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Abstract
This paper proposes a novel method for the optimal tuning of set points for multiple-layered control system structure
widely seen in robotics and other complex industrial processes composed of a number of subsystems. The terminal
sliding mode control (SMC) is used as the low-level control strategy to ensure the stability of subsystems. When
uncertainties exist, it can be shown that the deteriorated system performance will be improved by the outer loop with
set points tuning. For this purpose, the learning of the new set point is designed to compensate for the effects caused
by uncertainties during the system operation. At the same time, the system is proven to stay with the original set
point when the compensation is introduced. A practical application to a holonomic mobile robot system is given to
illustrate the presented method. Desired results have been obtained.

Keywords: Set point reselection, mobile robot, terminal sliding mode control, hamilton–jacobi–bellman(HJB) equa-
tion

1. INTRODUCTION
Conventional optimal control has focused on improving system performance by optimizing controller param-
eters. As the development of control theory grows and the demand for industrial automation strengthens, con-
trollers are embedded in industrial equipment universally. However, change to controller parameters becomes
more difficult and costly as a result of universal use. Instead of changing controller parameters, system per-

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0
International License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, shar-

ing, adaptation, distribution and reproduction in any medium or format, for any purpose, even commercially, as long as you
give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate
if changes were made.
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formance can also be improved by reselecting the set point [1–4]. This is particularly true for the multi-layered
operational structure of control systems widely seen in robotics and complex industrial processes. Such sys-
tems generally consist of two layers - one is the low-level control systems with a number of subsystems, and
the other is the operational control layer that generate set points to the subsystems so as to ensure a desired
overall system performance. The new set point is designed based on prior knowledge of the system structure.
The set point reselection method is achieved by using a cascade structure, which is widely used in complex
industrial control strategy design [5–7]. The inherent control loop is considered to be the inner loop, which
guarantees the system’s stability. Then system’s performance will be be improved by the outer loop.

Slidingmode control (SMC) is known for its outstanding robustness [8–15]. By choosing the proper slidingman-
ifold, a sliding mode controller is capable of guaranteeing system convergence. The chattering phenomenon
has long been a notable issue in the SMC design [16–18]. The high-frequency components will not only affect the
system response but also damage the actuators. To eliminate the chattering phenomenon, smooth functions,
such as the saturation function, are usually used in the SMC design [19]. However, when the sliding manifold
moves within the scope of a chosen linear portion, the amplifier from the saturation function slows the re-
sponse. In 2012, Polyakov pointed out a certain type of function [20] that guarantees a fast arrival with both
large and small variances. In the conventional SMC design, a fast response relies on a large control gain, which
is another incentive for the chattering issue. Instead of using a linear function, nonlinear sliding manifolds
give a more flexible response [21–24], but it is necessary to check if singular points exist in the system.

To overcome the above difficulties, in this work we focus on the tuning of the set-points to all the subsystems
in the considered multi-layered operational system structure. The idea is to tuning these set points so that
the system can still achieve the originally targeted performance when the system is subjected to unexpected
uncertainties.

Therefore the novelties and contributions are as follows:

(1) The system considered is of a multi-layered structure that consists of 1) subsystem layers which are low-
level control system, and 2) operational layer that generate set points to these subsystems by optimizing a global
system performance;

(2)The proposed method aims at achieving optimal tuning of the set-points so as to guarantee the original op-
timized performance when the system is subjected to unexpected uncertainties rather than ask the subsystems
to follow the newly updated set-points;

(3)Application to amobile robot system has beenmade - showing encouraging results in terms of performance
guarantee.

This paper is organized in the following sections. In Section 2, the discrete time kinematic system is described.
The inherent control strategy is terminal SMC. The stability of inner loops is also checked. This description
is followed by the augmented representation of the state variables and system uncertainties. An optimal outer
loop design is proposed in Section 3. Finally, the method proposed in this paper is tested on a holonomic
mobile robot in Section 4 to validate system dynamics and quantitatively compare the system’s performance
with and without an outer loop. Conclusions are given in section 5.

2. METHODS
Because most of the industrial processes are controlled by computers, discrete system dynamics are considered
in the design.

http://dx.doi.org/10.20517/ir.2023.06
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2.1. System model
Consider the system described by the following expression:{

𝒙1,𝑘+1 = 𝒙1,𝑘 + ℎ𝒙2,𝑘 ,

𝒙2,𝑘+1 = 𝒙2,𝑘 + ℎ( 𝒇 𝑘 + 𝒈𝑘𝒖𝑘 ),
(1)

where ℎ is the system sampling interval, 𝒙𝑖,𝑘 = 𝒙𝑖 (𝑘ℎ), 𝒙𝑘 =
(
𝒙1,𝑘 𝒙2,𝑘

)𝑇
∈ R2𝑛 is the system states vector,

𝒇 𝑘 ∈ R𝑛 represents the nonlinear parts of the system, and 𝒈𝑘 ∈ R𝑛 is an invertible matrix, which represents
the relationships between control input 𝒖𝑘 and system states 𝒙𝑘 .

It can be seen that such system expression would represent a wide-range of dynamics systems in practice, and
examples are robotic systems and complicated industrial processes such as paper making, mineral processing,
chemnical plant and car manufacturing systems.

The errors between system states and a set point vector can be expressed as

𝒆1,𝑘 = 𝒙1,𝑘 − 𝒓∗𝑘 , (2)

where 𝒓∗𝑘 is the set point vector. Then,

𝒆1,𝑘+1 = 𝒙1,𝑘+1 − 𝒓∗𝑘+1. (3)

The difference between errors of 𝑘 + 1 and 𝑘 can be expressed as

𝒆1,𝑘+1 − 𝒆1,𝑘 = ℎ𝒙2,𝑘 − (𝒓∗𝑘+1 − 𝒓∗𝑘 ). (4)

In system expression Equation (1), 𝒆2,𝑘 describes the change from 𝒆1,𝑘 to 𝒆1,𝑘+1. Let

𝒆2,𝑘 = 𝒙2,𝑘 −
1
ℎ
(𝒓∗𝑘+1 − 𝒓∗𝑘 ). (5)

Then, the error dynamics can be written as
𝒆1,𝑘+1 =𝒆1,𝑘 + ℎ𝒆2,𝑘 ,

𝒆2,𝑘+1 =𝒆2,𝑘 + ℎ( 𝒇 𝑘 + 𝒈𝑘𝒖𝑘 ) +
1
ℎ
(−𝒓∗𝑘+2

+ 2𝒓∗𝑘+1 − 𝒓∗𝑘 ),

(6)

which is going to be used in the following control strategy design. In this context, the system in (1) represents
the subsystems in a multi-layered system operational structure. The set points grouped in the set point vector
is generated by the operational layer as shown in the following figure.

2.2. Terminal sSliding mode controller design
In this subection, we will focus on the control system design for subsystems represented bt equation (1). This
requires the selection of control input 𝒖𝑘 to ensure the tracking of the system state to the set point. For this
purpose, the well-known sliding mode control (SMC) strategy is used to guarantee the stability of the system.
Based on the contributionmade byMan et al. [25], to achieve the terminal convergence, the nonsingular sliding
manifold is defined as

𝒔𝒌 =

©­­­­­«
𝑠1,𝑘
𝑠2,𝑘
...

𝑠𝑛,𝑘

ª®®®®®¬
=

©­­­­­­­«

𝑒2,1,𝑘 + 𝛽1𝑒
𝑞1
𝑝1
1,1,𝑘

𝑒2,2,𝑘 + 𝛽2𝑒
𝑞2
𝑝2
1,2,𝑘

...

𝑒2,𝑛,𝑘 + 𝛽𝑛𝑒
𝑞𝑛
𝑝𝑛

1,𝑛,𝑘

ª®®®®®®®¬
, (7)

http://dx.doi.org/10.20517/ir.2023.06
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Figure 1. Block diagram of two-layer control structure.

where 𝑠𝑖 is the 𝑖th sliding surface for the subsystem, 𝛽𝑖 ∈ R is a positive definite, 𝑝𝑖 and 𝑞𝑖 are positive definite
odd integers satisfying 𝑞𝑖

𝑝𝑖
∈ (1,∞), and 𝑒𝑖, 𝑗 ,𝑘 denotes the 𝑘th sample of the 𝑗 th component in the 𝑖th state. The

sliding manifold is a constraint to the system states, which drives the system’s states along a certain trajectory
to an origin point in finite time. System states move along the sliding manifold redproduced

𝑠𝑖,𝑘+1 = 𝑠𝑖,𝑘 = 0. (8)

Then, by combining Equation (7) and Equation (8) together, the equivalent control law to keep system states
on the sliding manifold (7) is given by

𝑢𝑖,𝑘 = − 𝑔−1
𝑖,𝑘 𝑓𝑖,𝑘 + 𝑔−1

𝑖,𝑘

1
ℎ
[𝛽𝑖𝑒

𝑞𝑖
𝑝𝑖

1,𝑖,𝑘 − 𝛽𝑖 (𝑒1,𝑖,𝑘

+ ℎ𝑒2,𝑖,𝑘 )
𝑞𝑖
𝑝𝑖 ] + 𝑔−1

𝑖,𝑘

1
ℎ2 (𝑟

∗
𝑖,𝑘+2 − 2𝑟∗𝑖,𝑘+1

+ 𝑟∗𝑖,𝑘 ),
(9)

where 𝑢𝑖,𝑘 represents the 𝑖th controller component based on the states value at the 𝑘th sampling time. However,
if a system’s initial values (𝑥0) are not placed on the manifold (𝒔𝑘 = 0), the controller shown in Equation (9)
cannot transport system states to the sliding manifold. Based on [26], the new controller is written as

𝑢𝑖,𝑘 = − 𝑔−1
𝑖,𝑘 𝑓𝑖,𝑘 + 𝑔−1

𝑖,𝑘

1
ℎ
[𝛽𝑖𝑒

𝑞𝑖
𝑝𝑖

1,𝑖,𝑘 − 𝛽𝑖 (𝑒1,𝑖,𝑘

+ ℎ𝑒2,𝑖,𝑘 )
𝑞𝑖
𝑝𝑖 ] + 𝑔−1

𝑖,𝑘

1
ℎ2 (𝑟

∗
𝑖,𝑘+2 − 2𝑟∗𝑖,𝑘+1

+ 𝑟∗𝑖,𝑘 ) − 𝑔−1
𝑖,𝑘

1
ℎ
(𝛼1,𝑖𝑠

𝑛1,𝑖
𝑚1,𝑖
𝑖,𝑘 + 𝛼2,𝑖𝑠

𝑛2,𝑖
𝑚2,𝑖
𝑖,𝑘 ),

(10)

http://dx.doi.org/10.20517/ir.2023.06
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where 𝑚1,𝑖 , 𝑚2,𝑖 , 𝑛1,𝑖 , 𝑛2,𝑖 are positively defined odd integers that satisfy 𝑛1,𝑖
𝑚1,𝑖
∈ (0, 1) and 𝑛2,𝑖

𝑚2,𝑖
∈ (1,∞). When

the controller described in Equation (10) is implemented into the system, error dynamics change to
𝑒1,𝑖,𝑘+1 =𝑒1,𝑖,𝑘 + ℎ𝑒2,𝑖,𝑘 ,

𝑒2,𝑖,𝑘+1 =𝑒2,𝑖,𝑘 + 𝛽𝑖𝑒
𝑞𝑖
𝑝𝑖

1,𝑖,𝑘 − 𝛽𝑖 (𝑒1,𝑖,𝑘 + ℎ𝑒2,𝑖,𝑘 )
𝑞𝑖
𝑝𝑖

− (𝛼1,𝑖𝑠

𝑛1,𝑖
𝑚1,𝑖
𝑖,𝑘 + 𝛼2,𝑖𝑠

𝑛2,𝑖
𝑚2,𝑖
𝑖,𝑘 ).

(11)

To prove the stability of the inner closed-loop system (i.e., the subsystems), the convergence of system states
must be analyzed. This is summarized in the following lemma.

Lemma 1 For the error dynamics shown in Equation (6), if the controller is designed as

𝑢𝑖,𝑘 = − 𝑔−1
𝑖,𝑘 𝑓𝑖,𝑘 + 𝑔−1

𝑖,𝑘

1
ℎ
[𝛽𝑖𝑒

𝑞𝑖
𝑝𝑖

1,𝑖,𝑘 − 𝛽𝑖 (𝑒1,𝑖,𝑘

+ ℎ𝑒2,𝑖,𝑘 )
𝑞𝑖
𝑝𝑖 ] + 𝑔−1

𝑖,𝑘

1
ℎ2 (𝑟

∗
𝑖,𝑘+2 − 2𝑟∗𝑖,𝑘+1

+ 𝑟∗𝑖,𝑘 ) − 𝑔−1
𝑖,𝑘

1
ℎ
(𝛼1,𝑖𝑠

𝑛1,𝑖
𝑚1,𝑖
𝑖,𝑘 + 𝛼2,𝑖𝑠

𝑛2,𝑖
𝑚2,𝑖
𝑖,𝑘 ),

(12)

where 𝑚1,𝑖 , 𝑚2,𝑖 , 𝑛1,𝑖 , 𝑛2,𝑖 are positive definite odd integers that satisfy 𝑛1,𝑖
𝑚1,𝑖
∈ (0, 1) and 𝑛2,𝑖

𝑚2,𝑖
∈ (1,∞), then the

system state will converge to zero within a finite time.

Proof 1 By using the sliding manifold described in Equation (7), system states go along the sliding manifold (𝑠𝑖 =
0), and when they arrive at it,

𝑠𝑖,𝑘+1 = 𝑠𝑖,𝑘 = 0. (13)

However, the system states are not always on the manifold. To make the sliding manifold an attractor, the system
statesmust be ensured tomove toward themanifoldwhen the system states are outside the slidingmanifold (𝑠𝑖 ≠ 0),
which means that

𝑠𝑖,𝑘 (𝑠𝑖,𝑘+1 − 𝑠𝑖,𝑘 ) < 0. (14)

If it can be proved that (𝑠𝑖,𝑘+1 − 𝑠𝑖,𝑘 ) has an opposite sign to the sliding manifold (𝑠𝑖,𝑘 ), then system stability can
be proved. Combining the sliding manifold with Equation (14),

𝑠𝑖,𝑘 (𝑠𝑖,𝑘+1 − 𝑠𝑖,𝑘 )

=(𝑒2,𝑖,𝑘+1 + 𝛽𝑖𝑒
𝑞𝑖
𝑝𝑖

1,𝑖,𝑘+1 − 𝑒2,𝑖,𝑘 − 𝛽𝑖𝑒
𝑞𝑖
𝑝𝑖

1,𝑖,𝑘 )𝑠𝑖,𝑘

=[𝑒2,𝑖,𝑘 + 𝛽𝑖𝑒
𝑞𝑖
𝑝𝑖

1,𝑖,𝑘 − 𝛽𝑖 (𝑒1,𝑖,𝑘 + ℎ𝑒2,𝑖,𝑘 )
𝑞𝑖
𝑝𝑖

− (𝛼1,𝑖𝑠

𝑛1,𝑖
𝑚1,𝑖
𝑖,𝑘 + 𝛼2,𝑖𝑠

𝑛2,𝑖
𝑚2,𝑖
𝑖,𝑘 ) + 𝛽𝑖 (𝑒1,𝑖,𝑘

+ ℎ𝑒2,𝑖,𝑘 )
𝑞𝑖
𝑝𝑖 − 𝑒2,𝑖,𝑘 − 𝛽𝑖𝑒

𝑞𝑖
𝑝𝑖

1,𝑖,𝑘 ]𝑠𝑖,𝑘

= − (𝛼1,𝑖𝑠

𝑛1,𝑖
𝑚1,𝑖
+1

𝑖,𝑘 + 𝛼2,𝑖𝑠

𝑛2,𝑖
𝑚2,𝑖
+1

𝑖,𝑘 ).

(15)

As described previously, 𝑚1, 𝑚2, 𝑛1, and 𝑛2 are positive definite odd integers, which guarantees the numerators
of 𝑛 𝑗 ,𝑖

𝑚 𝑗 ,𝑖
+ 1 are even. An even power,(𝑛 𝑗 ,𝑖 + 𝑚 𝑗 ,𝑖), will erase the sign. 𝛼1,𝑖 and 𝛼2,𝑖 are also positive definite real

numbers. The derivative of the Lyapunov candidate presented here is less than zero as long as 𝑠𝑖,𝑘 ≠ 0; so,

𝑠𝑖,𝑘 (𝑠𝑖,𝑘+1 − 𝑠𝑖,𝑘 ) ≤ 0. (16)

Zero is the locally stable equilibrium point of the system. Basing on these results, |𝑠𝑖,𝑘+1 | < |𝑠𝑖,𝑘 | when |𝑠𝑖,𝑘 | ≠ 0,
and 𝑠→ 0 when 𝑡 → 0. Then,

𝑒2,𝑖,𝑘 = −𝛽𝑖𝑒
𝑞1
𝑝1
1,𝑖,𝑘 . (17)

The system is globally asymptotically stable.
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2.3. Set point reselection method
2.3.1. System model with distribution
The system dynamics with uncertainties are{

𝒙1,𝑘+1 = 𝒙1,𝑘 + ℎ𝒙2,𝑘 + 𝒅1,

𝒙2,𝑘+1 = 𝒙2,𝑘 + ℎ( 𝒇 𝑘 + 𝒈𝑘𝒖𝑘 ) + 𝒅2,
(18)

where 𝒅1 and 𝒅2 are uncertainties in the system. To improve the performance of the system, an additional
reselected set point vector 𝚫𝒓𝜁 is introduced. The new reference signal is

𝒓𝑘 = 𝚫𝒓𝜁 + 𝒓∗𝑘 , (19)

where 𝒓∗𝑘 is the origin reference vector that system states want to track, 𝚫𝒓 is the new compensatory set point
to be designed, and (•)𝜁 shows a different sampling rate with the system states. Because of the introduction of
a new set point vector, some new vectors need to be defined to emphasize the difference between new states
error and the one used in Section 2. {

𝜺1,𝑘 = 𝒙1,𝑘 − 𝒓𝑘

𝜺2,𝑘 = 𝒙2,𝑘 − 1
ℎ (𝒓𝑘+1 − 𝒓𝑘 ).

(20)

Based on the new vectors defined above, system dynamics change to
𝜺1,𝑘+1 =𝜺1,𝑘 + ℎ𝜺2,𝑘 + 𝒅1,

𝜺2,𝑘+1 =𝜺2,𝑘 + ℎ( 𝒇 𝑘 + 𝒈𝑘 �̂�𝑘 ) +
1
ℎ
(−𝒓𝑘+2

+ 2𝒓𝑘+1 − 𝒓𝑘 ) + 𝒅2,

, (21)

where 𝜺 =
(
𝜺1 𝜺2

)𝑇
is the new state of the error dynamics. �̂� is used to represent the controller based on the

new error dynamics described in Equation (26). ℎ is the length of the system states’ sampling interval. Based
on the error dynamics described in Equation (26), controller (�̂�𝑖,𝑘 ) is expressed as

�̂�𝑖,𝑘 = − 𝑔−1
𝑖,𝑘 𝑓𝑖,𝑘 + 𝑔−1

𝑖,𝑘

1
ℎ
[𝛽𝑖𝜀

𝑞𝑖
𝑝𝑖

1,𝑖,𝑘 − 𝛽𝑖 (𝜀1,𝑖,𝑘

+ ℎ𝜀2,𝑖,𝑘 )
𝑞𝑖
𝑝𝑖 ] + 𝑔−1

𝑖,𝑘

1
ℎ2 (𝑟

∗
𝑖,𝑘+2 − 2𝑟∗𝑖,𝑘+1

+ 𝑟∗𝑖,𝑘 ) − 𝑔−1
𝑖,𝑘

1
ℎ
(𝛼1,𝑖𝑠

𝑛1,𝑖
𝑚1,𝑖
𝑖,𝑘 + 𝛼2,𝑖𝑠

𝑛2,𝑖
𝑚2,𝑖
𝑖,𝑘 ),

(22)

where 𝑠𝑖,𝑘 = 𝜀2,𝑖,𝑘 + 𝛽𝑖𝜀
𝑞𝑖
𝑝𝑖

1,𝑖,𝑘 is the sliding manifold related to the new system state vector 𝜺. 𝑓𝑖,𝑘 = 𝑓𝑖 (𝜺𝑘 ) and
𝜀 𝑗 ,𝑖,𝑘 = 𝜀 𝑗 ,𝑖 (𝑘ℎ). Similar to the previous steps, by combining system dynamics described in Equation (27) and
controller �̂�𝑖,𝑘 , the system dynamics become

𝜺1,𝑘+1 =𝜺1,𝑘 + ℎ𝜺2,𝑘 + 𝒅1

𝜺2,𝑘+1 =𝜺2,𝑘 + 𝛽𝜀
𝑞
𝑝

1,𝑘 − 𝛽(𝜀1,𝑘 + ℎ𝜀2,𝑘 )
𝑞
𝑝 + 𝒅2

+ 1
ℎ
(−Δ𝑟𝑘+2 + Δ2𝑟𝑘+1 − Δ𝑟𝑘 ).

(23)

2.4. System performance optimization
This section details a new method of selecting an alternative set point to improve the system performance. In
this context, the system model with disturbances will be presented first. This is then followed by the proposed
method on the set point tuning that guarantees the achievement of the originally targeted system performance.
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2.4.1. System model with distribution
The system dynamics with uncertainties or disturbances can be expressed by adding extra terms in equation
(1) as follows. {

𝒙1,𝑘+1 = 𝒙1,𝑘 + ℎ𝒙2,𝑘 + 𝒅1,

𝒙2,𝑘+1 = 𝒙2,𝑘 + ℎ( 𝒇 𝑘 + 𝒈𝑘𝒖𝑘 ) + 𝒅2,
(24)

where 𝒅1 and 𝒅2 are uncertainties or disturbances in the system.

To maintain and improve the performance of the system when the system is subjected to uncertainties and
disturbances, we propose to tune the set points rather than changing the control parameters. For this purpose,
an additionally reselected set point vector 𝚫𝒓𝜁 is introduced. The means that new set point vector should be
of the following form

𝒓𝑘 = 𝚫𝒓𝜁 + 𝒓∗𝑘 , (25)

where 𝒓∗𝑘 is the original reference vector that system states want to track, 𝚫𝒓 is the new compensatory set point
to be designed as an additional term onto the original set point vector, and (•)𝜁 shows a different sampling
rate with the system states. Because of the introduction of a new set point vector, some new vectors need to
be defined to emphasize the difference between error from new states and the one used in Section 2.{

𝜺1,𝑘 = 𝒙1,𝑘 − 𝒓𝑘

𝜺2,𝑘 = 𝒙2,𝑘 − 1
ℎ (𝒓𝑘+1 − 𝒓𝑘 ).

(26)

Based on the new vectors defined previously, system dynamics change to
𝜺1,𝑘+1 =𝜺1,𝑘 + ℎ𝜺2,𝑘 + 𝒅1,

𝜺2,𝑘+1 =𝜺2,𝑘 + ℎ( 𝒇 𝑘 + 𝒈𝑘 �̂�𝑘 ) +
1
ℎ
(−𝒓𝑘+2

+ 2𝒓𝑘+1 − 𝒓𝑘 ) + 𝒅2,

, (27)

where 𝜺 =
(
𝜺1 𝜺2

)𝑇
is the new state of the error dynamics, �̂� is used to represent the controller based on

the new error dynamics described in Equation (26), and ℎ is the length of the system states sampling interval.
Based on the error dynamics described in Equation (26), controller (�̂�𝑖,𝑘 ) is expressed as

�̂�𝑖,𝑘 = − 𝑔−1
𝑖,𝑘 𝑓𝑖,𝑘 + 𝑔−1

𝑖,𝑘

1
ℎ
[𝛽𝑖𝜀

𝑞𝑖
𝑝𝑖

1,𝑖,𝑘 − 𝛽𝑖 (𝜀1,𝑖,𝑘

+ ℎ𝜀2,𝑖,𝑘 )
𝑞𝑖
𝑝𝑖 ] + 𝑔−1

𝑖,𝑘

1
ℎ2 (𝑟

∗
𝑖,𝑘+2 − 2𝑟∗𝑖,𝑘+1

+ 𝑟∗𝑖,𝑘 ) − 𝑔−1
𝑖,𝑘

1
ℎ
(𝛼1,𝑖𝑠

𝑛1,𝑖
𝑚1,𝑖
𝑖,𝑘 + 𝛼2,𝑖𝑠

𝑛2,𝑖
𝑚2,𝑖
𝑖,𝑘 ),

(28)

where 𝑠𝑖,𝑘 = 𝜀2,𝑖,𝑘 + 𝛽𝑖𝜀
𝑞𝑖
𝑝𝑖

1,𝑖,𝑘 is the sliding manifold related to the new system state vector 𝜺, 𝑓𝑖,𝑘 = 𝑓𝑖 (𝜺𝑘 ), and
𝜀 𝑗 ,𝑖,𝑘 = 𝜀 𝑗 ,𝑖 (𝑘ℎ). Similar to the previous steps, by combining system dynamics described in Equation (27) and
controller �̂�𝑖,𝑘 , the system dynamics become

𝜺1,𝑘+1 =𝜺1,𝑘 + ℎ𝜺2,𝑘 + 𝒅1

𝜺2,𝑘+1 =𝜺2,𝑘 + 𝛽𝜀
𝑞
𝑝

1,𝑘 − 𝛽(𝜀1,𝑘 + ℎ𝜀2,𝑘 )
𝑞
𝑝 + 𝒅2

+ 1
ℎ
(−Δ𝑟𝑘+2 + Δ2𝑟𝑘+1 − Δ𝑟𝑘 ).

(29)

2.4.2. Performance optimization
To eliminate the effect of uncertainties, a new compensatory set point is designed in this section. Since the
objective is still to ensure that all the subsystems can track their original set points when the system is subjected
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to uncertainties or disturbances, the following performance function is used.

𝐽 = 𝒆𝑇1,𝑁𝑒1,𝑁 +
𝑁−1∑
𝜁=0

𝒆𝑇1,𝜁 𝒆1,𝜁 , (30)

where 𝑁 is the bound of sampling times. The performance index previously chosen tries to guarantee the
minimum position error between the robot and inherent set point 𝒓∗. The outer loop is designed based on this
performance index, where the idea is to select 𝚫𝒓 so that 𝐽 is minimized. Based on the chosen performance
index, the Hamiltonian becomes

𝐻𝜁 =𝒆𝑇1,𝜁 𝒆1,𝜁 + 𝝀𝑇𝜁+1(
𝜺1,𝜁 +ℎ𝜺2,𝜁 +𝒅1

𝜺2,𝜁 +ℎ( 𝒇 𝜁 +𝒈𝜁 �̂�𝜁 )+𝒅2
)

=
𝑛∑
𝑖=1
{𝜀2

1,𝑖,𝜁 + 2𝜀1,𝑖,𝜁Δ𝑟𝑖,𝜁 + Δ2𝑟𝑖,𝜁

+ 𝜆1,𝑖,𝜁+1(𝜀1,𝑖,𝜁 + ℎ𝜀2,𝑖,𝜁 + 𝑑1)

+ 𝜆2,𝑖,𝜁+1 [𝜀2,𝑖,𝜁 + 𝛽𝑖𝜀
𝑞𝑖
𝑝𝑖

1,𝑖,𝜁 − 𝛽𝑖 (𝜀1,𝑖,𝜁

+ ℎ𝜀2,𝑖,𝜁 )
𝑞𝑖
𝑝𝑖 − (𝛼1,𝑖𝑠

𝑛1,𝑖
𝑚1,𝑖
𝑖,𝜁 + 𝛼2,𝑖𝑠

𝑛2,𝑖
𝑚2,𝑖
𝑖,𝜁 )

− 1
ℎ
(Δ𝑟𝑖,𝜁+2 − 2Δ𝑟𝑖,𝜁+1 + Δ𝑟𝑖,𝜁 ) + 𝑑2]},

(31)

where 𝝀 ∈ R2×𝑛 is the costate.

Remark 1 Because of themulti-ratemethod used in the design, more than one sampling period of system states((•)𝑘 )
may arrive during the sampling period of a reselected set point ((•)𝜁 ). If the reselected set point remains the same
during the period considered in the Hamilton equation (Δ𝑟𝑖,𝑘+2 = Δ𝑟𝑖,𝑘+1 = Δ𝑟𝑖,𝑘 ), the reselected set point is unre-
lated to the system states during this period. In the Hamilton equation,Δ𝑟𝑖,𝜁 takes the place of Δ𝑟𝑖,𝑘 to make sure
the new strategy is sensitive to the change of system state.

The basic idea of the Hamilton equation is to find the minimum value by using the partial derivative related to
the performance index. To get the dynamics of the cost function, the partial derivative of each state is needed.

𝜆1,𝑖,𝜁 =
𝜕𝐻𝜁

𝜕𝜀1,𝑖,𝜁

=𝜆2,𝑖,𝜁+1 [𝛽𝑖
𝑞𝑖
𝑝𝑖
𝜀
𝑞𝑖
𝑝𝑖
−1

1,𝑖,𝜁 − 𝛽𝑖
𝑞𝑖
𝑝𝑖
(𝜀1,𝑖,𝜁

+ ℎ𝜀2,𝑖,𝜁 )
𝑞𝑖
𝑝𝑖
−1 − (𝛼1,𝑖

𝑛1,𝑖

𝑚1,𝑖
𝑠

𝑛1,𝑖
𝑚1,𝑖
−1

𝑖,𝜁

+ 𝛼2,𝑖
𝑛2,𝑖

𝑚2,𝑖
𝑠

𝑛2,𝑖
𝑚2,𝑖
−1

𝑖,𝜁 )𝛽𝑖
𝑞𝑖
𝑝𝑖
𝜀
𝑞𝑖
𝑝𝑖
−1

1,𝑖,𝜁 ]

+ 2𝜀1,𝑖,𝜁 + 2Δ𝑟𝑖,𝜁 + 𝜆1,𝑖,𝜁+1,

𝜆2,𝑖,𝜁 =
𝜕𝐻𝜁

𝜕𝜀2,𝑖,𝜁

=𝜆1,𝑖,𝜁+1ℎ + 𝜆2,𝑖,𝜁+1 [1 − 𝛽𝑖ℎ
𝑞𝑖
𝑝𝑖
(𝜀1,𝑖,𝜁

+ ℎ𝜀2,𝑖,𝜁 )
𝑞𝑖
𝑝𝑖
−1 − (𝛼1,𝑖

𝑛1

𝑚1
𝑠

𝑛1,𝑖
𝑚1,𝑖
−1

𝑖,𝜁

+ 𝛼2,𝑖
𝑛2,𝑖

𝑚2,𝑖
𝑠

𝑛2,𝑖
𝑚2,𝑖
−1

𝑖,𝜁 )] .

(32)
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Tomake sure that theHamilton equation has an extremum, Δ𝑟𝑖 needs to satisfy the stationary condition, which
is

0 =
𝜕𝐻𝜁

𝜕Δ𝑟𝑖,𝜁

= 2𝜀1,𝑖,𝜁 + 2Δ𝑟𝑖,𝜁 −
1
ℎ
𝜆2,𝑖,𝜁+1.

(33)

Owing to the nonlinear controller expression used in this equation, it is necessary to check if singular points
exist in the Hamilton equation is necessary. This is described in the following subsection.

2.4.3. Singular problem analysis

Because the component that relates to 𝑠
𝑛2,𝑖
𝑚2,𝑖
−1

𝑖,𝜁 appears in costate dynamics and the parameter selections 𝑛1
𝑚1
∈

(0, 1), the singular problem has to be considered when 𝜀1 = 0 and when the system states arrive at the surface.
To solve the singular problem, a new coefficient is introduced. [27]

𝜇𝑖,𝜁 =

sin( 𝜋2
|𝑠

1−
𝑛1,𝑖
𝑚1,𝑖

𝑖,𝜁 |
𝜏 ) if |𝑠

1− 𝑛1,𝑖
𝑚1,𝑖

𝑖,𝜁 | ≤ 𝜏
1 otherwise

, (34)

where 𝜏 is the enclosing scope of the sinusoidal function, and 𝜏 ≪ 1. When 𝑠𝑖,𝜁 → 0, 𝜇𝑖,𝜁 𝑠
𝑛1,𝑖
𝑚1,𝑖
−1

𝑖,𝜁 → 1.
After introducing the new coefficient, the costates dynamics change into

𝜆1,𝑖,𝜁 =
𝜕𝐻𝜁

𝜕𝜀1,𝑖,𝜁

=𝜆2,𝑖,𝜁+1 [𝛽𝑖
𝑞𝑖
𝑝𝑖
𝜀
𝑞𝑖
𝑝𝑖
−1

1,𝑖,𝜁 − 𝛽𝑖
𝑞𝑖
𝑝𝑖
(𝜀1,𝑖,𝜁

+ ℎ𝜀2,𝑖,𝜁 )
𝑞𝑖
𝑝𝑖
−1 − (𝛼1,𝑖

𝑛1,𝑖

𝑚1,𝑖
𝜇𝑖,𝜁 𝑠

𝑛1,𝑖
𝑚1,𝑖
−1

𝑖,𝜁

+ 𝛼2,𝑖
𝑛2,𝑖

𝑚2,𝑖
𝑠

𝑛2,𝑖
𝑚2,𝑖
−1

𝑖,𝜁 )𝛽𝑖
𝑞𝑖
𝑝𝑖
𝜀
𝑞𝑖
𝑝𝑖
−1

1,𝑖,𝜁 ]

+ 2𝜀1,𝑖,𝜁 + 2Δ𝑟𝑖,𝜁 + 𝜆1,𝑖,𝜁+1,

𝜆2,𝑖,𝜁 =
𝜕𝐻𝜁

𝜕𝜀2,𝑖,𝜁

=𝜆2,𝑖,𝜁+1 [1 − 𝛽𝑖ℎ
𝑞𝑖
𝑝𝑖
(𝜀1,𝑖,𝜁 + ℎ𝜀2,𝑖,𝜁 )

𝑞𝑖
𝑝𝑖
−1

− (𝛼1,𝑖
𝑛1,𝑖

𝑚1,𝑖
𝜇𝑖,𝜁 𝑠

𝑛1,𝑖
𝑚1,𝑖
−1

𝑖,𝜁 + 𝛼2,𝑖
𝑛2,𝑖

𝑚2,𝑖
𝑠

𝑛2,𝑖
𝑚2,𝑖
−1

𝑖,𝜁 )]

+ 𝜆1,𝑖,𝜁+1ℎ.

(35)

The reselected set point is

Δ𝑟𝑖,𝜁 = −𝜀1,𝑖,𝜁 +
1
2ℎ
𝜆2,𝑖,𝜁+1. (36)

The above equation gives the tuning of the set point vector when the uncertainties or disturbances exist. It is
also a feedback control for the outer loop of the system shown in Fig. 1. This differs from the most existing
methods where the optimization was performed for the tuning of control parameters in the low-level control
systems.

Remark 2 It is possible to avoid the singular problem by choosing some other method to use in the design of the
arriving part of the sliding mode controller. The singular problem is considered in this paper to provide a more
adaptable solution.
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Theorem 1 Suppose that the system (6) with the controller shown in Equation (28) experiences uncertainties
denoted by 𝒅1 and 𝒅2. Then, under the reselected set point 𝚫𝒓𝜁 , the performance index described in Equation (30)
will be optimized, and system states will also track the original set point 𝒓∗.

Proof 2 Because the set point update law was introduced, 𝒓𝜁 = 𝒓∗𝜁 + 𝚫𝒓𝜁 , where 𝚫𝒓𝜁 is shown in Equation (36).
With the uncertainties, control inputs change from 𝒆 to 𝜺. Because the changes are in the set point, the SMC
controller can guarantee the stability of the system. If the convergence of 𝜺 to 𝒆 can be proved, then the system
states will track 𝒓∗.

By combining Equation (35) and Equation (36), the relationships between costates are{
𝜆1,𝑖,𝜁+1 =𝜆1,𝑖,𝜁 − 𝐴𝜆2,𝑖,𝜁+1,

𝜆2,𝑖,𝜁+1 =𝜆2,𝑖,𝜁 − 𝜆1,𝑖,𝜁+1ℎ + 𝐵𝜆2,𝑖,𝜁+1,
(37)

where
𝐴 =

1
ℎ
− 𝛽𝑖

𝑞𝑖
𝑝𝑖
𝜀
𝑞𝑖
𝑝𝑖
−1

1,𝑖,𝜁 + 𝛽𝑖
𝑞𝑖
𝑝𝑖
(𝜀1,𝑖,𝜁 + ℎ𝜀2,𝑖,𝜁 )

𝑞𝑖
𝑝𝑖
−1

+ (𝛼1,𝑖
𝑛1,𝑖

𝑚1,𝑖
𝜇𝑖,𝜁 𝑠

𝑛1,𝑖
𝑚1,𝑖
−1

𝑖,𝜁

+ 𝛼2,𝑖
𝑛2,𝑖

𝑚2,𝑖
𝑠

𝑛2,𝑖
𝑚2,𝑖
−1

𝑖,𝜁 )𝛽𝑖
𝑞𝑖
𝑝𝑖
𝜀
𝑞𝑖
𝑝𝑖
−1

1,𝑖,𝜁 ],

(38)

and
𝐵 =𝛽𝑖ℎ

𝑞𝑖
𝑝𝑖
(𝜀1,𝑖,𝜁 + ℎ𝜀2,𝑖,𝜁 )

𝑞𝑖
𝑝𝑖
−1

+ (𝛼1,𝑖
𝑛1,𝑖

𝑚1,𝑖
𝜇𝑖,𝜁 𝑠

𝑛1,𝑖
𝑚1,𝑖
−1

𝑖,𝜁 + 𝛼2,𝑖
𝑛2,𝑖

𝑚2,𝑖
𝑠
𝑛2
𝑚2
−1

𝑖,𝜁 ).
(39)

If the system has equilibrium points, then system states will remain at one of the equilibrium points at the end.
Assume the system described in Equation (37) has equilibrium points. Based on the properties of equilibrium
points,

𝝀𝑖,𝜁 = 𝝀𝑖,𝜁+1. (40)

Combining with Equation (37) produces{
0 = 𝑨𝝀2,𝑖,𝜁+1

0 = −𝝀1,𝑖,𝜁+1ℎ + 𝑩𝝀2,𝑖,𝜁+1.
(41)

If 𝑨𝝀2,𝑖,𝜁+1 = 0 is satisfied, either 𝑨 or 𝝀2,𝑖,𝜁+1 should be zero. When 𝑨 = 0 and 𝜺𝑖,𝜁 ≠ 0, the costate equation
has an equilibrium point. However, when the sliding mode controller is applied to the system, 𝜺𝑖,𝜁 ≠ 0 is not an
equilibrium point for the system. According to Equation (38), a constant 1

ℎ exists in 𝑨, which means if 𝑨 = 0 is
desired, the system states have to compensate for the constant.

Based on Equation (37), if 𝝀2,𝜁+1 = 0, the system will stay at 𝝀𝑖,𝜁+1 = 0.
When 𝝀 = 0, 

0 =𝒙1,𝑖,𝜁 − 𝒓∗𝑖,𝜁

0 =𝒙2,𝑖,𝜁 −
1
ℎ
(𝒓∗𝜁+1 − 𝒓∗𝜁 ).

