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Abstract
The perception system for robotics and autonomous cars relies on the collaboration amongmultiple types of sensors
to understand the surrounding environment. LiDAR has shown great potential to provide accurate environmental
information, and thus deep learning on LiDAR point cloud draws increasing attention. However, LiDAR is unable to
handle severe weather. The sensor fusion between LiDAR and other sensors is an emerging topic due to its sup-
plementary property compared to a single LiDAR. Challenges exist in deep learning methods that take LiDAR point
cloud fusion data as input, which need to seek a balance between accuracy and algorithm complexity due to data
redundancy. This work focuses on a comprehensive survey of deep learning on LiDAR-only and LiDAR-fusion 3D
perception tasks. Starting with the representation of LiDAR point cloud, this paper then introduces its unique char-
acteristics and the evaluation dataset as well as metrics. This paper gives a review according to four key tasks in the
field of LiDAR-based perception: object classification, object detection, object tracking, and segmentation (includ-
ing semantic segmentation and instance segmentation). Finally, we present the overlooked aspects of the current
algorithms and possible solutions, hoping this paper can serve as a reference for the related research.

Keywords: LiDAR, sensor fusion, object classification, object detection, object tracking, segmentation
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1. INTRODUCTION
The perception system is crucial for autonomous driving, which enables the autonomous car to understand
the surrounding environment with the location, velocity, and future state of pedestrians, obstacles, and other
traffic participants. It provides basic and essential information for downstream tasks of autonomous driving
(i.e., decisionmaking, planning, and control system). Thus, a precise perception system is vital, which depends
on breakthroughs in both hardware and software, i.e., 2D and 3D acquisition technology and perception algo-
rithms.

Sensors equipped on the perception system generally include 2D cameras, RGB-D cameras, radar, and LiDAR.
With advantages such as high angular resolution, clear detail recognition, and long-range detection, LiDAR
thus becomes indispensable in autonomous driving above the L3 level. LiDAR utilizes pulses of light to trans-
late the physical world into a 3D point cloud in real time with a high level of confidence. By measuring the
propagation distance between the LiDAR emitter and the target object and analyzing the reflected energy mag-
nitude, amplitude, frequency, and phase of the reflected wave spectrum on the surface of the target object, Li-
DAR can present the precise 3D structural information of the target object within centimeter level. According
to the scanning mechanism, LiDAR can be divided into three categories: the standard spindle-type, solid-state
LiDAR (MEMS), and flash LiDAR. Compared with the standard spindle-type LiDAR, solid-state LiDAR and
flash LiDAR provide a solution to high material cost and high mass production cost; therefore, the standard
spindle-type LiDAR will be replaced gradually in the future. The application of LiDAR in autonomous cars is
gradually gaining market attention. According to Sullivan’s statistics and forecasts, the LiDAR market in the
automotive segment is expected to reach $8 billion by 2025, accounting for 60% of the total.

In recent decades, deep learning has been attracting extensive attention from computer vision researchers due
to its outstanding ability in dealing with massive and unstructured data, which stimulates the growth of envi-
ronment perception algorithms for autonomous driving. Depending on whether the algorithm concerns the
position and pose of the object in real 3D space or just the position of the object in the reflected plane (i.e.,
image plane), deep learning-based perception algorithms can be divided into 3D and 2D perception. While
deep learning-based 2D perception has achieved great progress and thus become a mature branch in the field
of computer vision, 3D perception is an emerging topic and yet under-investigated. Relatively, 3D perception
outputs abundant information, i.e., height, length, width, and semantic label for each 3D object, to restore the
real state of the object in three-dimensional space. In general, the input data of 3D perception tasks contain
RGB-D images from depth cameras, images frommonocular cameras, binocular cameras, and multi-cameras,
and point clouds from LiDAR scanning. Among them, data from LiDAR and multi-camera-based stereo-
vision systems achieve higher accuracy in 3D inference. Unlike images from stereo-vision systems, LiDAR
point clouds as a relatively new data structure are unordered and possess interaction among points as well
as invariance under transformation. These characteristics make deep learning on LiDAR point clouds more
challenging. The publication of the pioneering framework PointNet [1] together with PointNet++ [2] inspires
plenty of works on deep learning for LiDAR point clouds, which will promote the development of autonomous
driving perception systems. Hence, this work gives a review of 3D perception algorithms based on deep learn-
ing for LiDAR point cloud. However, in real-world applications, a single LiDAR sensor always struggles in
heavy weather, color-related detection, and lightly disturbed conditions, which does not fulfill the need of
autonomous cars that must perceive surroundings accurately and robustly in all variable and complex con-
ditions. To overcome the shortcomings of a single LiDAR, LiDAR-based fusion [3,4] emerges with improved
perception accuracy, reliability, and robustness. Among the LiDAR-fusion methods, the fusion of LiDAR sen-
sors and cameras including visual cameras and thermal cameras is most widely used in the area of robotics
and autonomous driving perception. Hence, this paper also reviews deep learning-based fusion methods for
LiDAR.

