neck squamous cell carcinoma, low-LET 
ionizing radiation
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The therapeutic targets of miRNA in hepatic 
cancer stem cells
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Hepatocellular carcinoma (HCC) is the fifth most 
common cancer worldwide malignancy, and the 
third leading causes of cancer death in patients. 
Several studies demonstrated that hepatic cancer 
stem cells (HCSCs), also called tumor-initiating 
cells, are involved in the regulation of HCC initiation, 
tumor progression, metastasis development and 
drug resistance. Despite the extensive research, 
the underlying mechanisms by which HCSCs are 
regulated remain still unclear. MicroRNAs (miRNAs) 
are able to regulate several biological processes 
such as self-renewal and pluripotency of HCSCs, 

representing a new promising strategy for treatment 
of HCC chemotherapy-resistant tumors. In this review, 
we synthesize the latest findings on therapeutic 
regulation of HCSCs by miRNAs, in order to highlight 
the perspective of novel miRNA-based anticancer 
therapies for HCC treatment.

Key words:
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Aim: The use of adjuvant or neoadjuvant radiotherapy 
improves local control and survival rate while 
maintaining normal tissue toxicities at acceptable 
levels. Nonetheless, cell radiation resistance is a 
limiting factor for this treatment. Radioresistance is 
due, in part, to cancer stem cells (CSCs) not killed by 
radiation. Thus CSCs isolation from breast tumours will 
be important for a better understanding of molecular 
mechanisms involved in their origin, self-renewal, 
differentiation into tumour cells, resistance to radio- 
and chemotherapy, invasiveness and metastatic 
ability. Methods: Two breast cancer cell lines (MCF-
7 and MDA-MB-231) were maintained in monolayer 
culture and then cultured in sphere medium. At 24 h 
after seeding in monolayer, cells were irradiated at 2, 4 
or 6 Gy, maintaining a non-irradiated control. From the 
general population of cells cultured in sphere media, 
positive and negative CSCs were separated with 
flow cytometry. Stem cell markers considered were 
ALDH1, CD24 and CD44. The genes measured in both 
positive and negative sub-populations were: MMP-1, 
MMP-2, MMP-3, MMP-9, MMP-13, HDAC-1, HDAC-2, 
HDAC-4, TIMP-1 and TIMP-2. Results: After ionizing 
radiation treatment, the proportion of CSCs markers 
varied according to the dose and cell type. ALDH 
positivity was increased at 4 Gy in MCF-7 cells, while 
ALDH1 and CD44 were increased at 6 Gy in the MDA-
MB-231 line. More genes were expressed in the MDA-
MB-231 versus MCF-7 line. MMP-1, MMP-2, HDAC-4, 
and TIMP-1 genes were expressed in both cell lines. 
MMP-3, MMP-9, MMP-13, HDAC-2 and TIMP-2 were 
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also expressed In MDA-MB-231 cells. In general, 
genes were more expressed in the negative population 
than in the positive, highlighting the positive CSCs 
expression of MMP-2 and MMP-9, which are related 
to the formation of secondary tumors. Conclusion: 
Radiation enhances the population of CSCs in different 
ways according to the dose and cell line. Post-radiation, 
a larger number and higher proportion of genes were 
expressed in the MDA-MB-231 cell line, which is more 
radioresistant in comparison to MCF-7. The increased 
MMP-2 and MMP-9 expression after radiation would 
contribute to modifying the cell survival capacity and 
differentiation status of MDA-MB-231 cells and may 
correspond to a phenotype linked to carcinogenesis. 
The increase in this expression with higher radiation 
dose in the positive CSC population may play a role 
in the development of secondary tumors, facilitating 
ECM degradation by the cells that survive radiation. 
Administration of inhibitors of these MMPs to patients 
undergoing radiotherapy may be useful to avoid the 
radiation-induced development of a more aggressive 
phenotype that promotes tumor progression. Both 
MMP-2 and MMP-9 may be considered novel 
therapeutic targets in cancer treatment.
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potential than CD133+ tumor cells
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Glioblastoma multiforme (GBM) is the most aggressive 
and lethal brain tumor that occurs both in children and 
adults. Diffuse invasion into normal brain tissue is 
one of the important biologic features that make GBM 
refractory to conventional therapies. While existing 
studies on GBM invasion are primarily conducted 
using tumor core tissues from surgical resections, it 
is unclear whether unresectable, infiltrative GBM cells 
would be more informative for studying their invasive 
nature compared to those in the resected tumor cores. 
More importantly, little is known if and which cancer 
stem cell populations are driving glioma invasion. To 
address these fundamental issues, we utilized our 
panel of 7 (6 pediatric and 1 adult) patient tumor-
derived orthotopic xenograft mouse models of GBM to 
isolate invasive GBM cells (infiltrating normal mouse 

brain parenchyma) and tumor core GBM cells and 
directly compared their biological differences. Our 
result showed that the invasive cells have stronger 
neurosphere forming efficiency in vitro in a serial 
dilution assay and increased tumorigenic capacity 
after in vivo transplantation (particularly at 100 cells/
mouse) compared to the tumor core cells. A screening 
of putative cancer stem cell markers (CD133, CD15, 
CD24/CD44, CD57 and CD117) showed that invasive 
GBM cells are enriched (> 2 folds) with CD57+ cells 
compared to the tumor core cells, and these infiltrating 
cells were predominantly CD57+/CD133-. Even the 
CD133+ cells were frequently dual-positive with CD57 
(CD33+CD57+), not only in the xenograft tumors 
but also in a separate set of patient GBM samples. 
Mechanistically, we found that CD57+ cells expressed 
high levels of self-renewal genes and tend to stay in 
G0/G1 phases. In conclusion, we showed that invasive 
GBM cells are biologically deferent from the matched 
tumor core cells and identified CD57 as a novel stem 
cell marker that is associated with GBM infiltration. 
Our findings suggest that new anti-invasion therapies 
should target CD57+ cells in addition to CD133+ cells 
in GBM.
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SABR is emerging as a powerful clinical technique 
for the treatment of localised and inoperable 
NSCLC. Despite improvements using radical chemo-
radiotherapy, overall 5 year survival rates remain low at 
between 7-20%, better strategies are urgently needed 
to improve control rates. Radiotherapy failure can be 
attributed to resistance as a result of heterogeneity 
within the tumour which may include a sub-population 
of cancer stem cells (CSCs), these may impact the 
ability of the tumours to recur following radiotherapy. 
Furthermore, radiation exposure may impact CSC 
populations causing differentiated cells to acquire 
stem-like properties or normal stem cells to transform 
into CSCs due to genetic alteration or changes in the 
normal stem cell microenvironment. The underlying 
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process of radiation induced stemness in NSCLC 
remains to be fully understood and may present 
novel opportunities for therapeutic intervention in 
combination with SABR that could potentially improve 
overall survival in NSCLC.

In this study, a panel of NSCLC cell lines (A549, H460, 
H157) were exposed to total doses of 6, 12 and 24 Gy 
delivered in 3 fractions over a 9 day period using a 
XRAD 225 X-ray generator (PXI, Inc.). Flow cytometry 
analysis of the irradiated cell populations showed 
significant dose dependent increases in the populations 
of cells bearing the putative stem cell markers CD44 
and CD133. This effect was greatest in the A549 cell 
model which showed a population increase of 9.8, 
13.9 and 24.7% at corresponding doses of 6, 12 and 
24 Gy. We have identified interferon regulatory factor-7 
(IRF-7) as a potential mediator of radiation induced 
plasticity and resistance. Quantitative PCR revealed 
a tumour-specific change in IRF-7 RNA expression 
upon irradiation, with a general relative increase in 
expression with increasing radiation dose. These data 
were compared with a normal bronchial epithelial cell 
model, which contrastingly showed a relative decrease 
in IRF7 RNA expression levels upon increasing doses 
of radiation. Flow cytometry analysis and IRF7 RNA 
quantification was repeated using the A549 model 
with the addition of acute hypoxia at the time of 
irradiation. I have not found a significant difference 
in the percentage of cells expressing these stem cell 
markers upon addition of hypoxic conditions, however, 
IRF-7 RNA expression levels appear to decrease by 
nearly 40% upon addition of hypoxic conditions without 
irradiation.

Our results demonstrate radiation induced cellular 
plasticity following exposure to hypofractionated 
schedules in models of NSCLC with a potential role of 
IRF-7. Ongoing work in our laboratory seeks to further 
investigate the underlying radiobiological mechanisms 
of CSC plasticity and the role of both acute and chronic 
hypoxia. We ultimately aim to identify novel therapeutic 
strategies, to prevent acquisition of stem-like properties, 
reduce treatment failure and improve outcomes.

Key words:
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Aim: Neuroblastoma is one of the most challenging 
tumours in children, and the 5-year survival rate of 
progressive neuroblastoma remains around 30-40% 
regardless of improvement of intensive therapies. 
We studied signal transduction cascades as targets 
for neuroblastoma therapy. It has been reported that 
one of major MAPKs JNK regulates STAT3, which is 
another pathway of STAT3 activation different from 
JAK-STAT3, by phosphorylating a specific amino 
acid residue. It has been reported that JNK or STAT3 
maintains the stemness of cancer cells, although the 
role of this pathway is not clearly revealed. In our study, 
we found remarkable anti-tumour effects of inhibiting 
JNK-STAT3 pathway, by disrupting the stemness of 
neuroblastoma. Methods: Neuroblastoma cell lines 
IMR5, NLF and SK-N-AS were treated with JNK inhibitor 
SP600125 or JNK-IN-8, or STAT3 inhibitor Niclosamide 
in various concentrations. Cell viability was analysed 
using CellTiter® (Promega). Immunofluorescence was 
performed with β-III tubulin antibody (SIGMA) to stain 
neural processes. Gene expression was analysed by 
THUNDERBIRD SYBR-Green real-time PCR system 
(TOYOBO). Results: Phosphorylation of STAT3 serine 
727, but not tyrosine 705, was suppressed by JNK 
inhibitor SP600125 or JNK-IN-8, dose-dependently. 
JNK inhibitors SP600125, JNK-IN-8 and a STAT3 
inhibitor Niclosamide induced resembled effects on 
neuroblastoma cells, although the effects were cell 
growth dependent. All inhibitors induced remarkable 
decrease in cell viability in fast proliferating cell lines 
IMR5 and NLF, while they induced deceleration of 
proliferation and cell differentiation with increased 
β-III tubulin staining of neural processes in slower 
proliferative SK-N-AS. Low dose of Niclosamide also 
induced neural differentiation in any cells. Expressions 
of cancer stem cell markers SOX2 and CXCR4 were 
decreased by treatment with inhibitors. Conclusion: 
Inhibition of JNK-STAT3 led cells to differentiation or 
cell death, which indicates the disruption of cancer 
stemness in neuroblastoma cells. Our findings show 
that inhibition of JNK or STAT3 is an ideal way of 
tumour suppression induced by disrupting homeostasis 
of cancer cells. Our results indicate that JNK-STAT3 
pathway is a promising target for the novel treatment 
of neuroblastoma.
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The role of secreted frizzled-related protein 
4 (sFRP4) in chemo-sensitisation of cancer 
stem cells
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Background: Cancer stem cells (CSCs) are the 
unipotent cell population present within the tumour 
mass. CSCs are known to be highly chemo-resistant 
and, in recent years, have gained intense interest as 
key tumour-initiating cells that play an integral role 
in cancer recurrence following chemotherapy. Aim: 
The study investigates molecular signals essential 
to sustain CSCs and target their activity using 
secreted frizzled-related protein 4 (sFRP4) alone or in 
combination with chemotherapeutic drugs. Methods: 
Cancer stem cells isolation: CSCs isolated from 
Breast (MDA231/MCF7), Ovary (A2780 P/ADR/Cis), 
and Prostrate (PC3/LnCap) tumour cell lines in serum-
free conditions and enriched with growth factors (EGF/
FGF/B-27). Chemo-sensitisation/drug treatment: 
Sensitisation with sFRP4 was performed by adding 
sFRP4 to the CSCs culture alone or in combination with 
chemotherapeutic agents (Doxorubicin/Cisplatin) for 
24 h. Viability assay: MTT based was used according 
to the manufacturer’s protocol to measure cell 
metabolic viability. Cell surface markers: To assist in 
determining their identity, cell surface markers (CD44+/
CD24-/CD133+) were examined in both monolayers 
and CSCs by flow cytometry, using CellQuest data 
acquisition and analysis software. RNA isolation and 
cDNA synthesis: Total RNA was isolated from cells 
using TRIzol reagent followed by chloroform extraction, 
isopropanol precipitation, and a 75% (v/v) ethanol 
wash and further transcribed into cDNA using a High 
Capacity cDNA kit. Western blotting: Total proteins 
were extracted from cells using RIPA denaturing buffer. 
The protein extracts were estimated using BCA Kit 
and 20 μg of proteins were separated by 12% SDS-
PAGE and transferred onto a nitrocellulose membrane. 
Immunoblotting was performed by blocking the 
membrane in 5% Non-Fat Dry Milk (NFDM) solution 
and incubating the membrane in 5% NFDM/BSA 
containing primary antibodies overnight at 4°C. The 
membranes were incubated in 3% NFDM containing 
secondary antibodies for 1 h at RT after three washes 
with PBS containing 0.1% Tween 20. Signals were 
detected on a Chemi-Doc imaging analyser using ECL 
Western Blotting Substrate. Caspase assay: The 
intracellular levels and activation of caspase-8 and 
caspase-3 were followed by Western blotting using 
antibodies specific for the proenzymes and activated 
species. Caspase-3 activity was measured using the 
EnzChek Caspase-3 Assay Kit II (Molecular Probes, 

Invitrogen). Results: The MTT assays conducted 
showed the chemo-sensitisation effect of sFRP4 when 
used in combination with tumour-specific drugs. The 
post-transcription data (Gene-Expression) collected 
from CSCs that have undergone combinatorial 
treatment with sFRP4 and chemotherapeutic drugs 
suggests there is downregulation of drug transporters 
and upregulation of angiogenic/apoptotic/cell death 
markers. The post-translational modification (protein 
expression) of CSCs shows the chemo-sensitisation 
effect of sFRP4, when used in combination with tumour-
specific drugs, by downregulating the cell-survival and 
oncogenes signals and upregulation pro-apoptotic 
signals. In tumour cell lines, sFRP4 in combination 
with doxorubicin/Cisplatin, reduced the proliferative 
capacity of CSC population in vitro. Conclusion: 
Wnt/β-catenin signalling is important for proliferation 
and self-renewal of CSCs in association with human 
tumorigenesis. The silencing of this signalling pathway 
by the application of sFRP4 suggests potential for 
improved in vivo chemo-responses.
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Head and neck squamous cell carcinoma (HNSCC) 
constitutes approximately 6% of all cancers 
worldwide. The risk of HNSCC is strongly associated 
to habitual exposure to tobacco or alcohol. In 
addition, oropharyngeal SCC (OPSCC) can arise 
also from infection with human papilloma virus 
(HPV). Management of HNSCC is complex and is in 
part correlated to risk factors. Namely, HPV-positive 
OPSCC has a greater response to radiation or 
chemoradiation than tobacco/alcohol related HNSCC. 
In addition, a significant problem of HNSCC is its 
recurrence, specifically in previously irradiated areas, 
due to induced radioresistance and radiation tolerance 
limits of already irradiated normal tissues.

The aim of our study was to investigate the response 
of three HNSCC cell lines to ionizing radiation and 
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exposure to cisplatin in vitro. DNA damage was 
evaluated in all cell lines in response to ionizing 
radiation by quantification of H2AX foci. HNSCC cell 
lines used in the experiments were FaDu, a HPV-
positive cell line 2A3, derived from FaDu cells, and 
a radioresistant cell line FaDu-RR, established from 
FaDu cells by repeated exposure to ionizing radiation. 
Radioresistant FaDu-RR cells were recovered after 
exposure to fractionated ionizing radiation (a total dose 
of 120 Gy).

The selected HNSCC cell lines responded differently 
to ionizing radiation and cisplatin. FaDu-RR cells were 
the most radioresistant with a dose modifying factor 
(DMF) at ED50 1.66 compared to FaDu cells. Contrary, 
a HPV-positive 2A3 cells were more sensitive to 
ionizing radiation than FaDu cells (DMF at ED50 0.47). 
In addition, FaDu-RR cells also displayed cross-
resistance to cisplatin (1.8-fold potentiation in IC50 
value) compared to FaDu cells, whereas 2A3 cells 
were more sensitive to cisplatin compared to FaDu 
cells (2.9-fold reduction in IC50 value).

DNA damage after ionizing radiation was quantified by 
detection of H2AX foci, which correlates to DNA double 
strand breaks. In all three cell lines, a peak of γH2AX 
foci was detected as early as 30 min after ionizing 
radiation. Interestingly, at this time point a maximum 

number of γH2AX foci was detected in radiosensitive 
2A3 cells (more than 20/nuclei), whereas in FaDu cells 
11 γH2AX foci/nuclei were detected. In radioresistant 
FaDu-RR cells, only 7 γH2AX foci/nuclei were detected 
30 min after ionizing radiation. The level of γH2AX foci 
24 h after ionizing radiation was reduced in all cell 
lines, however only in radioresistant FaDu-RR cells the 
number of residual γH2AX foci was similar to the level 
of γH2AX foci in unirradiated cells. In FaDu and 2A3 
cells, the number of residual γH2AX foci was reduced 
approximately by half.