(42)

This equation shows that 𝒙 → 𝒓∗.

Remark 3 The structure in Figure 1 is generic in the sense that many industrial systems have exhibited such a
multiple-layered structure [28,29] in their operations, where the top-layer generates the optimized set-points and the
lower-layer consists of a number of closed loop tracking systems. This indicates that the method described above
can be readily applied to a wide-range of complex systems.
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Figure 2. Robotino mobile robot.

The procedures of the algorithm design and implementation in practice is given in the following.

• Step 1: Design the paths based upon the destinations for the actuators. The path used in this paper is
a direct line. As the hardware structure of Robotino is stated, the motion is factorized in the X and Y
direction, whilst with the rotation in the Z direction;

• Step 2: Design the controller with the MCU in the actuators as the SMC described in this paper. This is for
the actuators to guarantee the stability of the whole motion system;

• Step 3: Add/simulate faults in the system. Indeed, faults can be added in any loop such as the position,
velocity or current loops. Faults used in this paper are sinusoidal functions added in position and velocity
loops.

• Step 4: Record the reading from the encoders as the input for optimization;
• Step 5: Run the optimal algorithm with the encoder reading to obtain the re-selection of the set-points
array, then add the array to the designed path. In this phase the limited computing resource of Robotino
has to be considered. The optimal algorithm are therefore executed in a PC instead of the MCU in the
Robot;

• Step 6: Repeat Step 3 to Step 5 until the system operational performance reaches its expectation.

3. RESULTS
With increasing interest in industrial automation, mobile robots have been playing an important role in trans-
portation, rescue, and other fields. Mobile robots always work in complex situations in which uncertainties
are inevitable. Most of those applications rely on accurate information about the robot’s location; however, the
original controller may not be able to guarantee that accuracy when uncertainties occur.

The Robotino mobile robot in Figure 2 was used in this experiment. The programming environment was
Ubuntu Linux. The Robotino is a holonomic mobile robot in 2D. The wheels were driven by direct current
(DC)motors. Figure 3 shows the block diagramof the inner closed-loop design of the Robotino. The trajectory
planning agency generated the set points based on the requirements. The control signals were passed to the
Robotino through its inherent WLAN-Link. The embedded system in the Robotino transferred the velocity
setting values into torques. To guarantee the primary stability of the mobile robot, the Robotino had a PI
controller inside.
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Figure 3. Block diagram of Robotino control.

To demonstrate this method, the sliding manifold picked for 𝑥 and 𝑦 was

𝑠 = 𝑣 + 2𝑝
11
9 , (43)

where 𝑣 represents the velocity, and 𝑝 is the position feedback from encoders. To make sure that the Robotino
could be initialled at any position,

𝑢𝑎 = −(0.02𝑠
9
11 + 0.05𝑠

11
9 ). (44)

The performance index used in this study is

𝐽 = 𝒆𝑇1,𝑁 𝒆1,𝑁 +
𝑁−1∑
𝑘=0

𝒆𝑇1,𝑘 𝒆1,𝑘 . (45)

Figure 4 and Figure 5 are system state errors. Encoder faults were added onto the controller inputs. The
controller’s inputs that were affected by faults are represented by solid curves. The figures also show that
when the system worked without the optimal loop, the robot’s stability was still guaranteed. According to the
hardware structure and programming logic, the optimized control signal may not have been able to follow
the system if their sampling frequencies remained the same. The multirate sampling method was used in this
experiment. Dotted curves represent the resampled signals. The sampling frequency of the resampled signal
was one-tenth of the system’s clocking frequency.

Velocities of themobile in each direction are shown in Figures 6 and 7. The resampled velocities are represented
with dotted curves.

Figure 8 and Figure 9 are the comparisons of optimized and original position errors relating to 𝑟∗ and 𝑟 . From
the figures, the reselected set points increased the feedback error at the beginning, which offered a faster re-
sponse. Δ𝑟 also decreased the steady errors, and the reselected set point did not affect the original set point
tracking. The mobile robot not only had a faster response but also improved accuracy. Figure 10 is the per-
formance index of the mobile robot. The performance index with the reselected set point was better than the
original one.
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Figure 4. Sampled position error in 𝑥 direction.

Figure 5. Sampled position error in 𝑦 direction.

On the other hand, it can be seen that the possible comparison can be made. However, this would mean that
we need to compare the results of the set point resection with respect to the case when the set point are not
tuned at all regardless of the presence of uncertainties. As the proposed algorithm is an optimization based
design. It is believed that the set point tuning would generally produce a better result in terms of minimizing
the impact of the uncertainties.

4. CONCLUSIONS
In this paper, a novel set point reselection method was proposed. A sliding mode controller was applied onto
the inner loop as the basic controller, which guaranteed the system stability. To eliminate the effects of uncer-
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Figure 6. Sampled velocity in 𝑥 direction.

Figure 7. Sampled velocity in 𝑦 direction.

tainties, the outer loop was designed based on the Hamilton equation used in the optimality principle, which
focused on optimizing the chosen system performance index. However, as the nonlinear sliding manifold was
introduced, the singular problem existed in the Hamilton equation. To solve the singular problem, an extra
sine function was added to the Hamilton equation. The singular problem could also be avoided by carefully
choosing the value of the parameters in the sliding manifold. To show a more general result, singular problem
was still considered in this paper. Because the new set point may have changed the stability of this system, the
convergence to 𝑒 was proved. The proposed algorithm has been applied to a mobile robot and encouraging
results have been obtained.

The system considered in this paper is assumed having known dynamics for 𝑓𝑘 and 𝑔𝑘 . However, in practice
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Figure 8. Optimal system output error (𝑒𝑥).

Figure 9. Optimal system output error (𝑒𝑦).
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Figure 10. System performance index.

there are many systems of which their dynamics would be subjected to unknown changes in operation envi-
ronment and other unpredictable factors. As a result, for the future work, we need to consider the adaptive
control as well where the model parameters and system dynamics will be learnt using data-driven approaches
such as neural networks to estimate dynamics 𝑓𝑘 and 𝑔𝑘 in equation 1), This would lead to an extra adaptive
tuning loop for the closed loop system as shown in Figure 1.
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Abstract
At present, artificial intelligence is booming and hasmademajor breakthroughs in fault diagnosis scenarios. However,
the high diagnostic accuracy of most mainstream fault diagnosis methods must rely on sufficient data to train the di-
agnostic models. In addition, there is another assumption that needs to be satisfied: the consistency of training and
test data distribution. When these prerequisites are not available, the effectiveness of the diagnosis model declines
dramatically. To address this problem, we propose a semi-supervised joint adaptation transfer network with condi-
tional adversarial learning for rotary machine fault diagnosis. To fully utilize the fault features implied in unlabeled
data, pseudo-labels are generated through threshold filtering to obtain an initial pre-trained model. Then, a joint do-
main adaptation transfer networkmodule based on conditional adversarial learning and distancemetric is introduced
to ensure the consistency of the distribution in two different domains. Lastly, in three groups of experiments with dif-
ferent settings: a single fault with variable load, a single fault with variable speed, and a mixed fault with variable
speed and load, it was confirmed that our method can obtain competitive diagnostic performance.

Keywords: Fault diagnosis, joint adaptation transfer network, conditional adversarial learning, rotary machine
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1. INTRODUCTION
The intelligent development of modern industrial technology leads to the gradual complexity and system-
atization of machinery and equipment [1]. As essential equipment in modern industrial applications, rotary
machines play a vital role in ensuring efficient and reliable operations. Key components, such as bearings and
gears, are critical to the proper functioning of these machines, and any faults can disrupt the normal rotating
mechanism. In engineering practice, bearings and gears are prone to faults due to improper assembly, corro-
sion, overload, poor lubrication, etc [2]. If the equipment fault is not detected in time, it may affect the regular
operation of the equipment and cause economic losses. In more serious cases, it may even put the lives of oper-
ators at risk. The early detection and prediction of bearing and gear faults in rotary machines will significantly
enhance the safety of machinery production and avoid the loss of lives and property caused by mechanical
faults. Based on the literature [3,4], fault diagnosis methods for rotary machines are divided into two main cat-
egories: traditional fault diagnosis methods that rely on manual signal analysis and newer methods that use
neural network diagnostic models to mine fault features.

For the past few years, deep learning techniques have made significant breakthroughs in artificial intelligence
fields, and the advantages of automatically learning and extracting valid information from data are gaining
increasing attention. By using sensors to acquire vibration signals and other relevant data and processing the
data with deep learning algorithms to extract features that correspond to fault data, it becomes feasible to
recognize and rectify potential faults [5]. Unlike traditional fault diagnosis methods that use signal processing
techniques combined with machine learning classifiers to perform fault diagnosis [6], deep learning-based fault
diagnosis models can automatically mine and analyze the underlying mechanisms of faults to obtain accurate
fault classification performance with sufficient data [7]. However, in practical engineering scenarios, mechan-
ical equipment mainly operates normally, and failures are relatively rare. Therefore, the amount of fault data
collected is usually limited. Furthermore, the distribution of data collected under changing operating condi-
tions, such as speed, load, and surrounding environment of rotary machines, can vary considerably, which
may affect the reliability and stability of diagnostic results [8].

Transfer learning is a machine learning technique that allows for the transfer of knowledge learned from one
task to another, with the aim of improving the performance of the latter task [9]. In the context of diagnostic
tasks, transfer learning allows for the simultaneous application of diagnostic knowledge learned from pre-
trained data to relevant diagnostic tasks in order to achieve good diagnostic results [10]. In this strategy, the
core problem is distribution alignment, which enables the models to be constrained by the objective function
so that it satisfies the assumption of distributional consistency to achieve good diagnostic results [11]. Domain
adaptation is the core technique for achieving distribution alignment. It essentially ensures that the feature
spaces of the two tasks are aligned through some kind of transformation [12]. In real-world scenarios, the fea-
ture space of the source and target tasks can vary greatly, and distance metric minimization is often utilized
for alignment. Metrics for differences in distribution between domains include Kullback–Leibler (KL) diver-
gence [13], maximum mean difference (MMD) [14], Wasserstein distance [15], and CORAL loss [16]. Additional
loss measures are introduced into the loss function and then optimized by gradient descent. Notably, it is
acknowledged that this strategy can obtain effective alignment with little difference in data distribution.

However, these methods mainly focus on aligning the marginal probability distributions, which only capture
the variation of global characteristics and ignore differences in the conditional distribution probabilities in
different domains. This makes it challenging to handle scenarios where the differences in data distribution
between different domains are more complex. Based on the recent literature [17–19], transfer learning fault di-
agnosis techniques are preferred by a wide range of researchers. Qian et al. use DenseNet as the baseline
model, combined with a joint distribution adapted regularization term to get the metastable features. In this
way, diagnostic capabilities are effectively migrated [17]. Li et al. using the representational capabilities learned
in supervised learning to obtain target domain feature representations by minimizing the multi-kernel max-
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imum mean discrepancy (MKMMD) in different feature layers between the two domains [18]. Wang et al.
propose a method that uses multi-scale convolution to extract fault features while combining adversarial train-
ing to achieve effective migration effects. The effect of this method is close to 100% on the bearing dataset [19].
The above-mentioned studies demonstrate the effectiveness of deep transfer learning in rotary machine fault
diagnosis. However, there are still some problems that have not been taken seriously: (i)Most transfer learning
methods only perform domain-adaptive alignment from a global perspective. This alignment effect is greatly
reduced when the data distribution varies dramatically [20]; (ii) During the validation of transfer learning algo-
rithms, the effectiveness of transfer effects for mixed fault types on different devices is rarely considered, which
is quite difficult due to the significant differences in data distribution.

To address the aforementioned challenges, this paper proposes a semi-supervised joint adaptation transfer net-
work with conditional adversarial learning for rotary machine fault diagnosis, which introduces the following
main innovative aspects.

(1) To efficiently transfer the diagnostic power learned on a large amount of data in the source domain, a pre-
trained model is trained on the labeled data in the source domain and then used to generate pseudo-labels
for the unlabeled target domain data. This effectively utilizes unlabeled data to boost the performance of the
diagnostic model. Then, to reduce domain shifts and align the joint distribution of the source and target
domains, we take into account both the global feature variation and the intra-class similarity between differ-
ent domains. This enables the alignment of both the conditional probability distributions and the marginal
probability distributions in different domains. This method can effectively capture both the global and local
differences between the two domains and align the distributions to reduce the domain shift. This can signifi-
cantly improve the diagnostic performance on the target domain and enable the use of diagnostic models in
real-world scenarios where the labeled data may be scarce.

(2) Considering the mutual influence between different devices of modern rotary machines, the difficulty of
fault diagnosis is significantly increased. Our method can be used in single-type fault diagnosis and produce
highly reliable results. More importantly, our method has shown great improvement in diagnostic tasks in-
volving mixed fault types, which has led to more accurate diagnostic results.

The remaining sections of this paper are organized as follows: Section 2 provides an introduction to the related
definitions of transfer learning. Section 3 elaborates on the proposedmethod in detail. In section 4, we present
experimental results on three different types of settings to showcase the effectiveness of our method. Finally,
section 5 summarizes the contributions of this work and discusses potential avenues for future research.

2. TRANSFER LEARNING PROBLEM
Having sufficient annotated data is a requirement for awell-performing supervisedmodel; however, the process
of annotating data can be tedious and time-consuming. Therefore, transfer learning is a proven way to make
use of a previously pre-trained model on a new task while ensuring optimal performance. The main goal is
to transfer the capabilities learned in the source domain data to the target domain data, thus solving the pain
point that it is difficult to obtain sufficient knowledge in the target domain with limited data [21].

From Figure 1, we can see that the traditional intelligent fault diagnosis method gives an accurate diagnosis
in the case where the data distribution of the training and test sets is similar. Therefore, transfer learning is
unnecessary in such cases. In general, when their data distributions are inconsistent, the generalization ability
of the model is poor. In these situations, transfer learning can exploit the diagnostic power learned from the
training data by reducing the difference between the two distributions.
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Figure 1. Traditional intelligent methods and transfer learning-based intelligent methods.

Formally, we define 𝐷𝑠 =
(
𝑥𝑠𝑖 , 𝑦

𝑠
𝑖

)
as labeled training data, 𝐷𝑡 = 𝑥𝑡𝑖 as unlabeled test data, where 𝑠 denotes the

source domain task, 𝑡 denotes the target domain task, and 𝑥𝑖 and 𝑦𝑖 represent the vectorized representation
of the 𝑖th sample and the corresponding label. In addition, it is worth noting that the target domain task has
no corresponding 𝑦𝑡𝑖 , which means that the available labeled data in the training phase can only rely on the
labeled data in the source domain, which will increase the difficulty of transfer. Since there is a great difference
between the task data in two different fields, transfer learning can minimize the difference between them by
finding a mapping relationship, thus realizing the reusable diagnostic ability. When the data distributions of
the two domains are close, we can satisfy the assumptions on which the existing intelligent faults depend and
realize an effective diagnosis.

3. THE PROPOSED ARCHITECTURE
In order to efficiently transfer the diagnostic power learned from the labeled data, a pre-trained model is ob-
tained by generating pseudo-labels for training. A domain adaptation network, using the joint maximum
mean deviation (JMMD) criterion and conditional domain adversarial (CDA) learning, is then used to learn
a mapping relationship that reduces the variation in the distribution of different domains. The joint distri-
bution between the aligned features and the predicted labels is aligned through multiple domain adaptation
approaches. Meanwhile, the information from the unlabeled data is incorporated in the pre-training phase,
thus resulting in maximum category differentiation and domain adaptation under multimodal conditions.

As depicted in Figure 2, the primary architecture of the proposedmethod is structured as follows: First, enough
labeled data in the source domain are collected to train a pre-trained model. After that, the unlabeled data
in the target domain are predicted to obtain pseudo-labels. Then these data are combined to extract more
effective fault features. Second, the feature vectors and label vectors are linearly transformed several times to
jointly model the implied relationships between them. Finally, a domain adaptationmodule is used to align the
differences between the two data through loss function optimization. The optimization objectives include the
CDA loss, the label classification loss, and the JMMD loss, respectively, in order to perform a joint optimization
training of the three components.

3.1. Pre-training
The pre-trained model structure using convolutional neural networks (CNN) with bi-directional long short-
term memory (BILSTM). Detailed information on the model structure is given in Table 1. To accelerate com-
putational efficiency, the raw signal is first downsampled and then fed into the CNN. After that, the features
obtained from CNN are fed again into the BILSTM to better extract the temporal information of the vibration
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Figure 2. The structure illustration of the proposed rotary machine fault diagnosis method.

Table 1. The architecture of the one-dimensional CNN-BILSTM

Layer Symbol domain Operator Parameter size

1 Input Input Signal 1024

2 C1 Convolution (16, kernel size = 15)

3 P1 Pooling kernel size = 2

4 C2 Convolution (32, kernel size = 3)

5 P2 Pooling /

6 C3 Convolution (64, kernel size = 3)

7 P3 Pooling /

8 C4 Convolution (128, kernel size = 3)

9 P4 AdaptiveMaxPooling /

10 BILSTM BILSTM hidden_dim=64

signal. A large kernel size = 15 for CNN/1 is used to get low-frequency information, while CNN/2, CNN/3,
and CNN/4 extract high-frequency signals and, therefore, use a smaller kernel size = 3.

In the pre-training phase, we first train with data labeled with the source domain. Unlabeled data with pre-
dicted probabilities above a threshold of 0.8 are filtered out and added to the training until convergence. Here,
we simply rely on the empirical values of the task threshold above 0.8, which are relatively reliable pseudo-
labels.

3.2. Domain adaptation
In order to achieve effective alignment, while the label classifier ensures the basic diagnostic ability, the do-
main classifier and a distance discrepancy metric module are additionally designed to further improve the
effect. They correspond to the following three objective functions: (1) Minimize the classification loss of fault
classification on the labeled data; (2) Maximize the domain classification error on two different domains. 3)
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Minimize the JMMD distance between the two dissimilar distributions.

3.2.1. Loss-function 𝐿𝑙
To migrate the diagnostic capability to the target task, it is first necessary to ensure that the model has learned
enough diagnostic knowledge in the source domain data. Thus, the first loss function 𝐿𝑙 of our method is to
minimize the classification loss of fault classification on the labeled data. The required objective function 𝐿𝑙
for data with 𝑘 fault classes is the standard softmax loss function.

𝐿𝑙 = −
1
𝑛


𝑛∑
𝑖=1

𝑘∑
𝑗=1

𝐼 [𝑦𝑖 = 𝑘] log
𝑒

(
(𝑤 𝑗)𝑇 𝑥+𝑏

)
∑𝑘
𝑙=1 𝑒
( (𝑤𝑙 )𝑇 𝑥+𝑏)

 (1)

where 𝑛 is the batch size and 𝑘 is the number of fault classes.

3.2.2. Loss-function 𝐿d
Theprimary role of the domain adaptationmodule is to guide the network to extract domain invariant features
under the constraint of the loss function. Borrowing ideas from generative adversarial networks, an adversarial
domain-based training approach is added to learn the domain-invariant features. By setting a gradient reverse
layer (GRL) in front of the domain classifier, the target domain data is confoundedwith the source domain data,
thus maximizing the classification loss between the two domains. The domain classifier and feature extractor
struggle with each other and finally reach a balance. Thus, domain-invariant features are learned. However, if
we just align themarginal distribution between two data and ignore the correlation between labels and features,
the final alignment results are poor. The conditional domain adversarial network is used to capture the cross-
covariance between features and labels, thus improving the discrimination [22]. Considering the non-linear
and non-smooth nature of fault signals, the joint distributions of fault features and corresponding labels need
to be aligned as closely as possible to effectively transfer the diagnostic capability. Therefore, we train CDA as
a second objective function here. Subsequently, the loss function 𝐿𝑑 is shown below.

𝑤(𝐻 (𝑝)) = 1 + 𝑒−𝐻 (𝑝) , 𝐻 (𝑝) = −
𝑘−1∑
𝑘=0

𝑝𝑘 log 𝑝𝑘 (2)

𝐿d = − 1
𝑛𝑠
𝑤
(
𝐻

(
𝑝𝑠𝑖
) ) 𝑛𝑠∑
𝑖=1

log
[
1 − 𝐷

(
𝐹
(
𝑥𝑠𝑖 ; 𝜃 𝑓

)
; 𝜃𝑑

) ]
− 1
𝑛𝑡
𝑤
(
𝐻

(
𝑝𝑡𝑖
) ) 𝑛𝑡∑
𝑖=1

log
[
𝐷

(
𝐹
(
𝑥𝑡𝑗 ; 𝜃 𝑓

)
; 𝜃𝑑

)] (3)

where 𝜃 𝑓 is the model parameter corresponding to the feature extraction module, 𝜃𝑑 is the parameter of
the domain classifier, and 𝑘 denotes the number of fault types, 𝐻 (𝑝) denotes the uncertainty of the sample
classification result, and 𝑤(𝐻 (𝑝)) denotes the weight of each sample.

3.2.3. Loss-function 𝐿D
Compared with the CDA method, spatial metric distance minimization is another approach to learning do-
main invariant features. The MMD method is used by Borgwardt et. al [23] to measure the variability of dis-
tributions. However, the effectiveness of aligning different distributions with MMD in complex multimodal
conditions is limited. To address this problem, Long et al. [24] proposes the JMMD method to de-align the
joint distribution in the feature space and label space, where the loss function 𝐿𝐷 is defined as

𝐿D =



E𝑆 (𝑧𝑠 𝑓 ⊗ 𝑧𝑠𝑙) − ET

(
𝑧𝑡 𝑓 ⊗ 𝑧𝑡𝑙

)


 (4)

where 𝑧𝑠 𝑓 and 𝑧𝑡 𝑓 represent the output of the fault feature, and 𝑧𝑠𝑙 and 𝑧𝑡𝑙 denote the vector representation
of label. Unlike the standard JMMD, we add 𝑓 ⊗ 𝑙 to align the joint distribution of two domains, 𝑓 ⊗ 𝑙 refers
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Table 2. The accuracy of different domain adaptation methods in CWRU datasets(%)

Method No-TL AdaBN MKMMD CORAL JMMD DA CDA OURS

Task 0-1 98.77 99.68 100 98.38 99.68 99.35 100 100

Task 0-2 96.49 99.48 96.43 100 100 99.03 99.68 100

Task 0-3 94.43 98.38 92.88 100 99.03 99.35 92.56 99.68

Task 1-0 97.55 95.40 98.08 98.85 100 99.23 97.32 100

Task 1-2 98.70 99.87 100 98.35 100 99.03 100 100

Task 1-3 94.82 99.03 98.71 99.68 100 99.68 100 100

Task 2-0 96.02 94.64 98.47 96.55 97.32 98.47 95.79 99.23

Task 2-1 98.18 99.29 98.05 97.08 100 99.03 96.43 100

Task 2-3 98.77 99.22 100 99.35 100 99.03 99.68 100

Task 3-0 87.82 90.04 84.67 99.23 98.08 95.79 97.70 98.85

Task 3-1 88.56 93.18 92.86 99.35 98.38 90.26 95.45 100

Task 3-2 87.98 95.32 96.10 100 99.68 97.40 98.70 100

to introducing two learnable weight matrices, 𝑤1 and 𝑤2, to unify 𝑓 and 𝑙 into the same dimension and add
them together to represent the joint distribution of features and labels.

4. EXPERIMENTAL VERIFICATION
In this section, the proposed semi-supervised joint adaptation transfer network with adversarial learning is
evaluated by examining vibration signal data from different rotary machine types, such as motor bearings,
wind turbine bearings, and gearbox bearings and gears. The three datasets were used to evaluate the diag-
nostic capability of our method under different loads, speeds, and mixed fault-type scenarios. We conducted
comparative experiments across multiple tasks using six existing transfer methods and analyzed the diagnostic
effectiveness of no migration. We then demonstrate that our proposed semi-supervised method exhibits good
diagnostic capability. This plays a crucial role in situations where obtaining fault data is difficult.

4.1. Case 1: CWRU bearing datasets under different loads
4.1.1. Data description
In this case, the bearing dataset is from the CWRU laboratory [25]. The experimental setup mainly consists of a
dependent motor, a torque sensor/encoder, and a load motor. The bearing dataset is collected at four loads (0,
1, 2, and 3 HP). Single point faults are arranged on the bearings using electrical discharge machining (EDM)
to simulate inner race faults (IF), rolling element faults (RF), and outer race faults (OF). Twelve transfer tasks
are designed by migrating between the four load states. In addition, 1000 samples of length 1024 are provided
for each data type. The sampling rate for our task is selected as 12 kHz. To obtain the diagnostic model, 80%
of the data is used, while 20% is used to verify its validity.

A dataset of bearings with variable load conditions from the CWRU laboratory is applied to illustrate that
the model could accurately classify fault types. To assess the diagnostic capability of the model, comparative
tests with some commonly used domain adaptation algorithms such as MKMMD, CORAL, JMMD, domain
adversarial (DA), and CDA are performed. In our article, average accuracy is a key indicator to evaluate the
diagnosis results of different methods.

4.1.2. Experimental results and analysis
Thecomparative results of the eight differentmethods on the bearing dataset are shown in Table 2. Ourmethod
is still the best performer among the eight methods on this dataset, with an average accuracy of 100% for 9
out of the 12 migration tasks. Some other domain adaptation methods, including JMMD, have also achieved
positive results, probably because this dataset is relatively simple and the differences in the distribution are
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Table 3. The accuracy of different domain adaptation methods in JNU datasets (%)

Method No-TL AdaBN MKMMD CORAL JMMD DA CDA OURS

Task 0-1 97.44 96.96 97.27 89.08 98.12 96.08 94.54 99.15

Task 0-2 91.60 96.55 97.61 88.91 97.95 95.39 96.25 98.63

Task 1-0 85.46 91.88 88.57 88.40 96.93 83.62 86.69 94.88

Task 1-2 97.41 97.51 98.29 97.61 98.29 94.54 97.27 99.32

Task 2-0 85.02 91.16 98.46 97.44 98.81 94.54 97.10 99.49

Task 2-1 97.95 97.68 97.61 96.25 98.63 96.08 97.95 99.49

relatively small. However, the effectiveness of many such methods remains unclear. For the CWRU dataset, it
is evident that the diagnostic results of the various methods are good. This is mainly due to the fact that the
faults in this dataset are artificially set and have a more pronounced fault signature. In addition, the relatively
small differences in the distribution of the bearing datasets collected under different loads reduce the difficulty
of the migration task. In some migration tasks, such as 3-0, 3-1, and 3-2, the accuracy is only around 85%.
It further implies that directly using a pre-trained model from the source domain task to predict the target
domain data still produces significant errors. Thus, it is also demonstrated that this domain migration strategy
is still essential. These comparative experiments provide a preliminary validation of the effectiveness of our
proposed method.

4.2. Case 2: JNU bearing datasets under different speeds
4.2.1. Data description
In this case, the bearing dataset is obtained from the Jiangnan University (JNU) laboratory [26]. Vibration
signals are collected from wind turbine bearings at three speeds of 600, 800, and 1000 rpm, including normal
bearings, rolling element failures, outer ring failures, and inner ring failures. These four faults are simulated
by hand machining tiny scars on the inner ring, outer ring, and rolling element of the bearing by wire cutting.
The scar size of the bearing faults is 0.25 mm × 0.7 mm. The total length of the collected data is 2,000,000, and
the amount of data for each state is 500,000.

In this experiment, we labeled the settings at three different speeds of 600, 800, and 1000 rpm as tasks 0, 1, and
2, respectively. We designed a total of six transfer tasks by combining the vibration signals of the three states
in a two-by-two manner. We cut the length of each sample to 1024 and then performed a comparative test
with some commonly used domain adaptation algorithms, such as MKMMD, CORAL, JMMD, DA, and CDA.
Again, average accuracy is a key assessment metric.

4.2.2. Experimental results and analysis
The comparative results of the eight different methods on the bearing dataset are shown in Table 3. The com-
parative results for the six transfer tasks under different speed conditions validate that our method still outper-
forms the other seven methods on this dataset, achieving the best average accuracy in five of the six transfer
tasks. The result that no method could achieve 100% accuracy on this dataset implies that there are still some
discrepancies in the data distribution related to this task. Other domain adaptation methods, such as JMMD,
have also been found to give perfect results. These comparative experiments demonstrate the adaptability of
our approach to variations in this domain in different speed scenarios.

Figure 3 illustrates the details of the four best diagnostic results using the confusion matrices. From the visu-
alization of the confusion matrix, we know that JMMD, CDA, and MKMMD have a larger classification error
on the fourth fault type. It can be attributed to the fact that the data distribution of the failure types varies
considerably under different speed conditions. The diagnostic effectiveness of a single strategy is quite limited.
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(a) (OURS) (b) JMMD

(c) CDA (d) MKMMD

Figure 3. Confusion Matrix of four different methods on gearbox dataset

By using a joint domain adaptation migration network to de-target the alignment to reduce the joint distribu-
tion differences between two different domains, the accuracy of our proposed method in this fault type has
been dramatically improved. At the same time, a conditional confrontation training module was introduced
to help improve the alignment effect to deal with domain drift. Finally, the most significant differences be-
tween the different categories were obtained. The above-mentioned results provide sufficient evidence of the
transferability of our proposed fault diagnosis method.

4.3. Case 3: SEU gearbox datasets with mixed fault
4.3.1. Data description
We use the bearing and gearbox dataset from Southeast University in China in this experiment [27]. The ex-
perimental platform, DDS, consists mainly of a motor, a planetary gearbox, and a parallel gearbox. The fault
signals are obtained under two different working conditions, 20Hz-0V and 30Hz-2V. The dataset for the gear-
box includes the fault signal of the planetary gearbox in the 𝑋,𝑌 , and 𝑍 directions. There are four types of
faults: broken teeth, missing teeth, root faults, and surface faults, and one normal type for healthy working
conditions. The bearing data are available for four types of faults: inner ring, outer ring, rolling element, and
mixed inner and outer rings. In order to evaluate the performance of our approach when dealing with mixed
fault types, gear and bearing fault data from the SEU dataset were combined into a mixed dataset. There are
nine fault types in thismixed dataset, including four gear faults, four bearing faults, and one normal data. There
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Table 4. The accuracy of different domain adaptation methods in SEU datasets (%)

Method No-TL AdaBN MKMMD CORAL JMMD DA CDA OURS

Task
0-1(TD)

45.43 49.21 59.97 50.59 65.40 54.40 59.53 75.95

Task
1-0(TD)

56.16 57.89 67.45 58.44 68.62 58.80 65.54 72.87

Task
0-1(FD)

35.19 41.38 44.57 42.52 45.45 43.70 43.26 50.15

Task
1-0(FD)

42.99 49.53 44.28 51.17 61.29 53.96 52.93 62.90

are 1000 samples for each data type, and each sample is 1024 in length. Thus, this dataset consists of 9,000
data samples. Finally, we use 80% of the data to obtain the diagnostic model and 20% of the data to verify its
effectiveness.

In this experiment, to demonstrate the transfer effectiveness of the proposed method under different load and
velocity operating conditions, we collected vibration signals for two different states, 20Hz-0V and 30Hz-2V,
and named Task 0 and Task 1, respectively. We validated the model by combining the vibration signals for
the two states in a two-by-two fashion. In addition, two additional different signal forms were set up, with
both time and frequency domain signals considered as inputs, and a total of four different transfer tasks were
designed to validate the model. In order to evaluate the performance of our method in this case of widely
varying data distributions with different load and speed conditions, comparative tests were carried out with
some commonly used domain adaptation algorithms, such as MKMMD, CORAL, JMMD, DA, and CDA. In
this case, we also choose average accuracy as a key assessment metric.

4.3.2. Experimental results and analysis

The comparative results of the eight different methods on the bearing dataset are shown in Table 4. The results
of the four transfer tasks under different load and speed conditions show that our method still performs the
best of the eight different methods on this dataset, with the best average accuracy in all four transfer tasks.
It must be noted that a high level of accuracy is not achieved on this dataset, and it is evident that there are
significant differences in the data distribution between the two domains on this task. The main reason lies
that the vibration signals collected at different speeds and loads are inherently different. In addition, there are
a number of mixed fault types in this task, such as mixed inner and outer ring faults and both bearing and
gearbox faults, which can affect the final transfer results. It is worth noting that the JMMD method, which
performs quite effectively in the first two tasks, differs from the best results by around 7-8% on this task. Since
the data distribution is complex and varies significantly, domain adaptation strategies alone are not sufficient
to align the distribution well enough to achieve good diagnostic performance.

On the one hand, domain adaptation is performed at the feature extraction and classification layers via JMMD
by exploiting the differences in the joint distribution. On the other hand, adversarial domain training is per-
formed by adjusting the joint distribution to reduce domain drift. These two modules achieve maximum
category differentiation and domain adaptation in multimodal conditions. Finally, the advantages and disad-
vantages of the diagnostic approaches are verified in two cases: using the original time domain signal directly
as inputs versus transforming the data into the frequency domain and using that as inputs. It turns out that in
this task, the time domain signal is used directly as input to obtain better diagnostic results. The reason for this
phenomenon may be that the time-domain representation is more capable of intuitively reflecting the ampli-
tude, frequency, and phase information of the signal over time and can better display the waveform shape of the
signal, which is very helpful for detecting short-term signal changes and analyzing signal shape. Additionally,
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frequency domain representation mainly provides information about the frequency components and relative
strengths of the signal but may not be able to fully reflect all the information about the signal, especially if the
signal is very complex or contains multiple frequencies. In addition, the interpretation of frequency domain
representation may be more difficult to understand and may require higher levels of professional knowledge
for analysis. Although frequency domain representation can provide valuable information about the frequency
components of the signal, it may not be as effective in capturing the complex time characteristics of the signal.
Therefore, time domain representation is more prominent in terms of intuitiveness and practicality. Through
these comparative tests, it is demonstrated that the transfer effects of our proposed method are practical for
different speed scenarios.

In summary, the improvement in diagnostic performance achieved by our method can be attributed to the
combination of JMMD and adversarial domain training modules, which effectively address the challenges of
domain adaptation in multimodal conditions. Additionally, the use of the time domain signal as input also
contributes to the improvement in diagnostic performance.

5. CONCLUSION
This paper proposes a novel semi-supervised joint adaptation transfer network with conditional adversarial
learning for fault diagnosis of the rotarymachine, which can effectively solve the problem of poor diagnosis due
to insufficient data in the target domain. The proposed fault diagnosis method first incorporates information
from unlabeled target domain data by introducing a pre-trained model. Two domain adaptation modules
are then used to close the distance between the distributions of different domains, thereby improving the
effectiveness of the diagnostics of mutual migrations in the two different domains. Ultimately, our approach
is validated to achieve reliable results for variable loads, variable speeds, and mixed fault-type diagnostic tasks
in three different experimental settings. However, the method we proposed has not been validated using fault
data obtained from real scenarios, where the fault patterns are typically more complex, and the data often
contains a significant amount of noise. As a result, there is a possibility that the performance of this method
could be affected.

In this work, we focus more on domain adaptation between data in different domains so that pseudo-labels
use only empirical thresholds to filter reliable labels. In future investigations, we will focus on how to filter for
more reliable pseudo-labels in order to make the best possible use of unlabeled data and further improve the
diagnosis of tasks with insufficient labeling data.
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Abstract
The OpenAI chatbot ChatGPT has achieved unprecedented success since its launch in November 2022. The 
Artificial Intelligence (AI) technologies behind ChatGPT are expected to have far-reaching effects on various 
technological fields beyond natural language processing. This editorial discusses the potential benefits and 
challenges that ChatGPT may bring to the connected and autonomous vehicles (CAVs). CAVs have been heavily 
researched in both the automotive and communications industries in recent years, where the AI technologies have 
played an indispensable role. Exploring how and to what extent ChatGPT will affect this field is an interesting and 
timely research topic.

Keywords: ChatGPT, connected and autonomous vehicles

1. BACKGROUND
OpenAI has announced a major update to the software that powers ChatGPT. While the program 
previously ran on Generative Pre-trained Transformer 3 (GPT-3) technology, OpenAI has now officially 
launched GPT-4. ChatGPT's popularity has had a broad impact and may even disrupt many traditional 
methods in various technological fields[1]. This brings up the question of whether and how ChatGPT will 
change the development direction of connected and autonomous vehicles (CAVs).
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As we all know, CAVs have undergone major technological breakthroughs in recent years. Both automakers 
and communication companies have high expectations for their adoption. However, whether they are 
entertainment or safety-related applications for autonomous driving, the development and 
commercialization of CAVs have not been entirely satisfactory.

As a result, when ChatGPT appears, automakers are eager to incorporate it into their vehicles. For example, 
general motors (GM) is developing a new in-car assistant based on the technology behind OpenAI's 
massively popular ChatGPT[2]. Simultaneously, discussions began about how to use ChatGPT technology to 
further the development of CAVs and what problems and challenges it would bring to this field[3-7]. This 
editorial will discuss the above issues briefly.

2. POTENTIAL BENEFITS
ChatGPT is a human-machine interaction tool based on natural language processing (NLP) that can 
effectively improve communication and interaction between drivers and vehicles. The underlying 
technology of ChatGPT is a large-scale deep learning network, making it suitable for processing massive 
amounts of data and driving decisions in CAVs. Therefore, ChatGPT may improve the performances of 
CAVs in the following ways.

2.1. In-vehicle voice assistants
Until self-driving cars become more common, the majority of vehicle networking services offered are for 
entertainment or driving assistance. Both types of services require drivers to interact with the vehicle and 
remote servers in a timely and effective manner. Voice is the most appropriate interaction method in terms 
of safety. ChatGPT's strong language processing capabilities make it ideal for use as an in-car voice assistant. 
ChatGPT has the potential to improve the state-of-the-art in-car interaction system by better understanding 
human instructions and making more intelligent responses.

2.2. Complex environment perception
Vehicles can perceive increasing amounts of data from their surroundings by using various in-vehicle 
sensors, such as cameras, radar, and Lidar. However, the processing capabilities of the vehicle are ineffective 
in processing this massive amount of data in a timely manner. We can efficiently process various perceptual 
data of the vehicle, obtain comprehensive and in-depth environmental awareness knowledge and provide a 
solid base for the implementation of autonomous driving technologies, if we deploy GPT-4 models to edge 
computing devices closer to the vehicle and combine them with the vehicle's local machine learning model. 
Moreover, although the Transformer architecture behind ChatGPT was initially proposed for NLP, 
researchers have successfully applied it in computer vision for improving the accuracy of vision 
processing[3]. This is an optimistic development for autonomous driving, as several high-profile incidents in 
CAVs are mainly caused by the failure of AI (Artificial intelligence)-based computer vision models.

2.3. Driving behavior decision-making
The performance of ChatGPT is enhanced through the reinforcement learning from human feedback 
(RLHF) technique, where a reward model is first trained based on human feedback. The reward model is 
then used in reinforcement learning (RL) to fine-tune the pre-trained language models. This learning 
paradigm is highly appealing for decision-making in autonomous driving, as human feedback will help 
CAVs learn from human drivers' driving behaviors and habits to enhance driving safety and comfort. 
Although imitation learning has been studied for CAVs to learn from human drivers, the lack of labels or 
human driving behaviors has impeded its practical applications. With the trained reward models in RLHF, 
human feedback can be simulated to train the decision-making models in CAVs and thus effectively deal 
with the scarcity of labels.
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2.4. Intelligent anomaly detection
ChatGPT can provide intelligent detection for abnormal data and external threats received while the vehicle 
is moving based on its own powerful learning capabilities. This not only enhances the intelligence of 
traditional detection mechanisms but also increases the detection rate of unknown 0-day anomalies in the 
vehicle. This enables the intelligent anomaly detection mechanism based on ChatGPT enhancements to 
improve the security of CAVs.

2.5. Adversarial defense
ChatGPT is highly susceptible to being utilized by hackers to design highly stealthy and destructive attack 
strategies against CAVs. Due to this potential threat, it is a potential research direction to equally utilize 
ChatGPT for smart vehicles to design adversarial defense strategies that can guarantee the safe driving of 
vehicles.

3. CHALLENGES
Any new technology, including ChatGPT, usually brings with it both opportunities and challenges.

3.1. Data privacy issue
To ensure continuous training of the model and consistent accuracy and performance, ChatGPT must 
frequently interact with users. This necessitates the collection of a significant amount of user-related data. 
However, currently, OpenAI has not provided effective notification on collecting and processing user 
information. As a result, there is a lack of legal basis for collecting and storing personal information.

3.2. Security issue
ChatGPT will experience similar challenges to other deep learning models, such as the production of 
inaccurate output following a malicious assault. As CAVs are connected through wireless communications, 
they are highly vulnerable to network attacks. Consequently, if such an issue were to occur under certain 
circumstances, it could lead to serious traffic accidents with decision-making in automatic driving based on 
ChatGPT.

3.3. Real-time issue
ChatGPT is based on a large-scale network with a massive number of parameters that require a large 
amount of computing power. However, computing power is relatively scarce in the current vehicle network, 
especially within the vehicle itself. The most suitable place for the deployment of the GPT-4 model is still on 
remote cloud servers. As a result, how to transmit the output of model processing back in time will pose a 
serious challenge to vehicle-to-everything (V2X) communication.

3.4. Ethical issue
As an AI-based technology, ethical issues are a big challenge for ChatGPT-based decision-making of 
autonomous vehicles. Some ethical considerations should be addressed to avoid possible dilemmas, such as 
various biases resulting from the training datasets, the responsibility of decision-making that may result in 
huge losses, and possible misuse for malicious purposes. Similar to AI-based medical applications, the 
ethical decisions should be made by humans who operate the autonomous vehicles, although the assistance 
by ChatGPT can significantly facilitate and improve the efficiency and effectiveness of those decisions.

4. CONCLUSIONS
This editorial has briefly discussed the benefits and challenges that ChatGPT may bring to the CAVs. The 
AI technologies behind ChatGPT have the potential to improve the performance of CAVs in several aspects, 
including in-vehicle voice assistants, complex environment perception, driving behavior decision-making, 
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and intelligent anomaly detection. Meanwhile, there are several challenges that must be addressed when 
introducing ChatGPT into CAVs, including data privacy, security, real-time, and ethical concerns.

It is foreseeable that ChatGPT will inevitably be applied to future CAVs. However, it is still not clear how 
and to what extent it will affect this field. Related research in this area is in urgent demand.
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Abstract
Shifting focus from the field of distributed and decentralized technologies in the management of intelligent 
transportation systems (ITS), we now delve into the specific application of blockchain in transportation 
management. Blockchain is a fundamental component of distributed and decentralized technologies. The research 
paper discusses the utilization of blockchain technology in managing transportation systems through multi-agent 
systems. Specifically, the use of blockchain technology is examined in the context of the quick road system (QRS) 
in ITS to provide a service for obtaining a special fare status. This service aims to establish a decentralized network 
that facilitates real-time road lane sharing. The study indicates that depending on traffic situations, drivers can 
share their lane space with other vehicles traveling on the same route by exchanging incentives via blockchain with 
other private car owners, thereby allowing for faster travel for individuals in a hurry or those requiring priority 
access to fast lanes. The paper also addresses the increasing number of connected devices in ITS due to the 
development of the internet of things (IoT) technology. It highlights the importance of efficiently utilizing large 
datasets and identifies the internet of vehicles (IoV) as a crucial area of integration for existing IoT technologies to 
address smart traffic within multi-agent systems.

Keywords: Traffic, blockchain, intelligent transport systems, Internet of Things, smart contracting, end-to-end 
technologies, digitalization
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1. INTRODUCTION
Intelligent transportation systems (ITS) have become increasingly important in recent years as they provide 
a range of services aimed at improving the efficiency, safety, and sustainability of transportation networks. 
However, traditional ITS solutions often suffer from several limitations, such as security vulnerabilities, data 
silos, and inefficiencies in data exchange and processing. To address these challenges, blockchain 
technology has emerged as a promising solution for the transportation industry.

Blockchain technology is characterized by its decentralized, secure, and immutable nature, which makes it 
ideal for creating secure and transparent platforms for exchanging data between different stakeholders in a 
transportation network, such as vehicles, roadside devices, and traffic management systems. In addition, 
blockchain technology can be used to create decentralized platforms for managing various transportation 
processes, such as payment for transportation services, vehicle identity management, and supply chain 
management.

Before delving into the subject, let us examine the characteristics of distributed decentralized technologies. 
The ITS and the Vehicular Ad Hoc Network (VANET) are closely related since VANET is a specific type of 
ITS that uses wireless communication technology to allow vehicles to interact with each other and with the 
infrastructure around them.

In an ITS, various technologies are employed to gather and analyze data from different sources, such as 
sensors and cameras, to provide real-time information to drivers, traffic managers, and other stakeholders. 
This information is used to optimize traffic flow, enhance safety, and minimize congestion. Additionally, 
ITS can facilitate communication between vehicles and the surrounding infrastructure, such as traffic lights 
and road signs, to provide additional information to drivers and improve traffic management.

VANET is an essential technology used in ITS that enables communication between vehicles and 
infrastructure through wireless networks. VANET allows vehicles to exchange information on traffic 
conditions, road hazards, and other crucial data. This information enables vehicles to make informed 
decisions about their routes and speed, leading to enhanced traffic flow and safety.

Overall, ITS and VANET work together to create a smarter and more connected transportation system. By 
integrating wireless communication technology into the infrastructure and vehicles, ITS can provide real-
time information and communication that can improve traffic flow, reduce accidents, and enhance the 
overall driving experience.

Task offloading in VANET refers to the allocation of computational tasks between vehicles and roadside 
infrastructure[1]. Vehicles may have limited processing power and storage capacity, while roadside 
infrastructure can provide additional computational resources. One solution to this issue is a privacy-aware 
multi-agent deep reinforcement learning approach for task offloading in VANET. This approach involves a 
deep reinforcement learning algorithm to learn the optimal task offloading strategy, a multi-agent system to 
coordinate the task offloading process between the vehicles and roadside infrastructure, and a privacy-aware 
mechanism to ensure that the privacy of agents is preserved during the task offloading process.

Although the proposed approach has the potential to improve the efficiency of task offloading in VANET 
and preserve the privacy of the agents involved, it has its limitations. The approach involves multiple 
components, which may add complexity to the task offloading process. Furthermore, the use of deep 
reinforcement learning may require significant computational resources, which may limit the feasibility of 
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the approach in real-world VANET systems with limited resources. Additionally, there is always a risk that 
sensitive data could be leaked or exposed during the task offloading process, even with the privacy-aware 
mechanism in place.

In recent years, cloud-assisted VANETs and internet of things (IoT) applications have become increasingly 
popular. However, these systems have also raised concerns about privacy, energy efficiency, and resource 
allocation. Two recent research papers, "PPVF: privacy-preserving protocol for vehicle feedback in cloud-
assisted VANET"[2] and "AFED-EF: An energy-efficient virtual machine (VM) allocation algorithm for IoT 
applications in a cloud data center"[3], propose solutions to these challenges.

The PPVF protocol presented in the first paper aims to enable privacy-preserving feedback collection in 
cloud-assisted VANET systems. The protocol utilizes a group signature scheme for anonymous 
authentication of the vehicle, a zero-knowledge proof for proving the correctness of the feedback without 
revealing the actual data, and a homomorphic encryption scheme for computation on encrypted data. 
While the PPVF protocol has the potential to improve privacy, it may also introduce complexity, 
computational requirements, communication overhead, and security risks. Therefore, careful consideration 
is necessary before implementing the protocol in practical applications.

The algorithm AFED-EF is designed for energy-efficient VM allocation in cloud data centers that host IoT 
applications. The algorithm is based on the Ant Colony Optimization (ACO) algorithm and includes 
energy-saving techniques such as dynamic voltage and frequency scaling (DVFS) and VM consolidation on 
physical servers. AFED-EF considers the workload characteristics of IoT applications and the energy 
efficiency of the physical servers in the cloud data center. The algorithm offers several advantages, including 
improved energy efficiency, reduced operational costs, and improved performance for IoT applications. 
However, the algorithm may have limitations and require further testing and refinement in practical 
applications.

Overall, both papers present promising solutions to challenges in cloud-assisted VANETs and IoT 
applications. However, as with any research paper, further testing and refinement is necessary before 
implementing the proposed solutions in practical applications. These papers demonstrate the importance of 
considering privacy, energy efficiency, and resource allocation in designing and implementing cloud-
assisted VANETs and IoT applications.

The integration of blockchain technology in ITS has the potential to revolutionize the transportation 
industry by addressing key challenges faced by traditional ITS solutions. By providing secure and 
decentralized platforms for exchanging data, managing transportation processes, and facilitating payment 
systems, blockchain technology can help to create more efficient, secure, and transparent transportation 
networks. In this paper, we provide a comprehensive review of the current state of the art in the use of 
blockchain technology in ITS, with a focus on its applications in secure data exchange, decentralized 
platforms, and payment systems.

The potential of blockchain technology in managing transport systems lies in its ability to create 
decentralized ITS[4]. However, to fully realize this potential, there are several key issues that must be 
addressed. The objective of this study was to explore the use of blockchain technology in managing 
transport systems within multi-agent systems that account for the independence and limited view of the 
participants of the system and its decentralized nature.
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The study focused on utilizing the decentralized features of blockchain technology and IoT technologies in 
the transport system. The rapid growth of connected devices in the IoT is expected to continue, creating 
significant opportunities for enhancing transport management[5].

The optimal utilization of large amounts of data has become a significant research area in multiple fields. 
The internet of vehicles (IoV) is a key area of focus for integrating existing IoT technologies to address the 
issue of intelligent traffic. The prevention of road incidents is crucial, and regulations are more effective 
than quick reactions. ITS indirectly improve traffic safety and reduce accidents. While significant effort has 
been invested in creating ITS, safety issues must be addressed. Blockchain technology can solve potential 
safety problems associated with traditional centralized security systems[6].

Data protection has two critical aspects: trust and privacy. The decentralization of a blockchain system 
ensures a reliable level of security. Personal data can be shared only with users, leading to an intelligent 
transport system monitoring system. The trust and privacy of blockchain align with the concept that 
personal rating of system participants is closely linked to their behavior on the road. Therefore, a safer 
driver will have a reputation as a trustworthy driver.

To coordinate real-time traffic monitoring and control, individual user ratings can be connected to road 
behavior to incentivize safe driving. While a single traffic regulation cannot solely improve the road 
environment, efforts should be made by the community and social environment. By monitoring and 
managing intelligent traffic, precise action can be taken against dangerous drivers, ultimately improving the 
traffic situation during rush hours[7].

A credit token, a type of blockchain, could be used to record traffic violations and exchange big data 
between agencies, preventing the isolation of intelligent transport systems. A credit token transaction 
system based on blockchain technology could be created and integrated within the road platform. The 
credit token represents personal reputation and works only within the road platform. To reduce accidents 
and create a better urban transport environment, the token payment process is linked to the correct lane 
change and the current selection of a safe speed limit[8].

2. BLOCKCHAIN TECHNOLOGY AS A PLATFORM ITS
2.1. Parallel transport management
Let us outline the main research questions and potential ideas.

2.2.1. Decentralized autonomous transportation systems
Decentralized autonomous transportation systems leverage the core features of blockchain technology. 
Peer-to-peer (P2P) networks, based on distributed consensus and economic incentives, provide a natural 
approach to modeling complex transportation systems. Each computing node (such as IoT devices, vehicles, 
or other objects with computing power) can function as an autonomous agent in this system[9].

A multitude of such nodes can be linked to a shared network and interact with each other through diverse 
block-based decentralized applications (Dapps), leading to the creation of decentralized autonomous 
organizations (DAOs) geared towards specific requirements and tasks. Moving to the macro-level, this can 
result in the development of a decentralized autonomous system and even a community of systems 
(DAS)[10].



Eremina et al. Intell Robot 2023;3(2):148-60 https://dx.doi.org/10.20517/ir.2023.09   Page 152

2.1.2. Creating incentives for crowdsourcing
The process of distributed consensus in blockchain-based systems can be seen as a crowdsourcing task 
performed by a large number of nodes that contribute their computing power to verify the blockchain 
data[11]. Since these nodes act as independent agents, any crowdsourcing mechanisms and incentives must 
ensure that the individual behavior of each node, motivated to maximize its income, is aligned with the 
overall goal of maintaining system reliability and security. The block technology has the potential to bring 
together all available computing resources in ITS to tackle hitherto unsolvable problems, such as more 
precise real-time transportation management and control. However, further research is needed to design 
effective incentives for crowdsourcing in decentralized ITS.

2.1.3. Development of software for establishing trust within ITS
The trust that stems from blockchain technology plays a critical role in creating decentralized ITS and 
enabling its application to tasks such as P2P commerce, payment, and communication[12]. This trust is 
secured by the code and the validation of the majority of the process participants. The technology has the 
potential to simplify structurally complex systems, thereby reducing social issues. It will allow for the 
transfer of currency and assets between legal entities and individuals without hindrance. For example, P2P 
trust could enable cars to be resold and registered directly through blockchain applications rather than 
centralized bodies or platforms.

Further research is needed to address the fundamental principles underlying trust and trust management in 
this domain.

2.1.4. Intelligent contracts for intelligent transport systems
Smart contracts act as a catalyst for blockchain by utilizing various algorithms (such as machine learning 
and big data analysis) and high-level logic programs to construct an ITS software ecosystem and enhance its 
application intelligence[13]. These self-executing contracts significantly reduce social complexity by 
minimizing the importance of human involvement, serving as software agents acting on behalf of their 
creators or even themselves. Therefore, there is a pressing need to explore the development and 
implementation of specific smart contracts and their management and control of ITS.

2.1.5. Data security and privacy protection
While blockchain has demonstrated high reliability and security, the encryption structure must be further 
strengthened in ITS with numerous devices to safeguard against attacks.

Several researchers[14] have proposed the concept of PTMS (Parallel Transportation Management and 
Control System), which optimizes the real transport system by simultaneously interacting with its artificial 
or virtual counterparts. Blockchain is considered one of the most secure and reliable architectures for 
PTMS, making it an important step toward the realization of this concept. Figure 1 below illustrates one of 
the possible applications of blockchain technology in PTMS.

A PTMS, based on blockchain, will encompass all physical objects, such as IoT devices, vehicles, and assets, 
which can be easily digitized through the "blockchain of things" and registered in the blockchain online. The 
transmission of large data in cyberspace can also be integrated into the blockchain. Furthermore, using the 
Ethereum platform and its programmable scripts to support complex modeling and computation[15], one or 
more artificial transport systems can be created in the code space of smart contracts.
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Figure 1. Parallel transport management[4].

Using these jointly developed real and artificial transport systems, multi-directional computational 
experiments can be designed and conducted to assess and validate specific behavior, mechanisms, and 
strategies in ITS (e.g., to evaluate traffic conditions). These experiments can be designed as "What If" 
scenarios and modeling based on predefined "If Then" rules. The optimal solution will be developed 
through a large number of computational experiments and returned to real transport systems. This process 
will be repeated indefinitely until the actual transport system approaches its optimal artificial 
counterparts[16].

2.2. Quick road system
One possible scenario for utilizing blockchain in intelligent transport systems is to create a service that 
provides a way for drivers to obtain unimpeded passage, referred to as quick road system (QRS)[4]. This 
service aims to establish a decentralized network of road lane sharing in real time. If a driver is in a rush or 
desires priority in utilizing the speed lane, they can designate a special status and share their place in the 
lane with other vehicles traveling the same route by exchanging incentives through the blockchain with 
other private car owners.

To function as one of the QRS computing nodes, a special application can be installed on the smartphone of 
a driver or integrated into the vehicle software, referred to as "Road miners". Real-time data is verified and 
stored on a P2P network supported by the community. All lane and payment sharing behavior is 
coordinated and performed through this network, with the road miners connected to the P2P network 
without any central authority.

One possible solution for incentivizing road miners to contribute to the QRS is to introduce an innovative 
consensus algorithm called "proof of traffic". This algorithm encourages road miners to use the QRS 
application while driving and share their traffic data, thereby building a local network of lane social use. As 
a reward, QRS generates new tokens called "QRS" for road miners, which can be used to pay for travel and 
other transport services. The more road miners drive in slow lanes and contribute to the community, the 
more QRS tokens they earn. Additionally, drivers who use fast lanes will have to pay for the service from 
their own funds or from previously accumulated QRS tokens [as shown in Figure 2].

In addition to the proof of traffic algorithm, various decision-making algorithms will also be developed to 
automate specific processes in QRS. For example, these algorithms can determine whether QRS can be used 
in a particular location or activate a service in an area where the number of active users exceeds a "critical 
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Figure 2. The service of getting a free passage[4].

mass". By automating these processes, QRS can function more efficiently without requiring human 
involvement.

The QRS could be a pioneer in the trend of decentralized, self-directed systems or DAOs. Alongside similar 
services, it may alter the sharing economy of urban transport and become a leading model for social 
transport in the future[17-20].

Another potential use case for blockchain technology is a distributed transport service that operates using 
proprietary cryptocurrencies. This network would be constructed on the Bitcoin blockchain and adopt a 
new concept called "proof of motion" to mine coins.

The transport network is open to everyone, and becoming a miner is as easy as downloading the app on 
your smartphone and turning on the GPS when traveling at a speed of over 20 km/h. Alternatively, users 
can buy coins by contributing to the software or design of the app or by inviting others to join the network. 
This approach allows early adopters to establish the foundation for the network, with rewards paid in 
proprietary cryptocurrencies issued through mechanisms such as Mastercoin, Counterparty, or similar 
protocols[21]. As the number of participants grows, the entire system can run autonomously. This concept 
opens up new possibilities for the future of transportation and creates a decentralized ecosystem for 
mobility services.

However, in the pursuit of profit, various sources may generate false information about a particular service 
request, making it difficult to identify reliable information from multiple sources in a reliable QRS platform. 
To address these issues, we propose the use of QRR-chain (Quick Road Reputation chain), a reputation-
based blockchain platform for crowdsourcing. The QRR-chain uses advanced blockchain platforms such as 
Cosmos, Polkadot, and Avalanche, which are decentralized, transparent, and irreversible, to manage 
crowdsourcing activities. Each crowdsourced exchange is recorded as a blockchain transaction governed by 
predefined criteria specified in a smart contract that ensures a secure trading environment and prevents 
malicious user behavior. Furthermore, the QRR-chain incorporates a reputation model created using the 
smart contract, which improves the quality of crowdsourcing services. This model evaluates the level of 
trust of both service providers and consumers based on their actions, including the quality of missions and 
payment fulfillment. A quantitative reputation score helps users select potential service providers and allows 
providers to choose appropriate missions. Each reputation score of a service provider is updated and 
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recorded on the blockchain after each crowdsourced transaction, with a warning issued for any provider 
with a negative reputation. QRR-chain is the first solution to combine blockchain-based crowdsourcing 
management with reputation evaluation, and it addresses the aforementioned issues while offering a secure 
and efficient platform for VCS scenarios.

In the future, there are plans to develop a reputation-based blockchain crowdsourcing system called the 
QRR-chain to address the issues mentioned above. The QRR-chain will record each traffic lane seat 
purchase as a transaction on the blockchain, which will prevent malicious behavior and ensure the security 
of the trading environment. Furthermore, there are plans to establish a reputation model using smart 
contracts to evaluate the trustworthiness of QRS users based on their activities, such as mission quality and 
payment transactions. Quantifying reputation can help consumers choose potential vendors and vendors 
select missions. The QRR-chain will merge the traffic flow seat selling and reputation evaluation 
components. Queuing theory will be utilized to optimize the configuration and performance of the QRR-
chain.

In the future, there are plans to develop a reputation-based blockchain crowdsourcing system called the 
QRR-chain to address the issues mentioned above. The QRR-chain will record each traffic lane seat 
purchase as a transaction on the blockchain, which will prevent malicious behavior and ensure the security 
of the trading environment. Furthermore, there are plans to establish a reputation model using smart 
contracts to evaluate the trustworthiness of QRS users based on their activities, such as mission quality and 
payment transactions. Quantifying reputation can help consumers choose potential vendors and vendors 
select missions. The QRR-chain will merge the traffic flow seat selling and reputation evaluation 
components. Queuing theory will be utilized to optimize the configuration and performance of the QRR-
chain.

The QRR-chain is a new blockchain-based platform that aims to enhance trust in the crowdsourcing 
system. Its smart contracts will define all trading rules, and every seat purchase in the traffic flow will be 
registered as a QRR-chain transaction.

To elevate the quality of crowdsourcing services, the QRR-chain will integrate a novel reputation model. 
This model will thwart malicious or irresponsible behavior by diminishing the reputation of unscrupulous 
service providers or consumers. Additionally, the model will leverage mission-based reputation scores to 
detect untrustworthy service providers, helping consumers find high-quality ones.

To optimize the performance of the QRR-chain platform, an efficient configuration scheme will be 
developed using queuing theory. The effectiveness of the proposed scheme will be evaluated based on key 
performance indicators such as transaction confirmation time and throughput.

The convergence of two game-changing ideas, decentralized transport and cryptocurrencies, is inevitable. 
Our aim is to leverage the technology behind cryptocurrencies to achieve the necessary critical mass of users 
and create a truly decentralized transport system in cities[22,23]. The proceeds from the coin sales will be used 
to enhance and refine the transport system, and the coins will be redeemable for rides once the network is 
operational.

3. RESULTS
Blockchain is a revolutionary technology that enables the transfer of value between peers without requiring 
a central intermediary. It achieves this through the use of cryptographic hashing functions, consensus 
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protocols, and decentralized data storage to guarantee secure, decentralized trust, immutability, and 
transparency of transactions. By pairing blockchain technology with smart contracts, businesses can 
automate rules and processes in a reliable, efficient, and trustworthy manner. A smart contract is a self-
executing code that runs on a blockchain network. It translates predefined rules between participating 
organizations into functions that establish trust between them.

Let us explore the main opportunities and potential ideas for blockchain technology in the transport sector.

3.1. Decentralized autonomous transport systems
Decentralized autonomous transport systems embody the core elements of blockchain. P2P networks, 
which rely on a consensus of distributed coordination and economic incentives, are a natural way to model 
the complex transport system. In this system, each computational node, such as IoT devices, vehicles, or 
other objects with computational power, can act as an autonomous agent[4].

These nodes can be linked to a common network and interact with each other through various types of 
blockchain-based Dapps, resulting in a DAO that is subject to specific requirements and tasks. Eventually, 
this can lead to the creation of a decentralized autonomous system and even a DAS[24].

To advance in this area, it is important to investigate both the micro-level of individual behaviors and 
interactions among autonomous system agents and the macro-level of modeling, self-organization, self-
improvement, and self-adjustment of systems.

3.2. Create an incentivization framework for crowdsourcing
In blockchain-based systems, distributed consensus competition can already be viewed as a crowdsourcing 
task where numerous nodes contribute their computing power to validate blockchain data[8]. Since these 
nodes are individual agents, the incentivization and crowdsourcing mechanisms must ensure that individual 
actions of a node in the pursuit of profit maximization align with the system-wide objective of safeguarding 
the protection and dependability of the system. The blockchain technology applied can aggregate all 
available computational resources in an ITS to improve ITS services and enhance decision-making speed.

3.3. Implementation of software-defined trust in ITS systems
Trust is a crucial aspect of creating a decentralized ITS using blockchain technology, which can facilitate 
services such as commercial transportation, public transport, and electronic payments in transport[9]. This 
type of trust is established through code and the verification of the majority of process participants, 
potentially reducing structural complexity and addressing social problems. For instance, P2P trust can 
enable the direct sale and registration of used cars through blockchain applications without relying on 
centralized authorities or platforms. Further research is needed to explore the underlying rationale for trust 
and fiduciary formation in this direction.

3.4. Leveraging smart contracts for intelligent transport systems
Smart contracts act as a catalyst for blockchain technology by enabling the dynamic execution of processes 
based on pre-set rules and conditions. Through various algorithms such as machine learning and big data 
analysis, smart contracts can enhance the intelligence of ITS and its applications, resulting in a more 
efficient and effective transport ecosystem. They also decrease social complexity by minimizing the 
involvement of humans in executing the contracts. Thus, it is important to study the creation and 
deployment of smart contracts in ITS and the management and monitoring of the system built upon them.
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3.5. Ensuring data security and privacy protection
Despite its high reliability and security, blockchain needs to have a stronger encryption framework when 
used in an ITS that involves a large number of devices to safeguard against attacks.

Researchers have proposed the concept of PTMS[24], which optimizes the real transportation system by 
enabling parallel interactions with artificial or virtual counterparts. Blockchain is a secure and reliable 
architecture for PTMS and can be considered an important step toward its implementation.

A blockchain-based PTMS can include all physical objects, such as IoT devices, vehicles, and assets, which 
can be easily digitized and registered online in a "blockchain of things." The transmission of big data in 
cyberspace can also be integrated into blockchain. It is also possible to create one or more virtual transport 
systems in the code space of smart contracts using the Ethereum platform, which provides programmable 
scripts to support modeling and computation. Therefore, it is crucial to ensure the security and privacy of 
data in such systems to maintain the trust of the participants of the system[25].

The co-development of real and virtual transport systems enables the design and execution of 
computational experiments to evaluate and verify specific behaviors, scenarios, and strategies in ITS. These 
experiments can take the form of 'What If' scenarios and simulation output based on predefined 'If Then' 
rules. The optimal solution is derived from a large number of computational experiments, which are then 
applied to the actual transport systems. This cyclic process is repeated until the actual transport system 
approximates its optimal virtual counterparts. This approach offers an efficient means of evaluating traffic 
conditions and improving the overall performance of ITS[26].

4. DISCUSSION
In order to use blockchain as a reliable ledger for transactional data, a user needs to be able to verify on the 
blockchain whether a transaction has been made to their address or electronic wallet, where 
cryptocurrencies are stored. If this information was stored on a single computer or server, the availability of 
the data would be dependent on that particular device. In the event that the device goes down or fails, the 
data becomes inaccessible. However, this is where blockchain technology proves useful. The current state of 
the blockchain is downloaded, synchronized, and made available to a large number of computers around 
the world, known as nodes. These nodes operate in a P2P network, working together to keep the blockchain 
secure and up-to-date. Each node stores a complete and updated version of the blockchain, and when a new 
block is added, all nodes update their respective blockchains.

Using a P2P network to store the blockchain has several advantages over relying on a single node. First, 
information is available at any time because there are multiple nodes.

Second, it makes the blockchain highly secure because the data is distributed across many computers. In 
order to change the data, all the nodes must be updated simultaneously, which is practically impossible. 
This makes the data tamper-proof and immutable.

Third, the decentralized nature of the blockchain means that an attacker would need to gain control of 
thousands of nodes at the same time to manipulate the data. This would require an enormous amount of 
processing power, making such an attack highly unlikely.
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Finally, once data is stored on the blockchain, it cannot be edited or deleted, ensuring the integrity and 
authenticity of the recorded transactions.

The consensus mechanism is a critical component of a P2P network, which is responsible for validating 
transactions and blocks. When a new block is added to the blockchain, it must be accepted by all nodes in 
the network to be considered valid.

In contrast, in centralized systems, a single administrator controls the database and makes decisions on 
which files to keep and how to update them. Each transaction is approved, edited, or deleted by a single 
person or computer, and other users in the system do not have real-time visibility into the changes being 
made. This lack of transparency makes the system vulnerable to fraud, misuse, and errors.

Decentralized public resources, such as blockchain, do not have administrators. No single node can 
approve, edit, or delete any transaction without the consensus of all blockchain nodes. This presents a 
challenge for achieving real-time consensus and updating the state of the public ledger. The solution is 
found in mining, which is a mechanism that checks and updates transactions in real-time to maintain 
consensus among all nodes.

In conclusion, implementing information technologies is generally cheaper and easier than building 
infrastructure. Several available technologies, such as GPS and intelligent vehicles, can be utilized to 
improve performance[18,19].

The adoption of information technology can enhance facility performance by reducing transaction delays, 
improving productivity, and minimizing check processing time. It can also increase transit speed and 
decrease operational costs, thereby improving the overall capabilities of ITS. As the development of artificial 
intelligence and 5G wireless connectivity continues to progress, intelligent traffic is expected to become a 
comprehensive solution that involves numerous IoT devices that connect and communicate with one 
another. This will enable the prediction of traffic conditions and the anticipation of optimal solutions. 
Moreover, due to significant advancements in intelligent software development, a more sophisticated 
system has been implemented.

Integrating ITS with blockchain technology is expected to make the system even more powerful and 
efficient. This integration can help to mitigate the influence of human factors and external malicious 
attacks, allowing vehicles to communicate and self-organize based on traffic conditions through an 
intelligent contract in a blockchain.

In the coming years, there is an expectation of developing machine learning algorithms for predicting traffic 
conditions and determining traffic intensity. Moreover, a consensus block algorithm is being developed to 
improve tolerance and transaction rates in the real-time system.

The integration of machine learning systems in the process of data retrieval, loading, and conversion is not 
just about creating a more efficient system, but it also has the potential to create a self-improving and self-
managing service that is capable of continuous learning. The results of sensory data and extensive data 
analysis of road modules will be processed and added to the knowledge base, leading to subsequent 
quantitative analysis that is more accurate than the previous one. This implies that road modules, which are 
primarily responsible for accumulating large data streams, can adapt their data collection strategies 
according to the results of statistical analysis.
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The impact of blockchain technology is extending beyond its initial use in cryptocurrency and is poised to 
revolutionize a wide range of industries. Among these is the logistics sector, where blockchain holds the 
potential to enhance the efficiency of business operations and enable the development of new services and 
business models.

In conclusion, the integration of blockchain technology in ITS within multi-agent systems holds great 
promise for revolutionizing the transportation industry by addressing key challenges faced by traditional 
ITS solutions. By providing secure and decentralized platforms for exchanging data, managing 
transportation processes, and facilitating payment systems, blockchain technology has the potential to 
create more efficient, secure, and transparent transportation networks. Further research is needed to fully 
realize the potential of blockchain technology in ITS within multi-agent systems and to explore new 
applications and use cases in this field.

5. CONCLUSIONS
In conclusion, integrating blockchain technology into the transport sector has the potential to revolutionize 
the industry by addressing key challenges and unlocking new opportunities. Decentralized autonomous 
systems of blockchain can model complex transport networks, while incentivization frameworks can 
enhance crowdsourcing efforts. Software-defined trust and smart contracts offer secure and efficient 
transactions, minimizing reliance on centralized authorities. Data security and privacy protection are crucial 
considerations, especially in parallel transportation management systems. By integrating real and virtual 
transport systems, computational experiments can optimize traffic conditions and improve overall 
performance. The adoption of blockchain technology can enhance efficiency, security, and transparency in 
transportation networks. Further research is needed to fully explore and exploit the potential of blockchain 
in multi-agent systems within the transport sector, unlocking its full benefits and discovering new 
applications.
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Abstract
Autonomous navigation of unmanned aerial vehicles (UAVs) is widely used in building rescue systems. As the com-
plexity of the task increases, traditional methods based on environment models are hard to apply. In this paper, a
reinforcement learning (RL) algorithm is proposed to solve the UAV navigation problem. The UAV navigation task is
modeled as a Markov Decision Process (MDP) with parameterized actions. In addition, the sparse reward problem
is also taken into account. To address these issues, we develop the HER-MPDQN by combining Multi-Pass Deep
Q-Network (MP-DQN) and Hindsight Experience Replay (HER). Two UAV navigation simulation environments with
progressive difficulty are constructed to evaluate ourmethod. The results show that HER-MPDQNoutperforms other
baselines in relatively simple tasks. Especially for complex tasks involving relay operations, only our method can
achieve satisfactory performance.

Keywords: Deep reinforcement learning, parameterized action space, sparse reward

1. INTRODUCTION
In recent years, unmanned aerial vehicles (UAVs) have been widely used in emergency rescue fields within
the framework of Industry 4.0 [1–3]. The key technology behind these applications is UAV attitude control [4,5]

and autonomous navigation [6]. Traditional approaches to address navigation challenges using modeling tech-
niques [7–9] and simultaneously localization-and-mapping techniques [10–12]. While thesemethods have demon-
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strated satisfactory performance, they heavily rely on prior knowledge of the environment, limiting their ap-
plicability in complex and dynamic navigation scenarios.

Deep reinforcement learning (DRL) has developed rapidly and achieved remarkable success in recent years.
DRL aims at deriving a policy by maximizing a long-term cumulated reward of a Markov decision process
(MDP). MDP characterizes a process in which an agent at some state takes action, transits to another state,
and obtains rewards. For continuous decision problems, Silver 𝑒𝑡 𝑎𝑙. [13] develop a hybrid DRL system that
defeated a human world champion in Go. In robotics, DRL successfully solves optimal control problems [14,15].
For this reason, researchers turn their attention to reinforcement learning (RL)-based methods. For instance,
Yan 𝑒𝑡 𝑎𝑙. [16] propose an improved Q-learning algorithm to handle the path planning problem without prior
knowledge. However, it is difficult to deal with tasks in the real world because only discrete action sets are
considered. In contrast, Bouhamed 𝑒𝑡 𝑎𝑙. [17] propose a path planning framework for handling continuous
actions based on DRL.

Recent work on UAV navigation based on DRL has been successful, but there are still some potential issues
that have been overlooked. On the one hand, the behavior of UAVs is usually defined as single-type actions
in existing studies. However, UAVs often need both discrete decision-making and continuous control when
performing tasks. In [18], Masson 𝑒𝑡 𝑎𝑙. call the action space consisting of two control signals as parameterized
action space. Hausknecht and Stone [19] deal with this problem by relaxing the parameterized action space
into a continuous one. However, they do not exploit the structural information of this action space. For that
matter, Xiong 𝑒𝑡 𝑎𝑙. [20] propose Parametrized Deep Q-Networks (P-DQN), which can directly learn from
parameterized actions. Since P-DQN couples all continuous parameters to each discrete action, the prediction
of the Q network is influenced by unrelated parameters. In [21], Bester 𝑒𝑡 𝑎𝑙. develop the Multi-Pass Deep
Q-Network (MP-DQN) algorithm by changing the Q network architecture of P-DQN to eliminate this effect.

On the other hand, the studies above train agents with custom reward functions to speed up network con-
vergence [22,23]. However, overly complex reward signals may cause the agent to get stuck in local optima.
Moreover, it is hard to give correct rewards according to whether the UAV is moving away from the target due
to the presence of obstacles. This problem can be avoided by adopting more general sparse reward schemes.
While defining sparse reward is simple, the potential learning problem is much harder to solve (i.e., lack of in-
termediate rewards hinders the learning of agents). Numerous studies propose curiosity-based approaches to
encourage agents to explore previously rare states [24,25]. These methods introduce additional fitting models of
environmental dynamics to measure curiosity. However, the model will reduce efficiency when the dynamics
are unpredictable. Andrychowicz 𝑒𝑡 𝑎𝑙. [26] develop the Hindsight Experience Replay (HER) algorithm by in-
troducing the goal mechanism. The effectiveness of HER has been demonstrated inmany robotics applications
with sparse reward [27,28].

Parameterized action space and sparse reward inspire us to rethink new forms of RL problems. In this paper,
our contributions can be summarized as follows:

1) Wemodel UAV navigation as a parameterized actionMDP to better suit the task requirements. At the same
time, sparse rewards are considered to improve the generality of the algorithm in various tasks. To handle
these challenges, an off-policy algorithm called HER-MPDQN is developed by incorporating HER with
MP-DQN.

2) To address the issue of extended invalid experiences encountered in traditional methods, we propose a
goal-switching mechanism. This mechanism effectively reduces the invalid expansion for experience and
improves the rationality of the expansion experience.

3) We compare our algorithm with baselines in experiments with high randomness and varying difficulty.
Experimental results show that our method is capable of learning better policies in solving navigation tasks
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with sparse rewards. It can be successfully generalized to any position in space and significantly outperforms
existing RL algorithms.

The rest of this article is outlined below. PAMDP and the sparse reward problem are described in Section 2. In
Section 3, the navigation problem is modeled as a PAMDP and uses a sparse reward scheme. Our proposal to
address the problem is elaborated in Section 4. In Section 5, we compare HER-MPDQN with other baselines
in two UAV navigation simulation environments, followed by our discussion in Section 6 and conclusions in
Section 7.

2. BACKGROUND
In this section, we briefly introduce MDP and PAMDP, followed by the issue of sparse reward.

2.1. MDP and PAMDP
MDP is built based on a set of interactive objects, namely agents and environments. MDP consists of a state
space 𝑆, an action space 𝐴, a state transition probability distribution 𝑃(𝑠𝑡+1 |𝑠𝑡 , 𝑎𝑡), and a reward function
𝑅 : 𝑟𝑡 = 𝑟 (𝑠𝑡 , 𝑎𝑡). Where 𝑃 satisfies the Markov property, and 𝑅 represents the immediate reward 𝑟𝑡 obtained
by executing an action 𝑎𝑡 in a given state 𝑠𝑡 . RL, which learns the optimal policy based on trial and error,
provides a way to solve the MDP problem. The policies learned based on RL are divided into deterministic
policy and stochastic policy. For discrete action spaces, the deterministic policy is expressed as 𝑎𝑡 = 𝜋(𝑠𝑡),
which means that a certain action 𝑎𝑡 can be obtained for a given state 𝑠𝑡 . The stochastic policy is denoted
as 𝑎𝑡 ∼ 𝜇(·|𝑠𝑡), which means to select an action 𝑎𝑡 from the probability distribution after a given state 𝑠𝑡 .
If the action space is continuous, the corresponding policies above will be parameterized as functions 𝑎𝑡 =
𝜋(𝑠𝑡 , 𝜃) and 𝑎𝑡 ∼ 𝜇(·|𝑠𝑡 , 𝜃) , where 𝜃 refers to the parameters of the function. To uniform representation,
we all implicitly mean that policy 𝜋 (or 𝜇) is a function of 𝜃, and all the gradients are with respect to 𝜃 in
the following contexts. RL involves estimating state-value functions 𝑉 (𝑠) and action-value functions 𝑄(𝑠, 𝑎).
Taking deterministic policy as an example, the state-value function is defined as

𝑉𝜋 (𝑠𝑡) = E𝜋

[
𝑇∑
𝑚=0

𝛾𝑚𝑟 (𝑠𝑡+𝑚 , 𝑎𝑡+𝑚) |𝑠𝑡)
]
, (1)

where 𝛾 ∈ [0, 1] is a discount factor, and the action-value function is defined as

𝑄𝜋 (𝑠𝑡 , 𝑎𝑡) = E𝜋

[
𝑇∑
𝑚=0

𝛾𝑚𝑟 (𝑠𝑡+𝑚 , 𝑎𝑡+𝑚) |𝑠𝑡 , 𝑎𝑡)
]
. (2)

The agent learns an optimal policy by maximizing the expected discounted reward (target function) as follows

𝐽 (𝜋) = E𝜋

[
𝑇∑
𝑡=0

𝛾𝑡𝑟 (𝑠𝑡 , 𝑎𝑡)
]
. (3)

If 𝜋 is a stochastic policy, the corresponding state-value function, action-value function, and target function
can be obtained by replacing 𝑎𝑡 = 𝜋(𝑠𝑡) by 𝑎𝑡 ∼ 𝜇(·|𝑠𝑡) in (1), (2), and (3).