A different response to ionizing radiation and exposure 
to cisplatin was observed in tested HNSCC cell lines. 
Namely, repeated exposure to ionizing radiation 
induced radioresistance and resistance to cisplatin in 
FaDu-RR cell line, whereas 2A3, a HPV-positive cell 
line, were more sensitive to ionizing radiation and 
cisplatin compared to parental FaDu cell line. The 
observed differences in radiosensitivity of HNSCC cell 
lines can be at least partly contributed to induction 
and clearance of γH2AX foci after ionizing radiation 
indicating differences in DNA damage repair.

Key words:
Radioresistance, head and neck, squamous cell 
carcinoma, chemoresistance, cisplatin, H2AX foci
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Aim: The present study sought to discover the role of Nibrin protein in 100 patients with oral 
squamous cell carcinoma (OSCC) and its potential relationship with clinicopathological 
parameters. Methods: Nibrin expression was evaluated immunohistochemically using the 
modified H-score method. Results: The present study included 20% of patients with stage 
I disease, 22% of patients with stage II disease, 18% of patients with stage III disease, and 
40% of patients with stage IV disease. Nibrin showed a significant positive correlation 
with moderately/poorly differentiated tumor tissues (P = 0.028), while significant inverse 
correlation of Nibrin expression was observed with tumor size (P = 0.018) and tumor stage 
(P = 0.039). Further, using univariate survival analysis it was observed that strong Nibrin 
expression was significantly associated with disease relapse in early stage OSCC patients 
(P = 0.049). Conclusion: Thus, the present study revealed that Nibrin could be used as a 
prognostic marker in patients with early stage OSCC.
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INTRODUCTION

Carcinomas of the oral cavity, including cancer 
originating from the buccal mucosa and tongue are 
of 10 most common cancers in the world with an 
increasing trend of incidence.[1,2] Squamous cell 
carcinoma (SCC) is the most common type of oral 
cancer which accounts for more than 90% of oral 
malignancies which is characterized by an aggressive 
growth pattern, high-degree of local invasiveness, and 
cervical lymph node spread.[1,3] In India, oral squamous 

cell carcinoma (OSCC) is the leading cause of death 
which stands for 35-40% of all malignancies which is 
owed to the increased prevalence of lifestyle habits like 
chewing areca-nut/betel nut quid/tobacco and smoking 
with heavy alcohol consumption serving as a potent 
cofactor.[4-6] The survival of patients with oral cancer 
has remained unchanged even with the improved 
therapeutic modalities, over the last 3 decades.[4] 
The resultant poor prognosis is owed to a late stage 
diagnosis, low response rate to current therapeutic 
strategies, high risk of primary site recurrence and 
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aggressive metastases to loco-regional lymph 
nodes, strongly suggestive of an urge to improve the 
treatment efficacy and diagnostic capabilities. Over the 
last decade, scientific research related to the specific 
pathways which are relevant to the development 
and progression of this disease has been performed 
to investigate biological, diagnostic and prognostic 
parameters.[7-10]

DNA damage is one of the underlying causes for 
mutations which is very numerous and appears to be 
a fundamental problem for life leading to cancer. In 
human cells, the estimated average number of DNA 
damages occurring per hour is about 800 which reach 
to 19,200 per day.[11] If, such DNA damages are not 
repaired in dividing cells, cause errors during DNA 
synthesis leading to mutations which can give rise to 
cancer. Thus individuals are often at increased risk 
of cancer with an inherited damage in DNA repair 
capability.[12]

Nijmegen breakage syndrome (NBS) is a chromosomal-
instability syndrome associated with cancer 
predisposition, growth retardation, microcephaly, 
radiosensitivity and immunodeficiency.[13-15] The NBS1/
Nibrin/p95 is a member of the DNA double-strand 
break (DSB) repair complex (hMre11 complex) which 
is a product of the defective gene in NBS (the NBS 
gene) located on human chromosome 8q21.[14-16] The 
Nibrin containing protein complex [Mre11-Rad50-
Nbs1(MRN) complex] binds to the edges of the DNA 
double stranded break and remains attached to this 
site until the break gets repaired.[17] Nibrin is also 
involved in various signaling cascades other than 
DSBs induced by irradiation such as mitotic V(D)J 
rearrangements in T and B lymphocytes, maintenance 
of telomere function and meiotic recombination.[18,19] 

Once ataxia-telangiectasia mutated protein 
phosphorylates NBS1, it then carries out its checkpoint 
functions following ionizing radiation.[20-22] However, in 
certain types of human cancer rare or no mutations of 
NBS1 have been studied.[23-25] In addition, during the 
process of carcinogenesis NBS1 is expressed in highly 
proliferating tissues.[26] On the basis of this information, 
the aim of this study was to assess whether the Nibrin 
expression would relate to clinicopathological variables 
and if it could predict survival or recurrence in OSCC.

METHODS

Study population
A total of 100 untreated patients with histolpathologically 
confirmed OSCC of tongue and buccal mucosa 
evaluated between 2011 and 2013 at our institute 
were included in this study. Formalin fixed and paraffin 

embedded primary tumor tissue blocks (buccal mucosa: 
n = 39, tongue: n = 61) and histologically confirmed 
adjacent normal tissue blocks were collected from the 
histopathology department of our institute. The detail 
clinical history of the patients [age, gender, tobacco 
habit, site of disease, tumor-node-metastasis (TNM) 
stage, histopathological findings, treatment given, 
etc.] was obtained from the case files maintained at 
our institute. In patients with OSCC the disease was 
staged according to the criteria of the American Joint 
Committee on Cancer pTNM classification. Thus, 
the present study included 20 patients with stage I 
disease, 22 patients with stage II disease, 18 patients 
with stage III disease and 40 patients with stage IV 
disease. This study was approved by our institutional 
review committee for dissertation/thesis/publications/
conference presentations and institutional ethics 
committee.

Immunohistochemistry
Immunohistochemistry of Nibrin was performed using 
the avidine-biotin complex technique in which formalin 
fixed paraffin embedded tissue sections (4 μm) were 
mounted on 3-aminopropyletriethoxy silane coated 
glass slides. The sections were first deparafinized 
using xylene and then rehydrated using graded 
alcohol. Endogenous peroxidase activity was blocked 
using 3% hydrogen peroxide prepared in methanol for 
15 min. Antigenicity of the processed tissue sections 
was retrieved by cooking the sections in 10 mmol/L 
tri-sodium citrate buffer (pH 6.0) solution with 0.05% 
tween-20 for 20 min in a pressure cooker. Sections were 
then allowed to cool at room temperature. For Nibrin 
immunostainings, a commercial mouse monoclonal 
antibody (clone 1D7, Santa Cruz Biotechnology, Santa 
Cruz, USA) at dilution of 1:100 prepared in tris buffered 
saline was applied to the sections and were then 
incubated overnight at 4 ˚C. For immunohistochemical 
detection of the antibody reaction, we used Novolink 
polymer detection kit from Novocastra. Sections were 
then dehydrated, cleared in xylene and mounted in 
dibutylphthalate xylene. As positive controls, formalin-
fixed paraffin-embedded tissue sections with intense 
staining for a given marker were included with each 
staining procedure.

Assessment of Nibrin expression
All sections were scored independently by two 
independent researchers in a blinded fashion. The 
staining intensities and the percentage of positive 
cells were separately assessed in primary tumor 
tissues (n = 100) and their corresponding adjacent 
normal squamous epithelium (n = 100). As the Nibrin 
expression was not uniform in different parts of the 
epithelium or cancerous tissue, we used modified 
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histoscore (H-score) method to combine the staining 
intensity and percentage of Nibrin expressing cells. 
More specifically, the staining intensity was assessed 
with a four-point scale from negative (0); weak (1); 
moderate (2); and strong intensity (3). The extent of 
the staining was expressed as percentage of positive 
cells (0-100%) by 10% intervals. The Nibrin histoscore 
was counted by multiplying the intensity level by 
percentage of positive cells resulting in a value between 
0 and 300. Data were divided into groups by histoscore 
levels. Accordingly the cancer and their corresponding 
adjacent normal specimens were grouped by Nibrin 
expression score based on the median score value of 
cancerous and adjacent normal tissues respectively 
into “weak expression” (Tumor: scores 0-209 and 
Normal: scores 0-144) and “strong expression” (Tumor: 
scores 210-300 and Normal: scores 145-300).

Follow-up and disease status of OSCC patients
Out of total 100 OSCC patients, for overall survival 
analysis, only 90 patients could be followed for a 
period of 24 months or until death within that period. 
On the other hand, for relapse-free survival study, 78 
of 100 patients with or without recurrence within that 
period were considered. The remaining 12 patients 
could not be included for relapse-free survival study 
due to presence of persistent disease.

Statistical analysis
The data were analyzed statistically using SPSS 
software version 17.0 (Chicago, IL, USA). The two 
tailed chi-square test was used to assess associations 
between two parameters. Correlations between 
two parameters were calculated using spearman’s 
correlation coefficient (r). To compare the Nibrin 
expression in cancerous and adjacent normal tissues, 
paired sample t-test was used. Univariate survival 
analysis was performed using Kaplan-Meier survival 
function and differences in survival were tested for 
statistical significance using the log-rank statistics. P 

values ≤ 0.05 were considered significant.

RESULTS

Nibrin expression in OSCC
Of the tongue and buccal mucosa cancer tissue, 
Nibrin protein expression was evaluated with nuclear 
location of the immunoreactions, Nibrin was expressed 
in 99% of tumors and 92% of the adjacent normal 
squamous epithelium [Figure 1]. H-score varied from 
0 to 300 in both OSCC and adjacent normal tissues. 
Median H-score for tumor tissues was 210 while that 
for the adjacent normal tissue was 145. The tissues 
expressing Nibrin below the median H-score was 
consider as a weak expression and tissue expressing 
Nibrin above the median H-score was considered as a 
strong expression.

Relation of Nibrin expression with clinical and 
histopathological parameters
Two tailed chi-square test and spearman’s correlation 
coefficient (r) were used to assess correlation between 
the Nibrin protein expression and clinicopathological 
parameters in tumor tissues. The relations of Nibrin 
immunoreactivity with clinical and histopathological 
parameters are depicted in Table 1, respectively. In 
tumor tissues an inverse correlation of Nibrin expression 
was found with tumor size (χ2 = 5.622, r = -0.237, P = 
0.018) and tumor stage (χ2 = 6.600, r = -0.194, P = 
0.039) while, significant positive correlation was found 
with strong Nibrin expression and moderately/poorly 
differentiated tumor tissues (χ2 = 4.857, r = +0.220, 
P = 0.028). No significant association was detected 
with Nibrin expression and other clinicopathological 
parameters.

Univariate survival analysis
According to Kaplan-Meier survival analysis similar 
incidence of death observed in total patients with 
strong (42%, 20/48, log-rank = 0.112, df = 1, P = 0.737) 

Figure 1: Nibrin protein expression (IHC, ×10). (A) Nuclear protein expression of Nibrin in primary tumor of OSCC; (B) nuclear protein 
expression of Nibrin in adjacent normal tissue of primary OSCC tumor tissue. OSCC: oral squamous cell carcinoma
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and weak Nibrin expression (45%, 19/42). In relation to 
relapse free survival also we were unable to find any 
significant incidence of disease relapse in patients with 
strong (42%, 17/40, log-rank = 0.006, df = 1, P = 0.937) 
and weak Nibrin expression (39%, 15/38). Although we 
were unable to obtain any significant findings in total 
patients, we further sub grouped patients into early and 
advanced stage disease and surprisingly, we observed 
that in patients with early stage disease, a significant 
high incidence of disease relapse was observed in 
patients with strong Nibrin expression (43%, 10/23, 
log-rank = 3.884, df = 1, P = 0.049) as compared to 
patients with weak Nibrin expression (8%, 1/12) 
[Table 2 and Figure 2]. No such significant difference 
was noted for overall survival in this subgroup of 
patients. On the other hand in patients with advanced 
disease, Nibrin expression failed to discriminate such 
high and low risk sub group patients for survival.

DISCUSSION

Nibrin (p95, NBN, NBS1, NBS) is a 754-amino acid 
polypeptide which is involved in the recognition and 
the repair of DSBs.[15,27-29] It interacts with Mre11 and 
RAD50 to form the MRN complex and is required 
for translocation of this complex to sites of DSBs.[29] 
Although, in advanced head and neck SCC the 
prognostic significance of over expression of Nibrin 
by immunohistochemistry has been identified.[30] 
However, data on the correlation of Nibrin with the 
clinicopathological prognosticators are limited. So, the 
current study evaluated correlation between Nibrin 
expression with clinicopathological parameters in total 
100 patients with SCC of tongue and buccal mucosa.

In the present study, we observed nuclear expression of 
Nibrin in OSCC tissues and its corresponding adjacent 
normal tissues. However, there was no significant 

Table 1: Relation of Nibrin immunoreactivity with clinical and pathological parameters in OSCC tissue
Nibrin expression in tumor (Median: 210)

Variables n Weak, n (%) Strong, n (%) Correlation (r) P
Age (year): median 45

< 45 47 22 (47) 25 (53) -0.004 0.972
≥ 45 53 25 (47) 28 (53)

Gender
Male 75 33 (44) 42 (56) +0.104 0.303
Female 25 14 (56) 11 (44)

Anatomic site
Tongue 61 30 (49) 31 (51) +0.055 0.589
Buccal mucosa 39 17 (44) 22 (56)

Tobacco habit
Absent 14 9 (64) 5 (36) +0.140 0.166
Present 86 38 (44) 48 (56)

Disease status (n = 78)
No recurrence 46 23 (50) 23 (50) +0.031 0.789
Recurrence 32 15 (47) 17 (53)

Disease outcome (n = 90)
Alive 51 23 (45) 28 (55) -0.036 0.737
Dead 39 19 (49) 20 (51)

Tumor size
T1 - T2 71 28 (39) 43 (61) -0.237 0.018
T3 - T4 29 19 (66) 10 (34)

Tumor stage
I 20 8 (40) 12 (60) -0.194 0.039
II 22 8 (36) 14 (64)
III 18 6 (33) 12 (67)
IV 40 25 (62) 15 (38)

Nodal status
Negative 59 25 (42) 34 (58) -0.111 0.271
Positive 41 22 (54) 19 (46)

Tumor differentiation
Well 50 29 (58) 21 (42) +0.220 0.028
Moderately/poorly 50 18 (36) 32 (64)

Keratin
Absent 79 34 (43) 45 (57) -0.154 0.126
Present 21 13 (62) 8 (38)

Lymphatic permeation
Absent 91 43 (47) 48 (53) +0.095 0.874
Present 9 4 (44) 5 (56)

Vascular permeation
Absent 99 47 (47) 52 (53) +0.095 0.349
Present 1 0 (0) 1 (100)

Perineural invasion
Absent 82 40 (49) 42 (51) +0.076 0.451
Present 18 7 (39) 11 (61)

Lymphocytic stromal response
Absent 46 21 (46) 25 (54) -0.025 0.806
Present 54 26 (48) 28 (52)

OSCC: oral squamous cell carcinoma



                                    Journal of Cancer Metastasis and Treatment ¦ Volume 2 ¦ November 25, 2016

Dave et al.                                                                                                                                                                                          Nibrin expression in OSCC

440

difference in Nibrin expression between OSCC tissues 
and their corresponding adjacent normal tissues (t = 
-0.455, df = 99, P = 0.657). Along with that in OSCC 
tissues, Nibrin expression was significantly positively 
correlated with tumor differentiation and significantly 
inversely correlated with tumor size and tumor stage, 
suggesting that up-regulation of Nibrin may be an 
early event in OSCC development. In accordance 
with our results, Ali-Fehmi et al.[31] also showed that 
NBS1 does not show markedly higher expression in 
all ovarian cancer patients compared to women with 
serous cyst adenoma and those with normal ovaries. 

Plisiecka-Halasa et al.[25] also showed that in human 
ovarian tumor tissues Nibrin expression was marked 
as strong nuclear staining which was present in both 
tumors and normal tissues. Further, Nibrin expression 
is up-regulated in adjacent normal tissues of OSCC 
tissue which is compatible with the hypothesis that 
Nibrin is a tumor suppressor gene.[32] In contrast with 
our findings, Hsu et al.[30] showed that Nibrin over 
expression was significantly correlated with high tumor 
size and metastatic dieses in OSCC patients which 
may be because of the inclusion of more number of 
patients with locally advanced diseases. Ehlers et al.[33] 
also showed that Nibrin was associated with strong 
tumor severity and metastatic death marker in uveal 
melanoma. However, similar expression of NBS1 
in class 1 tumors and normal uveal melanocytes 
suggests that up-regulation of NBS1 may be a late 
event in melanoma progression.