PAMDP is an extension of MDP on the action space, allowing decision-making using parameterized actions.
Parameterized actions flexibly integrate discrete actions and continuous actions and provide richer expressive-
ness. In tasks such as UAV navigation, which demand precise parameter control, using parameterized actions
enables finer-grained control. Moreover, from an interpretability standpoint, the structural characteristics of
parameterized actions make the decision-making process of agents more understandable and explainable. The
action space of PAMDP can be expressed asH = {(𝑘, 𝑥𝑘 ) |𝑥𝑘 ∈ X𝑘 } 𝑓 𝑜𝑟 𝑎𝑙𝑙 𝑘 ∈ 𝐾 , where 𝑘 = {1, ..., 𝐾}. 𝐾
denotes the number of discrete actions. 𝑘 refers to a specific discrete action (e.g., 𝑘 = 1 means movement and
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Figure 1. The direct navigation task. The UAV only needs to fly
from the initial point to the target area.

Figure 2. The relay navigation task. The UAV needs to operate
on “catching supply” during the navigation process.

𝑘 = 2 means turning). 𝑥𝑘 represents the continuous parameter (e.g., acceleration or angle) associated with the
discrete action 𝑘 . X𝑘 is the set of all continuous parameters. In the PAMDP, the agent first selects a discrete
action 𝑘 , then obtains the corresponding 𝑥𝑘 from X according to 𝑘 , and finally executes the action (𝑘, 𝑥𝑘 ).
Therefore, PAMDP has subtle differences in the interaction process compared to standard MDP. Assuming
that at step 𝑡, PAMDP is in state 𝑠𝑡 , the agent executes an action by policy 𝜋: 𝑠𝑡 →

(
𝑘 𝑡 , 𝑥𝑘𝑡

)
and receives an

immediate reward 𝑟
(
𝑠𝑡 , 𝑘 𝑡 , 𝑥𝑘𝑡

)
and the next state 𝑠𝑡+1 ∼ 𝑃

(
𝑠𝑡+1 |𝑠𝑡 , 𝑘 𝑡 , 𝑥𝑘𝑡

)
. The target function of the agent

becomes as follows

𝐽 (𝜋) = E𝜋

[
𝑇∑
𝑡=0

𝛾𝑡𝑟 (𝑠𝑡 , 𝑘 𝑡 , 𝑥𝑘𝑡 )
]
. (4)

2.2. Sparse reward problems
The sparse reward scheme is a reward mechanism that uses only binary values to indicate whether a task is
eventually completed. Specifically, the agent can get a positive reward when completing the task and a negative
reward during exploration. Although this mechanism reduces the effort required for human design, it brings
potential learning problems. The lack of effective rewards prevents the agent from judging the pros and cons of
its behavior and thus cannot optimize the policy 𝜋 correctly. Under the influence of the sparse reward problem,
the agent learns slowly or even fails to learn. Solving the harmful interference brought by the sparse reward
scheme is one of the focuses of this paper.

3. PROBLEM FORMULATION
In this section, a UAV navigation task from an initial to a target position is first formulated. The UAV will
learn a policy by mapping internal state information to action sequences. Then the PAMDPmodeling process
with sparse reward is described in detail.

3.1. UAV navigation tasks
In this paper, UAV navigation tasks are divided into the direct navigation task [Figure 1] and the relay navigation
task [Figure 2]. The distinction between these tasks lies in the presence of intermediate operations that the UAV
needs to perform. As a result, the flight requirements for UAVs in relay navigation tasks are more demanding.
Nevertheless, the simple task is also considered to verify the effectiveness and generality of the algorithm.

Typically, the position, direction, and motion of the UAV are determined by both the earth and the body coor-
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dinate frame. The earth coordinate frame is used to describe the position and direction of the UAV, denoted as
𝜙 = [𝑥, 𝑦, 𝑧, 𝜃𝑥 , 𝜃𝑦 , 𝜃𝑧]. The linear and angular velocities of the UAV are denoted as 𝜓 = [𝑣𝑥 , 𝑣𝑦 , 𝑣𝑧, 𝜔𝑥 , 𝜔𝑦 , 𝜔𝑧]
in the body coordinate frame.

For simplicity, the UAV is assumed to fly at a fixed altitude, i.e., the motion of the UAV is constrained within
the x-y plane. Moreover, the steering action of the UAV takes effect immediately because the momentum is
ignored. As a result, the vector describing the motion information of the UAV is simplified to 𝜉 = [𝑥, 𝑦, 𝑣, 𝜃],
and the motion formula is expressed as follows

𝜃𝑡+1 = 𝜃𝑡 + Δ𝜃
𝑣𝑡+1 = 𝑣𝑡 + Δ𝑎

𝑥𝑡+1 = 𝑥𝑡 + 𝑣𝑡+1 cos(𝜃𝑡+1)
𝑦𝑡+1 = 𝑦𝑡 + 𝑣𝑡+1 sin(𝜃𝑡+1)

(5)

where Δ𝜃 is the steering signal, Δ𝑎 is the acceleration signal, 𝑣 is the speed of the UAV, and 𝜃 is the direction
angle between the UAV and the target.

3.2. State representation specification
State representation is essential for the agent to perceive the surrounding environment and reach the target
position. In our setting, the state vector is reduced as much as possible to avoid interference from irrelevant
information and speed up training. Specifically, the observable information of the UAV has three sources. The
first is the internal state of UAVs, which is represented in terms of position [𝑥, 𝑦], velocity 𝑣, and direction 𝜃.
The second is the relationship between UAVs and the environment. Since obstacles are not considered, the
number of actions theUAVperforms is used to be the unique representation, which is recorded as 𝑛𝑠𝑡𝑒𝑝 . Taking
𝑛𝑠𝑡𝑒𝑝 as the state can encourage the UAV to complete the task with fewer steps. The last is the relationship
information between the UAV and the target. Also, to simplify the representation, the distance between the
UAV and the target is only used to describe this relationship, denoted as 𝑑𝑡𝑎𝑟𝑔𝑒𝑡 . By combining the three kinds
of information, the final form of the state vector becomes: 𝑠 = [𝑥, 𝑦, 𝑣, 𝜃, 𝑑𝑡𝑎𝑟𝑔𝑒𝑡 , 𝑛𝑠𝑡𝑒𝑝]. For relay navigation
tasks, UAVs need additional information about supplies. The location information of the supply can be directly
obtained from the simulation environment. In this paper, the distance 𝑑𝑠𝑢𝑝𝑝𝑙𝑦 between the UAV and the supply
is included as one of the state representations to fulfill this requirement. As a result, the state vector in the relay
task is modified as follows: 𝑠 = [𝑥, 𝑦, 𝑣, 𝜃, 𝑑𝑡𝑎𝑟𝑔𝑒𝑡 , 𝑑𝑠𝑢𝑝𝑝𝑙𝑦 , 𝑛𝑠𝑡𝑒𝑝].

3.3. Parameterized action design
Considering that the flight altitude of the UAV has been set as a constant above, its movement in the vertical
direction can be ignored. For the direct navigation task, the optional discrete actions of the UAV are defined
in the discrete set D = {𝑘1, 𝑘2}. Where 𝑘1 represents the “MOVE” behavior and 𝑘2 represents the “TURN”
behavior. In addition, the parameter set C = {(𝑐1), (𝑐2)} defines the continuous parameters corresponding to
each action in D, where 𝑐1 represents the acceleration value and 𝑐2 represents the rotation angle. When the
UAV acts, it not only needs to select the discrete action but also needs to determine the corresponding param-
eter values. To sum up, the parameterized action space of UAV is represented as H = {(𝑘1, (𝑐2)), (𝑘2, (𝑐2)}.
The value range of 𝑐1 and 𝑐2 are scaled to [−1 ∼ 1]. Since the UAV needs to perform intermediate operations
for the relay navigation task, a new discrete action 𝑘3 will be added to D to represent the “CATCH” behavior.
It should be pointed out that action 𝑘3 does not set continuous parameters. This is because we focus more on
learning the navigation policy rather than the specific control process. When the UAV gets close enough to
the supply, it performs the “CATCH” action, allowing the supply to move with itself. However, when the UAV
is far away from the supply, it will not affect the supply when it performs the “CATCH” action. In this case,
the UAV advances one step based on the current speed and angle. The primary goal of the UAV is to transport
the supply to the target area.
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3.4. Sparse reward function
Although sparse reward setting is simple and universal, different tasks need to set corresponding reward func-
tions, which will bring different degrees of sparsity. The direct navigation task aims to get the UAV to reach
the target area, which is a single-stage task with a relatively small reward sparsity. In the relay navigation task
that contains supplies, an effective reward can be obtained only when the UAV finds supplies and carries them
to the target area. This task includes relay operations which significantly increase the reward sparsity. Existing
baselines are not effective at handling the relay task. This phenomenon and the solution are described in detail
in Section 4.2. According to the above task requirements, the reward function of the direct navigation task is
defined as

𝑅 =

{
0, 𝑖 𝑓 𝑈𝐴𝑉 𝑖𝑛 𝑡𝑎𝑟𝑔𝑒𝑡 𝑎𝑟𝑒𝑎

−1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
(6)

and the reward function of the relay navigation task is defined as

𝑅 =

{
0, 𝑖 𝑓 𝑠𝑢𝑝𝑝𝑙𝑦 𝑖𝑛 𝑡𝑎𝑟𝑔𝑒𝑡 𝑎𝑟𝑒𝑎

−1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 .
(7)

4. DEEP REINFORCEMENT LEARNING AGENT
To solve the navigation task presented in Section 3, the MPDQN algorithm is considered first, which has been
proven effective in PAMDP. Besides, we introduce how to extend HER to solve the sparse reward problem in
the relay task, followed by the implementation and training process of HER-MPDQN.

4.1. Multi-Pass Deep Q-Network (MP-DQN)
MP-DQN is an off-policy RL algorithm that deals with parameterized action space. In MP-DQN, the goal of
the agent is to optimize the policy 𝜋 : 𝑆 → 𝐴, which maximizes the long-term cumulative discounted rewards:

𝑅𝑡 =
𝑇∑
𝑖=𝑡

𝛾𝑡−𝑖𝑟 (𝑠𝑡 , 𝑘 𝑡 , 𝑥𝑘𝑡 ). (8)

Due to the integration of DQN [29] and DDPG [30] algorithms, MP-DQN has a network architecture similar to
the Actor-Critic architecture. In specific, the MPDQN agent has an actor-parameter network 𝜋𝜃𝑥 (similar to
Actor) and a Q-value network 𝑄𝜃𝑄 (similar to Critic). Where 𝜃𝑥 and 𝜃𝑄 are parameters of the network. The
discrete action policy is implicitly learned when approximating the Q-value function.

For the actor-parameter network, the MP-DQN agent learns a deterministic mapping policy 𝜋𝜃𝑥 (𝑠) from state
to continuous parameters vector as follows

X𝑡𝑘 = 𝜋𝜃𝑥 (𝑠𝑡) (9)

where X𝑡𝑘 = [𝑥𝑡1, 𝑥
𝑡
2, ..., 𝑥

𝑡
𝐾 ] contains all continuous parameters corresponding to the discrete actions 𝑘 . In

order to decouple discrete actions and irrelevant continuous parameters, the X𝑡𝑘 becomes

X𝑡𝑘 =


𝑥𝑡1 0 · · · 0
0 𝑥𝑡2 0 0

0 0
. . . 0

0 · · · 0 𝑥𝑡𝐾


=


𝑥𝑡𝑒1

𝑥𝑡𝑒2
...

𝑥𝑡𝑒𝐾


Each rowof thematrix is fed into theQ-value network separately, thereby eliminating the influence of irrelevant
parameters on the estimation of the Q-value function.
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For the Q-value network, MP-DQN evaluates actions using an action-value function similar to DDPG. Since
MPDQN needs to optimize both discrete actions and continuous parameters, the Bellman equation becomes

𝑄𝜃𝑄 (𝑠𝑡 , 𝑘 𝑡 , 𝑥𝑘𝑡 ) = E
𝑟𝑡 ,𝑠𝑡+1

[
𝑟𝑡 + 𝛾 𝑚𝑎𝑥

𝑘∈[𝐾]
𝑠𝑢𝑝
𝑥𝑘∈X𝑘

𝑄𝜃𝑄 (𝑠𝑡+1, 𝑘, 𝑥𝑘 ) |𝑠𝑡 , 𝑘 𝑡 , 𝑥𝑘𝑡
]
, (10)

where 𝑘 𝑡 is the discrete action selected at time 𝑡, and 𝑥𝑘𝑡 is the associated continuous parameter. To avoid
taking supremum over continuous space X𝑘 , equation (10) is rewritten as:

𝑄𝜃𝑄 (𝑠𝑡 , 𝑘 𝑡 , 𝑥𝑘𝑡 ) = E
𝑟𝑡 ,𝑠𝑡+1

[
𝑟𝑡 + 𝛾 𝑚𝑎𝑥

𝑘∈[𝐾]
𝑄𝜃𝑄 (𝑠𝑡+1, 𝑘, 𝜋𝜃𝑥 (𝑠𝑡+1)) |𝑠𝑡

]
, (11)

where 𝜋𝜃𝑥 : 𝑆 → X𝑘 represents the mapping relationship in equation (9). This means that approximating the
Q-value function needs to fix 𝜃𝑄 first and find 𝜃𝑥 such that

𝑄𝜃𝑄 (𝑠, 𝑘, 𝜋𝜃𝑥 (𝑠)) ≈ 𝑠𝑢𝑝
𝑥𝑘∈X𝑘

𝑄𝜃𝑄 (𝑠, 𝑘, 𝑥𝑘 ) 𝑓 𝑜𝑟 𝑒𝑎𝑐ℎ 𝑘 ∈ [𝐾] (12)

Then, similar to DQN, 𝜃𝑄 is estimated by minimizing the mean-squared Bellman error. The loss function of
the Q-value network is:

L(𝜃𝑄) =
1
2
[
𝑦𝑡 −𝑄𝜃𝑄 (𝑠𝑡 , 𝑘 𝑡 , 𝜋𝜃𝑥 (𝑠𝑡))

]2
, (13)

where

𝑦𝑡 = 𝑟𝑡 + 𝛾 𝑚𝑎𝑥
𝑘∈[𝐾]

𝑄𝜃
′
𝑄
(𝑠𝑡+1, 𝑘, 𝜋𝜃′𝑥 (𝑠𝑡+1)). (14)

The loss of the actor-parameter network is given by the negative sum of Q-values as

J (𝜃𝑥) = −
𝐾∑
𝑘=1

𝑄𝜃𝑄 (𝑠𝑡 , 𝑘, 𝜋𝜃𝑥 (𝑠𝑡)). (15)

4.2. Hindsight experience replay
HER is another important baseline algorithm that we consider in our method. The core idea is to expand the
experience by constructing the goal variable as shown in Figure3 (a). There are two ways to construct the goal
variable:

1) Direct construction: The agent uses the target information feedback by the environment as the goal variable
at step 𝑡, which is recorded as 𝑑𝑒𝑠𝑖𝑟𝑒𝑑_𝑔𝑜𝑎𝑙𝑡 . Additionally, the location of itself at step 𝑡 is recorded as
𝑎𝑐ℎ𝑖𝑒𝑣𝑒𝑑_𝑔𝑜𝑎𝑙𝑡 . In the relay navigation task, the traditional algorithm will always record the location of
the supply as 𝑎𝑐ℎ𝑖𝑒𝑣𝑒𝑑_𝑔𝑜𝑎𝑙𝑡 . In our method, the information represented by 𝑎𝑐ℎ𝑖𝑒𝑣𝑒𝑑_𝑔𝑜𝑎𝑙𝑡 changes
with the state of the agent; see the end of this section for the specific process.

2) Replacement construction: Through direct construction, an experience can be obtained at step 𝑡, simplified
as (𝑎𝑐ℎ𝑖𝑒𝑣𝑒𝑑_𝑔𝑜𝑎𝑙𝑡 , 𝑑𝑒𝑠𝑖𝑟𝑒𝑑_𝑔𝑜𝑎𝑙𝑡). The HER algorithm will randomly sample 4 items from the experi-
ence obtained from step 𝑡 + 1 to step 𝑇 and then uses the 𝑎𝑐ℎ𝑖𝑒𝑣𝑒𝑑_𝑔𝑜𝑎𝑙 as the goal variable to replace the
𝑑𝑒𝑠𝑖𝑟𝑒𝑑_𝑔𝑜𝑎𝑙 in the experience at step 𝑡. 𝑇 is the maximum step that allows the agent to act in a single task.

The new goals constructed in the above way have the potential to be generalized to unseen real goals. Although
the agent fails to achieve a given goal in the current episode, it still learns action sequences that may achieve
different given goals in a future episode. Therefore, the original failure transition can be transformed into the
virtual success transition by selecting a new goal from the state experienced to replace the initial goal.

However, HER tends to be less efficient in some relay tasks. As shown in Figure 3 (b), the goal of the agent is to
deliver the block to the target area. It should be noted that the 𝑎𝑐ℎ𝑖𝑒𝑣𝑒𝑑_𝑔𝑜𝑎𝑙 (i.e., the location of the block)
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Figure 3. Illustration of positive reward sparsity for HER. (a) In the task that does not contain the manipulated object, achieved goal is
directly affected by the behavior of the agent and constantly changes in each rollout. In this case, HER can generate valuable learning
experiences. (b) For the task containing the manipulated object, achieved goal remains unchanged until the agent comes into contact with
the object. In this case, all the experience generated by HER includes positive rewards but has no substantial help to the learning of the
agent.

defined inHER has not changed when the agent is not in contact with the block. Any hindsight goal selected by
HER is labeled as a “success episode”. However, such a “successful episode” cannot bring meaningful guidance
to the agent. This, in part, leads to another kind of sparsity, positive reward sparsity.

To solve this problem, we propose the goal-switch mechanism (GSM). The principle of the GSM aims to
generate meaningful goal variables by dynamically assigning goals during experience expansion. In the relay
navigation task, the conventional HER approach always designates the target area as the 𝑑𝑒𝑠𝑖𝑟𝑒𝑑_𝑔𝑜𝑎𝑙 and
the supply point as the 𝑎𝑐ℎ𝑖𝑒𝑣𝑒𝑑_𝑔𝑜𝑎𝑙. GSM assists the UAV in determining the goal based on the current
state: (1) Prior to acquiring the supply, the supply point is marked as the 𝑑𝑒𝑠𝑖𝑟𝑒𝑑_𝑔𝑜𝑎𝑙, and the own posi-
tion of the UAV is labeled as the 𝑎𝑐ℎ𝑖𝑒𝑣𝑒𝑑_𝑔𝑜𝑎𝑙. (2) After acquiring the supply, the target area is marked as
the 𝑑𝑒𝑠𝑖𝑟𝑒𝑑_𝑔𝑜𝑎𝑙, while the supply point remains as the 𝑎𝑐ℎ𝑖𝑒𝑣𝑒𝑑_𝑔𝑜𝑎𝑙. By assigning different goals, GSM
enables the UAV to construct more effective goal variables and hindsight experiences, which helps mitigate
reward sparsity. This simple idea provides an effective solution and is proved in Section 5.

4.3. HER-MPDQN
MP-DQN samples a fixed batch from an offline experience reply buffer to update the network. HER expands
the original experience by goal replacement. On this basis, we further eliminate the hindsight experience
without guidance significance. This means that our proposal can be effectively integrated with MP-DQN. As
shown in Figure 4, the input vector of the neural network is extended inMP-DQN. In specific, the input vector
of the actor-parameter network becomes

𝑉𝜃𝑥 = (𝑠𝑡 , 𝑔𝑡). (16)

Correspondingly, the input vector of the Q-value network becomes

𝑉𝜃𝑄 = (𝑠𝑡 , 𝑔𝑡 , 𝑥𝑒𝑘𝑡 ). (17)
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Figure 4. The network architecture of HER-MPDQN. For the symbols in the figure, 𝑠 denotes the observed state, 𝑔 represents the goal of
the agent, 𝜃𝑥 and 𝜃𝑄 refer to network parameters, and (256, 128, 64) indicates the number of neurons in the network. 𝑥𝑘 is the continuous
parameter corresponding to the 𝑘th discrete action, where 𝑘 = 1, 2, ..., 𝐾 . 𝐾 is the total number of discrete actions. 𝑥𝑒𝑘 represents the
expanded continuous parameter vector derived from 𝑥𝑘 . 𝑄𝑘𝑘 denotes the Q value associated with the 𝑘th discrete action. The selection of
the discrete action 𝑘 is determined based on the largest Q value.

In our method, the original experience is stored together with the hindsight experience in the replay buffer. A
fixed batch of data is sampled from this buffer when the neural network needs to update. The training process
in Algorithm 1 is generally divided into three steps: (1)The agent interacts with the environment to accumulate
real experience; (2) Capture the original experience and hindsight experience of each time step and store all of
them in the replay buffer; (3) Update the parameters of the network according to the length of each episode.

5. RESULTS
To evaluate the effectiveness of HER-MPDQN, a UAV is fully trained and tested in two environments. A
relatively simple direct navigation environment and experimental results are first presented in 5.1. After that,
a more complex relay navigation task is considered. The related experiments and result analysis are in 5.2.

5.1. The direct navigation task
To our knowledge, open-source benchmark environments for UAVnavigation tasks with parameterized action
spaces and sparse rewards are currently lacking. Therefore, we simulate a large-scale environment inspired by
the existing simulation1. Figure 1 shows a top view of the navigation environment. The UAV can fly within
four square kilometers (2𝑘𝑚×2𝑘𝑚). The same settings for the environment randomness are used to have a fair
comparison. In each episode, the coordinate of the UAV and the target area are sampled from the uniform
distribution of the entire environment. The default initial velocity of the UAV is 0. The goal of the UAV is to
reach the target area in a limited number of steps. The optional actions are MOVE (acceleration) and TURN
(angle). MOVE indicates that the UAV moves along the current direction with the given acceleration. TURN
means that the UAV rotates at the given angle. The episode ends if the UAV reaches the target area (winning
state) or the time limit exceeds.

1https://github.com/thomashirtz/gym-hybrid.
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Algorithm 1: HER-MPDQN
Input: Minibatch size 𝐵, exploration parameter 𝜖 , soft update parameter 𝜏, learning rate 𝛼𝜃𝑄 and 𝛼𝜃𝑥 .
Initialize the weight of Q-value network and actor-parameter network.
Initialize target networks by hard update.
for 𝑒𝑝𝑖𝑠𝑜𝑑𝑒 = 0, ..., 𝑚𝑎𝑥_𝑒𝑝𝑖𝑠𝑜𝑑𝑒 do

Select an initial state 𝑠0 and an initial goal 𝑔0
for 𝑡 = 0, ..., 𝑚𝑎𝑥_𝑠𝑡𝑒𝑝 do

Compute action parameters 𝑥𝑘𝑡 by 𝜋𝜃𝑥 :
𝑥𝑘𝑡 = 𝜋𝜃𝑥 (𝑠𝑡 | |𝑔𝑡)
Select action 𝑎𝑡 = (𝑘 𝑡 , 𝑥𝑘𝑡 ) by 𝜖-greedy policy
Recieve 𝑟𝑡 , 𝑠𝑡+1 and 𝑔𝑡+1 by excute action 𝑎𝑡

end
for 𝑡 = 0, ..., 𝑒𝑝𝑖𝑠𝑜𝑑𝑒_𝑙𝑒𝑛𝑔𝑡ℎ do

Store the transition (𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡 , 𝑠𝑡+1, 𝑔𝑡) in 𝑅
Sample additional goals 𝐺 for current transition
for 𝑔′ ∈ 𝐺 do

𝑟′ := 𝑟 (𝑠𝑡 , 𝑎𝑡 , 𝑔′)
Store the transition (𝑠𝑡 , 𝑎𝑡 , 𝑟′, 𝑠𝑡+1, 𝑔′) in 𝑅

end
end
for 𝑡 = 0, ..., 𝑒𝑝𝑖𝑠𝑜𝑑𝑒_𝑙𝑒𝑛𝑔𝑡ℎ ∗𝑈 do

Sample a minibatch from 𝑅

Compute the target 𝑦𝑖 according to (5)
Optimize parameters 𝜋𝜃𝑄 and 𝜋𝜃𝑥
Update the weights of target networks by:

𝜃
′
𝑄 ← 𝜏 ∗ 𝜃𝑄 + (1 − 𝜏) ∗ 𝜃

′
𝑄

𝜃
′
𝑥 ← 𝜏 ∗ 𝜃𝑥 + (1 − 𝜏) ∗ 𝜃

′
𝑥end

end

We chose Python 3.7 as our development language due to its simplicity, flexibility, and efficient development
capabilities. For algorithm development and testing, we utilize the OpenAI Gym library, which is an open-
source RL library that offers convenient tools for creating custom environments. In terms of hardware, we
employ anAMDRyzen 7 5800Hprocessor and 16GB of RAM.This configuration is relatively new and provides
sufficient computing resources to support the training and testing of the algorithms developed in this study.

In the context of sparse rewards, the agent ends the current episode either when the task completion or the
agent goes out of bounds which results in higher rewards. Therefore, relying solely on “episode rewards” is
inadequate to assess the learning effectiveness. To evaluate algorithm performance, we utilize the “success
rate” as a metric, which directly reflects the number of times the agent completes the task. Also, a higher
“success rate” implies a higher “reward”. The “success rate” is defined as follows:

SR =
𝐶𝑇

𝑇𝑇
(18)

where SR means “success rate”, 𝐶𝑇 is the number of times the agent completes the task, and 𝑇𝑇 is the number
of times the agent performs the task.

We evaluated the performance of HER-MPDQN in the above environment. Besides, we also implement and
test the following three baselines: HER-PDQN [31], MP-DQN, [21] and P-DQN [20]. Each algorithm uses the
same network with hidden layer sizes (128,64). The step size of each environment is limited to 100, the size of
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Figure 5. Comparisons of the results using HER-MPDQN and other baselines. The left figure shows the periodic calculation of the task
completion rate of the last 10 episodes, and the right figure shows the total success rate during the entire training process. The shaded area
is the variance in multiple experiments. Smaller shading indicates that the algorithm is less sensitive to random seeds.

Table 1. The average performance over 1000 episode evaluations

The direct navigation task
Success rate Mean reward

HER-MPDQN(our) 0.810 ± 0.030 -40.095 ± 4.861
HER-PDQN 0.725 ± 0.082 -43.141 ± 11.917
MP-DQN 0.412 ± 0.165 -70.504 ± 15.897
P-DQN 0.305 ± 0.102 -84.504 ± 13.125

the replay buffer 𝑅 is 50, 000, themini-batch size 𝐵 is 128, and the update frequency𝑈 of the network is 40. The
learning rate of theQ-value network 𝛼𝜃𝑄 and actor-parameter network 𝛼𝜃𝑥 is 10−2 and 10−3 respectively. Adam
optimizer with an exponential decay rate of (𝛽1 = 0.9, 𝛽2 = 0.999) is used for optimization. All algorithms
run seven independent experiments and train 2,000 episodes in each experiment.

Figure 5 provides the training process of the UAV in the direct navigation task. Table 1 shows the evaluation
performance for each algorithm in 1000 episodes. The results show that HER-MPDQN has a faster conver-
gence speed and higher average success rate. Compared to HER-PDQN, our method evaluates the Q-value
more accurately and updates the actor-parameter network without bias. At the same time, the agent learns
effective experience early by introducing HER, which brings stronger learning ability than the original MP-
DQN. Since P-DQN has no additional mechanism to eliminate the influence of irrelevant parameters and deal
with sparse rewards, its performance is not satisfactory. In addition, it can be seen that the learning curve
of HER-MPDQN has a smaller shaded area. This means that HER-MPDQN has better robustness in various
experiments.

5.2. The relay navigation task
Considering the need for UAVs to deliver supplies, a relay navigation environment is further simulated. Com-
pared with the previous environment setting, the following changes are made: (1) Add a supply point that
requires the UAV to perform relay operations. (2) Introduce a new discrete action CATCH to represent grab-
bing operations. As shown in Figure 2, the UAV must deliver supply to the target area in a limited number of
steps. CATCH is valid only when the UAV is in contact with the supply. Each episode ends when the supply
has been transported to the target area (winning state) or the time limit exceeds.

Due to the increased complexity, the hyperparameters for this task are tuned as follows. The hidden layer size
of all networks is set to (256, 128, 64). The size of the replay buffer 𝑅 is 150, 000. The update frequency 𝑈
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Figure 6. Comparisons of the results using HER-MPDQN and other baselines. The left figure shows the periodic calculation of the task
completion rate of the last 100 episodes; other descriptions for evaluating algorithm performance are the same as Figure 5.

Table 2. The average performance over 1000 episodes evaluations

The relay navigation task
Success rate Mean reward

HER-MPDQN(our) 0.885 ± 0.059 -57.758 ± 6.294
HER-PDQN 0.000 ± 0.000 -00.000 ± 0.000
MP-DQN 0.000 ± 0.000 -00.000 ± 0.000
P-DQN 0.000 ± 0.000 -00.000 ± 0.000

changes according to the episode length and is limited to [1∼10]. The learning rate of the Q-value network
𝛼𝜃𝑄 and actor-parameter network 𝛼𝜃𝑥 is 10−3 and 10−5, respectively. Each algorithm is trained with 30,000
episodes in each experiment.

Figure 6 shows the learning curve in the relay task. The evaluation results are given in Table2. It is obvious
that HER-MPDQN is far superior to the other algorithms. On the one hand, more sparse rewards make it
impossible for the UAV to complete tasks through random actions. Therefore, the MP-DQN and P-DQN
without HER are challenging to learn. On the other hand, although many positive experiences are generated
by introducing HER, they do not have guide significance. For this reason, HER-PDQN cannot learn policy
effectively. By treating the relay task as a continuous multi-stage task, the goal is automatically allocated by
HER-MPDQN according to the current state. Thus, the hindsight experience of different stages has the correct
guiding significance. Figure 7 shows the flight trajectories of the trained UAV when performing specific relay
navigation tasks. It can be seen that the UAV has learned the correct action policy. Not only that, HER-
MPDQN exhibits good scalability in our experiments. The multi-goal relay navigation task can be completed
by expanding the goal space. We leave this research for future work.

6. DISCUSSION
Existing baselines can learn effective policies in the direct navigation task but fail to handle the relay navigation
task. In contrast, HER-MPDQN achieves satisfactory results in both simple and complex tasks. This means
that HER-MPDQN is versatile in solving different types of navigation tasks. General-purpose agents are one
of the critical directions of DRL research, which can avoid repeated algorithm design. HER-MPDQN has ex-
cellent advantages in tasks that are difficult to design reward functions and require flexible rescue strategies.
However, the algorithm in environments with obstacles has yet to test, and the flying altitude of the UAV is
fixed. These limitations make the transfer of simulation to reality more difficult. Future research can con-
sider addressing the sparse reward problem in more realistic simulation conditions, which can narrow the gap
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Figure 7. Illustration of flight trajectory map of the trained UAV in the relay navigation task. The red arrow represents the current direction
of the UAV, and the red dotted line is the flight path.

between “sim-to-real”.

7. CONCLUSIONS
In this paper, the HER-MPDQN algorithm is developed to address UAV navigation tasks with parametrized
action space and sparse reward. In addition, a goal-switching method is proposed to correct meaningless
hindsight experiences in the relay navigation task. The experiments show that HER-MPDQN outperforms
baselines regarding training speed and converged value. Especially in the relay task, only the agent trained
by HER-MPDQN learns effectively due to reasonable experience expansion. Further research could consider
the energy consumption model of UAVs and test real UAVs in high-dimensional environments containing
obstacles.
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Abstract
This paper investigates the problem of adaptive event-triggered fuzzy control for nonlinear high-order fully actuated
systems. In this paper, a completely unknown nonlinear function is considered, and its prior knowledge is unknown.
To solve this problem, the fuzzy logic system technology is applied to approximate the unknown nonlinear function. In
order to save communication resources, a novel high-order event-triggered controller is proposed under backstepping
control. With the help of Lyapunov stability theory, it is proved that all signals of the closed-loop system are bounded.
Finally, the theoretical results are applied to the robot system to verify their validity.

Keywords: fuzzy logic system, event-triggered strategy, high-order fully actuated nonlinear systems, adaptive control

1. INTRODUCTION
With the development of modern society and modern industry, linear system theory has become relatively
well-established and sophisticated [1–3]. Many scholars have proposed various powerful analysis tools for lin-
ear systems. However, with the progress of science and technology and the improvement of the accuracy of
measuring tools, the understanding of the actual system is gradually deepened, and the requirements for its
control performance are also increasingly high. Ignoring some objective factors, some practical systems are
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modeled as linear systems and controller designs are carried out, but the designed controllers have not met
the requirements for the control performance of practical systems. In such cases, it is particularly necessary
to model some practical systems into nonlinear systems. This includes systems such as unmanned vehicle
systems [4], unmanned aerial vehicle systems [5], robot systems, and manipulator systems [6]. Therefore, non-
linear systems have received extensive attention from scholars at home and abroad and have proposed various
tools to handle the control problem of nonlinear systems, such as adaptive backstepping control [7,8], sliding
mode control [9], etc. Among them, the combination of backstepping recursive design and adaptive control
has produced a large number of excellent results [10–14].

The high-order fully actuated system possesses unparalleled control characteristics compared to other sys-
tems. Its fully actuated characteristics enable the elimination of all dynamic characteristics of the open-loop
system while establishing new and desired closed-loop dynamic characteristics. About high-order fully actu-
ated systems, there have been some excellent results [15–23]. Among them, The work [19] proposed the direct
parametric approach of fully-actuated high-order systems. A constrained cooperative control is proposed [22]

for high-order fully actuated multiagent systems with prescribed performance.

Since the beginning of this century, networked control systems [24–29] have been widely used in remote oper-
ation, industrial automation, building energy conservation, and other fields. This is due to their low mainte-
nance cost and high flexibility. In the networked control system, the actuator, controller, sensor, and other
components transmit information through the shared network channel. Therefore, it is necessary to reduce
the occupation of shared communication by single subsystem control to achieve the purpose of saving cost
and energy. The traditional sampling control [30–33]is based on the system signal sampling value instead of
continuous value and takes different constant values periodically, which has relatively high communication
efficiency compared with continuous time control. Sampling control requires information transmission and
control update at a conservative fixed frequency regardless of obvious changes in system performance, so it
is not suitable for networked control systems with high integration, which leads to the emergence of more
efficient control of resource utilization, namely event-triggered control. The key point of the event-triggered
control design is to build an event-triggered mechanism. The most basic types are absolute threshold type, rel-
ative threshold type, and mixed threshold type. The construction of an event-triggered mechanism depends
not only on the system structure but also on the expected control objectives. Even with the increase in sys-
tem complexity and performance requirements, additional dynamic and online adjustment parameters need
to be introduced. Over the past decade, significant progress has been made in the research of event-triggered
control for nonlinear systems [34–43].

Inspired by the above excellent results and combined with the reality of the lack of event-triggered control
results of the high-order fully activated system, this paper studies the adaptive fuzzy event-triggered control
for the high-order fully activated system. The contribution of this paper is reflected in two aspects:

1) For the uncertain high-order fully actuated nonlinear system, the unknownnonlinear function is considered,
and the fuzzy logic system (FLS) is used to approximate the nonlinear function without a priori condition of
the nonlinear function.

2) The proposed event-triggered scheme for the uncertain high-order fully nonlinear system can effectively
eliminate the continuous update of the designed controller, thus saving communication resources.

The organization of this article is arranged as follows. The second section includes problem formulas and
preliminary knowledge. The third section introduces an event-triggered controller design scheme. The fourth
section shows the simulation. The fifth section is the summary.
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Notation

𝐼𝑛 represents the identity matrix and

𝑥 (0∼𝑛) =


𝑥

¤𝑥
...

𝑥 (𝑛)


,

𝐴0∼𝑛−1 =
[
𝐴0 𝐴1 . . . 𝐴𝑛−1

]
,

𝐼◦𝑛 =


0 0 1

0
. . . 0

1 0 0

 ,

𝑥 (0∼𝑛)𝑖∼ 𝑗 =


𝑥 (0∼𝑛)𝑖

𝑥 (0∼𝑛)𝑖+1
...

𝑥 (0∼𝑛)𝑗


, 𝑗 ≥ 𝑖

Φ(𝐴0∼𝑛−1) =


0 𝐼

. . .

𝐼

−𝐴0 −𝐴1 . . . 𝐴𝑛−1


.

2. PROBLEM FORMULAS AND PRELIMINARY KNOWLEDGE
2.1. Problem statement
Consider the following uncertain high-order fully nonlinear system:

𝑥
(𝑝1)
1 =𝑔1(𝑥 (0∼𝑝1−1)

1 )𝑥2 + 𝑓1(𝑥 (0∼𝑝1−1)
1 ),

𝑥
(𝑝 𝑗 )
𝑗 =𝑔 𝑗 (𝑥 (0∼𝑝𝑖−1)

𝑖 |𝑖=1∼ 𝑗 )𝑥 𝑗+1 + 𝑓 𝑗 (𝑥 (0∼𝑝𝑖−1)
𝑖 |𝑖=1∼ 𝑗 ),

𝑥
(𝑝𝑛)
𝑛 =𝑔𝑛 (𝑥 (0∼𝑝𝑖−1)

𝑖 |𝑖=1∼𝑛)𝑢 + 𝑓𝑛 (𝑥 (0∼𝑝𝑖−1)
𝑖 |𝑖=1∼𝑛),

(1)

where 𝑝𝑖 ∈ N+, and 𝑢 denotes the system input. 𝑓𝑖 (𝑥 (0∼𝑝𝑖−1)
𝑖 |𝑖=1∼ 𝑗 ) are sufficiently smooth unknown nonlinear

functions, 𝑔𝑖 (𝑥 (0∼𝑝𝑖−1)
𝑖 |𝑖=1∼ 𝑗 ) are control gain functions, and satisfy full-actuation conditions.

Remark 1 The above-mentioned high-order fully nonlinear system is the general form of a second-order fully
nonlinear system. For practical examples, such as robotic systems, it is no longer necessary to transform a high-
order system into a first-order system. Instead, we can deal with it directly.

2.2. Preliminaries knowledge

Assumption 1 [37] There are two constants that the control gain functions 0 < 𝑔
𝑗
≤ |𝑔 𝑗 (𝑥 (0∼𝑝𝑖−1)𝑖 |𝑖=1∼ 𝑗 ) | ≤

�̄� 𝑗 , 𝑗 = 1, · · · , 𝑛.

Remark 2 The above assumption is a common standard condition that ensures the controllability of the uncertain
high-order fully nonlinear system. This is derived from modeling real systems, and it makes perfect sense.

Lemma 1 [38] The unknown nonlinear continuous function 𝜁 (𝜉) is defined on a compact set. And there is an FLS
satisfying the following inequality

𝜁 (𝜉) = 𝑊∗𝑇𝑆(𝜉) + 𝛿(𝜉), (2)
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where 𝛿(𝜉) indicates the any estimation error which satisfies |𝛿(𝑥) | ≤ 𝛿.

Lemma 2 [38] For ∀𝜖 > 0 and 𝜎 ∈ 𝑅, it can be concluded that

0 ≤ |𝜎 | − 𝜎 tanh(𝜎
𝜖
) ≤ 0.2785𝜖 . (3)

Lemma 3 [18] Design the matrix 𝐴0∼𝑝𝑖−1
𝑖 ∈ R1×𝑝𝑖 so that the matrix Φ(𝐴0∼𝑝𝑖−1

𝑖 ) ∈ R𝑝𝑖×𝑝𝑖 is stable. Moreover,
according to Lyapunov Theorem, there is a matrix 𝑃𝑖 (𝐴0∼𝑝𝑖−1

𝑖 ) ∈ R𝑝𝑖×𝑝𝑖 , which is positive definite, satisfying

Φ(𝐴0∼𝑝𝑖−1
𝑖 )𝑇𝑃𝑖 (𝐴0∼𝑝𝑖−1

𝑖 )+𝑃𝑖 (𝐴0∼𝑝𝑖−1
𝑖 )Φ(𝐴0∼𝑝𝑖−1

𝑖 ) = −𝜌𝑖 𝐼𝑖 , (4)

where 𝜌𝑖 > 0 (𝑖 = 1, · · · , 𝑛) are design parameters.

3. CONTROLLER DESIGN AND STABILITY ANALYSIS
3.1. Adaptive event-triggered controller design
To facilitate the calculation, we first give some necessary coordinate transformations:

�̃�𝑖 (𝐴0∼𝑝𝑖−1
𝑖 ) = 𝐼◦2𝑃𝑇𝑖 (𝐴

0∼𝑝𝑖−1
𝑖 ),

𝑃𝑖 (𝐴0∼𝑝𝑖−1
𝑖 ) =

[
𝑃𝑖𝐹 (𝐴0∼𝑝𝑖−1

𝑖 ) · · · 𝑃𝑖𝐿 (𝐴0∼𝑝𝑖−1
𝑖 )

]
,

�̃�−1
𝑖 (𝐴

0∼𝑝𝑖−1
𝑖 ) =

[
𝑄𝑖11(𝐴0∼𝑝𝑖−1

𝑖 ) 𝑄𝑖12(𝐴0∼𝑝𝑖−1
𝑖 ) 𝑄𝑖13(𝐴0∼𝑝𝑖−1

𝑖 )
𝑄𝑖𝐹 (𝐴0∼𝑝𝑖−1

𝑖 ) 𝑄𝑖𝑀 (𝐴0∼𝑝𝑖−1
𝑖 ) 𝑄𝑖𝐿 (𝐴0∼𝑝𝑖−1

𝑖 )

]
,

where 𝑄𝑖𝐿 (𝐴0∼𝑝𝑖−1
𝑖 ) ≠ 0 (𝑖 = 1, · · · , 𝑛).

Step 1: Let

𝑠
(0∼𝑝1−1)
1 = 𝑥 (0∼𝑝1−1)

1 , (5)

and

�̃�2(𝐴0∼𝑝2−1
2 )𝑠(0∼𝑝2−1)

2 = 𝑥 (0∼𝑝2−1)
2 −

[
𝛼1
0

]
.

With the help of the notations, one has

𝑃𝑇2𝐿 (𝐴
0∼𝑝2−1
2 )𝑠(0∼𝑝2−1)

2 = 𝑥2 − 𝛼1.

Choose virtual controller 𝛼1 as

𝛼1 = − 1
𝑔1(𝑥 (0∼𝑝1−1)

1 )
(𝐴(0∼𝑝1−1)

1 𝑠
(0∼𝑝1−1)
1 + 1

2𝑎2
1
𝑃𝑇1𝐿 (𝐴

0∼𝑝1−1
1 )𝑠(0∼𝑝1−1)

1 𝜃1𝑆
𝑇
1 𝑆1 +

1
2
𝑃𝑇1𝐿 (𝐴

0∼𝑝1−1
1 )𝑠(0∼𝑝1−1)

1 ). (6)

The Lyapunov candidate function 𝑉1 is designed as

𝑉1 = (𝑠(0∼𝑝1−1)
1 )𝑇𝑃1(𝐴0∼𝑝1−1

1 )𝑠(0∼𝑝1−1)
1 + 1

2
𝜃2

1, (7)

where 𝜃1 = max{‖𝑊1‖2}, 𝜃1 = 𝜃1 − 𝜃1, and 𝜃1 is the estimation of 𝜃1.
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With the help of FLS and Young’s inequality, one gets

𝑃𝑇1𝐿 (𝐴
0∼𝑝1−1
1 )𝑠(0∼𝑝1−1)

1 𝐹1(𝑋1) = 𝑃𝑇1𝐿 (𝐴
0∼𝑝1−1
1 )𝑠(0∼𝑝1−1)

1 (𝑊𝑇
1 𝑆1(𝑋1) + 𝛿1)

≤
(𝑃𝑇1𝐿 (𝐴

0∼𝑝1−1
1 )𝑠(0∼𝑝1−1)

1 )2𝜃1𝑆
𝑇
1 (𝑋1)𝑆1(𝑋1)

2𝑎2
1

+ 1
2
𝑎2

1 +
1
2
𝑃𝑇1𝐿 (𝐴

0∼𝑝1−1
1 )𝑠(0∼𝑝1−1)

1 𝑃𝑇1𝐿 (𝐴
0∼𝑝1−1
1 )𝑠(0∼𝑝1−1)

1 + 1
2
𝛿2

1,

(8)

where 𝐹1(𝑋1) = 𝑓1(𝑥 (0∼𝑝1−1)
1 ), 𝑋1 = [𝑥 (0∼𝑝1−1)

1 ] and 𝑎1 is a constant.

The adaptive law 𝜃1 is chosen as

¤̂𝜃1 =
1
𝑎2

1
𝑃𝑇1𝐿 (𝐴

0∼𝑝1−1
1 )𝑠(0∼𝑝1−1)

1 𝑃𝑇1𝐿 (𝐴
0∼𝑝1−1
1 )𝑠(0∼𝑝1−1)

1 𝑆𝑇1 𝑆1 − 𝑙1𝜃1. (9)

Based on (8) and (9), one gets

¤𝑉1 ≤ − 𝜌1(𝑠(0∼𝑝1−1)
1 )𝑇 𝑠(0∼𝑝1−1)

1 − 1
2
𝑙1𝜃

2
1 + 𝑎2

1 + 𝛿2
1 +

1
2
𝑙1𝜃

2
1

+ 2𝑃𝑇1𝐿 (𝐴
0∼𝑝1−1
1 )𝑠(0∼𝑝1−1)

1 𝑔1(𝑥 (0∼𝑝1−1)
1 )𝑃𝑇2𝐿 (𝐴

0∼𝑝2−1
2 )𝑠(0∼𝑝2−1)

2 . (10)

Step 2: Based on the notations, one has

𝑃𝑇3𝐿 (𝐴
0∼𝑝3−1
3 )𝑠(0∼𝑝3−1)

3 = 𝑥3 − 𝛼2, (11)

From (1) and (11), the time derivative of 𝑠2 is

𝑠
(𝑝2)
2 =𝑄2𝐹 (𝐴0∼𝑝2−1

2 )( ¤𝑥2 − ¤𝛼1) +𝑄2𝑀 (𝐴0∼𝑝2−1
2 ) ¤𝑥 (1∼𝑝2−2)

2 +𝑄2𝐿 (𝐴0∼𝑝2−1
2 ) 𝑓2(𝑥 (0∼𝑝𝑖−1)

𝑖 |𝑖=1∼2)

+𝑄2𝐿 (𝐴0∼𝑝2−1
2 )𝑔2(𝑥 (0∼𝑝𝑖−1)

𝑖 |𝑖=1∼2)𝑃3𝐿 (𝐴(0∼𝑝3−1)
3 )𝑠(0∼𝑝3−1)

3 +𝑄2𝐿 (𝐴0∼𝑝2−1
2 )𝑔2(𝑥 (0∼𝑝𝑖−1)

𝑖 |𝑖=1∼2)𝛼2. (12)

Choose virtual controller 𝛼2 as

𝛼2 = − 1
𝑄2𝐿 (𝐴0∼𝑝2−1

2 )𝑔2(𝑥 (0∼𝑝𝑖−1)𝑖 |𝑖=1∼2)
(𝐴(0∼𝑝2−1)

2 𝑠
(0∼𝑝2−1)
2

+ 1
2𝑎2

2
𝑃𝑇2𝐿 (𝐴

0∼𝑝2−1
2 )𝑠(0∼𝑝2−1)

2 𝜃2𝑆
𝑇
2 𝑆2 +

1
2
𝑃𝑇2𝐿 (𝐴

0∼𝑝2−1
2 )𝑠(0∼𝑝2−1)

2 ), (13)

and (12) can be rewritten as state-space form

¤𝑠(0∼𝑝2−1)
2 = Φ(𝐴0∼𝑝2−1

2 )𝑠(0∼𝑝2−1)
2 +

[
0
𝐻2

]
where 𝐻2 = 𝑄2𝐹 (𝐴0∼𝑝2−1

2 ) ( ¤𝑥2−¤𝛼1)− 1
2𝑎2

2
𝑃𝑇2𝐿 (𝐴

0∼𝑝2−1
2 )𝑠(0∼𝑝2−1)

2 𝜃2𝑆
𝑇
2 𝑆2 +𝑄2𝑀 (𝐴0∼𝑝2−1

2 ) ¤𝑥 (1∼𝑝2−2)
2 +𝑄2𝐿 (𝐴0∼𝑝2−1

2 )

× 𝑓2(𝑥 (0∼𝑝𝑖−1)
𝑖 |𝑖=1∼2) − 1

2𝑃
𝑇
2𝐿 (𝐴

0∼𝑝2−1
2 )𝑠(0∼𝑝2−1)

2 ) +𝑄2𝐿 (𝐴0∼𝑝2−1
2 )𝑔2(𝑥 (0∼𝑝𝑖−1)

𝑖 |𝑖=1∼2)𝑃3𝐿 (𝐴(0∼𝑝3−1)
3 )𝑠(0∼𝑝3−1)

3 .

The Lyapunov function candidate 𝑉2 is presented as

𝑉2 = 𝑉1 + (𝑠(0∼𝑝2−1)
2 )𝑇𝑃2(𝐴0∼𝑝2−1

2 )𝑠(0∼𝑝2−1)
2 + 1

2
𝜃2

2 . (14)
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And similar to the (8), one gets

𝑃𝑇2𝐿 (𝐴
0∼𝑝2−1
2 )𝑠(0∼𝑝2−1)

2 𝐹2(𝑋2) = 𝑃𝑇2𝐿 (𝐴
0∼𝑝2−1
2 )𝑠(0∼𝑝2−1)

2 (𝑊𝑇
2 𝑆2(𝑋2) + 𝛿2)

≤
(𝑃𝑇2𝐿 (𝐴

0∼𝑝2−1
2 )𝑠(0∼𝑝2−1)

2 )2𝜃2𝑆
𝑇
2 (𝑋2)𝑆2(𝑋2)

2𝑎2
2

+ 1
2
𝑎2

2 +
1
2
𝑃𝑇2𝐿 (𝐴

0∼𝑝2−1
2 )𝑠(0∼𝑝2−1)

2 𝑃𝑇2𝐿 (𝐴
0∼𝑝2−1
2 )𝑠(0∼𝑝2−1)

2 + 1
2
𝛿2

2

(15)

where 𝐹2(𝑋2) = 𝑄2𝐹 (𝐴0∼𝑝2−1
2 )( ¤𝑥2 − ¤𝛼1) +𝑄2𝑀 (𝐴0∼𝑝2−1

2 ) ¤𝑥 (1∼𝑝2−2)
2 +𝑄2𝐿 (𝐴0∼𝑝2−1

2 ) 𝑓2(𝑥 (0∼𝑝𝑖−1)
𝑖 |𝑖=1∼2)

+ 𝑃𝑇1𝐿 (𝐴
0∼𝑝1−1
1 )𝑠(0∼𝑝1−1)

1 , 𝑋2 = [𝑥 (0∼𝑝1−1)
1 , 𝑥

(0∼𝑝2−1)
2 , 𝜃1].

The adaptive update law 𝜃2 is designed as

¤̂𝜃2 =
1
𝑎2

2
𝑃𝑇2𝐿 (𝐴

0∼𝑝2−1
2 )𝑠(0∼𝑝2−1)

2 𝑃𝑇2𝐿 (𝐴
0∼𝑝2−1
2 )𝑠(0∼𝑝2−1)

2 𝑆𝑇2 𝑆2 − 𝑙2𝜃2. (16)

Replacing (15) and (16) into (14), one gives

¤𝑉2 ≤ −
2∑
𝑗=1
𝜏𝑗 (𝑠

(0∼𝑝 𝑗−1)
𝑗 | 𝑗=1∼2)𝑇 (𝑠

(0∼𝑝 𝑗−1)
𝑗 | 𝑗=1∼2) +

2∑
𝑗=1
(𝑎2

𝑗 + 𝛿2
𝑗 +

1
2
𝑙 𝑗𝜃

2
𝑗 ) −

2∑
𝑗=1

𝑙 𝑗

2
𝜃2
𝑗

+ 2𝑃𝑇2𝐿 (𝐴
0∼𝑝2−1
2 )𝑠(0∼𝑝2−1)

2 𝑄2𝐿 (𝐴0∼𝑝2−1
2 )𝑔2(𝑥 (0∼𝑝𝑖−1)

𝑖 |𝑖=1∼2)𝑃3𝐿 (𝐴(0∼𝑝3−1)
3 )𝑠(0∼𝑝3−1)

3 (17)

Step k:(3 ≤ 𝑘 ≤ 𝑛 − 1) Based on the notations, one has

𝑃𝑇𝑘𝐿 (𝐴
0∼𝑝𝑘−1
𝑘 )𝑠(0∼𝑝𝑘−1)

𝑘 = 𝑥𝑘 − 𝛼𝑘−1, (18)

Choose virtual controller 𝛼𝑘 as

𝛼𝑘 = −
1

𝑄𝑘𝐿 (𝐴0∼𝑝𝑘−1
𝑘 )𝑔𝑘 (𝑥 (0∼𝑝𝑖−1)

𝑖 |𝑖=1∼𝑘 )
(𝐴(0∼𝑝𝑘−1)

𝑘 𝑠
(0∼𝑝𝑘−1)
𝑘

+ 1
2𝑎2

𝑘

𝑃𝑇𝑘𝐿 (𝐴
0∼𝑝𝑘−1
𝑘 )𝑠(0∼𝑝𝑘−1)

𝑘 𝜃𝑘𝑆
𝑇
𝑘 𝑆𝑘 +

1
2
𝑃𝑇𝑘𝐿 (𝐴

0∼𝑝𝑘−1
𝑘 )𝑠(0∼𝑝𝑘−1)

𝑘 ). (19)

The Lyapunov function candidate 𝑉𝑘 is presented as

𝑉𝑘 = 𝑉𝑘−1 + (𝑠(0∼𝑝𝑘−1)
𝑘 )𝑇𝑃𝑘 (𝐴0∼𝑝𝑘−1

𝑘 )𝑠(0∼𝑝𝑘−1)
𝑘 + 1

2
𝜃2
𝑘 . (20)

And similar to the (8), one gets

𝑃𝑇𝑘𝐿 (𝐴
0∼𝑝𝑘−1
𝑘 )𝑠(0∼𝑝𝑘−1)

𝑘 𝐹𝑘 (𝑋𝑘 ) = 𝑃𝑇𝑘𝐿 (𝐴
0∼𝑝𝑘−1
𝑘 )𝑠(0∼𝑝𝑘−1)

𝑘 (𝑊𝑇
𝑘 𝑆𝑘 (𝑋𝑘 ) + 𝛿𝑘 )

≤
(𝑃𝑇𝑘𝐿 (𝐴

0∼𝑝𝑘−1
𝑘 )𝑠(0∼𝑝𝑘−1)

𝑘 )2𝜃𝑘𝑆𝑇𝑘 (𝑋𝑘 )𝑆𝑘 (𝑋𝑘 )
2𝑎2

𝑘

+ 1
2
𝑎2
𝑘 +

1
2
𝑃𝑇𝑘𝐿 (𝐴

0∼𝑝𝑘−1
𝑘 )𝑠(0∼𝑝𝑘−1)

𝑘 𝑃𝑇𝑘𝐿 (𝐴
0∼𝑝𝑘−1
𝑘 )𝑠(0∼𝑝𝑘−1)

𝑘 + 1
2
𝛿2
𝑘

(21)

where 𝐹𝑘 (𝑋𝑘 ) = 𝑄𝑘𝐹 (𝐴0∼𝑝𝑘−1
𝑘 )( ¤𝑥𝑘− ¤𝛼𝑘−1) +𝑄𝑘𝑀 (𝐴0∼𝑝𝑘−1

𝑘 ) ¤𝑥 (1∼𝑝𝑘−2)
𝑘 +𝑄𝑘𝐿 (𝐴0∼𝑝𝑘−1

𝑘 ) 𝑓𝑘 (𝑥 (0∼𝑝𝑖−1)
𝑖 |𝑖=1∼𝑘 )

+ 𝑃𝑇𝑘𝐿 (𝐴
0∼𝑝𝑘−1
𝑘 )𝑠(0∼𝑝𝑘−1)

𝑘 𝑄𝑘𝐿 (𝐴0∼𝑝𝑘−1
𝑘 )𝑔𝑘 (𝑥 (0∼𝑝𝑖−1)

𝑖 |𝑖=1∼𝑘 ), 𝑋𝑘 = [𝑥 (0∼𝑝1−1)
1 , · · · , 𝑥 (0∼𝑝𝑘−1)

𝑘 , 𝜃1, · · · , 𝜃𝑘 ] and 𝑎𝑘
is a constant.
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The adaptive law 𝜃𝑘 is designed as

¤̂𝜃𝑘 =
1
𝑎2
𝑘

𝑃𝑇𝑘𝐿 (𝐴
0∼𝑝𝑘−1
𝑘 )𝑠(0∼𝑝𝑘−1)

𝑘 𝑃𝑇𝑘𝐿 (𝐴
0∼𝑝𝑘−1
𝑘 )𝑠(0∼𝑝𝑘−1)

𝑘 𝑆𝑇𝑘 𝑆𝑘 − 𝑙𝑘𝜃𝑘 . (22)

Based on (21) and (22), one gives

¤𝑉𝑘 ≤ −
𝑘∑
𝑗=1
𝜏𝑗 (𝑠

(0∼𝑝 𝑗−1)
𝑗 | 𝑗=1∼𝑘 )𝑇 (𝑠

(0∼𝑝 𝑗−1)
𝑗 | 𝑗=1∼𝑘 ) +

𝑘∑
𝑗=1
(𝑎2

𝑗 + 𝛿2
𝑗 +

1
2
𝑙 𝑗𝜃

2
𝑗 ) −

𝑘∑
𝑗=1

𝑙 𝑗

2
𝜃2
𝑗

+ 2𝑃𝑇𝑘𝐿 (𝐴
0∼𝑝𝑘−1
𝑘 )𝑠(0∼𝑝𝑘−1)

𝑘 𝑔𝑘 (𝑥 (0∼𝑝𝑖−1)
𝑖 |𝑖=1∼𝑘 )𝑄𝑘𝐿 (𝐴0∼𝑝𝑘−1

𝑘 )𝑃(𝑘+1)𝐿 (𝐴
(0∼𝑝 (𝑘+1)−1)
𝑘+1 )𝑠(0∼𝑝𝑘+1−1)

𝑘+1 (23)

Step n: In this part, the adaptive HOFA event-triggered controller of the system is constant as

𝑣(𝑡) = −(1 + 𝛾)(𝛼𝑛 tanh( 𝑠
(0∼𝑝𝑛−1)
𝑛 𝑃𝑛𝐿𝑔𝑛𝛼𝑛𝑄𝑛𝐿

𝜌
) + �̄� tanh( 𝑠

(0∼𝑝𝑛−1)
𝑛 𝑃𝑛𝐿𝑔𝑛 �̄�𝑄𝑛𝐿

𝜌
), (24)

𝑢(𝑡) = 𝑣(𝑡𝑘 ), 𝑡𝑘 ≤ 𝑡 < 𝑡𝑘+1, (25)
𝑡𝑘+1 = inf{𝑡 ≥ 0| |𝜓(𝑡) | ≥ 𝛾 |𝑢(𝑡) | + 𝑜}, (26)

where 𝜓(𝑡) = 𝑢(𝑡) − 𝑣(𝑡), 𝑜 > 0, 𝜌 > 0, 0 < 𝛾 < 1 and �̄� > 𝑑
1−𝛾 are design parameters.

From (1), the time derivative of 𝑠𝑛 is

𝑠
(𝑝𝑛)
𝑛 =𝑄𝑛𝐹 (𝐴0∼𝑝𝑛−1

𝑛 )( ¤𝑥𝑛 − ¤𝛼𝑛−1) +𝑄𝑛𝑀 (𝐴0∼𝑝𝑛−1
𝑛 ) ¤𝑥 (1∼𝑝𝑛−1)

𝑛 +𝑄𝑛𝐿 (𝐴0∼𝑝𝑛−1
𝑛 ) 𝑓𝑛 (𝑥 (0∼𝑝𝑖−1)

𝑖 |𝑖=1∼𝑛)

+𝑄𝑛𝐿 (𝐴0∼𝑝𝑛−1
𝑛 )𝑔𝑛 (𝑥 (0∼𝑝𝑖−1)

𝑖 |𝑖=1∼𝑛)𝑢 +𝑄𝑛𝐿 (𝐴0∼𝑝𝑛−1
𝑛 )𝑔𝑛 (𝑥 (0∼𝑝𝑖−1)

𝑖 |𝑖=1∼𝑛)𝛼𝑛
−𝑄𝑛𝐿 (𝐴0∼𝑝𝑛−1

𝑛 )𝑔𝑛 (𝑥 (0∼𝑝𝑖−1)
𝑖 |𝑖=1∼𝑛)𝛼𝑛 (27)

Choose virtual controller 𝛼𝑛 as

𝛼𝑛 = −
1

𝑄𝑛𝐿 (𝐴0∼𝑝𝑛−1
𝑛 )𝑔𝑛 (𝑥 (0∼𝑝𝑖−1)

𝑖 |𝑖=1∼𝑛)
(𝐴(0∼𝑝𝑛−1)

𝑛 𝑠(0∼𝑚𝑛−1)
𝑛

+ 1
2𝑎2

𝑛

𝑃𝑇𝑛𝐿 (𝐴
0∼𝑝𝑛−1
𝑛 )𝑠(0∼𝑚𝑛−1)

𝑛 𝜃𝑛𝑆
𝑇
𝑛 𝑆𝑛 +

1
2
𝑃𝑇𝑛𝐿 (𝐴

0∼𝑝𝑛−1
𝑛 )𝑠(0∼𝑝𝑛−1)

𝑛 ), (28)

and (27) can be rewritten as state-space form

¤𝑠(0∼𝑝𝑛−1)
𝑛 = Φ(𝐴0∼𝑝𝑛−1

𝑛 )𝑠(0∼𝑝𝑛−1)
𝑛 +

[
0
𝐻𝑛

]
where 𝐻𝑛 = 𝑄𝑛𝐹 (𝐴0∼𝑝𝑛−1

𝑛 )( ¤𝑥𝑛 − ¤𝛼𝑛−1) +𝑄𝑛𝑀 (𝐴0∼𝑝𝑛−1
𝑛 ) ¤𝑥 (1∼𝑝𝑛−2)

𝑛 +𝑄𝑛𝐿 (𝐴0∼𝑝𝑛−1
𝑛 ) 𝑓𝑛 (𝑥 (0∼𝑝𝑖−1)

𝑖 |𝑖=1∼𝑛)
− 1

2𝑎2
𝑛
𝑃𝑇𝑛𝐿 (𝐴

0∼𝑝𝑛−1
𝑛 )𝑠(0∼𝑝𝑛−1)

𝑛 𝜃𝑛𝑆
𝑇
𝑛 𝑆𝑛 − 1

2𝑃
𝑇
𝑛𝐿 (𝐴

0∼𝑝𝑛−1
𝑛 )𝑠(0∼𝑝𝑛−1)

𝑛 −𝑄𝑛𝐿 (𝐴0∼𝑝𝑛−1
𝑛 )𝑔𝑛 (𝑥 (0∼𝑝𝑖−1)

𝑖 |𝑖=1∼𝑛)𝛼𝑛.

The Lyapunov function candidate 𝑉𝑛 is presented as

𝑉𝑛 = 𝑉𝑛−1 + (𝑠(0∼𝑝𝑛−1)
𝑛 )𝑇𝑃𝑛 (𝐴0∼𝑝𝑛−1

𝑛 )𝑠(0∼𝑝𝑛−1)
𝑛 + 1

2
𝜃2
𝑛. (29)

The FLS is used to approximate nonlinear dynamics and adaptive law are same as (21, 22). And from (24, 25,
26), we have 𝑣(𝑡) = 𝜆2(𝑡)𝑜 + (1 + 𝛾𝜆1(𝑡))𝑢(𝑡), ∀𝑡 ∈ [𝑡𝑘 , 𝑡𝑘+1), where 𝜆1(𝑡) ∈ [−1, 1], 𝜆2(𝑡) ∈ [−1, 1]. Then, we
can get

𝑢(𝑡) = 𝑣(𝑡)
1 + 𝛾𝜆1(𝑡)

− 𝜆2(𝑡)𝑜
1 + 𝛾𝜆1(𝑡)

. (30)
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According to 𝑃𝑇𝑛𝐿 𝑠
(0∼𝑝𝑛−1)
𝑛 𝑄𝑛𝐿𝑔𝑛
1+𝛾𝜆1 (𝑡) ≤ 𝑃𝑇𝑛𝐿 𝑠

(0∼𝑝𝑛−1)
𝑛 𝑄𝑛𝐿𝑔𝑛

1+𝛾 , 𝑃𝑇𝑛𝐿𝑠
(0∼𝑝𝑛−1)
𝑛 𝑄𝑛𝐿𝑔𝑛 | 𝜆2𝑜

1+𝛾𝜆1 (𝑡) | ≤ 𝑃
𝑇
𝑛𝐿𝑠
(0∼𝑝𝑛−1)
𝑛 𝑄𝑛𝐿𝑔𝑛

𝑜
1−𝜆1

, �̄� >
𝑜

1−𝛾 , it yields

¤𝑉𝑛 ≤ −
𝑛∑
𝑗=1

𝜌 𝑗 (𝑠
(0∼𝑝 𝑗−1)
𝑗 | 𝑗=1∼𝑛)𝑇 (𝑠

(0∼𝑝 𝑗−1)
𝑗 | 𝑗=1∼𝑛) +

𝑛∑
𝑗=1
(𝑎2

𝑗 + 𝛿2
𝑗 +

1
2
𝑙 𝑗𝜃

2
𝑗 ) −

𝑛∑
𝑗=1

𝑙 𝑗

2
𝜃2
𝑗 + 0.2785𝜌 (31)

3.2. Stability analysis
Theorem 1: For the high-order fully actuated nonlinear system (1) under the Assumption 1, the virtual con-
troller (6), (13), (19), (28), the actual controller (24), the adaptive law (9), (16), (22), and the event-triggered
mechanism (24,25,26) are designed. Then, the following statements hold:

1) All signals in the closed-loop system are bounded.

2) There is a positive constant 𝜛 which satisfies 𝑡𝑘+1 − 𝑡𝑘 ≥ 𝜛. In other words, the event-triggered condition
is Zeno-free.

Proof : 1) Let 𝑉 = 𝑉𝑛. Then we can get

¤𝑉𝑛 ≤ −
𝑛∑
𝑗=1

𝜌 𝑗 (𝑠
(0∼𝑝 𝑗−1)
𝑗 | 𝑗=1∼𝑛)𝑇 (𝑠

(0∼𝑝 𝑗−1)
𝑗 | 𝑗=1∼𝑛) +

𝑛∑
𝑗=1
(𝑎2

𝑗 + 𝛿2
𝑗 +

1
2
𝑙 𝑗𝜃

2
𝑗 ) −

𝑛∑
𝑗=1

𝑙 𝑗

2
𝜃2
𝑗 + 0.2785𝜖

≤ − 𝜚1𝑉𝑛 (𝑡) + 𝜚2, (32)

where 𝜚1 = min{ 𝜌𝑖
𝜆min (𝑃𝑖) , 𝑙𝑖 , 𝑖 = 1, · · · , 𝑛}, 𝜚2 =

∑𝑛
𝑗=1(𝑎2

𝑗 + 𝛿2
𝑗 + 1

2 𝑙 𝑗𝜃
2
𝑗 ). According to (40), one has

0 ≤ 𝑉 (𝑡) ≤ 𝜚2

𝜚1
+ (𝑉 (0) − 𝜚2

𝜚1
)𝑒−𝜚1𝑡 , (33)

which means that all signals are bounded.

2) From 𝜓(𝑡) = 𝑢(𝑡) − 𝑣(𝑡), ∀𝑡 ∈ [𝑡𝑘 , 𝑡𝑘+1), we have
𝑑
𝑑𝑡 |𝜓 | =

𝑑
𝑑𝑡 (𝜓 × 𝜓)

1
2 = 𝑠𝑖𝑔𝑛(𝜓) ¤𝜓 ≤ �̄�.

where �̄� is a constant. Since 𝜓(𝑡𝑘 ) = 0 and lim
𝑡→𝑡𝑘+1

𝜓(𝑡) = (𝛾 |𝑢(𝑡) | + 𝑜) thus 𝑡𝑘+1 − 𝑡𝑘 ≥ (𝛾 |𝑢(𝑡) | + 𝑜)/�̄� > 0.

4. SIMULATION
In this section, to demonstrate the effectiveness of the designed HOFA event-triggered mechanism, a single-
link robot arm simulation is carried out.

Example 1: Consider a single-link robot system whose manipulators with an elastic revolute joint are actuated
by a brushed direct current motor that can be given by

𝑀 ¥𝑎1 + 𝑚𝑔𝑙 sin(𝑎1) − 𝐾 (𝑎2 − 𝑎1) = 0,
𝐽 ¥𝑎2 + 𝐵 ¤𝑎2 − 𝐾 (𝑎1 − 𝑎2) − 𝐾𝑇 𝐼 = 0,
𝐿 ¤𝐼 + 𝑅𝐼 + 𝐾𝐵 ¤𝑎2 − 𝑢 = 0,

where 𝑎1 and 𝑎2 are the angular positions on the link and motor sides, respectively. 𝑀 and 𝑚 represent the
load and link masses, respectively. 𝐵 is the coefficient of viscous friction, 𝑔 is the gravitational acceleration, 𝐾
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Figure 1. Trajectories of 𝑥1 in Example 1.

is stiffness coefficient of the torsional spring, 𝐽 is the rotor inertia, 𝑙 is the link length. 𝐾𝑇 and 𝐾𝐵 are torque
constants of the direct current motor and back-emf coefficient, respectively. 𝐿, 𝐼 , and 𝑅 are the armature
inductance, current, and resistance, respectively. 𝑢 is the torque input.

Obviously, the above system is a second-order system, and the proposed high-order ETC backstepping can be
handled directly without transforming it into a first-order state space form. Let 𝑥1 = 𝑎1, 𝑥2 = 𝑎2, 𝑥3 = 𝐼 .

In simulations, the robot system factors are designed as follows: 𝑅 = 25𝜔, 𝑀 = 1𝑘𝑔, 𝐾𝑇 = 1𝑁𝑚/𝐴, 𝑚𝑔𝑙 =
1𝑁𝑚, 𝐾0 = 2𝑁𝑚/𝑟𝑎𝑑, 𝐽 = 1𝑘𝑔𝑚2, 𝐵 = 0.9𝑁𝑚𝑠/𝑟𝑎𝑑, 𝐿 = 0.125𝐻, and 𝐾𝐵 = 1𝑁𝑚/𝐴.

The design parameters are chosen as 𝑎1 = 15, 𝜌1 = 0.16, 𝑙1 = 100, 𝑎2 = 16, 𝜌2 = 0.16, 𝑙2 = 80, 𝑎3 = 15,
𝜌3 = 112, 𝑙3 = 60, �̄� = 1.1, 𝑑 = 0.5, 𝛾 = 0.5, and 𝜖 = 6. The robot system of initial conditions are chosen
as 𝑥1(0) = 0.41, ¤𝑥1(0) = 0.02, 𝑥2(0) = 0.02, ¤𝑥2(0) = 0.22, 𝑥3(0) = 0.65, 𝜃1(0) = 0.24, 𝜃2(0) = 0.35, and
𝜃3(0) = 0.41. In order to satisfy Lyapunov Theorem, some matrices are designed as follows.

𝑃1(𝐴(0∼1)
1 ) =

[
341/5 2/5
2/5 84/25

]
; 𝐴1 =

[
20 0.4

]
;

𝑃2(𝐴(0∼1)
2 ) =

[
1630/7733 2/101

2/101 121/3031

]
; 𝐴2 =

[
4.04 0.4

]
;

𝑃3(𝐴3) =
[
7
]

; 𝐴3 =
[
8
]
.

The simulation results are given as follows. Figure 1 represents the response of the state 𝑥1. The response of
the state 𝑥2 is shown by Figure 2. Figure 3 shows the trajectories of the state 𝑥3. The trajectory of the state ¤𝑥1
is plotted in Figure 4. Figure 5 portrays the response of the state ¤𝑥2. Figure 6 shows the trajectory of the input
𝑢. The trigger time intervals are illustrated in Figure 7. The trajectories of adaptive laws are given in Figure 8,
Figure 9, and Figure 10 .

5. CONCLUSIONS
In this article, a novel adaptive high-order event-triggered control scheme is proposed for uncertain HOFA
nonlinear systems. This scheme not only does not require prior knowledge of the nonlinear function of the
system but also saves communication resources by designing the event-triggered scheme. Moreover, the prac-
ticality of the control scheme is verified. The future of work will be concerned with the prescribed performance
control problem and network attack problem of high-order fully activated nonlinear systems.
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Figure 2. Trajectories of 𝑥2 in Example 1.
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Figure 3. Trajectories of 𝑥3 in Example 1.
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Figure 4. Trajectories of ¤𝑥1 in Example 1.
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Figure 6. Trajectories of 𝑢 in Example 1.
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Abstract
Accurately predicting themagnitude and timing of floods is an extremely challenging problem for watershedmanage-
ment, as it aims to provide early warning and save lives. Artificial intelligence for forecasting has become an emerging
research field over the past two decades, as computer technology and related areas have been developed in depth.
In this paper, three typical machine learning algorithms for flood forecasting are reviewed: supervised learning, unsu-
pervised learning, and semi-supervised learning. Special attention is given to deep learning approaches due to their
better performance in various prediction tasks. Deep learning networks can represent flood behavior as powerful
and beneficial tools. In addition, a detailed comparison and analysis of the multidimensional performance of differ-
ent prediction models for flood prediction are presented. Deep learning has extensively promoted the development
of real-time accurate flood forecasting techniques for early warning systems. Furthermore, the paper discusses the
current challenges and future prospects for intelligent flood forecasting.

Keywords: flood forecasting, intelligent prediction, supervised learning, unsupervised learning, semi-supervised learn-
ing, deep learning

1. INTRODUCTION
Flooding, especially in developing countries, is one major cause of fatalities among both humans and animals.
In addition to the loss of life, flooding damages property and destroys crops. Floods can be dangerous to hu-
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mans and animals, and timely flood forecasting can help prevent or mitigate disasters. Therefore, it is essential
to develop prediction models for accurate flood forecasting.

Floods can be defined as the result of water overflowing and submerging land that is normally dry. Flooding
is the phenomenon of a rapid increase in the flow of water due to a sudden surge in the volume of water
in rivers, lakes, and seas. The main natural factors leading to changes in water volume and levels include
heavy rainfall, rapid melt of ice and snow, and storm surges, among others [1]. Generally speaking, the direct
economic damage caused by floods to human beings is comparable to that of other natural disasters such as
earthquakes and hurricanes. Floods are characterized by a wide range of impacts, extreme destructiveness,
and rapidity of disaster [2]. Floods can be categorized into different types based on their causes and severity,
including river floods, flash floods, coastal floods, and urban floods. In addition to these categories, floods can
be classified based on their severity or frequency. Depending on meteorological conditions and geographical
factors, floods are also characterized by elevated seasonal frequency and regional vulnerability.

The global assessment report of the Intergovernmental Panel on Climate Change (IPCC) on natural disasters
shows that 313 natural disasters occurred worldwide in 2020, affecting 123 countries and regions [3]. Among
them, flood disasters had the highest frequency, occurring 193 times, accounting for 61.66% of the total, and
directly affecting a population of 33,215,600 [4]. The worldwide direct economic losses caused by natural dis-
asters amounted to US$173 billion, with storms, floods, wildfires, and earthquakes accounting for 99% of the
losses. For example, the floods that occurred in Henan, China, in 2020 caused a direct economic loss of US$17
billion, the costliest natural disaster worldwide that year, causing losses to the urban economy, agricultural
development, etc. [5]. In some cases, floods can act as triggers for numerous indirect disasters, including geo-
logical disasters such as mudslides and landslides, health disasters such as plagues and viruses, and negative
impacts on the environment and climate [6]. Such secondary disasters generally have long recovery cycles and
high recovery costs, and the hazard of some disasters is irreversible.