Kaplan-Meier univariate survival analysis showed 
that in patients with early stage disease high number 
of patients relapsed with strong Nibrin expression. 
However, our findings not only observed increased 
expression pattern of Nibrin in early stage patients 
but also found a strong correlation between increased 
Nibrin expressions in the onset of the disease with 
higher probability of recurrence. This could be 
attributed to the fact that since Nibrin acts as a sensor 
molecule of MRN complex which further activates the 
other DNA repair molecules, it might have a plausible 
role in constitutively activating these downstream 
molecules eventually leading to disease relapse 
in patients. While Hsu et al.[30] found that in OSCC 

Figure 2: Kaplan-Meier univariate survival analysis of patients with 
early stage disease indicating significant high incidence of disease 
relapse in patients with strong Nibrin expression (P = 0.049). RFS: 
relapse-free survival

Table 2: Univariate survival analysis (Kaplan-Meier survival function) of Nibrin expression
Variable n Patients relapsed or died, n (%) Log-rank df P
Relapse free survival
Nibrin (total patients, n = 78)
  Weak 38 15 (39)* 0.006 1 0.937
  Strong 40 17 (42)*
Nibrin (early stage patients, n = 35)
  Weak 12 1 (8)* 3.884 1 0.049
  Strong 23 10 (43)*
Nibrin (advanced stage patients, n = 43)
  Weak 26 14 (54)* 0.593 1 0.441
  Strong 17 7 (41)*
Overall survival
Nibrin (total patients, n = 90)
  Weak 42 19 (45)# 0.112 1 0.737
  Strong 48 20 (42)#
Nibrin (early stage patients, n = 38)
  Weak 13 2 (15)# 0.659 1 0.417
  Strong 25 7 (28)#
Nibrin (advanced stage patients, n = 52)
  Weak 29 17 (59)# 0.010 1 0.920
  Strong 23 13 (56)#

*: patients relapsed; #: patients died
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patients strong Nibrin expression was associated 
significantly with shorter overall survival compared 
with weak expression. Ehlers et al.[33] have also found 
that in uveal melanoma, the 6-year survival was 100% 
for the low NBS1 group and 22% for the high NBS1 
group (P = 0.01). In the breast carcinoma, patients 
with NBS1-aberrant tumors seemed to have poorer 
survival than the patients with NBS1 normal tumors. 
This indicates that the NBS1 deficiency predicts poor 
survival of the breast carcinoma patients.[34]

In conclusion, our study discovered that a Nibrin protein 
expression is significant in lower tumor size and early 
stage disease in OSCC indicating its role in early event 
of disease progression. Further, high incidence of 
disease relapse was found to be present in early stage 
patients with strong Nibrin expression. Thus, it could 
be used as a favorable prognostic factor in developing 
disease recurrence in patients with early stage 
disease. Further, among various cancers, the different 
patterns of the Nibrin expression have observed which 
indicates that the expression of Nibrin is important in 
cancer development and progression with cancer cell 
type specificity, although the mechanism behind it is 
unclear.

Financial support and sponsorship
This work was supported by the Gujarat Cancer Society 
and the Gujarat Cancer and Research Institute.

Conflicts of interest
There are no conflicts of interest.

Patient consent
Patient consent was obtained from the patients.

Ethics approval
Ethics approval was obtained from the Gujarat 
Cancer and Research Institute.

REFERENCES

1. Bettendorf O, Piffkò J, Bànkfalvi A. Prognostic and predictive factors 
in oral squamous cell cancer: important tools for planning individual 
therapy? Oral Oncol 2004;40:110-9.

2. Nagler RM. Molecular aspects of oral cancer. Anticancer Res 
2002;22:2977-80.

3. Zbären P, Lehmann W. Frequency and sites of distant metastases in 
head and neck squamous cell carcinoma. An analysis of 101 cases at 
autopsy. Arch Otolaryngol Head Neck Surg 1987;113:762-4.

4. Neville BW, Day TA. Oral cancer and precancerous lesions. CA 
Cancer J Clin 2002;52:195-215.

5. Feller L, Lemmer J. Oral squamous cell carcinoma: epidemiology, 
clinical presentation and treatment. J Cancer Ther 2012;3:263-8.

6. Facompre N, Nakagawa H, Herlyn M, Basu D. Stem-like cells and 
therapy resistance in squamous cell carcinomas. Adv Pharmacol 
2012;65:235-65.

7. Cohen EE. Novel therapeutic targets in squamous cell carcinoma of 

the head and neck. Semin Oncol 2004;31:755-68.
8. Scully C, Field JK, Tanzawa H. Genetic aberrations in oral or head 

and neck squamous cell carcinoma 3: clinicopathological applications. 
Oral Oncol 2000;36:404-13.

9. Nagpal JK, Das BR. Oral cancer: reviewing the present understanding 
of its molecular mechanisms and exploring the future directions for its 
effective management. Oral Oncol 2003;39:213-21.

10. Nagai MA. Genetic alterations in head and neck squamous cell 
carcinomas. Braz J Med Biol Res 1999;32:897-904.

11. Vilenchik MM, Knudson AG Jr. Inverse radiation dose-rate effects on 
somatic and germ-line mutations and DNA damage rates. Proc Natl 
Acad Sci U S A 2000;97:5381-6.

12. Arnott RD, Bernstein PL. What risk premium is “normal”? Financial 
Analyst J 2002;58:64-85.

13. Petrini JH. The Mre11 complex and ATM: collaborating to navigate S 
phase. Curr Opin Cell Biol 2000;12:293-6.

14. Karran P. DNA double strand break repair in mammalian cells. Curr 
Opin Genet Dev 2000;10:144-50.

15. D’Amours D, Jackson SP. The Mre11 complex: at the crossroads 
of DNA repair and checkpoint signaling. Nat Rev Mol Cell Biol 
2002;3:317-27.

16. Cerosaletti KM, Lange E, Stringham HM, Weemaes CM, Smeets D, 
Sölder B, Belohradsky BH, Taylor AM, Karnes P, Elliott A, Komatsu 
K, Gatti RA, Boehnke M, Concannon P. Fine localization of the 
Nijmegen breakage syndrome gene to 8q21: evidence for a common 
founder haplotype. Am J Hum Genet 1998;63:125-34.

17. Nelms BE, Maser RS, MacKay JF, Lagally MG, Petrini JH. In situ 
visualization of DNA double-strand break repair in human fibroblasts. 
Science 1998;280:590-2.

18. Pandita TK, Pathak S, Geard CR. Chromosome end associations, 
telomeres and telomerase activity in ataxia telangiectasia cells. 
Cytogenet Cell Genet 1995;71:86-93.

19. Metcalfe JA, Parkhill J, Campbell L, Stacey M, Biggs P, Byrd PJ, 
Taylor AM. Accelerated telomere shortening in ataxia telangiectasia. 
Nat Genet 1996;13:350-3.

20. Lim DS, Kim ST, Xu B, Maser RS, Lin J, Petrini JH, Kastan MB. 
ATM phosphorylates p95/nbs1 in an S-phase checkpoint pathway. 
Nature 2000;404:613-7.

21. Zhao S, Weng YC, Yuan SS, Lin YT, Hsu HC, Lin SC, Gerbino E, 
Song MH, Zdzienicka MZ, Gatti RA, Shay JW, Ziv Y, Shiloh Y, Lee 
EY. Functional link between ataxia-telangiectasia and Nijmegen 
breakage syndrome gene products. Nature 2000;405:474-7.

22. Wu X, Ranganathan V, Weisman DS, Heine WF, Ciccone DN, O’ 
Neill TB, Crick KE, Pierce KA, Lane WS, Rathbun G, Livingston 
DM, Weaver DT. ATM phosphorylation of Nijmegen breakage 
syndrome protein is required in a DNA damage response. Nature 
2000;405:477-82.

23. Stumm M, von Ruskowsky A, Siebert R, Harder S, Varon R, Wieacker 
P, Schlegelberger B. No evidence for deletions of the NBS1 gene in 
lymphomas. Cancer Genet Cytogenet 2001;26:60-2.

24. Varon R, Reis A, Henze G, von Einsiedel HG, Sperling K, Seeger 
K. Mutations in the Nijmegen Breakage syndrome gene (NBS1) 
in childhood acute lymphoblastic leukemia (ALL). Cancer Res 
2001;61:3570-2.

25. Plisiecka-Halasa J, Dansonka-Mieszkowska A, Rembiszewska A, 
Bidziński M, Steffen J, Kupryjańczyk J. Nijmegen breakage syndrome 
gene (NBS1) alterations and its protein (nibrin) expression in human 
ovarian tumors. Ann Hum Genet 2002;66:353-9.

26. Wilda M, Demuth I, Concannon P, Sperling K, Hameister H. 
Expression pattern of the Nijmegen breakage syndrome gene, Nbs1, 
during murine development. Hum Mol Genet 2000;9:1739-44.

27. Featherstone C, Jackson SP. DNA repair: The Nijmegen breakage 
syndrome protein. Curr Biol 1998;8:622-5.



                                    Journal of Cancer Metastasis and Treatment ¦ Volume 2 ¦ November 25, 2016

Dave et al.                                                                                                                                                                                          Nibrin expression in OSCC

442

28. Digweed M, Reis A, Sperling K. Nijmegen breakage syndrome: 
consequences of defective DNA double strand break repair. Bioessays 
1999;21:649-56.

29. Stracker TH, Petrini JH. The MRE11 complex: starting from the ends. 
Nat Rev Mol Cell Biol 2011;12:90-103.

30. Hsu DS, Chang SY, Liu CJ, Tzeng CH, Wu KJ, Kao JY, Yang 
MH. Identification of increased NBS1 expression as a prognostic 
marker of squamous cell carcinoma of the oral cavity. Cancer Sci 
2010;101:1029-37.

31. Ali-Fehmi R, Chatterjee M, Ionan A, Levin NK, Arabi H, 
Bandyopadhyay S, Shah JP, Bryant CS, Hewitt SM, O’ Rand MG, 

Alekseev OM, Morris R, Munkarah A, Abrams J, Tainsky MA. 
Analysis of the expression of human tumor antigens in ovarian cancer 
tissues. Cancer biomark 2010;6:33-48.

32. Hall J, Angèle S. Radiation, DNA damage and cancer. Mol Med Today 
1999;5:157-64.

33. Ehlers JP, Harbour JW. NBS1 expression as a prognostic marker in 
uveal melanoma. Clin Cancer Res 2005;11:1849-53.

34. Angèle S, Treilleux I, Brémond A, Tanière P, Hall J. Altered expression 
of DNA double-strand break detection and repair proteins in breast 
carcinomas. Histopathology 2003;43:347-53.



   © 2016 OAE Publishing Inc.  www.oaepublish.com 443

Squamous cell carcinoma of tongue 18 years 
after renal transplantation: a case report
Jyoti Poddar, Ashutosh Das Sharma, Ubrangala Suryanarayana Kunikullaya

Department of Radiotherapy, the Gujarat Cancer and Research Institute, Asarwa, Ahmedabad 380016, India.

Correspondence to: Dr. Jyoti Poddar, Department of Radiotherapy, the Gujarat Cancer and Research Institute, Asarwa, Ahmedabad 380016, India. 
E-mail: poddarjyo@gmail.com

How to cite this article: Poddar J, Sharma AD, Kunikullaya US. Squamous cell carcinoma of tongue 18 years after renal transplantation: a case 
report. J Cancer Metastasis Treat 2016;2:443-5.

Solid organ transplant recipients are at increased risk of developing malignancies, even 
decades after transplant, due to the prolonged use of immunosuppressant drugs. A 35-year-old 
male underwent renal transplant for end stage renal disease 18 years previously and was 
on immunosuppressive drugs since that time and was on regular follow up. In 2016, he 
developed a squamous cell carcinoma of tongue, which was operated and adjuvant radiation 
therapy was given. The patient is currently on follow up and asymptomatic. Though 
squamous cell carcinoma of tongue is a relatively common malignancy in the general 
population, it is very rare in transplant recipients. Hence, such patients require longer 
follow-up, active surveillance, and screening for early diagnosis and prompt treatment of 
premalignant and malignant conditions.
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INTRODUCTION

Renal transplant, which is usually the treatment of 
choice for end stage renal failure, predisposes the 
recipient to an increased risk of developing malignancies 
and this risk increases with increasing duration of 
immunosuppression.[1] This risk is largely attributable 
to the immunosuppressive drugs used to combat graft 
rejection (with an incidence of up to approximately 5% 
to 6%). The malignancies commonly encountered are 
skin cancers and those of the lymphatic system.[2] Of 
these, squamous cell carcinomas make up the bulk of 
epithelial carcinomas, involving most commonly skin, 
lips, cervix, and, rarely, lung. However, malignancies 

involving the tongue are an uncommon occurrence 
in this context, whereas it is a common intra-oral 
malignancy in the general population.[3] We report such 
an unusual case occurring eighteen years after renal 
transplantation.

The purpose is to draw attention towards the need 
of extended follow up and active surveillance to look 
for malignancies in unusual locations and for early 
diagnosis and better management.

CASE REPORT

A 5-year-old child (1985) developed off and on reeling 
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of head, generalized itching, low urine output, and 
generalized edema for one month. Upon investigation, 
he was found to have chronic kidney disease involving 
mainly the left kidney. It was advised that the patient 
undergo renal transplant but this was refused by the 
parents due to financial constraints. The child was 
kept on supportive care and follow up. At the age of 
18, he finally underwent transplant due to worsening 
of renal function (1998). He was then put ona 
azathioprine, prednisolone and cyclosporine regimen 
for immunosuppression following transplantation. 
Cyclosporine was discontinued after two years 
and the patient was continued on azathioprine and 
prednisolone. He was on regular follow-up since after, 
with no major complaints. In 2010, he developed 
hepatitis B and C co-infection and was placed on 
Tenofovir. In 2016, 18 years after transplantation and 
being on immunosuppressive therapy, he developed 
an ulcer on the tongue. On biopsy, it was found to be 
a squamous cell carcinoma. Computed tomography 
scan (22/04/2016) showed ill defined, hyperdense 
lesion, 16 mm × 6 mm in size, involving the anterior 
aspect of left lateral border of the tongue, not crossing 
midline or involving the base of tongue or vallecula. 
There were few subcentimeter lymph nodes on the 
left, level Ib and II. On history, the patient had no 
history of chewing tobacco, smoking, or use of alcohol. 
Also, there was no history suggestive offactors, which 
could have led to chronic irritationand subsequently 
to malignancy. On 22/03/2016, he underwent surgical 
treatment (left partial glossectomy and left modified 
neck dissection). Histopathology report was squamous 
cell carcinoma [Figure 1], size 1 cm × 0.6 cm × 0.2 cm. 
Two of 29 lymphnodes were positive, with perinodal 
extension. Invasion of deep muscles, lymphovascular 
invasion, and perineural infiltration were seen and 
resection margins were free of tumor. On polymerase 
chain reaction for human papilloma virus (HPV)-DNA, 
the patient was found to be HPV 16-positive. He then 
received postoperative radiotherapy of 60 Gray in 30 
fractions, on a 6-MV linear accelerator using parallel 
opposed portals, with concurrent chemotherapy. The 
patient is currently free of disease and on follow-up.