Real-time prediction of floods is essential to lay the foundation for mitigating damage to human property and
planning defenses [7]. Datasets and machine learning algorithms are two of the most important factors that
influence the accuracy of the forecasting result. Firstly, selecting the raw data for flood forecasting involves
a careful and systematic process of identifying relevant variables, gathering historical data, preprocessing the
data, selecting relevant features, integrating the data, and splitting it into training and testing sets. Then high-
quality datasets are critical for building accurate and effective machine learning models. These datasets should
be large, diverse, well-labeled, balanced, clean, representative of the problem, and ethically collected. Real-time
flood forecasting uses historical data and information from past events to predict flooding. This is because his-
torical data are easier to collect than real-time data. Once processed, historical data (high-quality datasets)
are then used to create models for predicting where and when flooding may occur in the future. Therefore,
the warnings can be issued to the public so that they can prepare for floods [8,9]. Artificial intelligence (AI)
technology has been employed increasingly by governments to create automated flood forecasting systems [10].
At first, supervised learning technology is used for forecasting because the labeled inputs are easier to process
and achieve good results. As the need for forecasting increases, there is a growing demand to use unlabeled
data, leading to the study of unsupervised learning problems. In some cases, forecasting inputs contain both
labeled and unlabeled data, for which semi-supervised learning is of particular interest in order to reach bet-
ter forecasting. It has been observed that in most situations, conventional supervised learning, unsupervised
learning, and semi-supervised learning approaches cannot maintain good performance as the forecasting fac-
tors involved become complicated, and the size of forecasting features increases. To overcome this challenge,
deep learning approaches have received enough attention recently in the area of forecasting. While machine
learning methods have made a great contribution to forecasting, it remains to be quite challenging when apply-
ing suchmethods to natural disaster prediction, such as floods, which could bemuchmore complicated. In the
past few years, some primary results have been reported in flood prediction by means of a variety of common
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machine learning methods. For example, Spatio-Temporal Attention Long Short Term Memory (STA-LSTM)
model has great performance in basic flood forecasting, but its robustness and generalization have been im-
proved. [11] Nonetheless, with social development and climate change, there has been increasing natural and
human factors affecting flood prediction significantly. Such impacts mainly result from rising temperatures,
snow melt, ice melt, rainstorms, and soil conditions, and the main human factors include high urbanization,
population explosion, and overexploitation of trees. In addition, simple machine learning cannot be suitable
the complex spatio-temporal datasets because natural and human factors are evolving. Furthermore, each
flood prediction algorithm has its own characteristics, such as robustness, generalization, calculating speed,
gradient problems, weight problems, and fitting problems. Therefore, the purpose of this paper is to provide
a comprehensive understanding of the current state of machine learning in flood prediction and to encourage
further research in this area.

Based on the above observations, we believe that it is timely and necessary to conduct a review of the current
application of machine learning in flood prediction, particularly an abundant literature survey in real-time
flood forecasting. While machine learning techniques have been widely applied in various prediction tasks, it
remains challenging to obtain stable prediction performance in the area of flood forecasting, especially due to
the diversity in the spatio-temporal datasets [12]. Given the large amount of literature available, we specifically
analyze and compare the performance of mainstream algorithms currently used in real-time flood prediction.
Of particular interest is how these algorithms perform when faced with huge spatio-temporal datasets; it is of
great importance to understand whether or not they can still maintain high levels of accuracy and robustness.
This aspect has not been shown in previous studies. The contributions of this paper are as follows: (1) Several
practical problems and popular machine learning methods used for flood prediction are presented, and their
advantages and disadvantages with respect to the computational cost, gradient problem, and robustness and
accurateness are discussed in depth; (2) The difficulties in the development of a real-time flood prediction are
exhaustively analyzed in terms of the characteristic of flood prediction, spatio-temporal data, and noise. Based
on this, a complete literature assessment of recent achievements in dealing with these difficulties is done; (3)
The results of this study are summarized, and a number of interesting research trajectories are identified that
may help to further advancement of this field.

The rest of the paper is organized as follows. Section 2 introduces the machine learning techniques related
to flood prediction. Section 3 addresses several common technical issues that arise in machine learning al-
gorithms designed for flood forecasting. Section 4 includes the comparisons of flood prediction models and
some valuable challenges and future work. Finally, Section 5 is the conclusion of this paper.

2. MACHINE LEARNING FOR FLOOD FORECASTING
The performance of a flood forecasting model is heavily influenced by the prediction algorithm used in the
model. This section highlights three common challenges in machine learning and deep learning models and
presents a model that is well-suited for handling large amounts of data.

2.1. Supervised learning
Supervised learning is a form of AI that can support flood prediction [13,14]. Supervised learning algorithms
are used to identify flood levels and give early warning. In the forecasting process, these algorithms are a
boon in determining how to use historical data most quickly and accurately to successfully predict future
disasters [15–17]. Supervised learning requires input from the user - meaning that they need to distinctly state
what they are looking for before they can effectively identify patterns or make predictions about user input
data [18]. There are several supervised learning models that can be used to predict flood events: decision trees,
k-nearest neighbors, support vector machines (SVM), and neural networks [19]. Each model has its advantages
and disadvantages, while SVM is the most commonly used method for flood forecasting [20]. They are easy
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Figure 1. Unsupervised learning block diagram.

to implement and have a high accuracy rate compared to other methods. In addition, they have optimal
performance in high-dimensional spaces.

The training dataset for supervised learning has two attributes (𝑥𝑖 ,𝑦𝑖), where “𝑥” stands for the system super-
vision input and “𝑦” for the system output. Meanwhile, “𝑖” is the training sample indicator for “𝑥” and “𝑦”,
respectively. In supervised learning, a training input “𝑥𝑖” is provided to the learning system, which then pro-
duces an output “�̃�𝑖”. An arbitrator then calculates the difference between the two outputs for comparison with
the ground truth marker “𝑦𝑖”. The discrepancy is referred to as the error signal, which is then transmitted to
the learning system to modify the settings of learners. The learning process aims to generate ideal learning
system parameters with high accuracy by reducing the difference between “�̃�𝑖” and “𝑦𝑖” for all “𝑖” [21,22]. A set
of discrete values or a vector space is represented by the input or output. The arbitrator is not subject to any
unique limitation under the learning paradigm. “𝑦𝑖” - “�̃�𝑖” is typically used to calculate the error signal when
“𝑦𝑖” is taken from a continuous space. The arbitrator typically generates the error signal based on the equality
between 𝑦𝑖 and “�̃�𝑖” if “𝑦𝑖” is one of a set of discrete values. The arbitrator assumes output to be 0 for same “𝑦𝑖”
and “�̃�𝑖” and 1 for the different “𝑦𝑖” and “�̃�𝑖” [22,23].

Flood prediction models rely on historical data gathered from diverse locations worldwide, including Canada,
Pakistan, China, India, and Bangladesh [24]. These models are trained with the collected data to forecast future
flood events, enabling preparedness measures in the face of such events. This allows for preparedness when a
flood event occurs. The supervised learning algorithm is an effective way of accurately predicting future events
based on historical datasets [25]. It is especially useful for protecting lives during dangerous floods and other
natural disasters.

2.2. Unsupervised learning
Unlike supervised learning, there is no supervision to be given in unsupervised learning; for example, it is
usually used to address the datasets that are not labeled. The aim of unsupervised learning is to infer the
underlying structure of the datasets provided, in which some evident groups can be identified [26,27].

In unsupervised learning, a computer program learns without any labeled input, as shown in Figure 1. Models
for real-time flood prediction rarely incorporate unsupervised learning. This is due to the subjectivity and
absence of specific analytical goals, such as response prediction, that characterize unsupervised learning. Eval-
uation of the results of unsupervised learning techniques is also hard because there is no commonly accepted
method for cross-validation or testing the results across several datasets.

2.3. Semi-supervised learning
Semi-supervised learning is a type of machine learning based on supervised learning with semi-supervised
data. It is an extension of supervised learning and unsupervised learning. In semi-supervised learning, the
algorithm learns the model using labeled data and unlabeled data, as shown in Figure 2. Therefore, semi-
supervised learning is a useful tool in situations with a shortage of labeled data [28,29]. As such, unlabeled data
can help create better classifiers if there are enough data available and certain distributional assumptions about
the data are accurate [30,31]. Moreover, since many machine learning applications exist, developers always try
to improve the algorithms by developing new ideas. One of these ideas is semi-supervised learning, which
makes it easy to train models for different tasks without having access to all the training data.
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Figure 3. Inductive semi-supervised learning diagram.

According to the statistical learning theory, it can be further divided into inductive semi-supervised learning,
as shown in Figure 3 and transductive semi-supervised learning, as shown in Figure 4 [32]. The full data col-
lection contains two different sorts of sample sets. Let 𝐷𝐿𝑎𝑏𝑒𝑙𝑒𝑑 = {𝑋𝑡𝑟𝑎𝑖𝑛, 𝑌𝑡𝑟𝑎𝑖𝑛} denote the labeled sample
set and 𝐷𝑈𝑛𝑙𝑎𝑏𝑒𝑙𝑒𝑑 = {𝑋𝑢𝑛𝑘𝑛𝑜𝑤𝑛, 𝑋𝑡𝑒𝑠𝑡} the unlabeled sample set, and suppose 𝐶𝐷𝑈𝑛𝑙𝑎𝑏𝑒𝑙𝑒𝑑 ≫ 𝐶𝐷𝐿𝑎𝑏𝑒𝑙𝑒𝑑 . For
inductive semi-supervised learning, denote 𝐷𝑡𝑟𝑎𝑖𝑛 = {𝑋𝑡𝑟𝑎𝑖𝑛, 𝑌𝑡𝑟𝑎𝑖𝑛, 𝑋𝑢𝑛𝑘𝑛𝑜𝑤𝑛} the training set, and 𝑋𝑢𝑛𝑘𝑛𝑜𝑤𝑛
and 𝑋𝑡𝑒𝑠𝑡 are both unlabeled sets and 𝑋𝑢𝑛𝑘𝑛𝑜𝑤𝑛 ≠ 𝑋𝑡𝑒𝑠𝑡 . For transductive semi-supervised learning, 𝐷𝑡𝑟𝑎𝑖𝑛 =
{𝑋𝑡𝑟𝑎𝑖𝑛, 𝑌𝑡𝑟𝑎𝑖𝑛, 𝑋𝑢𝑛𝑘𝑛𝑜𝑤𝑛} is the training set, and 𝑋𝑢𝑛𝑘𝑛𝑜𝑤𝑛 is unlabeled and 𝑋𝑢𝑛𝑘𝑛𝑜𝑤𝑛 = 𝑋𝑡𝑒𝑠𝑡 . In other words,
the purpose of training the model is just to use the model to classify 𝑋𝑢𝑛𝑘𝑛𝑜𝑤𝑛. In general, the main differ-
ence between inductive semi-supervised learning and transductive semi-supervised learning is whether the
prediction samples encountered during training are the same as the samples to be classified.

Based on the learning scenario, semi-supervised learningmethods can also be classified in accordance with the
problems, e.g., classification, regression, clustering, and dimensionality reduction [33,34]. Most studies on semi-
supervised learning have focused on the classification, asmostmachine learning research does. In particular, in
this case, there are typically four types of problems: discriminant learning, generative learning, disagreement-
based learning, and semi-supervised graph learning [35]. The two typical problems are stated as follows:

1. Generative Learning is an early type of semi-supervised learning that is involved a cyclic process and a
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Figure 4. Transductive semi-supervised learning diagram.

maximum likelihood parameter estimation procedure. The two main steps are given as follows:
Step 1: Compute the posterior probability of unlabeled data 𝑃𝜃 = (𝐶1 |𝑥𝑢), Initialization is:

𝜃 = {𝑃(𝐶1), 𝑃(𝐶2), 𝜇1, 𝜇2,
∑
} (1)

Step 2: Update the algorithm

𝑃(𝐶1) =
𝑁1 +

∑
𝑥𝑢 𝑃(𝐶1 |𝑥𝑢)
𝑁

(2)

𝜇1 =
1
𝑁1

∑
𝑥𝑟∈𝐶1

𝑥𝑟 + 1∑
𝑥𝑢 𝑃(𝐶1 |𝑥𝑢)

∑
𝑥𝑢

𝑃(𝐶1 |𝑥𝑢)𝑥𝑢 ... (3)

Then, back to step 1.
In equation (1), 𝜃 means initialization, and the posterior probability of unlabeled data depends on model 𝜃.
The 𝑁 means the total number of examples, and the 𝑁1 means the number of examples belonging to 𝐶1.

2. Low-density Separation (also known as Self-training) works as follows:
In Figure 5, given the 𝑋𝑙𝑎𝑏𝑒𝑙𝑒𝑑 = {(𝑥𝑟 , �̂�𝑟 )}𝑅𝑟=1 and the 𝑋𝑢𝑛𝑙𝑎𝑏𝑒𝑙𝑒𝑑 = {𝑥𝑢}𝑈𝑢=1, we could get the 𝑋𝑝𝑠𝑒𝑢𝑑𝑜 =
{(𝑥𝑢, 𝑦𝑢)}𝑈𝑢=1 after apply the train model to 𝑋𝑢𝑛𝑙𝑎𝑏𝑒𝑙𝑒𝑑 as step 2. Steps 1–4 can be continued until the antic-
ipated class labels from step 2 no longer meet a specified probability threshold or until there are no more
unlabeled data.

Due to the wide variety of semi-supervised learningmethods, eachmethod has a corresponding dataset due to
different principles. To evaluate each method fully, there are many evaluation indicators in semi-supervised
learning, including accuracy, true positive rate (TPR), false positive rate (FPR), and Receiver Operating Char-
acteristic (ROC) [37], etc. The accuracy is a very common evaluation indicator, so the TPR, FPR, and ROC are
detailed below:

1. True positive rate (TPR): is described as the proportion of true positive outcomes among all positive sam-
ples.

𝑇𝑃𝑅 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁 =
𝑇𝑢𝑟𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝐴𝑙𝑙 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝐶𝑎𝑠𝑒
(4)

A point is said to be True Positive (TP) if this point lies above the Upper Control Limit (UCL) after the
damage, which is defined according to a certain damage condition. Conversely, a point is said to be False
Negative (FN) if this point lies under the UCL after the damage. Then the UCL signifies the degree of
confidence in the training period, as shown in Figure 6.

2. False positive rate (FPR): is described as the proportion of false positive outcomes among all negative sam-
ples.

𝐹𝑃𝑅 =
𝐹𝑃

𝐹𝑃 + 𝑇𝑁 =
𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝐴𝑙𝑙 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝐶𝑎𝑠𝑒
(5)
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Figure 6. True Positive (TP), False Positive (FP), True Negative (TN), and False Negative (FN).

A point is defined to be False Positive (FP) if this point lies above the UCL before the damage, while a point
is said to be True Negative (TN) if it lies under the UCL.

3. Receiver Operating Characteristic (ROC): a ROC curve is plotted by the TPR against FPR at various thresh-
old settings. When the ROC curve is closer to the upper-left-hand corner of the ROC space, the model is
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more accurate. On the contrary, when the ROC curve is closer to the uninformative line, the model is less
accurate as Figure 7.

2.4. Deep learning
Even though the flood is a common phenomenon because it is a natural disaster that occurs in many countries
every year, predicting it is rather difficult. Simple machine learning methods and models are not effective in
solving complex flood forecasting problems. As a result, deep learning approaches have been centered by both
scientists and governments to solve the flood prediction conundrum [38]. These approaches help them make
accurate predictions and save lives. Roughly speaking, deep learning can be viewed as a subset of machine
learning, which is usually employed to process a large amount of data. As such, it makes it possible to train
powerful computer programs so as to perform specific tasks, as shown in Figure 8. One of the applications
of deep learning can be seen in flood prediction, where a deep learning model can be trained to predict the
occurrence of floods using the data collected over many years [39]. For this purpose, the National Weather Ser-
vice (NWS) collects weather data from thousands of local stations across the country. They also collect data
from satellite photos aiming to measure the extent of the floods and the damage levels. Using this information,
deep models can be created to predict where, how much, and what type of flood conditions will happen sub-
sequently. The results of the prediction are then forwarded to the local governments for pre-emptive planning
purposes. This allows authorities to respond quickly to unexpected floods by shutting down streets or opening
up new paths through flooded areas.

Although humans are constantly faced with a large amount of perceptual data, they can always obtain impor-
tant information that is worth noting in a deft way. Imitating the efficiency of the human brain in accurately
representing information has long been a core challenge in AI research. Research on the mammalian brain
was based on anatomical knowledge: the time when sensory signals traveled from the retina to the prefrontal
cortex, which then transferred to the motor nerves, was used to determine how the brain represented infor-
mation. Inferences were made regarding the cerebral cortex not directly displaying the data but allowing the
received stimulus signals to pass through a lamellar network model and then obtaining the observed rules.
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Figure 8. Deep learning block diagram.

Thus, the human brain does not project images directly onto the retina but rather processes information by
aggregating and decomposing it to recognize objects. In order for the visual cortex to function properly, it
must reproduce the image on the retina and feature the perceptual signal [40]. By retaining useful structural
information about objects and reducing the amount of data processed by the visual system, this hierarchy of
human perception reduces the amount of data that the visual system processes. In addition to capturing es-
sential features in structurally rich data, deep learning can also capture potentially complex structural rules,
such as natural images, videos, and voice [41]. In the field of machine learning, deep learning is a promising
research direction that is aimed at getting machine learning closer to AI. As part of deep learning, the internal
rules and representation levels of sample data are learned [42], and the information gained from this process
can be used to interpret text, image, and sound data. Deep learning is an algorithm that has achieved far more
in speech and image recognition than previous methods related to machine learning. The ultimate goal is for
machine learning to be able to recognize words, images, and sounds in a manner similar to humans.

Models for deep learning include convolutional neural networks (CNN), deep reinforcement learning [43], and
stacked autoencoder networks [44,45]. In the neural and cognitive machine of Fukushima, the first computa-
tional model of CNN is proposed, inspired by the visual system [46,47]. To obtain a translation invariant neural
network structure form, neurons with the same parameters are applied to different positions of the previous
layer based on the local connections between neurons and hierarchical image transformation. As a result
of this concept, Le Cun et al. developed CNN with error gradients [48], which improved pattern recognition
performance. Historically, CNN has shown extraordinary performance, such as the handwritten character
recognition [49].

The Deep Belief Networks (DBNs) are a type of Bayesian probabilistic generation model [50,51], which can be
trained to generate inputs in a probabilistic way. The resulting trained layers can even be used as a feature
detector, which is able to be further trained to solve classification problems. For DBNs, a stack of Restricted
Boltzmann machines (RBMs) is used, which sometimes consists of two layers of the recurrent neural network
(RNN), i.e., the visible layer and hidden layer. Such layers are undirected; thus, an efficient, fast training
capability can be obtainedwhen performing the unsupervised procedure. It is observed that due to the network
structure of the DBNs, such models can be trained by a greedy learning strategy layer-by-layer. As a result, the
DBNs have been found to have a broad range of applications in practice [52,53].

Similar to DBNs, stack autocoding networks consist of several layers of structural units [54]. However, the struc-
tural units in the autocoding model are auto-encoders instead of RBMs [55]. In the autocoding model, there
are two layers, i.e., an encoding layer and a decoding layer [56]. An effective method for building multi-layer
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neural networks based on unsupervised data was proposed by Hinton in 2006 [57]. A single layer of neurons is
constructed in two steps: first, a single layer is built layer by layer, which means a single layer of the network
is trained every time; then, the wake-sleep algorithm is used to tune all layers. A bidirectional weighting of
all layers except the topmost is used, so the topmost layer remains a single-layer neural network [58], while the
other layers become graphmodels. Use the wake-sleep algorithm to adjust all weights, with the upward weight
for ”cognition” and the downward weight for ”generation”. The topmost representation generated must be ca-
pable of restoring the underlying node as accurately as possible to ensure cognition and generation agree [59].
If a node represents a face at the top, then all face images should activate this node, resulting in an image that
can be used to represent a general image of a face.

Currently, to improve the performance of real-time flood forecasting, we could use the Fully Convolutional
Network (FCN), Long Short Term Memory model (LSTM), Gated Recurrent Unit Network (GRU), Graph
Convolutional Network (GCN), Generative Adversarial Networks (GAN), CNN-Long Short Term Memory
Network (CNN-LSTM), and STA-LSTM. Each model or algorithm has a different focus on hydrological pre-
diction and, therefore, has a different effect when we focus on different kinds of flooding.

1. Fully Convolutional Network (FCN): A FCN can mainly solve the image segmentation technology from
the semantic level. After sampling the feature map of the convolutional layer, the FCN can restore it to the
same size as the input image tomake pixel predictions. FCNandMultioutput FCNare quite useful in solving
problems related to spatial data but do not encode the position and orientation of applied objects. The image-
based model of FCN can capture the basic structure of the problem, but it has higher requirements on time
and space complexity [60].

2. Long Short TermMemory (LSTM)/Gated Recurrent Unit Network (GRU): LSTM networks are designed
to have a large short-term memory, allowing for more efficient and resource-rich training on datasets of
sequential samples. As a consequence of a series of activation functions and processes, LSTM neurons
produce two different values, as compared to a convolution operation generating one output and holding
it to urgent receptors in both the next and same layer [61]. While both outcomes are kept within the LSTM
layer to keep a record of what was learned in the preceding part of the sequential manner, one is transmitted
to the next layer [62]. GRU and LSTM have comparable performance, and the GRU is the variant of LSTM.
However, the parameter of GRU is less, and the training speed is faster than LSTM because the input gate
and the forget gate of LSTM are combined with the update gate and the cell state, and the hidden state of
LSTM is combined in GRU. The GRU has advantages over LSTM in forecasting when the dataset is huge.

3. Graph Convolutional Network (GCN): Graph Neural Network (GNN) refers to the application of neural
networks on graphs. According to the classification of propagation mode, GNN can be divided into graph
convolutional neural network (GCN) and graph attention network (GAT). GCN can efficiently extract fea-
tures from non-euclidean structure data, which is prevalent in a large amount of data types lacking regular
structure.

4. GenerativeAdversarial Networks (GAN):TheGAN introduces the concept of adversarial learning [63]. The
concept is introduced between the generator and the discriminator. GAN, as presented by Goodfellow et
al. (2014) [64], presents two separate CNNs that work in unison but are seemingly separate at the same time.
It resembles that they are competing against one another in a min-max game. Here, one of the CNN will
aim to generate fake examples from the given dataset. Another CNN acts as the discriminator. The role of
the discriminator is to test whether the dataset is real or not. Since both the CNNs are working against one
another and the training is better, it makes the CNN get better over time. Moreover, Markovmodels usually
compute at a slow speed and might have a high degree of inaccuracy; the GAN can work with high-volume
complex data in a faster manner [65].

5. Convolutional Neural Network LSTM (CNN-LSTM):Themain feature of CNN is the convolution opera-
tors. CNN is suitable for processing spatial data because it consists of a convolutional layer and a pooling
layer. The convolution layer can maintain the spatial continuity of the image and extract the local features
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of the image. The pooling layer can use max-pooling or mean-pooling, reducing the dimension of the
middle-hidden layer and the amount of computation. Moreover, LSTM is suitable for processing temporal
data. Therefore, CNN-LSTM has better performance than LSTM for spatio-temporal prediction problems.

6. Spatio-temporal attention LSTM (STA-LSTM): STA-LSTM includes the main LSTM network and Spatial
Attention and Temporal Attention. Themain LSTMnetwork is used for feature extraction, spatial-temporal
correlation utilization, and final prediction. We can adjust the attention weights dynamically, and the per-
formance of LSTM cells can be improved due to Spatial Attention and Temporal Attention.

Then relevant experimental verification should be conducted appropriately for flood forecasting models. Ex-
perimental verification is an essential step in evaluating the performance of a flood forecasting model and
ensuring that it is accurate and reliable. The previously unused data (test dataset) can be used to validate the
accuracy of the model and use different evaluationmetrics to assess its performance. In general, flood forecast-
ing belongs to a regression task, for which evaluation indexes are usually important. Thus, a few commonly
used indexes are listed, including Mean Squared Error (MSE), Root Mean Square Error (RMSE), Mean Abso-
lute Error (MAE), R Squared, and Nash-Sutcliffe Efficiency (NSE). Relevant experimental verification can and
should be conducted appropriately for flood forecasting models. Experimental verification is an essential step
in evaluating the performance of a flood forecasting model and ensuring that it is accurate and reliable [66,67].

1. Mean Squared Error (MSE):MSE is the expectation of squared error, that is, the average squared deviation
between the prediction values and the observation values.

𝑀𝑆𝐸 =
1
𝑛

𝑛∑
𝑖=1
(𝑂𝑖 − 𝑃𝑖)2 (6)

In equation (6), 𝑂𝑖 means the observation value, 𝑃𝑖 means the prediction value, �̄�𝑖 means the average
observation value and 𝑛means the number of observations. Usually, theMSE could be led to the dimension
issues.

2. Root Mean Square Error (RMSE): RMSE shows the degree of dispersion of the samples and assesses how
well the predicted value matches the observed value. RMSE can avoid the dimension issues compared with
MSE. If the machine learning problem is sensitive to the dimension issues, the RMSE could be used as an
evaluation index of model performance. Since RMSE is the sum of squared errors and then takes the square
root, it would be possible to magnify the gap for the larger errors.

𝑅𝑀𝑆𝐸 =

√√
1
𝑛

𝑛∑
𝑖=1
(𝑂𝑖 − 𝑃𝑖)2 (7)

3. Mean Absolute Error (MAE): MAE is the expected value of the absolute error loss, that is, the average
deviation between the predicted value and actual value. Similar to RMSE, the value of the MAE should be
optimized as low as possible too. Since the MAS directly takes the absolute value of the error, the MAS
reflects the real error.

𝑀𝐴𝐸 =

∑𝑛
𝑖=1 |𝑂𝑖 − 𝑃𝑖 |

𝑛
(8)

4. R Squared (𝑅2): 𝑅2 is called the coefficient of determination. The performance of the model cannot be
accurately judged when the evaluation index does not have the upper and lower limits, while 𝑅2 is able to
take this into account, confining the index value into a certain bound.

𝑅2 = 1 −
∑𝑛
𝑖=1(𝑂𝑖 − 𝑃𝑖)2∑𝑛
𝑖=1(𝑂𝑖 − �̄�𝑖)2

(9)

5. Nash-Sutcliffe Efficiency (NSE): A normalized statistic, called the NSE, can evaluate the performance of
the model to measure variables and can display the percentage of the initial variance of the model.

𝑁𝑆𝐸 = (1 −
∑𝑛
𝑖=1(𝑂𝑖 − 𝑃𝑖)2∑𝑛
𝑖=1(𝑂𝑖 − �̄�𝑖)2

) × 100 (10)
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Note that when models deal with regression problems, if the models have higher performance, the values of
the MSE, RMSE, and MAE are as low as possible, but the 𝑅2 and NSE are both nearly 1.

3. PROBLEMS AND CHALLENGES OF DIFFERENT ALGORITHMS FOR FLOOD PREDICTION
After analyzing the machine learning working mechanism, this section aims to understand the distinctions
and problems between different machine learning methods and propose corresponding models to solve the
problems. The researchers must comprehend the characteristics and performance of every machine learning
approach while selecting models. Understanding the drawbacks of each algorithm, in particular, can help us
better pick models for flood prediction.

3.1. Problems and challenges in supervised learning
When an algorithm or model is proposed, the following aspects need to be considered in order to obtain a
good learning performance:

1. The trade-off between bias and variance: To generate more precise prediction results, We make a trade-
off between bias and variance [68]. Generally, bias and variance are a trade-off in a learning algorithm, so a
lower bias learning algorithm needs to be flexible so that it canmatch the data well. However, it is likely that
if the learning algorithm is too flexible, it will match every training dataset, which results in a high variance.
Therefore, most supervised learning methods offer a bias/variety parameter that the user can adjust so that
they can adjust this trade-off between bias and variance. For flood forecasting, the bias (accuracy) would be
sacrificed for lower variance (stability) because lower variance means better robustness and generalization
ability.

2. The complexity of the function and the amount of training data: The second issue is the amount of com-
plexity of the training data relative to the ”real” function (classification or regression) [69]. With a small
amount of data, an ”inflexible” learning algorithm can be used to learn a simple function with a high bias
and low variance [70]. The function, however, will only be trained from a very large number of data, and the
use of ”flexible” learning algorithms has a low bias and variance if it involves many different input elements
in a complex interaction and it has behavior in various parts of the input space [71]. Based on data avail-
ability and perceived complexity of a function, good learning algorithms automatically adjust bias/variance
trade-offs.

3. The dimension of the input space: There is also the problem of the input space dimension [72]. Even if
the true function only depends on a small number of input features, the learning problem is difficult if
the input feature vectors have high dimensionality. As a result, high input dimensionality usually requires
adjustments to classifiers with low variance and high bias. This is because many of the ”extra” sizes can
be confounded by the learning algorithm and make it have a high variance. Engineers can improve the
accuracy of this learning function by manually removing irrelevant features from the input data. Further,
many algorithms are available for choosing features that are relevant and ignoring those that are not.

4. Output value in noise: The fourth issue is the level of noise at the desired output values (monitoring the
target variables) [73]. If the desired output value is usually incorrect (because of human or sensor errors),
the learning algorithm should not try to find a training example that exactly matches those values. Trying
to fit the data too cautiously leads to overfitting [74]. When there is no measurement error (random noise),
if you are struggling to learn the function, it is your learning pattern itself that is too complex, potentially
leading to overfitting.

3.2. Problems and challenges in unsupervised learning
Unsupervised learning is not commonly employed in real-time flood prediction models [75] due to its suscep-
tibility to subjectivity and lack of clear analytical objectives, such as response prediction. Furthermore, there
is no widely accepted approach for performing cross-validation or validating the outcomes of unsupervised
learning techniques on different datasets, making it difficult to evaluate their effectiveness [76,77].
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However, Chen et al. (2022) suggested the Flood Domain Adaptation Network (FloodDAN) strategy, which
combined adversarial domain adaptation and extensive pretraining to create a model for unsupervised flood
forecasting [78]. They undertook adversarial domain adaptation between the two datasets after pre-training the
source model on large-scale datasets. The final model was built using the source prediction head and target en-
coder produced in the first and second stages, respectively. The findings of the experiment demonstrated that
FloodDAN could make flood predictions using simple rainfall data. In addition, Chen et al. (2022) compared
the performances of fully supervised learning and unsupervised learning in flood forecasting. In fully super-
vised learning, researchers used the entire training set for supervised training and compared the evaluation
findings to determine the optimum model structure for flood prediction. They computed the lower bound of
the unsupervised learning method using the historical runoff input as the model output. The findings demon-
strated a typical issue in supervised learning, which was when the amount of data diminished, the performance
of the model degraded. However, the FloodDAN unsupervised learning model may perform at the same level
as supervised learning which took 450–500 hours, which is very significant and valuable for flood forecasting
in regions without hydrological data.

3.3. Problems and challenges in semi-supervised learning
While semi-supervised learning has found extensive use in flood prediction, there remain certain challenges
in its implementation process. Specifically, two key aspects warrant consideration:

1. Sample division: Semi-supervised learning divides samples into unlabeled and labeled samples, which is
important for building models [79]. In the process of model training by predicting labeled samples and
then building a newmodel, the process is cyclic iteration; and in the process of prediction, it is necessary to
consider that the sample prediction is wrong, whichwill greatly affect its generalization performance [80] and
even lead to performance degradation. Building a model that can guarantee prediction accuracy without
over-labeling is an important challenge in semi-supervised learning [81].

2. Selection of semi-supervised learningmethods: Semi-supervised learning is not easy to build better learn-
ing programs from unlabeled data. As mentioned earlier, unlabeled data are useful if and only if they con-
tain information useful for predicting labels, which do not contain data that cannot be extracted or are
difficult to extract in labeled data. Semi-supervised learning methods can be applied in practice to provide
effective information for model building, which further leads practitioners and researchers to the question
of when such situations occur. It is currently difficult to precisely define the conditions for any particular
semi-supervised learning job, and it is not easy to assess the extent to which these conditions are met by
the methods that can be used. This question has so far been left unanswered. Research on this problem
stops at inferring the applicability of different learning methods to various types of problems [82], such as
graph-based methods [83] that apply local similarity measures to construct graphs of all data points [84].

3.4. Problems and challenges in deep learning
While deep learning methods have decent fitting ability and robustness, there are still some problems that
cannot be overlooked.

1. Expensive computation and low portability: Deep learning is expensive since it takes a lot of data and pro-
cessing power. Additionally, a lot of programs are still incompatible with mobile devices. Many businesses
and teams are now working on creating semiconductors for portable devices [85].

2. Strict hardware specifications: Deep learning demands a lot of computational power, which is something
that standard CPUs can no longer handle [86]. GPU and TPU are the primary components used in main-
stream computing; therefore, both the cost and hardware requirements are relatively high.

3. Intricate model design: Deep learning model creation is quite complicated, taking a lot of time, labor, and
material resources to create new algorithms and models. Most individuals are limited to using pre-made
models. For example, the STA-LSTM and CNN-LSTM can somewhat resolve the robustness and gradient
issues, and GRU is able to perform calculations more quickly than LSTM [87,88].
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Table 1. Comparison of machine learning algorithms in the flood forecasting

Algorithms Computational cost Other benefits Disadvantages

SVM High on large dataset [91] Effective in handling high-dimensional The input data needs to be normalized.
data; robust to noise; accurate in Sensitivity to kernel choice; parameter
nonlinear problems; good for small tuning difficultly
datasets

ANN High on large dataset Capture complex nonlinear relationships; Overfitting easily; parameter tuning
better robustness; the ability to learn difficultly; poor interpretability; sensitivity
and adapt to changes in the input data; to input data
better generalization

CNN High on large dataset Spatial and temporal feature extraction Limited applicability; need to adjust
ability; No pressure for high-dimensional parameters and a large and high-quality
data processing; Robustness to noise; sample size

FCN Higher than CNN handle high-resolution data; learn complex Need a large amount and high-quality of
spatial patterns: handle missing data and labeled data for training; overfitting; not
noise; computationally efficient explicitly model temporal dynamics [60] .

GCN Higher than ANN and CNN Deal with non-Euclidean data; learn the Loss of spatial information; requires a
spatial dependencies between nodes; deal well-defined graph structure; not explicitly
with missing data and noise in the input model temporal dynamics
data; computationally efficient; handle large
graphs [92]

LSTM Higher than CNN and ANN Solved Gradient problem; model temporal With the increase of time, the modeling
dependencies and capture long-term ability of LSTM begins to decline due to
dependencies in time-series data; handle the gradient problem; overfitting; struggle
missing data and noise; computationally with handling sudden changes in the
efficient; handle large datasets [61] data distribution; not explicitly model

spatial dependencies [93]

GRU Lower than LSTM Alleviate the gradient problem; high memory Gradient problem as LSTM; training
efficiency; higher computationally efficient; difficultly; require careful tuning of
capturing temporal dependencies; good hyperparameters; sensitivity to
generalization ability [94] . initialization; overfitting; limited

interpretability
CNN-LSTM Higher than LSTM Spatial and temporal feature extraction; Overfitting; gradient problem; computational

improved accuracy; better robustness; better complexity
generalization

STA-LSTM Higher than CNN-LSTM The high robustness and generalization of lower computational efficiency than
hydrological prediction, and the prediction CNN-LSTM; carefully tune each attention
accuracy better than most forecasting models [95] weight; the identification of important spatio

-temporal features [11]

4. COMPARISONS AND FURTHER DIRECTION FOR FLOOD FORECASTING
As a result of our determination of the requirements for choosing the right machine learning algorithm, we
have listed them below in descending order, starting with the most important and going down to the least
important in the prediction of a flood as the following: accuracy, robustness, generalization, low configuration,
low preprocessing of data, and insights into factors influencing prediction.

4.1. Characteristics of machine learning algorithms for flood prediction
Asmanymachine learningmodels have been used for flood prediction, we select some representativemodels to
compare. Table 1 shows the comparison between variousmachine learning algorithms used in flood prediction.
Firstly, SVM has good performance on both low-dimensional and high-dimensional datasets and has certain
robustness [89]. Nonetheless, due to the high computational complexity, SVM is usually not efficient for the
case when the training datasets are rather large. The input datasets of the flood forecasting model not only
have a very large size but also have a relatively high dimension [90]. Therefore, SVM seems to be inadequate
to deal with the flood forecasting problem. Moreover, the flood forecasting problem is a nonlinear regression
problem; an overfitting issue would more likely occur when the SVM deals with nonlinear problems.

In Artificial Neural Networks (ANN), 3-layer neural network models are employed as the function estimators
in order to forecast the flood. Unlike conventional physical models described by certain differential equations,
ANN models are able to be trained from the historical data, after which the future trend of the flood can be
predicted through the obtained models [96,97]. In this procedure, the actual hydrological datasets are utilized
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for training the ANN models; the connecting weights of each neuron are adjusted accordingly in order to fit
well the relationship between the occurrence of the flood and related impact factors [98]. Clearly, the quality of
the provided dataset is one of the most influential features for the ANN performance [99]. Due to the fact that
the real-time datasets of flood forecasts are sometimes subject to the large noise, data preprocessing is quite
necessary in order to improve theANNmodels. Thedata cleaning, normalization, and transformation are good
preprocessing techniques that are commonly employed to enhance the quality of the dataset [90,100]. Besides
that, overfitting is another common issue in ANNmodel training, particularly when themodels used are overly
complex or the size of the dataset is relatively small. To this end, the dropout regularization and weight decay
are frequently utilized to prevent overfitting, thus improving the generalization ability and robustness [101].
Notice that basic ANN architecture merely includes three layers: input layer, hidden layer, and output layer,
and usually, such a 3-layer structure cannot achieve the flood forecasting with high accuracy.

The CNN is a kind of ANN architecture trained with deep-learning algorithms [102]. CNNs are well suited for
solving prediction problems with spatial datasets. This is because CNNs are designed to handle the spatial
structure of data and can learn to extract features hierarchically from the input data. The accuracy of a CNN
depends on several aspects, such as the size and complexity of themodel architecture, the quality of the training
data, and the choice of hyperparameters [103]. CNNs can be robust in flood forecasting, particularly when
trained on a diverse range of data that captures variations in environmental conditions and flood events. This
can help the model to identify features that are associated with flooding and to generalize well to new and
unseen data. Therefore, CNNs can be made less sensitive to changes in the input data, such as changes in
weather conditions or changes in the landscape, which may possibly affect the accuracy of the model. As with
most machine learning methods, overfitting may occur as well when the model employed is too complex or
the training data is too limited, leading to poor generalization performance on new datasets. Similar to ANN,
overfitting would be prevented by the appropriate regularization techniques. Furthermore, the CNN models
can be combined with other models to improve the performance of flood forecasting.

The FCN, as a specific type of CNN architecture, has been designed for image segmentation tasks. FCNs and
CNNs can be adopted for different types of tasks in flood forecasting due to their different characteristics.
The accuracy, robustness, and generalization of FCNs are much similar to CNNs [104]. FCNs may sometimes
require more computational resources than CNNs owing to their architecture, which could be a limitation for
real-time flood forecasting applications. Techniques such as the use of a smaller model architecture or transfer
learning can be employed to reduce the computational cost of training an FCN. Mu (2022) trained the models
of FCNs, multi-output FCNs, and their RNN variants in watersheds with frequent rainfall and performed both
quantitative and qualitative analysis for specific rainfall events [60]. In cases where the predicted water depth
exceeded 50 cm, the multi-output FCNs had a very significant advantage. Under the recurrent effect, the
accuracy of long-term flood prediction of FCNs will be greatly improved. In the process of this test, the three
predicted NSE values of the FCN model were 81.0%, 79.95%, and 78.16%, respectively. From this result, this
model had a certain accuracy for predicting floods, but the values were not particularly close to 1. The single
FCNmodel here still has a lot of room for optimization. FCNs and CNNs are both useful in flood forecasting,
but their specific strengths and weaknesses depend closely on the type of data and task at hand.

GCNs are a class of deep learning models that can effectively handle graph-structured data, making them
promising tools for flood forecasting. GCNs have good robustness. For example, they can deal with noisy data
andmissing values by learning from the local connections in the graph, allowing themodel to smooth out noise
in the data. GCNs can also effectively adapt to changes in the data by dynamically updating the weights of the
connections in the graph, enabling the model to learn from new data without requiring a full retraining [105].
Notice that GCNs are mainly designed to handle graph-structured data, which makes them well-suited to
handle complex spatial relationships in flood forecasting data. GCNs may struggle to generalize to new and
unseen data outside of the training set, especially when the graph structure is significantly different from the
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training data. This can lead to overfitting and reduce performance in real-world flood forecasting applications.
GCNs may be computationally expensive, especially for large graphs with many nodes and edges. This can
make it challenging to scale up GCN-based flood forecasting models in order to cover larger geographic areas.
Then Graph convolutional RNN (GCRNN) is a kind of neural network based on GCN. The GCN is used to
capture image data to represent spatial relationships, while the RNN is used to capture temporal data [87]. The
combination of these two structures gives this model an advantage over time and space. GCRNN can be used
to predict the time series of water quantity in a geographic area or water supply area. GCRNN is an image-
basedmodel that captures water volume in both time and space. Zanfei et al. (2022) have tested this prediction
model in the presence of sensor failures [92]. The test results showed that GCRNN can accurately predict floods
when considering the spatial criteria of time series. Especially in fault testing, GCRNN performedmuch better
than LSTM. Since GCRNN has relatively high complexity and the demand for computing time is also high,
there are still some deficiencies on the whole. While GCRNN is able to predict the whole flood cycle reliably
and stably, the modeling ability begins to decline with the increase of time. From this point of view, GCRNN
still has higher advantages. In the model test of the three time periods in the Chongqing section of the Yangtze
River Basin, the GCRNN model has significantly higher accuracy than the FCN model since the NSE results
of the GCRNN in these three tests are 93.10%, 89.33%, and 83.56%. These three values are larger and closer to
1 than the respective values of FCNs.

LSTM is a type of RNN, and the gradient problem of RNNs can be partially resolved by LSTMmodels. LSTM
models have been shown with high accuracy in flood forecasting compared to traditional statistical models.
This is because LSTMmodels are able to capture the complex temporal dependencies and patterns for the time
series data [106]. LSTM models have also been shown with the ability to effectively model the nonlinear and
non-stationary behavior of hydrological variables, which is important in flood forecasting [107,108]. However,
the accuracy of LSTM models can be affected by several factors, such as overfitting, underfitting, and the
presence of outliers or anomalies in the data. The quality and quantity of input data can significantly impact
the robustness of an LSTMmodel. The architecture of an LSTMmodel, including the number of layers, hidden
units, and input/output dimensions, can impact its robustness too. Moreover, the choice of training parameters,
e.g., learning rate, batch size, and optimization algorithms, may also impact the robustness of an LSTMmodel.
The use of appropriate training parameters can improve the ability of the model to generalize to new data.
LSTMs performed very well for one-day, two-day, and three-day forecasts. TheNSE for these three predictions
were 95%, 93%, and 88%, respectively, which are better than FCNs and GCNs.

GRU and LSTM have comparable performance, whereas GRU has a lower computational cost than LSTM.
The NSE values of GRU in the three predictions are nearly 95%, 93%, and 88%, respectively. Some researchers
combined GRU and CNN models to create the Convolutional GRU (CONV-GRU), aiming to maximize the
benefits of both models [88]. The combination is accomplished by connecting the output of the CNN model
with the input of the GRU model. This model was used to forecast the water level and flood phenomena of
a Taiwanese river. This model was thought to be an extension of the GRU model. When compared to other
neural network models, the CONV-GRUmodel was found to be superior to other neural network methods in
predicting water level characteristics, and it was very useful in detecting local flood characteristics. TheCONV-
GRU model can detect both normal and abnormal time series behavior. Furthermore, the error between the
predicted and actual value of this model is relatively small, and the CONV-GRU model is superior to the four
models of LSTM, CNN, ANN, and Seq2seq (Sequence to sequence).

Although the applications of machine learning techniques in flood prediction have been increasing, most of
them are based on a collection of one-dimensional data. The CNN-LSTM model uses the two-dimensional
radar map to calculate the runoff and then achieves the purpose of flood prediction [109]. The two-dimensional
processing of the precipitation radar map by CNN and the one-dimensional processing of the sequence by
LSTM makes it possible to figure out the upstream and downstream flow series [86]. The database in three
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Table 2. Measures of machine learning algorithms

Measures Algorithms

High accuracy STA-LSTM [11,93]

Good robustness SVM, STA-LSTM
Good generalization SVM, STA-LSTM, GRU
Low computational cost SVM, ANN, CNN
Gradient problems CNN, LSTM, GRU
Fitting problems SVM, ANN, CNN, FCN, GCN
High dataset quality SVM, CNN, Hybrid LSTM, GRU

different years was taken as the study period. After forecasting at three different water level periods, the NSE
values were 93.51%, 94.25%, and 95.18%, respectively. Comparing this set of results with the NSE values of the
LSTM, it was clear that the CNN-LSTM predictions were more accurate. After using the NSE and evaluating
the performance of themodel, it is found that the better prediction performance ofCNN-LSTMhighly depends
on the optimized input dataset [110]. It means while models can be useful for estimating water levels and issuing
flood warnings, high-quality datasets are fundamental to their value.

It is observed that most prevailing deep learning structures, such as LSTM networks, are unlikely to model the
spatial correlation of hydrological data and, thus, fail to produce satisfactory prediction results [95]. It is clear
that flood is uncertain and highly nonlinear, which leads to the low robustness of hydrological prediction [111].
The physical interpretability of the models is easily overlooked by general machine learning methods. Some
scholars proposed the STA-LSTMmodel based on the original LSTM, which contains an explainable attention
mechanism. Experiments showed that this model outperformed FCN, CNN, GCN, and the conventional
LSTM in most cases. The rationality of this model is mainly reflected by the visual and interpretable weight
of spatial and temporal attention. When carrying out modeling experiments, Lyu et al. (2021) found that in
the STA-LSTM model, spatio-temporal attention and time have similar weights, and they all move forward
slowly. In terms of the overall weight, its change trend is not obvious and relatively slow [112,113]. However,
in the case of actual flood input, with the extension of the forecast time, the time attention weight also keeps
moving forward, and a certain time point will have a synchronous forward speed with the predicted speed.
This implies that the time attention weight is very similar to the whole fusion process [114]. Moreover, if the
weight of time attention deviates, it is highly likely to cause the deviation of the prediction results. From this
perspective, although the STA-LSTM model has better performance than other neural networks in terms of
datasets and performance, it is greatly affected by the weight of time attention [115]. The three values of NSE
in this evaluation were 97.03%, 96.73%, and 95.10%, respectively, which shows STA-LSTM had the highest
accuracy in predicting floods.

All in all, the high-quality datasets, the great quantity of data, concise model structure, suitable hyperparame-
ters, and data preprocessing are important for the accuracy, robustness, and generalization of flood forecasting
models. As a result, the selection of a machine learning algorithm for flood forecasting should be based on the
unique requirements of the application and the properties of the available data.

4.2. Future direction for real-time flood forecasting
Although the challenges of flood forecasting have been partially addressed by current machine learning meth-
ods, there are still challenges not completely being solved in flood forecasting, as shown in Table 2. The van-
ishing gradient problem is a common challenge in deep learning-based flood forecasting models [116]. LSTM
models can relieve the vanishing gradient problem of RNN and CNNmodels, but it also occurs when the gra-
dient of the loss function becomes very small or very large, making it difficult for the optimizer to update the
model parameters effectively during training. Various techniques, such as weight initialization, batch normal-
ization, gradient clipping, and data augmentation, can be used to address the gradient problem and improve
the performance of these models [117].
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An ideal flood forecasting model should exhibit low bias and low variance to accurately predict true values
while not being overly sensitive to minor input data changes [118]. However, striking this balance can be chal-
lenging, especially when dealing with complex flood systems that are influenced by a multitude of factors and
variables. The variance impacts the robustness and generalization of the flood forecasting model, while the
bias affects its accuracy [119]. Therefore, the balance between variance and bias needs to be adjusted according
to the specific forecasting requirements.

A lot of flood forecasting models are sensitive to the input data changing. Because flood events can be affected
by various factors, such as weather patterns and land-use changes, future work could focus on developing ma-
chine learning models that can adapt to changing conditions and provide accurate predictions under different
scenarios. In other words, the flood forecasting models of high generalization stability have to be given more
attention. For example, the hybrid CNN models could be created since CNN models are hyposensitive to the
input data changing [120,121].

Notwithstanding the fact that machine learning models have flexibility, speed, and simplicity with physical
models, their generalization ability is restricted [122]. The physical models are based on the underlying physical
laws and can generalize well to different conditions and locations. Therefore, hybrid models that combine the
strengths of machine learning and physical models can improve flood prediction accuracy and generalization.

The quality and quantity of the dataset will have a large impact on the accuracy of the flood forecasting models.
In some regions, data scarcity can limit the effectiveness of deep learning models. Developing methods to
address data scarcity is imminent, such as transfer learning and data augmentation. The concept of GAN-
LSTM is to generate synthetic flood data that can be used to augment the training data of an LSTM model.
GANs can generate realistic and diverse samples from a given distribution, while the LSTM learns to predict
the next flood event based on the input data and the synthetic data [123]. This approach has the potential to
improve the accuracy and generalization of the LSTMmodels, as it can learn to predict floods based on a wider
range of data. Researchers could try to explore the use of advanced deep learning algorithms, such as GANs,
to improve the accuracy and robustness of flood forecasting.

5. CONCLUSIONS
The purpose of this manuscript is to provide a survey of the current state of machine learning applications in
flood prediction. Due to the abundance of literature on the topic, the focus of this review is to analyze and
compare the performance ofmainstream algorithms that are currently being used in real-time flood prediction.

Accurately detecting the timing and magnitude of major floods is a challenge for watershed managers, as it is
critical to provide timely early warnings to those at risk and save lives. Recent advancements in remote sensing
technology and the installation of real-time flood water level detection sensors, in conjunction with advanced
machine learning techniques, have made it possible to provide more accurate and longer forecast windows for
predicting the timing and magnitude of future flooding events. This improved prediction capability enables
better countermeasures, evacuation efforts, and mobilization of emergency management teams.

By utilizing advanced remote sensing techniques and real-time flood water level monitoring sensors, a large
volume of data can be collected, quickly analyzed, and processed by machine learning algorithms to forecast
floods. These algorithms can identify complex patterns in real-time data to accurately predict floodwater levels
in complex river networks and urban sewer sheds. The data collected can be used to create flood inundation
maps and issue warnings to impacted residents through mobile applications on their cell phones, enabling
emergency response teams to mobilize and coordinate evacuation efforts more effectively.
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In conclusion, this review summarizes the combination of remote sensing, real-timemonitoring, andmachine
learning technology, offering a promising solution to the challenge of accurately forecasting floods and reduc-
ing their impact on at-risk communities.
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We investigate the cooperatability of the first-order leader-following multi-agent systems consisting of a leader and
a follower with multiplicative noises under Markov switching topologies. Each agent exhibits first-order linear dy-
namics, and there are multiplicative noises along with information exchange among the agents. What is more, the
communication topologies are Markov switching topologies. By utilizing the stability theory of the stochastic differ-
ential equations with Markovian switching and the Markov chain theory, we establish the necessary and sufficient
conditions for the cooperatability of the leader-following multi-agent systems. The conditions are outlined below: (i)
The product of the system parameter and the square of multiplicative noise intensities should be less than 1/2; (ii)
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systems.
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1. INTRODUCTION
In the past few decades, distributed cooperative control of multi-agent systems under fixed topologies has
attracted much attention from the system and control community [1–3]. However, in practical systems, the
communication networks connecting the agents often experience sudden interruptions and restoration. These
mutations lead to the changes in the structures or parameters of the system. Here, we describe this changing
topology by theMarkovian switching topology. For such systems, we usually use theMarkov switching systems
to describe them. In recent years, the stability of linear Markov switching systems has been widely studied [4–8].
By Kronecker product and Lyapunov exponent, Mariton et al. [4] gave the necessary and sufficient conditions
for the moment stability and the almost sure stability of the system, respectively. Feng et al. [5] studied the
stochastic stability of the system and revealed the relationship between the moment stability and the almost
sure stability. Feng et al. [6] studied the stabilization problem. The literature [7,8] investigated the robust stability
problems and gave sufficient and necessary conditions in the form of linear matrix inequalities for the mean
square stability.

In many real-world systems, it is inevitable for systems to be subjected to random noises [9]. These noises
may change the trajectory of the system and even affect its stability. Therefore, an increasing number of re-
searchers have focused on studying the stability of the Markov switching stochastic systems. The stability of
linear Markov switching systems with stochastic noises was studied in previous literature [10–12]. Fragoso et
al. [10] studied the Markov switching systems with additive noises and provided the necessary and sufficient
conditions for the mean square stability of the system. On the other hand, the literature [11,12] explored the
Markov switching systems with multiplicative noises. By employing the operator theory, Dragan et al. [11]
derived the necessary and sufficient conditions in the form of linear matrix inequalities for the mean square
stability. Similarly, Sheng et al. [12], also using the operator theory, presented a new necessary and sufficient
condition for the mean square stability. Using the Lyapunov method, Mao et al. [13] established a sufficient
condition for the 𝑝𝑡ℎ moment exponential stability of the nonlinear Markov switching system and revealed
the relationship between the 𝑝𝑡ℎmoment exponential stability and the almost sure exponential stability of the
system. In the context of nonlinear Markov switching systems, Deng et al. [14] addressed the problem of mean
square stabilization.

The stability theory of Markov switching systems with noises has numerous practical applications [15–17]. Previ-
ous studies [18–22] have focused on the distributed control problem of multi-agent systems with random noises
under Markov switching topologies. The literature [18,19] studied the distributed control problem of discrete-
timemulti-agent systems. By the state space decompositionmethod, Huang et al. [18] gave a sufficient condition
for almost sure consensus and mean square consensus, respectively. Zhang et al. [19] studied the mean square
consensus problem. The literature [20–22] considers the distributed control problem of continuous-time multi-
agent systems. Zhang et al. [20] studies the distributed control problem of multi-agent systems with first-order
integrator dynamics. Li et al. [21] studied the containment control problem. Wang et al. [22] studiedmean square
consensus and almost sure consensus of higher-order multi-agent systems.

Compared with additive noises, multiplicative noises play a stabilizing role in the almost sure stability of sys-
tems [23]. Many scholars have studied the distributed control problem of multi-agent systems with multiplica-
tive noises [24–28]. However, as the state of the system is related to theMarkov chain, we cannot write the expec-
tation of the product of the state variable and the indicative function in the form of the expected product. This
leads to the fact that the distributed control problem of multi-agent systems with multiplicative noises under
the Markov switching topology has not yet been solved. As a preliminary study, we study the cooperatability
of the first-order leader-following multi-agent systems consisting of a leader and a follower with multiplicative
noises under Markov switching topologies. Each agent has first-order linear dynamics, and there are multi-
plicative noises along with information exchange among agents. What is more, the communication topologies
are Markov switching topologies. Compared with existing literature [24–28], we have revealed the influence
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of multiplicative noises and switching rates on the cooperatability of the system. To analyze this influence,
we delve into the stability theory of Markov switching systems with noises. Therefore, we introduced a new
lemma to address this issue. We establish the necessary and sufficient conditions for the cooperatability of the
leader-following multi-agent systems by combining the stability theory of the stochastic differential equation
with Markovian switching and the Markov chain theory. These conditions are outlined below: (i) The prod-
uct of the system parameter and the square of multiplicative noise intensities should be less than 1/2; (ii) The
transition rate from the unconnected graph to the connected graph should be twice the value of the system
parameter; (iii) The transition rate from the connected graph to the unconnected graph should be lower than
a constant, which is related to the system parameter, the intensity of multiplicative noises, and the transition
rate from the unconnected graph to the connected graph.

The remaining sections of this paper are structured as follows: Section 2 formulates the problem. Section 3
presents the admissible cooperative distributed control strategy. Section 4 provides the main result. Section 5
includes a numerical simulation to demonstrate the effectiveness of our control laws. Section 6 concludes the
paper.

Notation: The symbols R and R+ denote real and non-negative numbers, respectively. 𝐼𝑛 denotes the 𝑛 × 𝑛
dimensional identity matrix. The symbol diag{𝐴1, . . . , 𝐴𝑁 } represents the block diagonal matrix with entries
being 𝐴1, . . . , 𝐴𝑁 . For a given vector ormatrix 𝑋 , 𝑋T denotes its transpose, and |𝑋 | represents the determinant
of 𝑋 . For twomatrices𝐶 and𝐷,𝐶⊗𝐷 denotes their Kronecker product, and𝐶⊕𝐷 = 𝐶⊗𝐼+𝐼⊗𝐷 represents the
Kronecker sum. Let (Ω, F , {F𝑡}𝑡⩾𝑡0 , P) be a complete probability space with a filtration {F𝑡}𝑡⩾𝑡0 that satisfies
the usual conditions, namely, it is right continuous and increasing while F0 contains all P-null sets; 𝑤(𝑡) =
(𝑤1(𝑡), . . . , 𝑤𝑚 (𝑡))𝑇 denotes a 𝑚-dimensional standard Brownian motion defined in

(
Ω, F , {F𝑡}𝑡⩾𝑡0 , P

)
. For

a given random variable 𝑋 , the mathematical expectation of 𝑋 is denoted by E[𝑋].

2. PROBLEM FORMULATIONS
Consider a leader-following multi-agent system consisting of a leader and a follower, where the leader and the
follower are indexed by 0 and 1, respectively. The dynamics of the leader is given by

¤𝑥0(𝑡) = 𝑎𝑥0(𝑡), (1)

where 𝑥0(𝑡) ∈ R is the state, and 𝑎 ∈ R+ is a known constant.

The dynamics of the follower is given by

¤𝑥1(𝑡) = 𝑎𝑥1(𝑡) + 𝑏𝑢(𝑡), (2)

where 𝑥1(𝑡) ∈ R is the state, 𝑢(𝑡) ∈ R is the input, and 𝑎 ∈ R+ and 𝑏 ∈ R/0 are known constants.

In this section, we assume that the topology graph is a Markovian switching topology. Let the switching signal
𝜃 (𝑡) be defined in the probability space (Ω, F , {F𝑡}𝑡⩾0 , P). The signal 𝜃 (𝑡) is a right continuous homogeneous
Markov chain and has a finite state space S = {1, 2}. The matrix 𝑄 = [𝑞𝑖 𝑗 ]1⩽𝑖, 𝑗⩽2 is the transfer rate matrix of
the Markov chain 𝜃 (𝑡) and satisfies

𝑃(𝜃 (𝑡 + 4) = 𝑗 |𝜃 (𝑡) = 𝑖) =
{
𝑞𝑖 𝑗 4 +𝑜(4), 𝑖 ≠ 𝑗 ,

1 + 𝑞𝑖 𝑗 4 +𝑜(4), 𝑖 = 𝑗 ,

where if 𝑖 ≠ 𝑗 , 𝑞𝑖 𝑗 is the transition rate of the Markov chain from the state 𝑖 to the state 𝑗 with 𝑞𝑖 𝑗 ⩾ 0; if 𝑖 = 𝑗 ,

𝑞𝑖𝑖 = −
2∑
𝑗≠𝑖
𝑞𝑖 𝑗 ; 4 > 0 and lim

𝑡→∞
𝑜(4)
4 = 0. We use G(𝜃 (𝑡)) = (V, E(𝜃 (𝑡)),A(𝜃 (𝑡))) to represent a weighted graph
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formed by the leader and the follower, where the set of nodesV = {0, 1} and the set of edges E(𝜃 (𝑡)) ⊆ V×V.

Denote the neighbors of the 𝑖th agent by N𝑖 (𝜃 (𝑡)). The adjacency matrix A(𝜃 (𝑡)) =
[
𝑎10(

0 0
𝜃 (𝑡)) 0

]
∈ R2×2,

where if 0 ∈ N1(𝜃 (𝑡)), then 𝑎10(𝜃 (𝑡)) = 1, otherwise 𝑎10(𝜃 (𝑡)) = 0. The Laplacian matrix of G(𝜃 (𝑡)) is given
by L(𝜃 (𝑡)) = D(𝜃 (𝑡)) − A(𝜃 (𝑡)), where D(𝜃 (𝑡)) = diag(0, 𝑎10(𝜃 (𝑡))). Without losing generality, we assume

that the transition rate matrix of the Markov chain 𝜃 (𝑡) is the matrix 𝑄 =

[
−𝛼 𝛼

𝛽 −𝛽

]
, where 𝛼 represents the

transition rate from the unconnected graph to the connected graph; 𝛽 represents the transition rate from the
connected graph to the unconnected graph.

3. ADMISSIBLE DISTRIBUTED COOPERATIVE CONTROL STRATEGY
In the real network, the relative state measurement information obtained by the follower from the leader is
often affected by noises. Therefore, for the leader−following multi-agent system (1)−(2), we assume that the
relative state measurement information has the following form

𝑦10(𝑡) = 𝑥1(𝑡) − 𝑥0(𝑡) + 𝜎10 (𝑥1(𝑡) − 𝑥0(𝑡)) 𝜉10(𝑡), (3)

where 𝜉10(𝑡) represents themultiplicativemeasurement noise, and𝜎10 represents the intensity ofmultiplicative
measurement noise.

We consider the following set of admissible distributed cooperative control strategies based on (3) and the
randomness of the communication topology

U = {𝑈 = {𝑢(𝑡) = 𝑘𝑎10(𝜃 (𝑡))𝑦10(𝑡), 𝑡 > 0} , 𝑘 ∈ R} . (4)

This paper primarily focuses on investigating the necessary and sufficient conditions for the cooperatability of
the first-order leader-following multi-agent systems. These systems are composed of a leader and a follower
and are subjected to multiplicative noises under Markov switching topologies.

The assumption and lemma required in this section are given below.

Assumption 1Thenoise process 𝜉10(𝑡) satisfies
∫ 𝑡
0 𝜉10(𝑠)d𝑠 = 𝑤10(𝑡), 𝑡 ⩾ 0, where 𝑤10(𝑡) is a one-dimensional

standard Brownian motion.

Lemma 1 [12] The solution of the Markov switching stochastic differential equations

d𝑥(𝑡) = 𝐴(𝜃 (𝑡))𝑥(𝑡)d𝑡 + 𝐶 (𝜃 (𝑡))𝑥(𝑡)d𝑤(𝑡) (5)

is mean square stable if and only if 𝐹 = diag(𝐴(1) ⊕ 𝐴(1), . . . , 𝐴(𝑆) ⊕ 𝐴(𝑆)) + diag(𝐶 (1) ⊕ 𝐶 (1), . . . , 𝐶 (𝑆) ⊕
𝐶 (𝑆)) +𝑄T ⊗ 𝐼𝑛2 is a Hurwitz matrix, where 𝑄 = [𝑞𝑖 𝑗 ]1⩽𝑖, 𝑗⩽𝑆 is the transition rate matrix of the Markov chain
𝜃 (𝑡). If 𝜃 (𝑡) = 𝑖, we denote 𝐴(𝜃 (𝑡)) = 𝐴(𝑖), 𝐶 (𝜃 (𝑡)) = 𝐶 (𝑖), and 𝑖 = 1, . . . , 𝑆.

4. MAIN RESULTS
By leveraging the stability theory of stochastic differential equations withMarkovian switching and theMarkov
chain theory, we provide the necessary and sufficient conditions for the cooperatability of the leader-following
multi-agent systems.

Theorem 1 Suppose Assumption 1 is satisfied. In that case, there exists an admissible cooperative control
strategy denoted by 𝑈 ∈ U, which ensures that the follower can track the leader for any initial value under
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the distributed control law 𝑈. This holds if and only if the following conditions are met: 2𝑎𝜎2
10 < 1, 𝛼 > 2𝑎,

0 ⩽ 𝛽 < (𝛼−2𝑎)(1−2𝑎𝜎2
10)

2𝑎𝜎2
10

.

Proof: Denote 𝛿(𝑡) = 𝑥1(𝑡) − 𝑥0(𝑡). By Assumptions 1 and (1)−(4), we get

d𝛿(𝑡) = [𝑎 + 𝑏𝑘𝑎10(𝜃 (𝑡))]𝛿1(𝑡)d𝑡 + 𝑏𝑘𝑎10(𝜃 (𝑡))𝜎10𝛿1(𝑡)d𝑤10(𝑡), (6)

where if 𝑎10(𝜃 (𝑡)) = 0, then we denote 𝐴(1) = 𝑎 and 𝐶 (1) = 0; if 𝑎10(𝜃 (𝑡)) = 1, then we denote 𝐴(2) = 𝑎 + 𝑏𝑘
and 𝐶 (2) = 𝑏𝑘𝜎10.

Denote 𝐹 = diag(𝐴(1) ⊕ 𝐴(1), 𝐴(2) ⊕ 𝐴(2)) + diag(𝐶 (1) ⊕ 𝐶 (1), 𝐶 (2) ⊕ 𝐶 (2)) + 𝑄T ⊗ 𝐼1. By the definition
of 𝐹, we have

𝐹 =

[
2𝑎 0
0 2(𝑎 + 𝑏𝑘)

]
+
[
0 0
0 𝑏2𝑘2𝜎2

10

]
+
[
−𝛼 𝛽

𝛼 −𝛽

]
=

[
2𝑎 − 𝛼 𝛽

𝛼 2(𝑎 + 𝑏𝑘) + 𝑏2𝑘2𝜎2
10 − 𝛽

]
. (7)

Necessity: If there exists an admissible cooperative control strategy denoted by𝑈 ∈ U, such that for any initial
value, the follower can track the leader under the distributed control law 𝑈, it implies that the system (6) is
mean square stable. According to Lemma 1, it can be inferred that all eigenvalues of 𝐹 have negative real parts.

Noting that |𝜆𝐼 − 𝐹 | =
����𝜆 − 2𝑎 + 𝛼 −𝛽
−𝛼 𝜆 − 2(𝑎 + 𝑏𝑘) − 𝑏2𝑘2𝜎2

10 + 𝛽

����, we have |𝜆𝐼 − 𝐹 | = (𝜆 − 2𝑎)2 + (𝛽 + 𝛼 −

2𝑏𝑘 − 𝑏2𝑘2𝜎2
10)(𝜆 − 2𝑎) − 2𝑏𝑘𝛼 − 𝛼𝑏2𝑘2𝜎2

10.

Denote 𝑚 = 𝜆 − 2𝑎 and 𝑓 (𝑚) = 𝑚2 + (𝛽 + 𝛼 − 2𝑏𝑘 − 𝑏2𝑘2𝜎2
10)𝑚 − 2𝑏𝑘𝛼 − 𝛼𝑏2𝑘2𝜎2

10. As all eigenvalues of
𝐹 have negative real parts, we know that the real parts of the zero point of 𝑓 (𝑚) are less than −2𝑎. As the real
parts of the zero point of 𝑓 (𝑚) are less than −2𝑎, by considering the image of the function 𝑓 (𝑚), the following
two conditions can be inferred.

Condition (C1) : 𝑓 (−2𝑎) = 4𝑎2 − 2𝑎(𝛽 + 𝛼 − 2𝑏𝑘 − 𝑏2𝑘2𝜎2
10) − 2𝑏𝑘𝛼 − 𝛼𝑏2𝑘2𝜎2

10 > 0.

Condition (C2) : 2𝑏𝑘−𝛼−𝛽+𝑏2𝑘2𝜎2
10

2 + 2𝑎 < 0.
By Condition (C1), we obtain

(2𝑎 − 𝛼)(2𝑎 + 2𝑏𝑘 + 𝑏2𝑘2𝜎2
10) > 2𝑎𝛽. (8)

In the following, we discuss the Conditions (C1) and (C2).

(1) If 2𝑎 + 2𝑏𝑘 + 𝑏2𝑘2𝜎2
10 = 0 holds, then we have (2𝑎 − 𝛼)(2𝑎 + 2𝑏𝑘 + 𝑏2𝑘2𝜎2

10) = 0. This contradicts the
inequality (8). Therefore, this situation does not hold.

(2) If 2𝑎 + 2𝑏𝑘 + 𝑏2𝑘2𝜎2
10 > 0 holds, by (8), we get 0 ≤ 𝛼 < 2𝑎.

By 2𝑏𝑘−𝛼−𝛽+𝑏2𝑘2𝜎2
10

2 + 2𝑎 < 0, we have 𝛽 + 𝛼 − 2𝑏𝑘 − 𝑏2𝑘2𝜎2
10 > 4𝑎. By 𝛽 + 𝛼 − 2𝑏𝑘 − 𝑏2𝑘2𝜎2

10 > 4𝑎,
2𝑎 + 2𝑏𝑘 + 𝑏2𝑘2𝜎2

10 > 0 and 0 ≤ 𝛼 < 2𝑎, we obtain 𝑓 (−2𝑎) = 4𝑎2 − 2𝑎(𝛽 + 𝛼 − 2𝑏𝑘 − 𝑏2𝑘2𝜎2
10) − 2𝑏𝑘𝛼 −

𝛼𝑏2𝑘2𝜎2
10 < −4𝑎2 − 2𝑏𝑘𝛼 − 𝛼𝑏2𝑘2𝜎2

10 = −4𝑎2 − 𝛼(2𝑏𝑘 + 𝑏2𝑘2𝜎2
10) < −4𝑎2 + 2𝛼𝑎 = 2𝑎(𝛼 − 2𝑎) < 0.This

contradicts Condition (C1). Therefore, this situation also is not valid.

(3) If 2𝑎 + 2𝑏𝑘 + 𝑏2𝑘2𝜎2
10 < 0, then by 𝛽 ⩾ 0, 𝑎 > 0 and (8), we have 𝛼 > 2𝑎.
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By 𝛼 > 2𝑎 and (8), we get

𝑏2𝑘2𝜎2
10 + 2𝑏𝑘 <

2𝑎𝛽
2𝑎 − 𝛼 − 2𝑎. (9)

By Condition (C2), we obtain

𝑏2𝑘2𝜎2
10 + 2𝑏𝑘 < 𝛼 + 𝛽 − 4𝑎. (10)

By 𝛽 ⩾ 0, 𝑎 > 0 and 𝛼 > 2𝑎, we get

𝛼 + 𝛽 − 4𝑎 − ( 2𝑎𝛽
2𝑎 − 𝛼 − 2𝑎) = 𝛼 − 2𝑎 + 𝛽 + 2𝑎𝛽

𝛼 − 2𝑎
> 0, (11)

which implies 𝛼 + 𝛽 − 4𝑎 > 2𝑎𝛽
2𝑎−𝛼 − 2𝑎.

By (9), (10), and (11), we have

𝑏2𝑘2𝜎2
10 + 2𝑏𝑘 <

2𝑎𝛽
2𝑎 − 𝛼 − 2𝑎. (12)

Denote 𝑔(𝑡) = 𝜎2
10𝑡

2 + 2𝑡 − 2𝑎𝛽
2𝑎−𝛼 + 2𝑎 and 𝑡 = 𝑏𝑘 . By (12), we know that 𝑔(𝑡) < 0 has a solution for variable

𝑡. By 𝑔(𝑡) < 0, we have Δ = 4 − 4𝜎2
10(−

2𝑎𝛽
2𝑎−𝛼 + 2𝑎) > 0. By Δ > 0, we get 𝛽 < (𝛼−2𝑎) (1−2𝑎𝜎2

10)
2𝑎𝜎2

10
. Combining

0 ⩽ 𝛽 <
(𝛼−2𝑎)(1−2𝑎𝜎2

10)
2𝑎𝜎2

10
and 𝛼 > 2𝑎, we have 2𝑎𝜎2

10 < 1. In summary, we obtain 2𝑎𝜎2
10 < 1, 𝛼 > 2𝑎,

0 ⩽ 𝛽 < (𝛼−2𝑎)(1−2𝑎𝜎2
10)

2𝑎𝜎2
10

.

Sufficiency: By 2𝑎𝜎2
10 < 1, 𝛼 > 2𝑎 and 0 ⩽ 𝛽 <

(𝛼−2𝑎) (1−2𝑎𝜎2
10)

2𝑎𝜎2
10

, we get (12). By (12), we have 𝑏𝑘 ∈(
−2(𝛼−2𝑎)−√𝜌
2(𝛼−2𝑎)𝜎2

10
,
−2(𝛼−2𝑎)+√𝜌
2(𝛼−2𝑎)𝜎2

10

)
, where 𝜌 = 4(𝛼 − 2𝑎)2 − 4(𝛼 − 2𝑎)𝜎2

10 [2𝑎(𝛼 − 2𝑎) + 2𝑎𝛽]. From the value range of

𝑏𝑘 , it can be seen that Condition (C1) and Condition (C2) hold. Therefore, since the real parts of the zero
point of 𝑓 (𝑚) are less than −2𝑎, it can be concluded that all eigenvalues of 𝐹 have negative real parts. Lemma
1 implies that the system (6) is mean square stable. Therefore, there exists an admissible cooperative control
strategy𝑈 ∈ U, such that for any initial value, the follower can track the leader under the distributed control
law𝑈.

Remark 1 The conditions 𝛼 > 2𝑎, 2𝑎𝜎2
10 < 1 and 0 ⩽ 𝛽 < (𝛼−2𝑎) (1−2𝑎𝜎2

10)
2𝑎𝜎2

10
stated in Theorem 1 highlight the

influence ofmultiplicative noises and both the transition rates 𝛼 and 𝛽 on the cooperatability of the system. It is
shown that smaller multiplicative noises, lower transition rate 𝛽, and higher transition rate 𝛼 are all favorable
for the cooperatability of the system. Moreover, the transition rates 𝛼 and 𝛽 have lower and upper bounds,
respectively. What is more, the noises and the system parameters satisfy the corresponding inequality.

We have the following corollary for the case without measurement noises.

Corollary 1 Suppose Assumption 1 and 𝜎10 = 0 hold. In that case, there exists an admissible cooperative
control strategy denoted by𝑈 ∈ U, such that for any initial value, the follower can track the leader under the
distributed control law𝑈, if and only if 𝛼 > 2𝑎.

5. NUMERICAL SIMULATION
In this section, we will use a numerical example to demonstrate the effectiveness of our control laws.

http://dx.doi.org/10.20517/ir.2023.13
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Figure 1. The communication topology graphs.
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Figure 3. Mean square tracking errors.

Referring to the literature [29], the population growth system is given by (1). Consider the leader-following
population growth systems (1)-(2), where 𝑎 = 0.01 and 𝑏 = 0.2, we will verify that the population of the
follower can track the population of the leader under the distributed control law𝑈.

The communication topology graphs are shown in Figure 1, and the trajectory of the Markov chain 𝜃 (𝑡) is
shown in Figure 2. The intensity of multiplicative measurement noise in (3) is given by 𝜎10 = 0.4. The

transition rate matrix is given by 𝑄 =

[
−2 2
1 −1

]
. The initial states of agents are given by 𝑥0(0) = 0.2 and

𝑥1(0) = 0.4.

If we choose 𝑘 = −2, then under the control law 𝑈, the mean square error of the population between the
follower and the leader is shown in Figure 3. From Figure 3, we can see that the mean square error of the
population tends to zero, which implies that the follower can achieve mean square tracking under the control
law of𝑈.

6. CONCLUSION
In this paper, we have studied the cooperatability of the first-order leader-following multi-agent systems that
consist of a leader and a follower. The systems are subjected to multiplicative noises under Markov switching
topologies. Each agent in this system follows first-order linear dynamics, and there are multiplicative noises
along with information exchange among agents. Additionally, the communication topologies are character-
ized byMarkov switching. By employing the stability theory of the stochastic differential equation withMarko-
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vian switching and the Markov chain theory, we have established the necessary and sufficient conditions for
achieving the cooperatability in the leader-followingmulti-agent systems. Furthermore, there are several other
interesting topics that can be explored in future research. For instance, it would be valuable to investigate the
cooperatability of the leader-following multi-agent systems with both multiplicative noises and delays under
Markov switching topologies
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Abstract
With the growing applications of autonomous robots and vehicles in unknown environments, studies on image-based
localization and navigation have attracted a great deal of attention. This study is significantly motivated by the obser-
vation that relatively little research has been published on the integration of cutting-edge path planning algorithms for
robust, reliable, and effective image-based navigation. To address this gap, a biologically inspired Bat Algorithm (BA) is
introduced and adopted for image-based path planning in this paper. The proposed algorithm utilizes visual features
as the reference in generating a path for an autonomous vehicle, and these features are extracted from the obtained
images by convolutional neural networks (CNNs). The paper proceeds as follows: first, the requirements for image-
based localization and navigation are described. Second, the principles of the BA are explained in order to expound
on the justifications for its successful incorporation in image-based navigation. Third, in the proposed image-based
navigation system, the BA is developed and implemented as a path planning tool for global path planning. Finally,
the performance of the BA is analyzed and verified through simulation and comparison studies to demonstrate its
effectiveness.

Keywords: Image-based navigation, Bat Algorithm, path planning, localization, autonomous vehicles, Mapping
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1. INTRODUCTION
Autonomous vehicle path planning plays a crucial role in Simultaneous Localization and Mapping algorithms
(SLAM) and navigation modules. Its purpose is to construct a safe and collision-free trajectory, including
map-based path planning and image-based path planning [1–9]. Map-based navigation utilizes sensor readings
performed in Cartesian space with terrain costs in maps [10–15]. Image-space of an on-board camera is used
to feed raw images into a cost-image to form image-based path planning [16–18]. The constructed maps have
various fundamental representations, such as metric maps, geometric maps, feature maps, and hybrid mod-
els. These representations essentially are an integration of multiple methods. As the outdoor landscape tends
to be myopic, the limited range of LIDAR sensors poses challenges in building up maps with long-distance
perception. Consequently, this limitation results in inefficient path planning in sensor-based navigation sys-
tems [19–22]. In map-based path planning, obstacles can often present aliasing issues when converting from
sensor readings to the Cartesian space. For instance, in sensor-based navigation, solid areas may have gaps or
slender corridors may disappear completely. However, when we consider an image feature-based navigation,
researchers can represent such an image-based map by defining a graph, with the set of vertices representing
images and the set of edges representing paired relationships between these images. Maps may be constructed
in light of the sequence of images acquired to find paths from the initial to the destination pose. Image-based
localization, with feature representations for image retrieval and image processing, contributes to mapping
and navigation.

1.1. Related work
Navigation in an unknown and unstructured environment is extremely challenging and is involved in mul-
tiple, well-known, and well-studied disciplines [3,23–26]. Within the research community, there is a body of
knowledge relating to neural network (NN) architectures that apply machine learning concepts to extract fea-
tures and image descriptors from scenes, thereby facilitating various tasks related to autonomous vehicles [27,28].
This is typically accomplished through the implementation of a pooling layer inspired by the Vector of Locally
Aggregated Descriptors (VLAD), which pools extracted descriptors into a fixed image representation, allow-
ing its NN parameters to be learned by back-propagation NN. VLAD descriptors accomplish visual location
recognition by directly using the intermediate layer outputs of pre-trained CNNs [29].