DISCUSSION

Solid-organ transplant recipients are three to five 
times more vulnerable to develop malignancy.[4] 
Immunosuppressive drugs predispose to malignancy 
by impairing immune reactions against viral infections, 
the most common being HPV.[5]

These viruses inhibit the p53 gene and its tumor 
suppressive action, and initiate a cascade of reactions, 
inducing malignant changes. Also, hepatitis remains a 

relevant clinical problem in patients of renal transplant.[6] 
Although its incidence has decreased, nonetheless, it 
remains a significant problem in endemic areas and 
developing countries. The antiviral therapy used for 
hepatitis has not reported to be carcinogenic. Solid 
organ transplant recipients commonly suffer from 
fungal infections, which can even be fatal. Overall, 
Candidiasis tops the list and accounts for 50-60% of all 
fungal infections in transplant recipients. Aspergillosis 
is typically common in lung transplant patients.[7] The 
incidence of fungal infection is around 8.6% in lung, 
4.7% in liver, 3.4% in pancreas, and 1.3% in renal 
transplant patients. Moreover, the median time of onset 
of this infection ranges from several weeks to months 
in lung and liver transplant recipients to over two years 
in kidney transplants.[8]

Figure 1: Power histopathology slide showing squamous cell 
carcinoma (A: HE, ×100; B: HE, ×40)
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The incidence of malignancy increases gradually for 
ten years after the transplant and becomes as high 
as 13.8 fold higher in such patients as compared to 
the normal population. The cumulative frequency 
increases with increase in duration of follow-up. 
This patient developed his cancer 18 years after 
transplant.[9] Other risk factors attributable to 
development of malignancy in these patients is 
advancing age, viral infections, cigarette smoking, and 
transmission of malignancy from donor cells.[10] Thus, 
strict follow-up and vigilance for signs and symptoms 
of malignancy should be followed in patients with 
organ transplantation on immunosuppressive drugs, 
even after decades of transplant.
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Despite the fact that the majority of cancer patients succumb to metastatic disease, most 
aspects of tumor metastasis are not understood in detail at present. Cell biologic steps of 
dissemination are difficult to characterize in human tumors and research is in large part 
confined to cell line and experimental animal studies. Epithelial-mesenchymal transition 
(EMT), intravasation of malignant cells, dissemination as circulating tumor cells (CTCs) 
and eventually mesenchymal-epithelial transition (MET) at distal sites are steps believed 
to be involved in metastasis. Small cell lung cancer (SCLC) is distinguished by early 
dissemination and excessive numbers of CTCs, which allowed for the ex vivo expansion of 
six permanent CTC lines taken from relapsed patients. Cells exhibit an epithelial phenotype 
with partial EMT traits and are chemoresistant due to formation of large tumorospheres. 
Since cells may have invaded without undergoing EMT, the role of MET is uncertain. These 
SCLC CTC cell lines seem to represent the metastasis-inducing cancer cells; these are the 
minute subpopulation of CTCs capable of surviving in the circulation and transitioning 
to metastases, leading in turn to resistance and failure of therapy. Full characterization of 
these lines is expected to provide the markers to find the relevant CTCs among the highly 
heterogeneous population observable in the context of tumor recurrence.
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INTRODUCTION

Early detection, precise diagnosis and monitoring of 
the course of disease during therapy are the objective 
of individualized care in current oncology. For most 
tumors, a tumor biopsy is costly, painful, or potentially 
hazardous for the patient and is not performed during 

the further development of the malignancy. Especially 
in tumor types showing a high frequency of systemic 
disease, such as small cell lung cancer (SCLC), a small 
needle biopsy is procured first to confirm the diagnosis, 
and chemotherapy is started without any further 
invasive procedure.[1] Thus, the opportunity to obtain 
essential information from blood samples, as so-called 
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liquid biopsies, would offer significant advantages.Non-
invasive detection and monitoring of patient tumors, 
employing cell-free circulating tumor DNA (ctDNA) or 
circulating tumor cells (CTCs), have been employed 
for investigations into multiple tumor types.[2-4] CTCs 
are described as cells, shed by primary or secondary 
tumors into vasculature, that keep circulating in the 
bloodstream of cancer patients.[5] Reports indicate that 
patients with lower counts of CTCs survive longer than 
the patients with higher CTCs counts. For example, 
lower numbers of CTCs were observed for 21 patients 
with limited SCLC (median = 6, range 0-220) compared 
with 38 patients with extensive stage (median = 63, 
range 0-14,040) and the absence of measurable CTCs 
in 27% of patients was correlated with prolonged 
survival (hazard ratio: 3.4; P ≤ 0.001).[6]

Furthermore, CTC counts have been proposed as 
a surrogate marker for assessment of responses 
to therapy in cancer patients to facilitate more rapid 
drug evaluation. The Food and Drug Administration 
approved CellSearch© system (Veridex, Raritan, NJ, 
USA) enumerates intact CTCs for a prognosis of 
overall survival for breast, prostate and colon cancer.[7] 
For example, CTC count is a robust independent 
prognostic factor for progression-free recovery and 
overall survival in patients with early and metastatic 
breast cancer.[8] Additionally, CTCs have been detected 
in patients with chronic obstructive pulmonary disease 
before the actual occurrence of malign lesions, thus 
allowing for early diagnosis of lung cancer.[9] However, 
an advantage of the analysis of ctDNA in liquid biopsy is 
the detection of molecular changes which are occurring 
within the tumors in real time, especially during 
development of drug resistance to targeted agents.[2,3] 

Numerous techniques for the enrichment of CTCs have 
been developed relying on immunological markers, 
size, rigidity or dielectric properties. These techniques 
have been used for genetic characterization, marker 
analysis and short-term cultures for investigation of 
their cell biology.[10,11] Despite a host of studies dealing 
with CTCs, many questions regarding their generation, 
shedding, survival in the circulation, chemosensitivity 
and mechanisms of induction of secondary lesion 
remain to be fully resolved.

Research on tumor dissemination and CTCs has 
been hampered by the scarcity or heterogeneity of 
the enriched cells, as well as the inability to define the 
characteristics of the actual metastasis-inducing CTCs 
that are expected to be most relevant for the prognosis 
of the patients. In this study, we have established 
for the first time six CTC cell lines from a variety of 
patients with extended metastatic SCLC and present 
here the implications of the phenotype of these cell 

lines for tumor dissemination in this highly aggressive 
malignancy.

DETECTION AND ENRICHMENT OF CTCS

In most tumor types, CTCs are rare events, with a 
frequency of approximately one CTC among 1-10 
million mononuclear blood cells. Therefore, these 
cancer cells have to be enriched by various methods 
for further analysis. The probability to detect CTCs 
in a limited volume of blood has been reviewed by 
Gkountela et al.[10] and the reported probability of 
collecting ≥ 1 CTCs in one aliquot of 7.5 mL blood 
from a patient with 500 CTCs is 50%. Therefore, 
20 mL of whole blood would have to be assessed if the 
cell event were to be detected for a lower frequency 
at one CTC in 107 leukocytes. The frequency of the 
CTC population measured in an aliquot may not be a 
statistical representative of the entire sample.

There are a number of questions remaining for the 
detection of CTCs and their relationship to their parent 
bulk tumors. CTCs seem to stem from the frontier of 
the tumor and it is generally known that the tumor 
margin is different from the main tumor mass. Most of 
the CTCs populations analyzed exhibit heterogeneity, 
pointing to release of different cell populations from 
distinct regions of the tumor or of metastatic lesions.[11] 
CTCs can also form clusters including immune cells in 
the circulation, or be engulfed by the platelets before 
eventually adhering to the walls of the capillaries and 
initiating extravasation.[12]

The role of CTCs as prognostic marker and as 
possible surrogate indicators for response to therapy 
is discussed in numerous reviews.[10,13,14] CTCs which 
are shed from tumors are mediators of metastatic 
dissemination and form micrometastasis at distant 
organs.[15] In positive selection, surface markers of 
CTCs are targeted, whereas, in negative selection, 
depletion of blood cells other than CTCs is achieved 
by targeting their surface markers.[10] The CellSearch® 
system is by far the most common system for extraction 
and enumeration of CTCs for clinical investigations.[7] 
CTCs which have downregulated EpCAM remain 
undetected throughout this process.[16,17] By alternative 
methods, cell size-based sorting is accomplished 
using microfluidic technology, as with the Parsortix 
system (Angle, Guildford, UK).[18,19] Isolation by 
Size of Tumor cells (ISET®) is a another filter-based 
established method which is used for such cell size-
based sorting.[20]

CTCs derived from breast cancer patients are 
among the most extensively studied for diagnosis 
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and treatment.[21] The presence of CTCs, despite 
ongoing treatment, has proven to be an indicator of 
worse overall survival; therefore, in one group of 
HER2- breast cancer patients, HER2+ CTCs were 
identified and trastuzumab-based therapy applied to 
these patients.[17,22,23] Most of the CTCs isolated from 
breast cancer patients show the presence of epithelial-
mesenchymal transition (EMT) markers such as ETV5, 
NOTCH1, SNAIL, TGFB1, ZEB1, and ZEB2.[24] Breast 
cancer patients who showed remaining CTCs after 
first cycles of chemotherapy progressed rapidly to 
metastatic disease.[25] In prostate cancer, CTCs have 
been proposed to act as intermediate or surrogate 
endpoints for survival and to shorten timelines for drug 
approval.[26] Patients with lower levels of CTCs have 
shown slower disease progression in comparison 
to those having higher levels of CTCs.[27] In colon 
cancer, CTCs were found as individual cells or as 
clusters (CTMs) by a CK-based, immunomagnetic cell 
separation method.[28] CTMs are of particular interest 
as they are considered to be markers of increased 
metastatic potential.[29] In lung cancer, CellSearch® 
and ISET kits indicated a higher number of CTCs in 
SCLC than NSCLC, reported to be associated with 
larger tumor size and bone metastasis.[30,31] The high 
numbers of CTCs in SCLC allowed for their enrichment 
and initiation of xenografts which seem to resemble 
the tumor characteristics of the respective patients.[32] 

Furthermore, a trial to establish ex vivo expanded 
CTC cell lines was successful and has resulted in the 
availability of six lines from relapsed patients so far.[33] 

Characteristics of the first CTC cell lines and their 
interaction with macrophages have been published.[34]

SHEDDING OF CTCS FROM TUMORS

Release of CTCs into the circulation is frequently 
termed shedding, a designation for a process for 
which the details are not known. CTCs are reported 
to be shed from solid tumors at a daily rate of 3.2 
to 4.1 × 106 per gram of tissue, based on a single 
artificial rat model.[35] In one study, the rate of tumor 
cell shedding into efferent blood was measured in 
both growing and regressing MTW9 rat mammary 
carcinomas. Cell shedding rates of growing versus 
regressing tumors were not significantly different 
over a tumor size range of 2-4 g. Half of these CTCs 
perished within 2.4 h, although longer half-lives were 
reported in a clinical setting.[28,36] Tumor cells are 
rapidly cleared from circulating blood and a 2-g MTW9 
carcinoma reportedly released enough cells into the 
circulation to transplant the tumor every 24 h, although 
the majority of the cells were reported to be apoptotic/
necrotic.[35] The cell loss via blood comprised about 
10% of the tumor weight and resulted in a CTC count 

of approximately 20,000 CTCs/mL blood.

Clearly, this estimation of the release of CTCs 
reported from an experimental animal model cannot 
be extrapolated to human tumors. No form of the 
shedding of CTCs causes a human tumor to lose 
10% of its size in one day, nor is a CTC count of 
20,000 cells/mL observed in most cancer patients. A 
threshold of 5 CTCs/7.5 mL blood has been defined by 
the Cellsearch© system for breast and prostate cancer, 
and a lower threshold of 3 CTCs/7.5 mL blood has 
been defined for colon cancer patients. These figures 
are for favorable or poor prognosis, respectively.[7,37] 
Consequently, the attrition rate in the circulation based 
on this artificial animal model seems to be a considerable 
overestimation. The specific mechanisms of tumor 
cell shedding are not known at present. CTCs seem 
to origin as specialized cell types, different from the 
bulk of the tumor cells, from the borders of the tumor. 
CTCs leave the particular microenvironmental milieu 
characterized by inflammation, acidosis and hypoxia 
through the interaction of a host of participating cell 
types. Therefore, CTCs are not expected to represent 
the bulk of tumor cells and are not typical of the cell 
biologic behavior and chemoresistance of the main 
body of the tumor. SCLC extended disease responds 
well to the first cycles of platinum-based chemotherapy 
but recurs within approximately one year as tumors 
which exhibit universal chemoradioresistance.[38] 
Contrary to expectations, the first two SCLC CTC 
cell lines proved to be chemosensitive to the second-
line chemotherapeutics topotecan and epirubicin 
although some tumor cells must have survived the 
initial successful treatment and eventually give rise 
to chemoresistant relapses.[39] Therefore, the use 
of CTCs as surrogate markers for the bulk tumor is 
questionable.

EMT IN TUMOR CELL SHEDDING

A general assumption supposes that tumor cells invade 
through a process termed EMT.[40] Accordingly, epithelial 
tumor cell downregulate epithelial markers, such as 
E-cadherin, EpCAM and cytokeratins, eventually 
expressing mesenchymal markers such as vimentin, 
neural cell adhesion molecule (NCAM) and others. In 
this way, cells gain mobility and migrate to intravasate 
and reach distant sites to establish secondary lesions. 
EMT is regulated by a number of specific transcription 
factors belonging to the SNAIL, TWIST and ZEB families 
und is modulated by microenvironmental conditions, 
inflammatory cytokines and chemotherapy.[41] Since 
it has proven difficult to demonstrate tumor cells with 
EMT traits in patients, incomplete EMT or transitional 
EMT has been proposed as a model. This model 
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presupposes no complete switch in phenotype, but 
rather a type of transition which may be as minimal 
as a slight downregulation of epithelial features. EMT 
phenotypes have been reported among heterogeneous 
CTC populations and increased fractions of cells with 
such mesenchymal features have been demonstrated 
to correlate with a poorer prognosis in breast cancer 
patients.[24]

It may still be possible that tumor cells with epithelial 
characteristics enter the bloodstream without 
undergoing EMT. An alternative model, termed 
“cooperative migration”, posits that EMT-type cells help 
epithelial cells to gain access to the circulation, but to 
reside at the bulk tumor. Excessive numbers of CTCs 
have been observed in SCLC, which is frequently 
associated with local inflammation and in inflammatory 
breast cancer. Thus, immune cells and inflammation 
may promote release of tumor cells into the circulation 
possibly without EMT. The SCLC CTC cell lines have 
been found to recruit macrophages and to lack a 
phenotypic switch with full expression of mesenchymal 
traits.[34,42] In conclusion, complete or partial EMT is not 
proven to be a prerequisite to disseminate tumor cells, 
and therapeutic options to inhibit such a transition 
need to be considered cautiously.[43]

SURVIVAL CTCS IN THE CIRCULATION

The great majority of CTCs seem to be short-lived and 
to perish in the circulation. Of the several forms of CTCs 
shed by the primary tumor, only about 0.1% survive 
in the circulation and only about 0.01% is responsible 
for metastasis.[8,10] This attrition has been attributed to 
shear stress and an unfavorable microenvironment too 
different from the local tumor conditions. CTCs in the 
hematogenous circulation must survive a variety of 
stresses, and epithelial cells may undergo anoikis in the 
absence of cellular attachment.[44] The vast majority of 
CTCs are likely to become trapped in various capillary 
beds. They are destroyed by hemodynamic shear 
forces and predation by cells of the innate immune 
system – specifically natural killer cells. Consistent with 
this view, a great deal of CTC-associated material is 
detectable in CTC-positive tumor patients.[10] Reported 
half-lives have ranged from several hours, according to 
experimental animal models, to long-term persistence. 
The SCLC CTC lines show continuing disposal of 
microparticles and cellular fragments, thus generating 
CTC associated materials under optimal conditions in 
tissue culture in the absence of shear stress.[42] Partial 
disintegration of CTC tumorospheres may function 
as a source of decoy material to protect other CTCs 
and the bulk tumor from attacks by both the immune 
system and chemotherapeutics.

INDUCTION OF EXTRAVASATION AND 
MESENCHYMAL-EPITHELIAL TRANSITION

In general, the secondary lesions induced by CTCs 
show an epithelial phenotype similar to the originating 
primary tumor.[40] Provided that the metastases were 
established by cells which underwent EMT, at some 
point during tumor spread and extravasation this 
transition has to be reversed through a process 
termed mesenchymal-epithelial transition (MET). This 
process has not been observed directly, but has been 
inferred from the mesenchymal traits of disseminated/
CTCs and the histology of secondary lesions.[45] The 
factors causing this supposedly phenotypic switch, 
along with their possible derivation from the cancer 
cells themselves (seed) or the metastatic site (soil) are 
largely unknown. In the case of SCLC CTC lines, the 
cells are positive for EpCAM, E-cadherin and proteins 
involved in cell junctions and form spontaneously 
typical large spheroids with diameters of up to 1-2 mm 
in regular tissue culture medium without any factors 
preventing adhesion to cell culture flasks.[43] Although 
expression of vimentin and NCAM is observed, the 
formation of these organized and large spheres is a 
typical epithelial feature not observed in SCLC tumor 
cell lines in vitro. Since these tumorospheres develop 
from CTCs of relapsed SCLC patients within a short 
time, and are found in cell suspension derived from 
xenografts induced by such CTCs, they seem not to 
stem from an in vitro transition in tissue culture but to 
present the original in vivo phenotype. Thus, these 
metastasis-inducing CTCs seem to be present as 
cancer cells exhibiting an epithelial phenotype and 
organization and may be trapped in capillaries or 
reside in protected sites, possibly in a dormant state. 
Tumorospheres exceeding diameters of 2 mm during 
their development tend to disintegrate and may be the 
source of non-proliferating cell clusters observed in the 
blood of metastatic cancer patients.[10]

METASTASIS AND DRUG RESISTANCE

Metastases not only damage secondary organs and 
exacerbate the deleterious effects of malignancies 
in general but frequently exhibit chemoresistance to 
reinitiation of primary or second-line chemotherapy 
agents. Especially in SCLC, excellent response rates 
to initial chemotherapy can be followed by relapses 
within approximately one year, which exhibit broad 
chemoresistance and result in failure of treatment.[1,38]

Attempts have been made to characterize the 
chemosensitivity of CTCs in short term cultures in 
various tumor entities.[46] However, CTCs are specialized 
cells different from the tumor bulk and most likely also 
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from the developing metastases. It was universally 
assumed that CTCs survive as chemoresistant cells 
and may predict the responsiveness of resulting 
secondary lesions. Surprisingly, the SCLC CTC lines 
were found to be highly chemosensitive to agents of 
common use in this tumor entity, except the CTC line 
established from a patient refractory to initial therapy 
with cisplatin.[39] Thus, some tumor cells have survived 
the initial cycles of chemotherapy, possibly in an 
inflammatory environment, and seem to develop a kind 
of chemoresistance not accomplished at the cellular 
level.[34] Tumorospheres are known to be comprised 
of a small region of proliferating cells and layers of 
quiescent cells surrounding an inner hypoxic core 
which provides protection against irradiation due to the 
lack of reactive oxygen species [Figure 1].[47,48]

Therapy of SCLC has not been improved for the 
last several decades despite the clinical testing of 
a host of chemotherapeutics covering the widest 
range of clinical targets available.[1,49] More than 600 
trials exploring therapeutic interventions in SCLC are 
currently in the U.S. clinical trials registry, National 
Institutes of Health.[50] Since it is not reasonable to 
assume that SCLC tumors express a host of individual 
molecular mechanisms, tumorospheres provide an 
alternative explanation for chemoresistance, in which 
potential chemotherapeutic drugs are prevented from 
reaching their cellular target (in responsive cells) in 
sufficient quantities.[51] Whether the validity of this kind 
of chemoresistance, in the form of tumor spheroids, is 

confined to SCLC or is common to other tumor types, 
remains to be investigated.