Visual place recognition methods can be based on directed acyclic graph matching, where feature maps ex-
tracted from deep CNNs are used to form probability distributions on image representation [30]. Another
approach is based on extreme K-means and effective extreme learning machines (EELMs), where image de-
composition with curvelet transformation is used to reduce dimensionality and generates a set of distinctive
features [31] for use in future processing phases. As an example, Muthusamy et al. [32] applied a Gaussian mix-
ture model (GMM) in various pattern recognition applications with EELM with excellent results.

The developments in feature extraction through NNs and CNNs naturally lend themselves to the performance
of tasks associated with autonomous vehicles, such as SLAM [33]. One particular type of SLAM, Learning
SLAM, can obtain camera pose and create a 3D map. However, it needs to have the prior dataset to train the
network, and its performance often depends on that dataset. As a result, learning SLAM has poor generaliza-
tion and is less versatile than some of its other implementations, such as geometric SLAM. This is generally
owing to its 3D map being less accurate than one created via geometric SLAM. Visual SLAM, on the other
hand, is a more dynamic system that typically consists of three components: (1) a visual odometry algorithm
that provides an initial state estimate; (2) a place recognition system that is able to relate the currently observed
scene to previously observed scenes; and (3) an optimization back-end which consistently integrates the place
matches from the place recognition system with the full stream of state estimates [34]. While visual SLAM has
proven to be highly valuable in ideal environments, there are certain disadvantages to this methodology that
researchers are actively addressing in current research. The fundamental issue lies in the challenges posed by
environmental changes, which induce errors and make feature identification difficult. These challenges can

http://dx.doi.org/10.20517/ir.2023.14


Short et al. Intell Robot 2023;3(2):222-41 I http://dx.doi.org/10.20517/ir.2023.14 Page 224

occur due to changes in time, environment, camera posture, and other factors [35].

Various forms of deep NNs (DNNs) and artificial intelligence (AI) techniques are utilized to make a system
more robust by autonomously tuning parameters, thereby enhancing overall performance. Learned features,
such as those derived from massive amounts of deep learning (DL) meta-sensor data, are aggregated into
coherent large-scale maps and then classified features extracted from those DNNs, such as “lake”, “road”, “field”,
“obstacles”, or “traversable terrain”, assigned with corresponding cost values in a Cartesian space [36]. Graphs
are then constructed based on these maps to enable path planning. Training data can be constructed either
directly from image-space features or by projecting pixel data into Cartesian space, depending on the methods
employed. To create an optimal trajectory, DL-based methods are used to construct a path that takes into
account the geometry of the explored areas, taking into account the starting and ending positions. Outputs
of image processing techniques, such as edge detection and region segmentation, are used to determine the
explorable regions of themap [17]. Path planning inputs are derived from standard commercially available NNs,
which are used to generate topological maps. Image-sensor input data are represented as a bipartite cost-graph,
with disjoint nodes representing image-feature distances and their corresponding geographic distances [37].

In a parallel research area, biologically inspired algorithms have become popular for performing optimizations
and solving problems involving 𝑛-dimensional search spaces. Evolutionary Algorithms (EAs) are widely used
as global searching methods for optimization, and hybrids of EAs and analytical methods are providing a
promising atmosphere for NN and CNN training applications [38]. Ongoing research in this domain provides
fuel for the integration of subsets of EA-like swarmmethodologies for parameter estimation and optimization.
The swarm intelligence methodology aims to optimize the conditioning of EELM, and some researchers have
already proposed an effective particle swarm optimization (PSO) algorithm known as the Multitask Beetle
Antennae Swarm (MBAS) Algorithm. This algorithm was inspired by the structures of the artificial bee colony
(ABS) algorithm and the Beetle Antennae Search (BAS) algorithm [39]. In fact, some research efforts even claim
that the approach is so straightforward and effective that it may be possible to completely replace traditional
NN training paradigms, including back-propagation [40].

EELM is not the only area benefiting from swarm methodologies such as PSO. The controller of autonomous
vehicles has seen significant improvements as well, particularly in the case of four-wheel steer four-wheel drive
(4WS4WD) vehicles. The improved PSO-based controller takes into account all the slip forces acting on the
vehicle, leading to a notable enhancement in its robustness [41–43]. Population-based algorithms have been
used in a more generalized way to solve optimization problems that are typically challenging for traditional de-
terministic algorithms, such as the issue of the local optima. One novel population based on an optimization
strategy involves leveraging the different behaviors of mosquitoes during the foraging process [44]. Another
biomimetic swarm intelligence optimization algorithm, pigeon-inspired optimization (PIO), has also been in-
troduced as a novel approach in this field. PIO simulates the homing behavior of pigeons using magnetic fields
and landmarks. PIO has also been further improved to enhance its effectiveness in solving many-objective op-
timization problems (MaOPs) [45]. The list of EA research is extensive. Some of the optimization algorithms
currently published include bacterial colony chemotaxis (BCC) optimization [46], the ”swarm of bees” or BSO
algorithm [47], and the discrete artificial bee colony (DABC) algorithm [48].

One important bio-inspired optimization algorithm is the Bat Algorithm (BA). The BA is the focus of our cur-
rent research and has been the subject of many research papers. Various variations to the BA have been pro-
posed, demonstrating its versatility and effectiveness in solving a wide range of optimization problems across
multiple fields. This study showed that the proposed BA algorithm clearly outperformed competing methods,
such as the Pareto concept, in terms of performance and solution quality. Furthermore, due to the similarities
between the BA and the PSO, BA has also been applied to solve the Wireless Sensor Network (WSN) coverage
problem. In the context of wireless sensor node development research, the sensor node itself is regarded as a
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Figure 1. Proposed framework for Bat Algorithm in image-based path planning and localization using visual features and maps.

bat, and its position is regarded as the position of the bat. By implementing the BA, significant improvements
in the accuracy of node positioning in practical and complicated environments have been demonstrated [49].
Additionally, an improved version of the BA combined with Differential Evolution (DE), known as IBA, has
been proposed to optimize the three-dimensional path planning problem for Uninhabited Combat Air Vehi-
cles (UCAV) [50]. This application of BA in UCAV path planning is notable because it was a novel approach
at the time. The knowledge of this fact serves as the primary motivator for our current research. If BA can
be used to plan and optimize 3D paths in combat aircraft, it is reasonable to believe that it could yield similar
benefits for autonomous ground vehicles [51].

In the related work reviewed, it is found that no BA (or any other biologically inspired optimization) has been
applied to the SLAM path planning problem. Since SLAM and seqSLAM utilize visual features and CNNs to
produce a global path through a sequence of images, the implementation of a BA would be a novel and useful
application of the optimization capabilities for optimizing the shortest path. This would involve computing a
local path once the global trajectory has already been computed.

1.2. Proposed framework and original contributions
Studies on image-based navigation have become increasingly popular due to the increasing interest in their
numerous applications in the field of autonomous vehicles [52,53]. In particular, several frameworks have been
proposed and prototyped for image-based navigation. For example, Thoma et al. [37] developed a framework
for image-based mapping, localization, and navigation of autonomous vehicles, and the algorithms for map
constructions and self-localizations were discussed in detail. However, the algorithms required for path plan-
ning play an irreplaceable role in making an integrated imaged-based navigation system successful. Although
limited work has been done on integrating path planning algorithms into learning systems, it has been noted
that a reliable, biologically inspired, or nature-inspired optimization algorithm is missing from the image-
feature-based navigation path planning models [54]. Therefore, this paper aims to develop a more robust path
planner and evaluate the improved navigation results in comparison withThoma et al. [37]. The BA is proposed
and integrated as the state-of-the-art path planner into the program flow, and it is verified by measuring the
performance of the outcomes based on the same datasets in the reference [55]. The flowchart of the proposed
framework is presented in Figure 1.

The main contributions of this paper are summarized as follows:

• A biologically inspired image-based path planning and localization framework is proposed for robust,
reliable, and effective image-based navigation.

• An image-based navigation is developed to use visual features and mapping that satisfy the require-
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Oxford RobotCar 

Camera Dataset

Figure 2. Oxford RobotCar map.

ments for image-based navigation and self-localization.
• The BA for image-based path planning is proposed to navigate the autonomous vehicle through the
landmark identification on image-based reference query sequences.

The rest of this article is organized as follows. In Section 2, the image feature-based localization and map
creation for image-based navigation are introduced. Section 3 presents the proposed BA for image-based
navigation. In Section 4, the results of test cases, comparison studies, and simulations are presented, and
performance characterization is provided for various maps, challenge datasets, and environments. Several
important properties of the presented framework are summarized in Section 5.

2. IMAGE-BASED NAVIGATION
Image-based navigation is presented to describe our proposed nature inspired path planning algorithm. Image-
based navigation is a navigation system that uses visual features and mapping to satisfy the requirements for
image-based navigation and self-localization. It focuses on using reference images as a set of landmarks within
a video sequence [37]. The publicly available dataset is utilized in this paper for evaluation. Figure 2 shows an
aerial view of the outdoor dataset and outlines the route taken by the Oxford RobotCar from the acquired
camera datasets, which will be adopted for our simulation studies.

Two sub-tasks handle compact map construction and accurate self-localization in this research:

(a) Finding of landmarks in a sub-sequence of the Oxford RobotCar run captured (see Figure 3) [37], and
(b) Matching to a short reference query sequence.

Precalculated distances are used based on features extracted from a VGG-16 + NetVLAD +whitening network.
An Off-the-shelf Pitts30k model is utilized, which is freely available on the NetVLAD [29]. This solution is
implemented using the NetVLAD TensorFlow. The modified implementation of their model produces the
following output figures:

• Accuracy vs. distance plot of the final matching.
• Selected landmarks.
• Scatter plot of the original reference and query sequences shown in Figure 4.
• Topology of the reference sequence used for finding landmarks with network flow.

2.1. Image feature-based localization
Recently, there have been advances in camera technologies that allow them to be used in robotic applications as
navigational sensors [30]. Cameras are used to provide the basic sensor input for localization, using robot pose
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in each world environment [37]. Cameras deliver high quality image streams that enable feature identification,
which may be employed to determine the location of the robot within the defined world environments. Im-
ages, for example, can still contain embedded information in the form of features such as points, lines, conics,
spheres, and angles, which might be valuable for image-based navigation.

When images are coupled with the CNNs and appropriate filters are used to extract these features, localization
can be possible. Image-based localization is a large topic that includes two main types of “worlds”: those en-
vironments that are known a priori and others that are unknown. The method using a known environment
consists of online and real-time mapping, and the latter is commonly known as SLAM [34]. SLAM methods
can incorporate geometric, learned, topographical, and marker identification techniques [30]. The method con-
sidered in this study involves using a known environment of learned features, which will be integrated with
the BA.

The method is a form of learned mapping that examine features that have been identified using two types of
sources [30]. The first source is based on the VGG16 CNN coupled with off-the-shelf NetVLAD weights [29],
while the second source is simply the fully connected output from the last VGG16 FC3 layer [37]. These features
serve as the basis for lookup queries against the landmarks that have been established by a reference dataset of
known location and geometry in this paper.

The geometric distances in the test data are calculated algorithmically and defined in the paper. The results of
the query are then used to establish anchors and sensitivity values, which are used to identify the best waypoints
between the identified landmarks. This network of points is best represented by a graph, representing the
features where the Network Flow algorithm is then used to find the path with the lowest cost from source to
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destination.

The graph is represented by G = {V, E}, where utilizing cost values 𝑐𝑖 𝑗 and capacity values 𝜔𝑖 𝑗 to represent
the edge 𝑒𝑖 𝑗 ∈ E between images I𝑖 and I𝑗 .

𝜔𝑖 𝑗 = 𝜂Xd
(
X𝑖 ,X𝑗

)
and 𝑐𝑖 𝑗 = 𝜂F /d

(
F𝑖 , F𝑗

)
(1)

where 𝜂X and 𝜂F are weights of geometric and visual measures, respectively. Thus, d(X𝑖 ,X𝑗 ) and d(F𝑖 , F𝑗 )
denote the geometric and visual distances between images I𝑖 and I𝑗 , respectively.

To generate visually comparable matches, the visual distance between landmarksV′ = {𝑣′𝑖}𝑛𝑖=1 and a sequence
of images I𝜌 is utilized to calculate the flow cost rate at corresponding locations {𝑥𝑖}𝑛𝑖=1. The flows from the
source to landmarks and from query pictures to the target incur no additional cost. In addition, we offer a
robust loss for feature matching with associated cost values 𝑐𝑖 𝑗 and capacity values 𝜔𝑖 𝑗 defined as:

𝑐𝑖 𝑗 = L(𝒅(F𝑖 , F𝑗 )),∀𝑒𝑖 𝑗 ∈ E𝜋; 𝑐𝑖 𝑗 = 0,∀𝑒𝑖 𝑗 ∈ E \ E𝜋 (2)

where L(.) is the Huber loss function. Images are matched to (at most) a single landmark, so the maximum
absolute flow at each query image is limited to a value of one, thus creating the capacity constraint:

𝜔𝑖 𝑗 = 𝑞,∀𝑒𝑖 𝑗 ∈ E𝑣′ ;𝜔𝑖 𝑗 = 1,∀𝑒𝑖 𝑗 ∈ E \ E𝑣′ (3)

with E𝑣′ and E𝜋 representing the directed edges spanning the partition of a bipartite graph between vertices
of landmarks and image sequences, respectively. Given a radius of navigation 𝑟 , and source and target vertices
{𝑠, 𝑡}, the flows {𝑦𝑖 𝑗 } are solved for by application of SecondOrder Cone Programming (SOCP) to the resulting
convex optimization problem:

𝑚𝑖𝑛𝑦𝑖 𝑗

∑
𝑒𝑖 𝑗∈E

𝑐𝑖 𝑗 𝑦𝑖 𝑗 ,

0 ≤ 𝑦𝑖 𝑗 ≤ 𝜔𝑖 𝑗 , ∀𝑒𝑖 𝑗 ∈ E,
𝑦𝑠 = 𝑞, 𝑦𝑖 = 0, 𝑦𝑇 = −𝑞,∀𝑣𝑖 ∈ V \ (𝑠 ∪ 𝑡),

∥
∑
𝑣𝑖∈V′

𝑥𝑖𝑦𝑖(𝑙+1) −
∑
𝑣𝑖∈V′

𝑥𝑖𝑦𝑖𝑙 ∥ ≤ 𝑟,∀𝜋𝑙 , 𝜋𝑙+1 ∈ Π

(4)

The solution of Equation (4) is used as the location, 𝑥𝑙 , of the query image I𝑙 indicated by the vertex 𝜋𝑙 ∈ Π.

2.2. Map creation from neural network features
The output from the NN is a feature map matrix of nodes, edges, and geographic distances between objects
that correspond to actual physical locations from a small reference query (see Figure 5a). Therefore, in our
developed model, a graph is created to represent the map of free space that is to be explored/traversed by our
bats (Figure 6). All nodes in this graph correspond to geographic coordinates of features extracted from along
the global path taken by the Oxford RobotCar (Figure 5b). These coordinates are also provided as a matrix of
Northing/Easting values used in most GPS navigation systems. Section 3 provides further details on the use
of the Bat Algorithm for image-based navigation in this research.

3. BAT ALGORITHM FOR IMAGE-BASED NAVIGATION
In this section, the BA for image-based path planning is proposed in consideration of the imagemaps obtained
in Section 2.

3.1. Bat algorithm
The BA is a fresh technology inspired by the social behaviors of bats and their use of echolocation for distance
sensing. It pertains to the swarm intelligence family of optimization algorithms. The BA is based on the
premise that certain echolocation qualities are idealized, as specified in the following specific rules.
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Figure 5. Neural network image feature space. (a) Matched reference sequence feature space. (b) Features space extracted from the
RobotCar dataset.

• Bats apply echolocation to sense distance and always have knowledge of their surrounding environment.
• Bats fly randomly with a velocity 𝑣𝑖 and a fixed frequency 𝑓𝑚𝑖𝑛 at a position 𝑥𝑖 , varying the wavelength 𝜆, and
loudness 𝐴0 as they hunt for prey. They are able to instantly sense the wavelength of their emitted pulses
and adjust the rate of the pulse emission 𝑟 ∈ [0, 1] based on the proximity of their target.

• The loudness of the emission varies from a minimum constant (positive) 𝐴𝑚𝑖𝑛 to a large 𝐴0.

In the BA, each bat is defined by its position 𝑥𝑡𝑖 , velocity 𝑣
𝑡
𝑖 , frequency 𝑓𝑖 , loudness 𝐴

𝑡
𝑖 , and the emission pulse

rate 𝑟 𝑡𝑖 in a 𝑑-dimensional search space. The new solutions 𝑥𝑡𝑖 and velocities 𝑣
𝑡
𝑖 at time step 𝑡 are given by

𝑓𝑖 = 𝑓𝑚𝑖𝑛 + ( 𝑓𝑚𝑎𝑥 − 𝑓𝑚𝑖𝑛)𝛽,
𝒗𝑡𝑖 = 𝒗𝑡−1

𝑖 + (𝒙𝑡𝑖 − 𝒙∗) 𝑓𝑖 ,
𝒙𝑡𝑖 = 𝒙𝑡−1

𝑖 + 𝒗𝑡𝑖 ,
(5)

where 𝛽 ∈ [0, 1] is a random vector drawn from a uniform distribution. 𝒙∗ is the current global optimized
solution from among all 𝑛 bats. In general, the values that are typically assigned to the frequency range of the
BA fall between 0 and 100, such that 𝑓𝑚𝑖𝑛 = 0 and 𝑓𝑚𝑎𝑥 = 100, and initially, each bat in the population is given
a frequency that is drawn uniformly from [ 𝑓𝑚𝑖𝑛, 𝑓𝑚𝑎𝑥].

During the search portion of the algorithm, the current best solution is used to calculate a new solution for
each bat using a random walk.

𝒙𝑛𝑒𝑤 = 𝒙𝑜𝑙𝑑 + 𝜖 𝐴𝑡 , (6)

where 𝜖 ∈ [−1, 1] is a random number scaling factor and 𝐴𝑡 = ⟨𝐴𝑡𝑖 ⟩ is the average loudness of all bats at some
time step 𝑡. Velocities and positions are updated in a similar manner to the standard updates in a PSO, where
𝑓𝑖 essentially controls the pace and range of movement of bats.

Indeed, the BA can be considered a balanced combination of standard PSO and an intensive local search
controlled by loudness and pulse rate. The loudness and rate of the pulse are updated as follows:

𝐴𝑡+1𝑖 = 𝛼𝐴𝑡𝑖 ,

𝑟 𝑡+1𝑖 = 𝑟0
𝑖 [1 − 𝑒(−𝛾𝑡)],

(7)

where 𝛼 and 𝛾 are constants set to 𝛼 = 𝛾 = 0.9 for the purposes of this paper.
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3.2. Image-based bat algorithm path planning
Now that a primer to the BA and the computer-vision-based navigational topics have been presented, the
integration method with the BA used to realize the combined algorithm is discussed in this section.

It is desirable to build an implementation that can integrate the essential features of the straightforward BAwith
the image-based navigation optimization technique. Instead of using external optimization libraries, such as
the MOS optimization library, for selecting landmarks using visual features, our version of the BA is enhanced
to include Dijkstra’s Algorithm (DA) with the shortest path finding. The DA is incorporated into the BA to
provide solutions for the routes created by individual bats.

Algorithm 1: Bat Algorithm for Image-based Navigation
Initialize the generation counter 𝑡 = 1;
Randomly initialize population of 𝑁𝑃 bats and each bat 𝑃 corresponding to a potential solution to the
given problem;

Initialize loudness 𝐴𝑖 , pulse frequency 𝑄𝑖 , pulse rate 𝑟𝑖 , and initial velocities 𝑣𝑖 (𝑖 = 1, 2, ..., 𝑁𝑃);
while 𝑡 <MaxGeneration do

Generate new solutions by adjusting frequency, and updating velocities and locations/solutions per
Equation (5);

if 𝑟𝑎𝑛𝑑 > 𝑟𝑖 then
Select best solution;
Generate local solution from best;

end
Generate a new solution by flying randomly;
if 𝑟𝑎𝑛𝑑 < 𝐴𝑖 𝑎𝑛𝑑 𝑓 (𝑥𝑖) < 𝑓 (𝑥∗) then

Accept the new solutions;
Increase 𝑟𝑖 and reduce 𝐴𝑖 ;

end
Rank bats & find current best 𝒙∗;
𝑡 = 𝑡 + 1;

end
Post-processing results and visualization

In algorithm 1, the BA is shown with two principal procedures defined. The first procedure is used to initial-
ize all of the algorithm parameters required during the iterations of the computational steps, and the second
procedure describes the actual computational flow. In the compute solution procedure, random adjustments
to frequencies and velocities generate and select new solutions from the individual bats at any given time step.
The best solution is carried forward to subsequent time steps until either the maximum iterations are reached
or the optimal solution is found. The Equation (5)-Equation (7) are used for each of the operations referred
to by the psuedocode presented below. Figure 6 illustrates the normalized feature coordinates in the Nor-
thing/Easting plane as nodes, and the length of the interconnecting line segments correspond to the distances
between each feature illustrated in Figure 6. Thus, finding the shortest path through this network will also be
the shortest path through the real geometry that is represented by the elements of the graph in this paper. By
using both the graph and the coordinate matrices in this paper, a reference topological map and its coordinates
can be created and then provided as arguments to the BA.

3.3. Algorithm complexity
The proposed image-based navigation involves the following steps:

(1) Capturing images of the environment;
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(2) Processing and extracting visual features from the images;
(3) Identifying the location of the vehicle using the extracted features;
(4) Generating a path for the vehicle based on the location information.

The time complexity of image processing and feature extraction depends on the complexity of the algorithms
used, the size and resolution of the images, and the number of features extracted. For example, CNNs used for
feature extraction can have a time complexity of𝑂 (𝑛2), where 𝑛 is the number of pixels in the image. However,
various optimization techniques, such as down sampling and parallel processing, can be used to reduce the
computational complexity.

The time complexity of BA used for image-based navigation in this paper depends on the complexity of the
BA and the size of the environment. The worst-case time complexity of the BA is 𝑂 (𝒩 ∗ ℐ ∗𝒞), where 𝒩
is the number of bats,ℐ is the maximum number of iterations, and𝒞 is the time complexity of the objective
function evaluation. However, in practice, the number of iterations required is much smaller, making the
algorithm computationally efficient. The time complexity of the BA is dependent on the size and complexity
of the input image datasets (landmarks) and the convergence rate of the algorithm. Besides, the BA is known
for its efficiency and effectiveness in solving complex optimization problems.

The time complexity of the proposed image-based navigation is dependent on the properties of the environ-
ment being explored. The BA, as an efficient algorithm and optimization technique, is used to reduce the
computational complexity and improve the performance of image-based navigation.

4. SIMULATION AND COMPARISON STUDIES
In this section, simulation and comparison studies are undertaken to demonstrate the effectiveness, feasibility,
and robustness of our proposed BA path planning method. In the first experiment, simulations are conducted
by utilizing different maps, and the results are compared with other state-of-the-art path planning algorithms.
In the second experiment, the proposed BAmethod is applied to the map of real-world scenarios with random
simulated image-based landmarks. In the third experiment, we apply this algorithm to image-based navigation
in real environments (The image-based datasets are taken by the Oxford RobotCar).

4.1. Simulation and comparison studies in various environments
To evaluate our proposed BA model, we first use it within a grid map and compare it with the PSO algorithm,
Fuzzy NN (FNN), and Hybrid PSO and FNN Algorithm (HPFA) from [38] in Scenario 1. Two grid-based
maps are selected in Figure 7 and Figure 8. The size of the map is 30 × 30. The population size of BA is set
to 50. The parameter settings and experimental results of other algorithms are in [38]. The comparative results
of a variety of path planning methods are illustrated in Figure 7, which demonstrates that all four algorithms
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Figure 7. Path planning results in Scenario 1 from [38]. (a) Generated trajectories of PSO, FNN, HPFA, and proposed BA. (b) Convergence of
PSO, FNN, HPFA, and proposed BA.

Table 1. Comparison of maximum path length, minimum path length, and average processing time of PSO, FNN, HPFA, and proposed BA

Algorithm Max length Min length Average time (ms)

PSO 85.71 46.97 1639
FNN 102.89 48.28 1921
HPFA 74.76 40.76 1426

Proposed BA 42.56 33.62 1597

can effectively plan the way from the start to the target points in the grid map environment. However, the
trajectory planned by the proposed BA is much shorter than the paths generated by the other three techniques.
Table 1 summarizes the qualitative comparison between the features of our algorithm and selected algorithms,
including maximum path length, minimum path length, and average processing time.

The simulation results in terms of the convergence of various methods are shown in Figure 7(b). The fitness
function converges to a pretty high value after around 100 iterations of the PSO algorithm, as shown by the
findings, which indicate that the method first converges more quickly and subsequently slows down signifi-
cantly. The FNN method is distinct in that its convergence speed increases, and it converges after around 120
iterations; nevertheless, the fitness function converges to a higher value than the PSO algorithm. The HPFA
method has a relatively better convergence result, while its convergence speed is slow. After around 50 iter-
ations, the proposed BA method converges to the lowest fitness function among the four methods, and thus
the convergence curve turbulence is minor.

In order to further verify the optimization and path planning capabilities of the proposed BA, we conducted
another grid-based environment comparison study with Ant Colony Optimization (ACO), Genetic Algorithm
(GA), A* Algorithm Optimization (AAO), Kth Shortest Path Algorithm (KSPA), and HPFA in Scenario 2.
The simulation results provided in Figure 8(a) reveal that the path length of the proposed BA algorithm is
substantially smoother and shorter than the other five methods. Figure 8(b) summarizes the length findings of
the trajectories. When compared to previous grid map path planning algorithms, our developed BA approach
has superior convergence and optimal solution. This might highlight the viability of the proposed BA in path
planning.

To validate the adaptability and efficiency of our algorithm in various environments, one map with resolution
1500 × 1500 from Massachusetts Roads Dataset [56] is then selected for simulation and comparative studies.
The initial and multiple target positions of the autonomous vehicle are randomly set. The initial position is
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(1108, 1433), target positions are 𝑇1 = (189, 1062), 𝑇2 = (381, 163), 𝑇3 = (1431, 640), and 𝑇4 = (728, 611),
as shown in Figure 9. Two cutting-edge path planning algorithms, Probabilistic Roadmap (PRM) and Rapidly
Exploring Random Tree* (RRT*), are utilized for comparative studies. PRM is a well-known and effective
path planning method based on sampling. This approach can seek a solution utilizing a limited number of
random sampling points and takes minimal processing time. It generates random sampling points in the free
space of a given workspace to create a route network graph. Then, use Dijkstra to search the created route
network graph for suitable routes. The number of PRM sampling points in this study is 1500. RRT* is also
a sampling-based path planning algorithm similar to PRM. From the initial location, it randomly generates
the sampling point to the spanning tree in the workspace and links it to the nearest obstacle-free point on the
path tree to the sampling point. In all situations, the maximum RRT* iteration time is set to 500000, and the
maximum connection distance is set to 4. We repeatedly execute 40 times in the selected scenario. Table 2
provides a qualitative assessment of the path length, smoothness rate, and execution time of the algorithm in
comparison to other algorithms. The path smoothness rate 𝜓 is based on the sum of the angles differences
between adjacent path segments calculated by Equation (8).

𝜓 =
𝑛−1∑
𝑖=2

abs (𝜃𝑖+1 − 𝜃𝑖) (8)

𝜃𝑖+1 = atan [(𝑦𝑖+1 − 𝑦𝑖) /(𝑥𝑖+1 − 𝑥𝑖)] (9)
𝜃𝑖 = atan [(𝑦𝑖 − 𝑦𝑖−1) /(𝑥𝑖 − 𝑥𝑖−1)] (10)

The results indicate that path planning methods, such as PRM and RRT*, are insufficient when the sample
points are inadequate or the distribution of the map is inappropriate. Although the RRT* method has a lower
execution time, the proposed BA approach has a significant advantage in terms of path length and smoothness.

4.2. Image-based navigation with simulated datasets
Image-based navigation utilizes reference pictures as a collection of landmarks in a video sequence to meet
image-based navigation and self-localization navigation techniques. However, due to insufficient datasets, the
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Table 2. Comparison of path length, path smoothness rate, algorithm execution time, and success rate of PRM, RRT*, and the proposed
Bat Algorithm. These values are reported as the result of 40 executions

𝑆 =⇒ 𝑇 Model name
Minimum path

length
Average path

length
Smoothness
rate (𝑟𝑎𝑑)

Average execution
time (𝑠𝑒𝑐)

Success
rate (%)

𝑆 =⇒ 𝑇1

PRM 1251.3 1690.5 1.0099 598.07 67.5
RRT* 1384.8 144.88 0.6701 30.84 95
BA 1073.5 1246.2 0.2133 329.65 100

𝑇1 =⇒ 𝑇2

PRM 1287.4 1403.8 1.1263 482.10 77.5
RRT* 1505.3 1589.0 0.9239 18.63 100
BA 993.44 1079.4 0.1357 134.72 100

𝑇2 =⇒ 𝑇3

PRM 1507.9 1540.1 0.7502 500.02 72.5
RRT* 1402.0 1448.8 0.6137 27.13 92.5
BA 1252.4 1246.2 0.2133 329.65 100

𝑇3 =⇒ 𝑇4

PRM 1292.3 1318.6 0.2328 494.10 62.5
RRT* 825.94 884.39 0.5306 35.66 95
BA 735.48 801.27 0.2133 329.65 100

T�
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Proposed BA
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500 1000

Figure 9. Illustration of the real-world map from Massachusetts Roads Dataset, composed of 1500 × 1500 nodes. The pink circle marks are
starting and target points. The green line, blue line, and orange line denote the trajectory of PRM, RRT*, and our proposed BA, respectively.

navigation experiment is conducted by utilizing simulated images as landmarks in this paper. It should be
noted that since the reference image or the captured video is dependent extremely on the road segment passed
by the previous video car, its generated landmarks are limited and random in the environment. The image-
based landmarks we simulated have the same limitations, being only within a random portion of the map
[Figure 10]. Therefore, to evaluate our proposed BA model, the image-based landmarks that are simulated
have the same limitations, being only within a random portion of the map (Figure 10). Two algorithms, Di-
jkstra’s algorithm and Slime Mound Algorithm (SMA) [57], are selected for comparison. The test workspace
is a real-world map, as New York City map from the benchmark [58]. 100 landmarks and 150 landmark data
are simulated in Figure 10(a) and Figure 10(b), respectively. Among them, in Figure 10(a) and Figure 10(b),
the green and yellow lines indicate the feasibility of connecting between landmarks (spatial coordinates) in
the topological map, which are geographic distances between features. Purple, pink, and orange lines in
Figure 10(a) and Figure 10(b) represent the final trajectories of Dijkstra’s algorithm, SMA, and the proposed
BA, respectively. Table 3 outlines the length of the trajectory planned by the tested algorithms. The results
demonstrate that in the complex connection topological map, our proposed BA algorithm can obtain shorter
paths than the Dijkstra’s algorithm and SMA.
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Figure 10. Comparison of the trajectory by the proposed Bat Algorithm image-based navigation with basic Dijkstra’s algorithm. The image-
based landmark datasets are randomly generated in the New York benchmark map [58].

Table 3. Comparison of the Dijkstra’s algorithm and SMAwith proposed BA in simulated image-based landmarks datasets

Scenario Simulated image-based landmarks Algorithm Path length

Figure 10(a) 100
Dijkstra 775.1
SMA 768.7

Proposed BA 710.9

Figure 10(b) 150
Dijkstra 771.2
SMA 743.9

Proposed BA 700.2

4.3. Image-based navigation with Oxford RobotCar Datasets
The simulation and comparison studies in this section aim to validate the proposed image-based BA naviga-
tion in real-world datasets. The image-based datasets are taken by the Oxford RobotCar. The proposed BA
path planner initially obtains the solid green trajectory with the real world maps, as illustrated in Figure 11.
While the updated dataset finds that the road segment is interrupted by an obstacle (as a blue polygon-shaped
obstacle in Figure 11), BA can replan the trajectory in light of the existing dataset. The dashed purple and
pink trajectories reveal the proposed image-based BA navigation with the replanned procedure. The detail of
the proposed image-based BA navigation is accomplished by modifying and building the BA algorithm with
an integrated Dijkstra’s algorithm. The input to the BA algorithm is the graph representation of the reference
query sequence shown in Figure 6 and a matrix of indices that corresponds to the feature coordinates.

Once the BA algorithm is functional, it is converted and integrated at the correct location to process the image-
feature graph. Output compares with the Thoma’s output [37]. The BA generated a series of graphs that are
superimposed on the images presented in Section 3. Figure 12 also displays the best-fit values of each BA
iteration to illustrate how swiftly the BA converges to its optimal solution. Several simulations were carried
out utilizing our integrated technique, and the findings shown here are illustrative of typical worst-case con-
vergence times. Each simulation result is accompanied by a brief caption and a zoomed-in view, allowing the
reader to gain a clearer sense of the volume and scale of each of the features being processed in the graph. The
intention is to demonstrate how the BA output compares to the Thoma’s output [37].

As can be seen in Figure 12 above, the BA was able to converge upon an optimal solution in 33 iterations.
This represents the worst-case results observed during the experimentation phase of this project. On average,
convergence occurs in approximately 5-10 iterations in our studies. In the results shown in Figure 13 and
Figure 14, the BA output is overlayed against the original simulation outputs from the [37]. It is clear from these
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Figure 11. Illustration of the overall trajectory by the proposed image-based Bat Algorithm navigation. The image-based datasets are taken
by the Oxford RobotCar.
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Figure 12. Number of iterations until Bat Algorithm convergence.

plots that the BA finds the optimal path through the given topography and does not hinder or otherwise alter
the effectiveness of the global navigation strategy.

4.4. Analysis and discussions
Several simulations using our developed hybrid model were performed during the course of testing this imple-
mentation, with the results of the BA proving to be adept at traversal of the known topography produced by
the image feature-based recognition. This is an encouraging result since new feature identification strategies
are the topic of much research today and are likely to achieve even better results over the next few years. The
true test of whether or not the algorithm can be used in real world environments will come once a dynamic
obstacle avoidance method can be added to the algorithm.

We made many attempts to integrate the BA algorithm at various locations in the processing pipeline, but it
became clear that the geographic feature distances were not calculated in the [37] algorithm but were instead
processed by the algorithm. This makes the identification of the best place to perform the task of integration
very difficult and may point to the need to have optimization algorithms performed up front in the process,
potentially eliminating the need for other proposed methods entirely (future work). Nevertheless, the best
implementation of BA would take place where the path-optimizer and the graph-traversal libraries can be
switched out with their equivalent optimization biologically inspired implementation.
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Figure 13. Reference query with Bat Algorithm solution superimposed. UTM is Universal Transverse Mercator. (a) Bat Algorithm solution
vs. reference query. (b) Zoomed solution vs. reference query.
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Figure 14. Raw feature topology with Bat Algorithm solution superimposed. (a) Bat Algorithm solution vs. raw feature topology. (b)
Zoomed Bat Algorithm solution vs. raw feature topology.

The full image feature extraction process was explored here to process the raw image features into the format
that is best suited to a dynamic real-time path planner with inherent obstacle avoidance such as the D*-Lite
algorithm [59]. Thoma et al. [37] integrated a localization method against a reference map, but to be fully inte-
grated with a path planning algorithm, it needs to be more functional in a real-world sense. Other researchers
have focused on competing technologies, such as using PSO methodology to train FNNs [38] focusing on the
optimization of parameters during the front-end NN feature extraction. Yet, others have used reinforcement
learning techniques to select an optimal path in ultra-dynamic emergency environments through hybrid NNs
and A* algorithms [54]. Their reasoning is to focus entirely on the back-end processing to help intelligent vehi-
cles plan dynamic routes around traffic emergency conditions, including limitations on vehicle height, width,
weight restrictions, or accidents and traffic jams.

These approaches differ from the current research in that they focus on optimizing both before and long after
map building occurs. The need for a simultaneous SLAM-like solution remains. When compared with other
biologically inspired algorithms for path planning in image-based systems, the BA has shown that it is capable
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of the challenge, but it will also need to prove that it can be deployed in a mature and accurate localizing
methodology (which has been demonstrated on a known dataset, but not on a live video camera feed). For
these reasons, it would make the most sense to integrate a parallel architecture with the path planner that
has access to those same raw features as the SLAM method given in the article. The local map that is built
by the raw camera feed is used to generate a current coordinate location for the autonomous vehicle body
within the region of the visible and identified map. The path planning algorithm, however, would be capable
of resolving a path to the goal location from the current localized coordinates up to the extreme edge of the
map, which could presumably be incomplete or inaccurate due to the sensor errors. A heuristic distance to
the end goal coordinate could be used as a guideline to navigate in the local region, avoiding and replanning
based on dynamic obstacle avoidance, and as new information becomes available in the dataset, continue to
work toward that goal location.

In future research, an experiment and design to implement the BA into a Field Programmable Gate Array
(FPGA) would also help to keep the burden of constant re-calculation down and help to distribute the task of
feature extraction to a specific piece of parallel modular hardware. An interface to the input camera feed can
be sent to the SLAM module and, simultaneously, to the embedded hardware housing the FPGA.

5. CONCLUSION
Despite the potentiality of image-based navigation for the usage of an autonomous vehicle in an unknown
environment, current studies on system development focused largely on the algorithms for mapping, feature
retrievals, and localization. However, these studies in this paper concluded that selecting a robust, reliable, and
efficient path planning algorithm was at least as important to the success of an image-based navigation system.

The goal of the presented work was to develop an original Bat path planning algorithm. By introducing the BA
at a point where the graph of features is calculated, we were able to show how a biologically inspired algorithm
can be used to enhance the SLAM performance with a local path planner. The results presented here show
that the BA can produce path planning results that are not only optimized but also maintain the integrity of
the image-based feature recognition and self-localization upon which it has been added.

It was our finding that during the overall integration of the BA into the image-based system framework, it
became apparent that there is an increased need to gain direct access to the raw image features as they are
extracted from the NNs themselves. Although it was the original intent of this paper to work within the given
framework, it became clear that the computational expense of this methodology is high. Hence, for our future
exploration, it should be prudent to modify the research parameters to implement a more parallel approach to
the BA that aided in the path planning by simultaneously sharing information between the two systems. This
type of solution would also benefit from having FPGA hardware integrated that could perform the tasks of
DNNs in real time and assist in distributing those features to the BA and the SLAM algorithm in parallel.
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When preparing manuscripts in different file formats, please use the corresponding Manuscript Templates.

2.4.2 Length
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2.4.3 Language
Manuscripts must be written in English.

2.4.4 Multimedia Files
The journal supports manuscripts with multimedia files. The requirements are listed as follows:
Video or audio files are only acceptable in English. The presentation and introduction should be easy to understand. The 
frames should be clear, and the speech speed should be moderate;
A brief overview of the video or audio files should be given in the manuscript text;
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