CONCLUSION

Mechanisms of tumor metastasis have been 
investigated using numerous cell culture studies and 
research employing experimental animal models as well 
as analyses of clinical specimens. Models have been 
proposed for the discrete steps of tumor metastasis, 
but the actual dissemination of malignancies in patients 
is difficult to assess. Clearly, CTCs are instrumental in 
translocation of tumor cells to distal sites and in the 
induction of secondary lesions. Although CTC counts 
have shown prognostic significance, their limited 
accessibility and marked heterogeneity have limited 
their usefulness.

A panel of permanent CTC lines from SCLC 
patients revealed absence of full EMT, presence of 
chemosensitivity, and an epithelial phenotype with 
formation of tumorospheres as physical barrier against 
chemoradiotherapy. Unfortunately, there are currently 
no means available to target these spheroid structures 
in a clinical setting, and further investigation is needed 
to study the cell biology of CTC aggregates in detail, 
and to study overcoming resistance using targeted 
agents involving enzymes, cell junctions opener, 
nanomaterials and other mechanisms.
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INTRODUCTION

Prostate cancer is the most common tumor diagnosed 
in men in the Western world. With demographic 

changes and the aging population, the number of men 
with this cancer has steadily increased. The natural 
history of untreated prostate cancer is one of evolution 
to a metastatic disease, especially disseminating to 
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bone, over a variable time period.

Two large questions have yet to be answered: (1) 
what is the role of prostate cancer screening? (2) 
what treatment is appropriate for men diagnosed with 
prostate cancer? An ideal prostate cancer screening 
test would not detect all prostate cancers, but only 
those prostate cancers which have the potential to 
cause harm to the patient. At present, the only widely 
used screening test is serum total prostate-specific 
antigen (PSA), which in a range of 4-10 ng/mL is 
associated with a positive biopsy rate for all cancers 
of approximately 30%.[1] of which it has been estimated 
that 23-42% of screen detected prostate cancers are 
over treated.[2] Men with clinically insignificant prostate 
cancers who were never destined to have symptoms 
or altered life expectancy may not benefit from knowing 
that they have the “disease.” The detection of clinically 
insignificant prostate cancer may be considered an 
adverse effect of the prostate biopsy.

Screening for prostate cancer remains controversial. 
The two large studies published in the United States 
and Europe produced different results;[3,4] as a 
consequence, the American Urology Association 
guidelines do not recommend screening in men 
over 70 years or in those with less than 10 years’ 
life expectancy.[5] However, they recognize that 
some elderly men who are healthy may benefit from 
screening. Why the controversy? Presently, a new 
diagnosis of prostate cancer is nearly always in men 
with an elevated screening serum total PSA who have 
been referred for a prostate biopsy. Serum total PSA 
is prostate specific. However, it is also increased in 
benign diseases such as hyperplasia and prostatitis.[4,5] 
In fact, 10-20% of men aged 50 years and 70 years 
will have a raised PSA, but only 25% of those with a 
serum total PSA of 4-10 ng/mL will be found to have a 
biopsy positive for cancer.[6] Moreover, the frequency 
of men with an elevated PSA and benign biopsy is 
country dependent[7] and may be significantly different 
between rural and metropolitan populations in the 
same country.[8]

To complicate matters further, not all prostate cancers 
need treatment. It has been estimated that 23-42% of 
screen-detected prostate cancers are over treated.[2] 
For every 100 men with an elevated PSA between 
4 ng/mL and 10 ng/mL, only about 14 will have a 
clinically significant prostate cancer detected. Eighty-
six will undergo a biopsy, with its associated risks, for 
what is found to be a benign disease. Infection and 
hemorrhage are the main potentially serious side 
effects of prostate biopsy, with a 30-day complication 
rate of 3.7%, especially in older patients.[9] Therefore, 

avoiding unnecessary biopsies is a worthwhile aim if it 
does not prejudice the number of clinically significant 
cancers detected.

Active surveillance is a recognized initial treatment 
option for men with early stage low-grade prostate 
cancer. The option to delay or avoid definitive 
therapy avoids or minimizes patient morbidity without 
compromising long-term outcomes in appropriately 
selected patients.[10,11] According to the Prostate Cancer 
Intervention Versus Observation Trial,[12] men with low 
risk disease (defined as a PSA ≤ 10 ng/mL, a Gleason 
score ≤ 6, and T stage 1 or 2a) had no difference 
in all-cause mortality and prostate cancer-specific 
mortality, or in rate of progression to bony metastasis, 
when assigned to radical prostatectomy or to active 
observation. The criteria for active observation (AO) 
according to Epstein et al.[13] are a diagnosis of prostate 
cancer, with three or fewer of the 12 prostate biopsy 
cores positive for cancer. That no single biopsy core 
with > 50% infiltration and a PSA density < 0.15 ng/mL. 
Using these criteria to select patients with “insignificant 
disease” has a positive predictive value of 95% and 
a negative predictive value of 66%.[14] These men 
are actively followed up with repeat annual biopsies. 
The timing of intervention after the initial diagnosis is 
based on variables such as PSA kinetics, Gleason 
grade progression, patient preference, and clinical 
or radiologic evidence of disease progression.[10,15] 
An increase in the Gleason score at repeat biopsy is 
predictive of the time to active treatment and correlates 
with patient outcome.[16] It has been reported that 
Gleason score progression occurs in approximately 
20% of men, with more than 50% of cases occurring 
within two years of the initial diagnosis.[17] However, a 
similar increase is seen in men subjected to immediate 
repeat biopsy when entering an AO program.[18] This 
short time interval, when compared with the long natural 
history of prostate cancer, suggests that sampling error 
rather than tumor progression is probably the primary 
source of tumor upgrading in these men.

The use of other biomarkers, such as circulating 
prostate cells (CPCs), could be useful in re-categorizing 
the patients who could be more adequately treated 
by active surveillance. One such biomarker could 
be circulating tumor cells, or, in the case of prostate 
cancer, CPCs. We review the literature on circulating 
tumor cells both to try to answer the question of whether 
they could be clinically useful to detect prostate cancer 
and as a guide to initial treatment, observation, or 
active treatment. We review the process of cancer cell 
dissemination from the primary tumor and how this 
may affect cell markers, and thus determine the criteria 
for detecting or identifying circulating tumor cells. 
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Methods of enrichment and detection of these cells are 
considered in how the method may affect what is being 
detected or not. Finally, we consider the clinical utility of 
these tests and how in day-to-day clinical practice they 
may help in decisions to proceed to prostate biopsy 
and treatment decisions of detected cancer.

A search for articles between the years 2000 and 2016, 
evaluating the detection of circulating tumor cells and 
CPCs was carried out using PubMed, Web of Science, 
and Cochrane Library. Case reports, review articles, 
non human models, and series involving fewer than 10 
patients were excluded.

THE DISSEMINATION OF CANCER CELLS 
FROM THE PRIMARY TUMOR

The metastatic process by which tumor cells leave 
the primary tumor and implant, survive, and growth 
in distant sites is multistage and complex. Several 
steps are needed for the cancer cells to escape 
from the primary tumor and intra-vasation, towards 
extravagation and successful implantation in distant 
tissues. With the advent of prostate cancer screening 
and the use of total serum PSA, there has been a shift 
towards a diagnosis of localized cancers.[19] However, 
despite being considered as localized by currently 
accepted staging methods, approximately 20-30% of 
patients suffer primary treatment failure,[20] suggesting 
that cancer cells have disseminated prior to treatment. 
Using polymerase chain reaction amplification of PSA 
mRNA, it has been reported that prostate cancer cells 
disseminate early in the metastatic process into the 
circulation.[21] These have been defined as primary 
circulating tumor cells, those detected before initial 
curative therapy.

Tumor cells may enter the circulation actively or 
passively;[22] passive entry into the circulation is a 
result of vessel leakage by the growing tumor and 
external forces such as surgical manipulation at the 
time of biopsy;[23] in these cases the circulating tumor 
cells do not require specific phenotypic characteristics. 
Active entry of tumor cells requires specific abilities 
which permit the cell to detach from the surrounding 
cells, survive free of them, and migrate towards blood 
vessels where they cross the capillary endothelium, 
enter the circulation, and disseminate. Thus, primary 
CPCs consist of a heterogeneous population ranging 
from metastatic initiating cells with specific cell 
properties[24] to non-aggressive cells without any 
specific survival ability.

In order to escape from the primary tumor, cancer cells 
exhibit a decreased expression in anchor proteins 

such as E-cadherin[25-27] and beta-catenin[25,27] and a 
loss of cytokeratins 8, 18, and 19, which increases 
tumor cell plasticity.[28,29] These changes occur in a 
coordinated fashion; they are higher in higher grade 
and less differentiated tumors.[28] There is increased 
expression of matrix metalloproteinases; these zinc-
containing endopeptidasesare activated in situ from 
their latent form and degrade the extracellular matrix. 
As such, they permit the cancers to disseminate to 
the circulation, implant, and form metastases.[29,30] 
Increased expression of metalloproteinase-2 (MMP-
2) has been demonstrated[31-33] and is associated with 
increasing Gleason score, pathological stage, and as 
a prognostic factor.[33,34] Primary CPCs detected before 
prostate biopsy express MMP-2, whereas one hour 
post-biopsy there are a mixture of MMP-2 positive and 
negative CPCs, inferring that MMP-2 is important in 
CPC dissemination from the primary tumor.[35]

Epithelial to mesenchymal transition plays an 
important role in cancer dissemination. There is a 
change in the phenotypic expression of epithelial and 
mesenchymal markers, with increased expression of 
mesenchymal markers such as vimentin, N-cadherin, 
or O-cadherin.[36,37] These patterns of expression are 
heterogeneous with a global decrease in epithelial cell 
marker expression.[38] However, CPCs that express 
only mesenchymal markers be may easily able to 
escape from the primary tumor, but for the same 
reason they have limited ability to implant in distant 
tissues.[39-42] Intermediate states have been reported, 
with circulating tumor cells expressing both epithelial 
and mesenchymal markers. This increased state of 
cell plasticity may be advantageoust0 implantation at 
distant sites and the future formation of metastasis. 
This plasticity is the hallmark of cancer stem cells,[43-47] 
and CPCs from prostate cancer patients have been 
reported to express CD133[48] or ALDH1[49] both 
markers of cell stem-ness.

One important epithelial marker that has relevance in 
the detection of CPCs is the epithelial cell adhesion 
molecule (EpCAM) (CD326). This is a 40 kD 
glycoprotein that was originally identified as a marker 
for carcinoma, with an increased expression being 
identified in rapidly proliferating epithelial tumors.

EpCAM was initially thought to be important in cellular 
adhesion. However, more recent reports indicate that 
it plays a role in cell to cell signaling, in migration 
and proliferation of cancer cells, and possibly in the 
prevention of cell-cell adhesion. In normal cells there 
is a variable expression of EpCAM, but it is reported to 
be lower than that found in primary tumors.[50]

Thus, the specific phenotypic characteristics of 
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cancer cells will determine their ability to disseminate 
into the circulation and may not reflect the general 
characteristics of the primary tumor due to the 
heterogeneous nature of individual cancer cells within 
the general tumor cell population.

In order to implant in distant sites CPCs must survive 
in the circulation. Only a few of the millions of tumor 
cells that are shed into the circulation are able to reach 
a distant site, implant, survive, evade the immune 
system, and eventually form a metastasis. It has been 
suggested that only 0.01% of circulating tumor cells 
can produce a single bony metastasis.[51,52] CPCs 
obtained from men with castrate-resistant prostate 
cancer failed to produce metastasis when implanted in 
immune-compromised mice.[53]

Firstly, circulating tumor cells have to resist anchorage 
dependent cell death; over-expression of anti-apoptotic 
proteins such as Bcl-2 overexpression[54] or activation 
of specific pathways such as tropomyosin-related 
kinase B (TrkB)[55] have been reported. Secondly, they 
have to evade the host’s immune systems. Circulating 
tumor cells from patients with colorectal cancer CD47 
expression were increased. This marker is considered 
to be an anti-phagocytic signal expressed on cancer 
cells to prevent macrophages and dendritic cells 
from attacking them. The counterpart of this anti-
phagocytotic mechanism, the expression of pro-
phagocytic calreticulin, was significantly decreased.[56]

Circulating tumor cells escape immune surveillance 
by shielding themselves from the immune cell 
population. It has been proposed that myeloid-derived 
suppressor cells facilitate the survival of cancer cells 
by creating a defensive shield. These myeloid-derived 
suppressors adhere to some of the circulating cancer 
cells, conferring a survival advantage.[57] Circulating 
tumors cells are rapidly coated by platelets. This may 
cause transfer of major histocompatibility complex 
(MHC) class I antigens on the tumor cell surface 
resulting in a high level of platelet-derived normal 
MHC class I. This coating of phenotypic normality 
disrupts the normal recognition of tumor cells by 
natural killer cells and T cell mediated immunity, thus 
permitting tumor cell survival.[58]

METHODS TO DETECT AND CHARACTERIZE 
CIRCULATING TUMOR CELLS

All methods of detecting circulating tumor cells 
are based first on enrichment of circulating tumor 
cells from venous blood and then on detection. 
The Food and Drug Administration (FDA) defines a 
validated biomarker assay as a system of analysis 

with established performance characteristics for 
which there is scientific evidence that elucidates 
the clinical significance of the results obtained. The 
stability, accuracy, and reproducibility of the assay 
are fundamental. Pre-analytical, analytical, and post-
analytical variables all have to be controlled during the 
assay process. Parkinson et al.[59] have extensively 
reviewed this topic as have Panteleakou et al.[60] 
Pre-analytical factors include the type of collection 
tube (including anticoagulant, storage, and transport 
conditions of the analytical variables), the type 
of enrichment and enumeration methods used, 
the sensitivity and specificity of the assay, the 
reproducibility of the assay between laboratories, 
and assay-specific controls. Other factors include the 
disease characteristics, how often the target cells are 
detectable in the study population or in other diseases 
or normal people, the positive and negative predictive 
values, and establishing cutoff values for a positive or 
negative test.

Enrichment of circulating tumor cells from 
blood
Methods for circulating tumor cell enrichment fall into 
three basic categories: density gradient centrifugation, 
cell filtration based on size or microfluidics, and immune-
magnetic isolation, often anti-EpCAM antibodies; or a 
combination of methods.

Density gradient centrifugation is a simple, fast, 
and cheap process, separating cells based on their 
differing densities. Circulating tumor cells separate 
with the mononuclear blood cells (density < 1.077 g/mL), 
forming an opaque layer which can be removed and 
further analyzed. Red blood cells and granulocytes 
(density > 1.077 g/mL), being denser, settle towards 
the bottom of the tube. The method has poor sensitivity, 
as tumor cells may be lost when cells sediment to the 
granulocyte layer, or, if present as cell clusters, when 
they aggregate to the bottom of the tube. This may be 
important because circulating tumor cell clusters have 
been reported in patients with metastatic prostate 
cancer[61] and have been correlated with a worse 
outcome in breast cancer.[62]

Furthermore, if the centrifugation is performed 
immediately, whole blood may be mixed with the 
gradient solution, causing contamination. The 
OncoQuick® system uses a porous barrier to prevent 
such contamination. It has been reported that this 
system improves the depletion of mononuclear cells 
resulting in higher relative tumor cell enrichment as 
compared with standard gel separation. However, 
using cell-spiked blood samples there was a similar 
tumor cell recovery rate of between 70% and 90%.[63,64]



                Journal of Cancer Metastasis and Treatment ¦ Volume 2 ¦ December 16, 2016

Murray                                                                                                                                                                                        Primary circulating prostate cells

457

Circulating tumor cells are larger than circulating blood 
cells; filtration methods are based on the physical 
properties of these cells and allow enrichment by 
size. Isolation of circulating tumor cells was first 
reported in 1964.[65] The filters use pores measuring 
between 7.5-8.0 µm in diameter, thus capturing 85-
100% of circulating tumor cells while retaining only 
0.1% of circulating blood cells.[66] Three commercially 
available filters are available: Screencell®Cyto, ISET®, 
and Metacell®. After filtration the filter membrane is 
removed and circulating tumor cells are identified 
by immunocytochemistry. Isolation of tumor cells by 
size is fast, simple, and reliable and does not require 
high-cost instrumentation. One drawback, though, is 
the need to process samples within four hours. The 
system does not detect the rare cells that are smaller 
than 8 µm; however, it will detect tumor cell clusters. 
The ISET® system detects one tumor cell in 1 mL of 
peripheral blood and permits the evaluation of tumor 
cells based on morphological criteria. False positivity 
occurs due to the lack of specificity of the enrichment 
technique. Normal epithelial or endothelial cells may 
be present due to coring by the sampling needle, and 
circulating cells have been described in samples taken 
from patients with benign conditions.[67,68]

Immunomagnetic selection methods use the specificity 
of antibody-antigen interactions combined with the 
physical properties of magnetic beads to separate 
tumor cells from blood cells due to the different 
expression of surface antigens in the differing cell 
populations. This is the basis of enrichment in the 
CellSearch® system, the only FDA-approved method 
of detecting circulating tumor cells. In the CellSearch® 
system, iron particles are coated with the epithelial cell 
surface marker EpCAM, an epithelial marker that is 
overexpressed in some cancers but not in normal blood 
cells.[69] However, EpCAM positive cells have been 
reported in patients with benign colon disease,[70] and 
in the original report of Allard et al.,[69] women without 
evidence of breast cancer had “circulating tumor cells” 
detected in between 5 and 7% of cases, 1 cell/7.5 mL 
blood sample. In addition, the epithelial phenotype 
of circulating tumor cells changes, as a result of the 
epithelial to mesenchyme transition the expression of 
EpCAM decreases and thus there may be failure of 
enrichment and as a result circulating tumor cells are 
not detected. This applies also to microchip devices 
that incorporate microposts labeled with anti-EpCAM 
(CTC Chip), using EpCAM coated beads (Dynabeads® 
Epithelial enriched)(MACS/auto MACS®)(AdnaTest®) 
or using microvortices in a herringbone pattern to 
increase the number of interactions between the 
EpCAM-coated chip surface and circulating tumor 
cells.[71] The same can be said for cytokeratin-based 

enrichment methods.[72]

Negative enrichment methods that deplete normal 
blood cells using the pan-leukocyte antigen CD45 after 
red cell lysis have also been used.[73]

Detection of circulating tumor cells
For the detection of enriched circulating tumor cells, 
two methods have been used: immunocytochemistry 
and reverse transcriptase-polymerase chain reaction 
(RT-PCR).

Immunocytochemistry
The advantage of methods using immunocytochemistry 
is the morphological analysis of the detected cells. 
The International Society of Hematotherapy and 
Graft Engineering criteria[74] for circulating tumor cell 
identification are an object with the appearance of cell 
with a nucleus. Most methods use a combination of 
markers; the CellSearch® system defines a circulating 
tumor cell as one positive for cytokeratin, negative 
for the pan-leukocyte antigen CD45, and expressing 
DAPI (4´, 6-diamidino-2-phenylindole) nuclear 
staining. The ISET® and Metacell® systems use anti-
cytokeratin staining, while the CTC membrane micro-
filter, Rosettesep® and Nanovelcro CTC Chip®, use 
immunofluorescence with a cocktail of anti-EpCAM, 
anti-cytokeratin, and CD45. All these methods in 
essence detect circulating epithelial cells and are not 
tissue specific. Using basic cell density methods, some 
authors have attempted to use more specific markers 
to detect circulating tumor cells, anti-PSA for prostate 
cancer,[75] anti-mammoglobin for breast cancer.[76] 
As such, these methods are not able to differentiate 
between benign and malignant circulating “epithelial” 
cells. In patients with benign colonic diseases, up to 29% 
of patients were positive for the Epispot® assay, and up 
to 19% of patients were positive for the CellSearch® 
assay.[70] One group has used the combination anti-
PSA and anti-P504S to address this problem. The 
expression of P504S has been used to differentiate 
between benign and malignant prostate tissues in 
biopsy samples. P504S is expressed in prostate cancer 
cells and those of prostate intra-epithelial neoplasia, 
but not in benign prostatic tissue.[77,78] The authors 
report that PSA positive cells can be detected in men 
with benign prostatic disease, especially prostatitis, 
but these cells are P504S negative, whereas men 
with prostate cancer had PSA positive cells which also 
expressed P504S.[79]

In reference to circulating cell clusters, the identification 
of CTC clusters (defined as ≥ 2 CTCs) has been related 
o poor outcome in stage III-IV breast cancer using the 
CellSearch system,[80] whereas Paoletti et al.[81] defined 
CTC clusters as ≥ 3 CTCs in the CellSearch gallery 
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and their presence was associated with a worse 
prognosis. However, there is no consensus regarding 
the morphologic characteristics necessary to define 
cell clusters using the CellSearch system.

RT-PCR detection of circulating tumor cells
RT-PCR is a more sensitive method than 
immunocytochemistry to detect circulating tumor 
cells. However, it has its limitations in that; (1) there 
may be amplification of nonspecific gene products; 
(2) it lacks thoroughly validated protocols for sample 
processing, RNA-preparation, cDNA synthesis, and 
PCR conditions; (3) it lacks rigorous quality control 
measures on a per-sample basis (the lack of a 
validated method increases the possibility of variations 
in sensitivity, specificity, and the potential of nonspecific 
amplification products being detected); and (4) there is 
no morphological confirmation of tumor cells.

The number of articles describing single or multiple 
markers to characterize CTCs using RT-qPCR in 
the blood of cancer patients has increased greatly 
in recent years, especially in breast cancer.[81-85] 
The Adnatest® PC CTC platform consists of the 
ProstateCancerSelect® and ProstateCancerDetect® 
system. The ProstateCancerSelect® system allows 
for an enrichment of tumor cells by an antibody-
mix (anti-EpCAM, anti-Her2) linked to magnetic 
particles and mRNA isolated from the selected cells. 
The ProstateCancerDetect® System transcribes the 
isolated mRNA into cDNA, and a multiplex PCR is 
performed for the analysis of tumor-associated gene 
expression (PSA, PSMA, EGFR). The use of multiplex 
systems permits an increased characterization of 
circulating tumor cells.

Cell clusters cannot be detected using methods of 
RT-PCR. Enumeration systems are normally imaged 
based, using immunocytochemistry or laser scanning 
techniques. Table 1 shows a summary of each 
commercial CTC detection kit.

CLINICAL USE OF THE DETECTION OF 
PRIMARY CPCS

In the detection of prostate cancer
There are few reported studies of the use of circulating 
tumor cells to detect prostate cancer. Early studies 
using different detection methods compared the 
presence of these cells in healthy controls, men with 
localized cancer, and men with metastatic prostate 
cancer. Circulating tumor cells appear to be less 
frequently detected in men with localized prostate 
cancer than those patients with advanced or metastatic 
cancer. In men with an increased PSA, there was a 

detection rate of 20% in men with cancer and in 21% of 
men with a benign prostatic disease.[86] Using the same 
CellSearch® system Thalgott et al.[87] failed to detect 
a difference between men with localized prostate 
cancer and healthy controls. Using RT-PCR, only 8% 
of men with localized prostate cancer were positive for 
circulating tumor cells, and the results were concordant 
with the use of the CellSearch® system.[88] In men with  
high risk non-metastatic prostate cancer and prior to 
any therapy, 14% of men had circulating tumor cells 
detected.[89]

In contrast, using the MetaCell® system, circulating 
tumor cells were identified in 52% of men with 
localized prostate cancer,[90] while Stott et al.[91] using 
a CTC chip platform detected circulating tumor cells 
with a cut-off value of ≥ 14 to determine a positive test 
found 42% of men with localized prostate cancer to be 
positive. However, using a telomerase-based method 
Fizazi et al.[92] detected tumor cells in 79% of men with 
localized prostate cancer. Using a combination of PSA 
and P504S immunocytochemistry, a study of over 
1,000 men undergoing prostate biopsy for an elevated 
PSA reported that 35% of men were CPC positive; 
used as a sequential test after PSA screening, it 
showed a sensitivity of 81%, specificity of 89%, and 
a negative predictive value of 90%.[93] The same 
group compared this method of CPC detection with 
PSA kinetics, age-defined PSA cut-off values, and the 
Montreal nomogram, and reported that CPC detection 
was superior in predicting prostate cancer at first 
biopsy.[94-96] They also concluded that men with low-
grade small volume tumors, those complying with the 
criteria for active observation, were CPC negative.[97] 
Men with benign prostatic disease, especially 

Table 1: Enrichment and detection systems of commercially 
available kits

System Enrichment Detection
CellSearch IC EpCAM IF CK, CD45, DAPI
Epispot IC non-EpCAM Secretion of proteins 

CK19, MUC1, PSA
Metacell Cell size ICC for CK
CTC membrane Cell size IF for CK
RosetteSep ID CD45 IF for CK EpCAM CD45
Nanovelcro chip Microfluids and IC IF for CK EpCAM CD45
Adnatest IC EpCAM qRT-PCR
Ficoll-Paque Cell density ICC PSA and P504S

IC: immune-capture; IF: immunofluorescence; CK: cytokeratin; 
ICC: immunocytochemistry; ID: immune-depletion; PSA: prostate-
specific antigen

Table 2: Methods reported in the detection and pretreatment 
prognosis of prostate cancer

Diagnosis Prognosis
CellSearch Not useful Not useful
Rt-PCR Not useful Possibly useful
Ficol-Paque Possibly useful Possibly useful

Rt-PCR: reverse transcriptase-polymerase chain reaction
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prostatitis, may have PSA-positive circulating tumor 
cells detected but they were P504S negative.[79] 
Validation in multicenter prospective clinical trials is 
therefore essential to assess its potential usefulness 
[Table 2].

As a prognostic marker to guide in the decision 
to treat or to observe
As a prognostic factor, primary CPCs do not appear to 
have a definitive use. This is because the majority of 
these cells will be eliminated by the primary treatment, 
be destroyed by the host’s defense mechanisms, or 
not have the phenotypic characteristics to be able to 
implant and survive. In men with early stage prostate 
cancer, the detection of circulating tumor cells using 
RT-PCR was associated with a worse prognosis.[98] 
Using PSA and PSMA genes to identify circulating 
tumor cells in men prior to radical prostatectomy, men 
negative for the test had significantly better outcomes.[99] 
Using a positive/negative cutoff value, men negative 
for circulating tumor cells have a significantly better 
10-year biochemical free failure survival after radical 
prostatectomy than men positive for CPCs.[100]

When used as a predictive prognostic factor and 
compared with predictive nomograms, using the 
CellSearch® system[101] or the PSA/P504S combined 
immunocytochemical assay,[102] there was little if 
any improvement in predicting the prognosis of men 
pretreatment [Table 2].

Thus, the possibility of identifying circulating tumor cells 
in early stage prostate cancer seems to be achievable. 
However, the methods need to be clinically validated 
in multicenter studies. The use of primary CPCs as 
a sequential test to detect prostate cancer and as a 
guide to treatment seems a very fascinating area of 
research that warrants further studies.
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The discovery of Toll-like receptors (TLRs) about 20 years ago was a remarkable 
achievement not only in the field of immunology but also in the field of medicine. The 
TLRs are a family of pattern recognition receptors which play an important role in 
immune responses by recognizing pathogen-associated molecular patterns. The TLRs also 
recognize danger-associated molecular patterns, which are associated with some diseases 
such as cancer. Recent evidence shows that TLRs are expressed not only in immune 
cells but also in tumor cells. The TLRs appear to play a role in tumor progression and 
treatment. Most likely, TLR activation has an impact on the initiation, development and 
treatment of tumors by modulating the inflammatory microenvironment. However, the 
activation of TLRs contributes to both inhibition and promotion of various tumors, with 
unclear underlying mechanisms. In this review article, the authors elucidate their current 
understanding about the role of TLRs in tumor progression, as well as the recent progress 
in utilizing TLR agonists as potential therapeutic agents in cancer treatment.
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INTRODUCTION

The discovery of Toll-like receptors (TLRs) 
approximately twenty years ago is a revolutionary event 
in life science and medical research, and helps improve 
our understanding about the role of innate immunity in 
both the physiology and pathology of human health. 
The medical community came to realize that innate 
immunity is essential and critical in immune responses 
to pathogen infections and in connection with the 
activation of adaptive immunity.[1-3] Therefore, the 2011 
Nobel Prize in Physiology or Medicine was awarded 
to scientists who made significant contributions to the 
discoveries concerning TLRs and their role in innate 
immunity. These discoveries mean that researchers 
now understand TLR biology much better [Figure 1].[4-6] 
In this article, we summarize the role of TLRs in the 
immune system and focus on the expression of TLRs 
in cancer cells and their role in cancer progression. 
Finally, we discuss the current status of research in 
utilizing TLR agonists as potential therapeutic agents 
in cancer treatment.

TLRs: THE KEY SENSORS IN INNATE 
IMMUNE RESPONSE

The TLRs are a family of evolutionarily conserved 
pattern recognition receptors which play a vital role 
in immune responses against infection.[1-3,7] There 

are ten TLRs in humans, classified as two subgroups 
based on their cellular localization:[8] TLR 1, 2, 4, 5, 6 
and 10 are located on the cell surface and respond 
primarily to pathogen-associated molecular patterns 
(PAMPs) such as lipids and bacterial proteins. In 
contrast, TLR 3, 7, 8 and 9 are located intracellularly 
in the endosomes, responding primarily to nucleic 
acids from both viruses and bacteria.[9] The TLRs are 
a class of type I transmembrane proteins comprised 
of an extracellular domain, transmembrane region 
and intracellular domain.[10] The ectodomain contains 
leucine-rich repeats and two to four evolutionarily 
conserved cysteine structures which recognize and 
bind to evolutionarily conserved molecular motifs in 
PAMPs. The intracellular domain is highly homologous 
among the TLRs and contains a toll/interleukin-1 
receptor (TIR) domain, which is crucial to the 
intracellular activation of signaling cascades leading 
to the induction of pro-inflammatory cytokines and 
chemokines.[11]

The TLRs recognize PAMPs from micro-organisms 
or danger-associated molecular patterns (DAMPs) 
from damaged tissues to activate innate and 
adaptive immune responses. A variety of ligands 
corresponding to distinct TLRs have been identified 
so far [Figure 1].[12-14] For example, TLR2 recognizes 
peptidoglycan and lipoteichoic acid from bacterial 
cell wall;[15] TLR3 recognizes double-stranded 

Figure 1: TLR ligands and TLR signaling pathways. Cell surface TLRs, including TLR-1, -2, -4, -5, -6, -10, and -11, and intracellular TLRs, 
including TLR-3, -7, -8, and -9, recognize their specific PAMPs to activate TLR signaling cascades.[70] TLR: Toll-like receptor; PAMPs: 
pathogen associated molecular patterns
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RNA (dsRNA)[16] which constitutes the genome of 
RNA viruses; TLR4 is well known as a sensor of 
lipopolysaccharide (LPS) from bacteria;[17] TLR5 is 
responsible for the recognition of flagellin;[18] single-
stranded RNA is identified as the ligands of TLR7 and 
TLR8;[19] and intracellular TLR9 senses unmethylated 
CpG oligonucleotide (ODN).[20] The specific ligand for 
TLR10 has not yet been defined. TLR11 in mouse 
macrophages is known to recognize uropathogenic 
Escherichia coli, but TLR11 is not expressed in 
humans.[21]

Signaling for TLR is initiated by recognition of 
PAMPs and the ligand-induced dimerization of TLRs 
[Figure 1]. Upon activation, TLRs recruit TIR-domain-
containing adaptor proteins for the subsequent 
activation of downstream signaling. The adaptors 
include myeloid differentiation factor-88 (MyD88), Toll/
IL-1 receptor domain adaptor protein, TIR-domain-
containing adapter-inducing interferon-β (TRIF), 
TRIF-related adaptor molecule and sterile-α and 
armadillo motif-containing protein. These adaptors 
provide receptor sites for relevant proteins and initiate 
various signaling events, which results in a variety of 
inflammatory cytokines transcription by mediating the 
phosphorylation of IkBα to active NF-kB. The multiple 
signaling pathways contribute to the rapid response 
of the innate immune system to the pathogens.[22] In 
addition, the recognition of PAMPs by TLRs gives 
rise to the activation and maturation of dendritic cells, 
and pro-inflammatory cytokines and chemokines are 
produced to induce the proliferation and differentiation 
of Th1 and Th2, which establishes and regulates 
adaptive immunity.

TLRS ARE ALSO EXPRESSED IN TUMOR 
CELLS

The TLRs, a family of receptors in the innate immune 
system, are expressed and activated in innate immune 
cells such as macrophages and dendritic cells. In recent 
years, however, some studies have shown that TLRs 
are also highly expressed in various tumor cells.[23-27] 
For example, over-expression of TLR2, TLR3 and 
TLR4 has been detected in majority of colonic cancer 
cells,[28,29] and TLR2, TLR3, TLR4 and TLR5 are highly 
expressed in ovarian cancer cells.[30,31]

Therefore, the study of TLR expression and function 
in cancer has become a focus for researchers. In 
the colon mucosa of polyposis patients, high mRNA 
copy numbers of TLR3 have been observed, and 
strong TLR3 expression has been demonstrated and 
associated with colorectal cancer stages.[32] Mice 
deficient in TLR4 and MyD88 have shown significant 

decreases in the size, incidence and number of 
chemical-induced liver cancer neoplasms, indicating 
an important contribution of TLR signaling to hepato-
carcinogenesis.[33,34] Two TLRs, TLR5 and TLR9, are 
considered to be associated with cervical cancer; 
the expression of these two receptors increases 
significantly in higher grades of cervical cancer while 
this expression is rarely detected in normal cervical 
squamous epithelial cells.[35] The expression of TLR9 
promotes angiogenesis and is associated with lower 
lung cancer survival rates.[36] Moreover, TLR9 promotes 
the proliferation of prostate cancer cells in time- and 
dose-dependent manners confirmed by the expression 
level of NF-kB and downstream c-Myc.[37]

Although many TLRs promote the occurrence and 
development of tumors via a variety of mechanisms, 
some TLRs might have an antitumor effect. Therefore, 
the activation of TLRs in cancer cells can play a 
complex role. The upregulation of TLR1 and TLR2 in 
bladder cancer promotes the nuclear translocation 
of NF-kB and the activation of the c-JNK signaling 
pathway, which increases the secretion of IL-1, IL-6 
and IL-8.

Moreover, TLR3 is considered to promote the death 
of tumor cells in various cancers. A study by Paone et al.[38] 
indicated that the TLR3 agonist poly I:C inhibits the 
proliferation, and promotes the apoptosis, of prostate 
cancer cells by activating protein kinases. The 
combination of poly I:C and 5-fluorouracil (5-FU) or 
IFN-α effectively induced apoptosis in human colon 
cancer cells.[39] Increased expression of TLR3 in human 
melanoma can inhibit the proliferation and induce the 
death of tumor cells with pretreatment of type I IFN.[40] 
In addition, our study showed that the TLR5- activated 
signaling pathway in breast cancer inhibits the 
proliferation of tumor cells by down-regulating cyclin 
B1, cyclin D1 and cyclin E2.[41] In human head and neck 
cancers, TLR5 activated by flagellin also reduces tumor 
cell proliferation and promotes tumor cell apoptosis. 
When treated with CpG oligodeoxynucleotides (CpG 
ODN) 107 and irradiation, the TLR9 signaling pathway 
in human glioma arrests the cell cycle and reduces the 
proliferation of tumor cells by activating downstream 
NF-kB and NO pathways.[42] A TLR9 agonist inhibits 
proliferation and promotes caspase-dependent 
apoptosis of neuroblastoma cells. In addition, it has 
shown antitumor and anti-angiogenesis effects in renal 
cell carcinoma.[43]

The regulation of TLRs and their signal transduction 
is complicated, and understanding of the mechanism 
is limited. Recently, the role of autophagy in immune 
response has drawn special attention because 
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TLRs can stimulate autophagy, which conversely 
regulates TLRs and their signal transduction, with 
the mechanism unknown. We recently reported that 
microtubule-associated protein 1S (MAP1S), an 
intracellular autophagy-related molecule, can regulate 
TLRs and their signaling.[44] MAP1S plays an important 
role in cell cycle arrest induced by the flagellin/TLR5 
signaling pathway in human breast cancer cell MCF-7, 
and it is also involved in the inhibition of cell migration 
of MCF-7 by flagellin. To sum up, given the increasing 
evidence of mutuality between TLRs and tumors, 
more attention has been given to innate immunity in 
tumor cells, especially regarding TLRs expression and 
signaling pathway, both of which play a significant role 
in the development of cancer.

TLRs PLAY A CRITICAL ROLE IN TUMOR 
DEVELOPMENT

TLR signaling inhibits tumor growth
The TLRs play an immune surveillance role mainly by 
inducing the production of multiple cytokines and the 
activation of immune cells. Cytokines such as type I 
interferon (IFN-I) and interleukin 12 (IL-12) promote 
the activation of NK cells and enhance the scavenging 
capacity of the host with tumor cells.[45] Other cytokines 
such as IL-2 and IFN-γ can enhance the ability of 
tumor-specific cytotoxic T lymphocyte (CTL) in the host 
to recognize and scavenge tumor cells. Intriguingly, 
some TLRs agonists were found capable of inhibiting 
tumor growth.[46-49] It has been reported that the 
combination of TLR agonists, chemotherapy drugs and 
tumor vaccine could improve the efficacy of eliminating 
tumor cells, an effect mainly based on the activation 
of antigen-presenting cells and the enhancement of 
T-cell immune response by TLRs.[50] The increased 
expression of MHCII, CD88 and CCR7 in the activated 
antigen presenting cells of the TLRs signaling pathway 
significantly enhances recognition and presenting to 
tumor antigen. Also, TLR1/2 acting on CD8+ CTLs 
increases the secretion of IFN-γ, TNF-α and IL-2 to 
promote the secretion of granzyme B and perforin by 
CD8+ T cells, which play a key role in elimination of 
tumor cells.[51]

In addition, TLRs also act directly on tumor cells; 
TLR3 is thought to be effective in promoting tumor 
cell apoptosis in a variety of tumors. When activated 
by dsRNA, an agonist of TLR3, breast cancer cells 
generate autocrine type I IFN, which mediates TLR3 
dependent cell apoptosis.[52,53] In type I and II lung 
cancer cells, the engagement of TLR3 by dsRNA 
induces an atypical caspase-8-containing complex, 
which activates apoptotic pathways leading to tumor 
cell death.[53] In the development of tumors, vigorous 

metabolism leads to metabolic disorders and local 
hypoxia, through which large amounts of tissue cell 
debris and proteins are released. The debris and 
proteins are recognized by TLRs as DAMPs, which 
are considered signals of danger, and this recognition 
consequently influences the various biological 
behaviors of tumor cells. It has been reported that 
HMGB1, an endogenous ligand of TLR2 which binds 
to TLR2 and activates TLR2 signaling pathways in 
glioblastoma, mediates antitumor immune response 
by inducing the activation of DCs and their migration 
into the brain tumor.[54]

TLR signaling promotes tumor growth
The activation of TLRs can also promote tumor growth 
in many situations. Recent studies have found that the 
combination of highly expressed TLRs and DAMPs 
in tumors changes the homeostasis of the immune 
system, which leads to the suppression of immune 
function. HMGB1 has been identified as a cause of 
tumors of the skin, liver and pancreas. Furthermore, 
TLR4 recognizes and combines with HMGB1 released 
by necrotic cells, and this recognition may eventually 
cause immune tolerance by activating the downstream 
pro-inflammatory signaling pathway. At the same 
time, HMGB1 aggregates in the cell membrane and 
promotes the invasion and growth of tumor cells.[23]

Although the specific mechanisms of TLR-mediated 
immune escape are still unknown, the high expression 
of TLRs in tumors often leads to immunosuppression 
while enhancing the invasiveness of tumors. Studies 
have found that the activation of the TLRs signaling 
pathway may lead to increased secretion of IL-10 and 
TGF-β, both of which are major immune suppressors 
in vivo.[55] In addition, the activation of TLRs is also 
accompanied by the expression of PD-L1, HLA-G and 
other inhibitory costimulatory molecules.[56] In a mouse 
model of colon cancer, TLR4 has prolonged the survival 
time of tumor cells by up-regulating programmed death 
ligand 1 (PD-L1/B7-H1), inducible costimulator ligand 
(B7-H2) and down-regulating the expression level of 
Fos.[57] Supernatants generated from murine colon 
cancer cells stimulated with LPS were found to play a 
significant role in the inhibition of T cell proliferation and 
NK cell cytotoxicity. The effect can be reversed after 
the TLR4 signaling pathway is blocked, which may 
explain the pathway’s immunosuppressive effect.[58] 
In addition to the inhibiting role, TLRs also promote 
the proliferation of tumor cells and enhances tumor 
invasion, promoting immune escape, while TLR2 
in human gastric cancer cell lines promotes tumor 
progression through the induction of COX-2, PGE-2 
and IL-8.[57]
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The TLR signaling can lead macrophage polarization 
change, from M1 (inhibiting tumor) to M2 (promoting 
tumor), which might explain, at least partially, why 
TLR signaling promotes tumor growth. The M1/M2 
polarization model has been reported in many cancer 
research studies in recent years. The M1 of tumor-
associate macrophages (TAM) express high levels 
of IL-12 and IL-23, and function as inducers of Th1 
responses. During tumor progression, TAM polarizes 
toward M2 TAM, an alternatively activated macrophage, 
with a tumor growth-promoting phenotype. However, 
this M1/M2 polarization has only been well established 
in vitro, not in vivo. Therefore, the role of TLR signaling 
in M1/Me polarization calls for further investigation.

The role of TLRs in cancer progression: a 
double-edged sword
Overall, as discussed above, the activation of TLRs 
can both promote and inhibit tumor growth and cancer 
progression, and the underlying mechanism remains 
elusive. Current knowledge shows that different TLRs 
share similar signaling pathways, but this cannot 
explain why the activation of different TLRs in cancers 
has opposite effects on tumor growth. Also, TLR 
agonists themselves might have direct pro- or anti-
tumor effects, but current evidence shows that these 
effects, at least in majority of cases, are very minor. 
Another potential mechanism is that different TLRs 
might trigger different signaling pathways in cancer 
cells. We recently found that activation of TLRs in 
cancer cells may induce cancer cells to secrete various 
soluble factors, which might play distinct roles in cancer 
development. The role of TLRs in cancer progression 
needs to be further investigated, and understanding 
the underlying mechanism is essential for the further 
development of TLR agonists as therapeutic agents.

TLRS IN CANCER TREATMENT

Since the first TLR was discovered in 1997,[59] studies 
of the characteristics and prospects of TLRs have 
become prominent in research. However, the clinical 
application of TLRs is just beginning.[60] To date, only 
a few TLR agonists have been approved by the Food 
and Drug Administration for clinical trials involving 
cancer patients involving Bacillus Calmette-Guérin 
(BCG), Imiquimod and monophosphoryl lipid A (MPL). 
Originally used as a vaccine against tuberculosis, 
BCG is approved for the treatment of bladder cancer; 
it potently activates TLR2 and TLR4 signaling.[61] 
Meanwhile, the BCG vaccine is sometimes used to 
help treat stage III melanoma.[60,62] Imiquimod, a TLR7 
agonist which has been in Phase II clinical trials, is 
efficacious in  treatment of various skin tumors and 
epidermal metastasis,[63] and MPL, a derivative of LPS, 

is in phase I clinical trials for testing antitumor activity in 
colorectal cancer patients. At this time MPL has been 
approved as an adjuvant of Cervarix, a cancer vaccine 
against HPV-associated cervical cancer.[64]

Since the anti-tumor effect of a single TLR agonist 
remains to be verified and the side effects need to be 
considered, it may be premature to apply a single TLR 
agonist to the clinical treatment of tumors. For example, 
the two-way effects of TLR3 make it a potentially risky 
therapeutic drug. Although the TLR3 agonist poly A:U 
is considered to be therapeutically effective in patients 
with various types of cancers, the risk of metastasis 
relapse is significantly decreased in TLR3-positive, 
not in TLR3-negative breast cancers.[65] The function 
of TLRs in tumors varies with the origin and type of the 
tumors, which indicates that the therapeutic use of TLR 
agonists requires much more clinical evidence.

While most of the TLR4 studies reported a tumor-
promoting effect,[34,66-69] one study found a protective 
effect against lung cancer in the lung epithelium.[70] 
This indicates the need for further study. Nevertheless, 
the anti-tumor effect of TLRs agonists is still worth 
exploring.[70-72] The members of the TLR family 
are different in many aspects such as expression 
distribution, subcellular localization, adaptive 
molecules for inducing signal transduction, recognized 
PAMPs and the types of the induced immune response. 
Treatment using TLRs ligands has to be based on the 
identification of the TLRs signals with corresponding 
diseases, as well as identifying the types of vaccines 
with significant enhancement that can be used safely 
and effectively in clinical practice. Future studies 
should pursue many avenues of research.

CONCLUSION

The TLRs play a critical role in tumor immunity, and the 
antitumor effect is also a notable focus for future studies 
on cancer therapy. The perspective approach for future 
cancer treatment may be that the combination of some 
specific TLR agonists or antagonists with traditional 
cancer treatments might improve treatment efficacy.  
The role of TLRs in both promoting and inhibiting tumor 
growth and metastasis has been confirmed in various 
studies. However, the specific mechanism of action is 
still unclear; at the same time, cancer is a multifactorial 
disease, and the research of TLRs on tumor immunity 
is just beginning. Further studies may help us better 
understand TLRs and tumor immunity, and the 
clarification of the roles of TLRs in tumorigenesis 
and tumor metastasis will provide new strategies and 
prospects for more effective cancer treatment.
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Aim: Excision repair cross complementation group 1 (ERCC1) has a key role in enhanced 
DNA damage repair caused by oxaliplatin-based therapy and may lead to resistance of 
these platinum drugs in colorectal cancer (CRC) patients. Hence, the present preliminary 
study aimed to explore the role of ERCC1 C/T polymorphism at codon 118 as well as 
its immunoreactivity in patients with primary CRC. Methods: ERCC1 polymorphism 
was studied using PCR-RFLP and ERCC1 protein expression was examined by 
immunohistochemistry in 50 CRC patients. Results: ERCC1 codon 118 C/T polymorphism 
analysis reported the predominance of C/T (52%) genotype as compared to C/C (38%) 
and T/T (10%) genotypes. Furthermore, 72% of patients showed positive ERCC1 protein 
expression. Significant correlation was not observed between clinicopathological 
parameters and ERCC1 polymorphism, while ERCC1 protein expression significantly 
correlated only with tumor site (colon vs. rectum) (P = 0.046). Further, the present study 
failed to demonstrate the role of ERCC1 C118T polymorphism or protein expression 
as useful prognostic markers in CRC patients. Conclusion: ERCC1-positive protein 
expression may be a useful marker for rectal cancer patients. However, further evaluation 
in a larger set of CRC patients is required to better understand the role of ERCC1.
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INTRODUCTION

The antimetabolite, 5-Flourouracil (5-FU), was 
introduced in 1957 by Heidelberger et al.[1] and today 
it is the cornerstone of chemotherapeutic regimens in 
treatment of colorectal cancer (CRC). However, the 

overall response rate is only 10-15% for advanced 
CRC when treated with 5-FU alone.[2] In recent years, 
the outcome of patients with CRC has been improved 
significantly because of the use of oxaliplatin-based 
combination therapy with 5-FU (FOLFOX). Oxaliplatin, 
in combination with leucovorin and 5-FU, is quite 
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effective in the treatment of CRC, in both the adjuvant 
and metastatic settings.[3]

Oxaliplatin is a cytotoxic platinum compound 
which exerts its effects through  development of 
DNA adducts.[4] DNA repair, especially nucleotide 
excision repair (NER) pathway, plays an important 
role in platinum-based chemotherapeutic efficacy 
by repairing drug-produced DNA damage. Excision 
repair cross complementation group 1 (ERCC1) is a 
chief component of the NER pathway[5,6] and a highly 
conserved protein, essential for  elimination of DNA 
adducts caused by the platinum compound. It plays 
a major role in better repair and tolerance of DNA 
damage, leading to resistance of platinum drugs.[7,8]

A common C/T single nucleotide polymorphism (SNP) 
at codon 118 of ERCC1 has been identified. This 
SNP may contribute to inter-individual variability in 
DNA repair capability and has been documented as 
a predictor for outcome in CRC patients who have 
been treated with platinum-based chemotherapy.[9] 

This polymorphism results in the same amino acid, 
asparagine, but a tendency towards elevated ERCC1 
mRNA and protein levels observed as the number of 
T alleles increases. Moreover, clinical and preclinical 
studies indicate that overexpression of ERCC1 protein 
is associated with resistance to platinum-based 
chemotherapy in various types of cancers.[10,11]

Therefore, the present study aimed to evaluate the 
prevalance of ERCC1 C118T SNP polymorphism 
and the expression of ERCC1 protein in patients with 
primary CRC and further to evaluate their role in the 
clinical outcome of CRC patients.

METHODS

Patients
A total of 50 CRC patients who underwent surgical 
resection at the Gujarat Cancer and Research Institute, 
Ahmedabad, between 2013 and 2014 were included 
in this study. Inclusion criterion was an untreated 
CRC patient with histopathologically confirmed 
adenocarcinoma without any prior history of anticancer 
treatment. Patients were followed for a minimum of 15 
months or until death within that period.

Sample collection
The study was approved by Institutional Scientific 
and Ethical Committees and informed consent was 
required from all patients prior to sample collection. 
To examine ERCC1 polymorphism, colorectal tumor 
was collected from the histopathology department 
immediately after surgery. The tumor portion was 

selected by the pathologist, snap frozen in liquid 
nitrogen, and immediately stored at -80 ℃ until 
analysis. For the study of ERCC1 protein expression, 
paraffin embedded tumor tissue blocks were retrieved 
from histopathology department.

DNA extraction and ERCC1 polymorphism 
study by PCR-RFLP
DNA extraction from tumor was performed by Phenol: 
Chloroform method. PCR of the SNP C/T at codon 
118 of ERCC1 gene was performed using QIAGEN 
Taq PCR kit and following primers sequences: forward 
primer: 5’-GCAGAGCTCACCTGAGGAAC-3’; reverse 
primer: 5’-GAGGTGCAAGAAGAGGTGGA -3’ (Sigma-
Aldrich). After initial denaturation at 94 °C for 3 min, the 
following PCR protocol was performed for 35 cycles: 
Denaturation at 95 °C for 1 min, annealing at 55.7 °C 
for 45 s, and extension at 72 °C extensions for 1 min. 
Digestion of these PCR products was performed with 
BsrD1 restriction enzyme (New England BioLabs, USA) 
at 65 °C for 4 h and separated on 2% agarose gel.

ERCC1 protein expression by 
immunohistochemistry
Immunohistochemistry for ERCC1 was performed on 
4 μm thick formalin-fixed, paraffin embedded tissue 
sections. FFPE tumor tissue sections were stained 
using mouse- and rabbit- specific HRP/DAB (ABC) 
Detection IHC kit according to manufacturer’s protocol. 
The primary antibody used was mouse monoclonal anti-
ERCC1 (clone 4F9: Dako, USA, dilution: 1:50). Sections 
known to exhibit high expression of protein were used as 
positive controls, while negative controls were obtained 
by omission of primary antibody. A semiquantitative 
score was used starting from negative (no staining or, 
10% of cells stained) to 3+ (1+ staining for 11-30% of 
cells: weak, 2+ staining for 31-50% of cells: moderate, 
and 3+ staining for > 50% of cells: intense).

Statistical analysis
The statistical data analysis was performed by Statistical 
Package for the Social Sciences software version 17. 
Two tailed chi (χ2) test was used to determine the 
association between clinicopathological variables with 
ERCC1 polymorphism and ERCC1 protein expression. 
Correlation between two parameters was calculated 
according to Spearman’s correlation coefficient (r) 
method. Relapse-free survival (RFS) and overall 
survival (OS) was calculated using Log rank test. P 
value < 0.05 was considered significant.

RESULTS

Patient characteristics
Patient and tumor characteristics of the 50 patients 
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are outlined in Table 1. The median age was 55 years. 
There was a considerable proportion (54%) of elderly 
and dominance of male patients (60%). The incidence 
of patients having colon cancer was higher (56%) as 
compared to rectal cancer (44%). Higher occurrence 
of early stage patients (60%) was observed. Complete 
follow-up details were obtained in 80% (40/50) and 
were included for OS analysis. Amongst these 40, 4 
died due to disease and hence were not included for 
the RFS analysis. Therefore, 36/40 CRC patients were 
considered for RFS analysis from which 2 patients 
developed recurrence [Table 1].

Incidence of ERCC1 codon 118 C/T 
polymorphism
Three types of genotypes have been identified for 
ERCC1 C118T SNP: C/C genotype at 208 bp, C/T 
genotype at 208, 128 and 80 bp and T/T genotype at 
128 and 80 bp [Figure 1].

Thirty-eight percent (n = 19) showed the C/C genotype, 
52% (n = 26) showed the C/T genotype, and 10% (n = 
5) showed the T/T genotype. Thus, prevalence of C/T heterozygous genotype was observed in this group 

of CRC patients. The distribution of ERCC1 codon 
118 polymorphism genotypes was consistent with the 
Hardy-Weinberg equilibrium among patients (χ2 = 0.82, 
P = 0.36).

Incidence of ERCC1 protein expression
Expression of ERCC1 protein was localized in the 
cytoplasm of epithelial cells of colon and rectum 
[Figure 2]. ERCC1-positive protein expression was 
detected in 72% (n = 36) of patients whereas 28% 
(n = 14) showed ERCC1-negative protein expression.

Correlation of ERCC1 polymorphism 
and ERCC1 protein expression with 
clinicopathological parameters
ERCC1 codon 118 C/T polymorphism was 
not significantly associated with any of the 
clinicopathological parameters. On the other hand, 
the incidence of ERCC1 protein immunoreactivity was 
significantly higher in patients having rectal (86%) than 
with colon cancer (61%) (χ2 = 4.020, r = +0.284, P = 
0.046; Figure 3). ERCC1 protein expression was not 
significantly associated with the other parameters.

Correlation between ERCC1 polymorphism 
and ERCC1 protein expression
Predominance of ERCC1-positive protein expression 
was observed in all three sub-groups of patients 
having C/C (74% 14/19), C/T (69% 18/26), and T/T 
genotypes (80% 4/5). However, the difference was not 
statistically significant (P = 0.981).

Table 1: Patient and tumor characteristics (n = 50)
Characteristics n (%)
Age (year)
   < 55 23 (46)
   ≥ 55 27 (54)
Gender
   Female 20 (40)
   Male 30 (60)
Habit 
   No 29 (58)
   Yes 21 (42)
Tumor site
   Colon 28 (56)
   Rectum 22 (44)
Tumor size
   T2 5 (10)
   T3 43 (86)
   T4 2 (4)
TNM stage
   Early stage (I + II) 30 (60)
   Advanced stage (III + IV) 20 (40)
Dukes’ stage
   B 30 (60)
   C 20 (40)
Histological type
   Adenocarcinoma 35 (70)
   Mucin adenocarcinoma 14 (28)
   Signet ring cell carcinoma 1 (2)
Histological grade
   Well differentiated 9 (18)
   Moderately differentiated 33 (66)
   Poorly differentiated 8 (16)
CEA (ng/mL) (n = 45)
   < 5.0 19 (42)
   ≥ 5.0 26 (58)
Treatment
   Surgery alone 9 (18)
   Surgery + chemotherapy 25 (50)
   Surgery + chemotherapy + radiotherapy 12 (24)
   Surgery + radiotherapy 4 (8)
Recurrence/metastasis (n = 36)
   Absent 34 (94)
   Present 2 (6)
Disease outcome (n = 40)
   Alive 35 (88)
   Dead 5 (12)

Figure 1: Representative pattern of ERCC1 codon 118 genotypes 
separated on 2% agarose gel. Lane 1, 3, 6 and 8: undigested PCR 
products; Lane 2: T/T homozygous genotype at 128, 80 bp; Lane 
4 and Lane 7: C/T heterozygous genotype at 208, 128 and 80 bp; 
Lane 9: C/C wild type genotype at 208 bp; Lane 5: 50 bp ladder. 
ERCC1: excision repair cross complementation group 1; PCR: 
polymerase chain reaction
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Univariate survival analysis according to 
ERCC1 codon 118 C/T polymorphism and 
ERCC1 protein expression
When patients were stratified according to ERCC1-
118 polymorphism, it was observed that both patients 
(100%) who had developed relapse had the C/T 
genotype, whereas amongst the 5 patients who died, 
2 (40%) each had the C/C and C/T genotypes, and 
one (20%) had T/T. Further, when patients were 
stratified according to ERCC1 protein expression, of 
the 2 who developed recurrences, one (50%) was 
ERCC1-positive and another (50%) was ERCC1-
negative. Among the patients who had died, 4 (75%) 
were ERCC1-positive and one (25%) was ERCC1 
negative. However, the data were statistically non-
significant.

DISCUSSION

Oxaliplatin, a platinum-based chemotherapeutic drug, 
induces DNA damage by forming DNA adducts. DNA 
repair proteins involved in the NER pathway, such 
as ERCC1, play a key role in repair of this damage, 
thus leading to resistance to platinum-based therapy. 
Several clinical studies have demonstrated that 
both ERCC1 polymorphism and protein expression 
are associated with resistance to platinum-based 

chemotherapy and have the potential to be used as 
candidate biomarkers for CRC. Therefore, the present 
study explored the role of ERCC1 C118T SNP as well 
as ERCC1 immunoreactivity in CRC patients.

A predominance of the C/T genotype (52%) was 
observed as compared to C/C (38%) and T/T (10%) 
genotypes. In accordance with the current study, 
one CRC study reported a higher incidence of the 
C/T genotype, with 44% as compared to C/C (24%) 
and T/T (32%).[12] However, another reported that 
the frequencies of C/C, C/T, and T/T genotypes 

Figure 3: Significant correlation of ERCC1 protein expression 
with tumor site; P = 0.046 between the colon and rectum groups. 
ERCC1: excision repair cross complementation group 1

Figure 2: Representative staining of ERCC1 (×40). (A) Colon cancer; (B) colon cancer; (C) rectal cancer; (D) negative control. ERCC1: 
excision repair cross complementation group 1
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were 47.6%, 39.9% and 12.5%, respectively in Asian 
patients, very similar to previous  reports in Caucasian 
populations.[4,13]

In the present study, it was found that there was positive 
ERCC1 protein expression in 72% of CRC patients. 
Likewise Wang et al.[14] reported 68.1% positive ERCC1 
immunoreactivity in patients with gastric cancer. 
However, in 2 studies, ERCC1 positivity was observed 
in 45% and 55% of patients with colorectal and stage 
III disease, respectively.[4,15] This discrepancy may be 
due to several factors including antibody used, scoring 
technique, used and in preparation of the paraffin 
embedded tissue blocks.

To date, most studies have focused more on pathologic 
and molecular features, but less on clinical features 
with molecular variables. Therefore, in the present 
study, correlation of ERCC1 polymorphism and protein 
expression with clinicopathological parameters was 
evaluated. However, none of the clinicopathological 
parameters was significantly associated with ERCC1 
gene polymorphism. Similarly, another study did 
not find statistically significant correlations between 
genotype distributions and gender, tumor location, 
tumor invasion, lymph node metastasis, tumor stage, 
or histology in CRC patients.[16] The present study 
showed no significant association between ERCC1 
protein expression and clinicopathological parameters 
apart from tumor site. Still another study reported no 
significant differences in gender, tumor stage, nodal 
stage, histological differentiation, lympho-vascular 
invasion, neural invasion, or postoperative CEA 
levels between the ERCC1 positive and negative 
groups. However, ERCC1 positive expression was 
significantly associated with older age group patients 
(P = 0.031).[17] Also it has been shown in patients with 
nasopharyngeal carcinoma  that the expression level 
of ERCC1 increased significantly with higher T stage 
and clinical stages (P < 0.05). Thus, at least in that 
malignancy, ERCC1 seemed to be a valid biological 
indicator to predict prognosis.[18] In the present study, 
ERCC1 positive protein expression was found to be 
significantly higher only in rectal cancer patients as 
compared to colon cancer patients (P = 0.046).

In one report the identical ERCC1 C/T polymorphism 
at codon 118 was found to influence the level of 
ERCC1 expression. This may be due to that, although 
both the AAC and AAT codons encode asparagine, 
the AAT codon usage is significantly reduced, 
thereby decreasing ERCC1 translation capability and 
protein level.[19] Therefore, in the present study we 
correlated ERCC1-118 polymorphism and ERCC1 
protein expression. However, there was no significant 

correlation found between ERCC1 polymorphism and 
ERCC1 protein expression. Similarly, Qi et al.[20] in 
patients with gastric cancer and Takenaka et al.[21] in 
patients with non-small cell lung cancer also showed 
that ERCC1 genotypes were not correlated with 
ERCC1 protein expression. On the other hand, another 
study found increased ERCC1 protein levels in CRC 
patients with the C/T or T/T genotypes.[4]

Several studies have investigated the prognostic role 
of ERCC1-118 SNP and ERCC1 protein expression 
in CRC patients and other cancers types but the 
results obtained were controversial. In one report 
ERCC1 codon 118 C/C genotype was significantly 
associated with higher response rates, progression-
free survival, and OS in metastatic CRC.[4] However, 
another supported the pharmacogenetic role of the 
ERCC1-118 C > T change and emphasized that the 
T allele was a marker of a better outcome in patients 
with CRC treated with OX-based schemes.[22,23] Thus, 
the relationship between ERCC1 codon 118 SNP 
and clinical outcome in patients with CRC remains 
controversial although one study reported significantly 
shorter progression-free (P < 0.01) and overall (P < 
0.01) survival in patients having positive ERCC1 
IHC staining in colorectal tumor tissues.[4] It was also 
observed that 5-year DFS and OS were significantly 
lower in combined therapy group with positive ERCC1 
tumors than in the same group patients with negative 
ERCC1 tumors.[15] However, in present study, due to 
short follow-up period of 15 months, no correlation of 
RFS and OS was observed with ERCC1 C118T SNP 
and ERCC1 protein expression. We recognize that a 
limitation of this study is that SNP assessment was not 
confirmed by Sanger sequencing. Further studies will 
be necessary to validate our findings.

In summary, the current study reveals that ERCC1 
protein expression was significantly higher in patients 
with rectal cancer as compared to patients with colon 
cancer, which may indicate biological and functional 
differences between the two subsets and may emerge 
as an important marker for patients with rectal cancer. 
However, further studies with larger sample sizes 
and longer follow-up period are necessary for a more 
definite conclusion.
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For other types of references, please refer to U.S. National Library of Medicine. 
The journal also recommends that authors prepare references with a bibliography software package, such as EndNote to 
avoid typing mistakes and duplicated references.

2.3.3.10 Supplementary Materials
Additional data and information can be uploaded as Supplementary Material to accompany the manuscripts. The 
supplementary materials will also be available to the referees as part of the peer-review process. Any file format is 
acceptable, such as data sheet (word, excel, csv, cdx, fasta, pdf or zip files), presentation (powerpoint, pdf or zip files), image 
(cdx, eps, jpeg, pdf, png or tiff), table (word, excel, csv or pdf), audio (mp3, wav or wma) or video (avi, divx, flv, mov, mp4, 
mpeg, mpg or wmv). All information should be clearly presented. Supplementary materials should be cited in the main text 
in numeric order (e.g., Supplementary Figure 1, Supplementary Figure 2, Supplementary Table 1, Supplementary Table 2, etc.). 
The style of supplementary figures or tables complies with the same requirements on figures or tables in main text. Videos 
and audios should be prepared in English, and limited to a size of 500 MB or a duration of 3 minutes.

2.4 Manuscript Format
2.4.1 File Format
Manuscript files can be in DOC and DOCX formats and should not be locked or protected.

2.4.2 Length
There are no restrictions on paper length, number of figures, or amount of supporting documents. Authors are encouraged 
to present and discuss their findings concisely.

2.4.3 Language
Manuscripts must be written in English.

2.4.4 Multimedia Files
The journal supports manuscripts with multimedia files. The requirements are listed as follows:
Videos or audio files are only acceptable in English. The presentation and introduction should be easy to understand. The 
frames should be clear, and the speech speed should be moderate.
A brief overview of the video or audio files should be given in the manuscript text.
The video or audio files should be limited to a duration of 3 min and a size of up to 500 MB.



Author Instructions

Please use professional software to produce high-quality video files, to facilitate acceptance and publication along with the
submitted article. Upload the videos in mp4, wmv, or rm format (preferably mp4) and audio files in mp3 or wav format.

2.4.5 Figures
Figures should be cited in numeric order (e.g., Figure 1, Figure 2) and placed after the paragraph where it is first cited;
Figures can be submitted in format of tiff, psd, AI or jpeg, with resolution of 300-600 dpi;
Figure caption is placed under the Figure;
Diagrams with describing words (including, flow chart, coordinate diagram, bar chart, line chart, and scatter diagram, etc.)
should be editable in word, excel or powerpoint format. Non-English information should be avoided;
Labels, numbers, letters, arrows, and symbols in figure should be clear, of uniform size, and contrast with the background;
Symbols, arrows, numbers, or letters used to identify parts of the illustrations must be identified and explained in the
legend;
Internal scale (magnification) should be explained and the staining method in photomicrographs should be identified;
All non-standard abbreviations should be explained in the legend;
Permission for use of copyrighted materials from other sources, including re-published, adapted, modified, or partial
figures and images from the internet, must be obtained. It is authors’ responsibility to acquire the licenses, to follow any
citation instruction requested by third-party rights holders, and cover any supplementary charges.

2.4.6 Tables
Tables should be cited in numeric order and placed after the paragraph where it is first cited;
The table caption should be placed above the table and labeled sequentially (e.g., Table 1, Table 2);
Tables should be provided in editable form like DOC or DOCX format (picture is not allowed);
Abbreviations and symbols used in table should be explained in footnote;
Explanatory matter should also be placed in footnotes;
Permission for use of copyrighted materials from other sources, including re-published, adapted, modified, or partial tables
from the internet, must be obtained. It is authors’ responsibility to acquire the licenses, to follow any citation instruction
requested by third-party rights holders, and cover any supplementary charges.

2.4.7 Abbreviations
Abbreviations should be defined upon first appearance in the abstract, main text, and in figure or table captions and used
consistently thereafter. Non-standard abbreviations are not allowed unless they appear at least three times in the text.
Commonly-used abbreviations, such as DNA, RNA, ATP, etc., can be used directly without definition. Abbreviations in
titles and keywords should be avoided, except for the ones which are widely used.

2.4.8 Italics
General italic words like vs., et al., etc., in vivo, in vitro; t test, F test, U test; related coefficient as r, sample number as n,
and probability as P; names of genes; names of bacteria and biology species in Latin.

2.4.9 Units
SI Units should be used. Imperial, US customary and other units should be converted to SI units whenever possible. There
is a space between the number and the unit (i.e., 23 mL). Hour, minute, second should be written as h, min, s.

2.4.10 Numbers
Numbers appearing at the beginning of sentences should be expressed in English. When there are two or more numbers
in a paragraph, they should be expressed as Arabic numerals; when there is only one number in a paragraph, number < 10
should be expressed in English and number > 10 should be expressed as Arabic numerals. 12345678 should be written as
12,345,678.

2.4.11 Equations
Equations should be editable and not appear in a picture format. Authors are advised to use either the Microsoft Equation
Editor or the MathType for display and inline equations.

2.5 Submission Link
Submit an article via  https://oaemesas.com/jcmt/.
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