LiDAR-based 3D perception tasks take a LiDAR point cloud (or a LiDAR point cloud fused with images or
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data from other sensors) as input, and then outputs the category of the target object (3D shape classification);
3D bounding box implying location, height, length, and width with the category of the target object (3D ob-
ject detection); track ID in a continuous sequence (3D object tracking); segmented label for each point (3D
segmentation); etc.1. In addition, 3D point cloud registration, 3D reconstruction, 3D point cloud generation,
and 6-DOF pose estimation are also tasks worth researching.

Previous related surveys review deep learning methods on LiDAR point cloud before 2021 [5–8]. This paper
reviews the latest deep learning methods on not only LiDAR point cloud but also LiDAR point cloud fusion
(with image and radar). Compared with multi modality fusion surveys [9–11], which cover a wide range of
sensors, this paper provides a more detailed and comprehensive review on each related 3D perception task
(3D shape classification, 3D object detection, 3D object tracking, and 3D segmentation). The contribution of
this paper is summarized as follows:

1. This paper is a survey that focuses on deep learning algorithms with only LiDAR point clouds and LiDAR-
based fusion data (especially LiDAR point cloud fused with the camera image) as input in the field of
autonomous driving. This work is structured considering four representative 3D perception tasks, namely
3D shape classification, 3D object detection, 3D object tracking, and 3D segmentation.

2. This paper gives a review of methods organized by whether fusion data are utilized as their input data.
Moreover, studies and algorithms reviewed in this paper were published in the last decade, which ensures
the timeliness and refer-ability of the study.

3. This paper puts some open challenges and possible research directions forward to serve as a reference and
stimulate future works.

The remainder of this paper is structured as follows. Section 2 provides background knowledge about Li-
DAR point clouds, including representations and characteristics of LiDAR point cloud, existing LiDAR-based
benchmark datasets, and corresponding evaluation metrics. The following four sections give a review of rep-
resentative LiDAR-only and LiDAR-fusion methods for four 3D perception tasks: Section 3 for 3D shape
classification, Section 4 for 3D object detection, Section 5 for 3D object tracking, and Section 6 for 3D seman-
tic segmentation and instance segmentation. Some discussions about overlooked challenges and promising
directions are raised in Section 7. At the end, Section 8 draws the conclusions for this paper.

2. BACKGROUND
Point clouds in the field of autonomous driving are generally generated by the on-board LiDAR. The existing
mainstream LiDAR emits laser wavelengths of 905 and 1550 nm, which are focused and do not disperse over
long distances. When a laser beamof LiDARhits the surface of an object, the reflected laser carries information
of the target object such as location and distance. By scanning the laser beam according to a certain trajectory,
the information of the reflected laser points will be recorded. Since the LiDAR scanning is extremely fine, many
laser points can be obtained, and thus a LiDAR point cloud is available. The LiDAR point cloud (point clouds
mentioned in this paper refer to LiDAR point clouds) is an unordered sparse point set representing the spatial
distribution of targets and characteristics of the target surface under the same spatial reference system. There
are three approaches basically implemented in deep learning-based methods to process LiDAR point cloud so
that processed data can be used as input data to the network: (1) multi-view-based methods; (2) volumetric-
based methods; and (3) point-based methods. Multi-view-based methods represent point cloud as 2D views
by projecting it onto 2D grid-based feature maps, which can leverage existing 2D convolution methods and

1Here, we use the term 3D to narrowly describe the tasks with 3D point clouds or 3D point cloud-based fusion data as input and
information of the object in real 3D space as output (i.e., category, 3D bounding box, and semantic labels of objects). Broadly speaking, some
other works explain 3D tasks as tasks inferring information of the object in real 3D space with any kind of input data.

http://dx.doi.org/10.20517/ir.2021.20
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Figure 1. Three approaches for LiDAR point cloud representation: (a) multi-view-based methods; (b) volumetric-based methods; and (c)
point-based methods. The image in (a) is original originally fromMV3D [12]. The images in (b,c) are original originally from RPVNet [13]

view-pooling layers. Volumetric-based methods discretize the whole 3D space into plenty of 3D voxels, where
each point in the original 3D space is assigned to the corresponding voxel following some specific regulations.
This representation can preserve rich 3D shape information. Nevertheless, the limitation of performance is
inevitable as a result of the spatial resolution and fine-grained 3D geometry loss during the voxelization. On
the contrary, point-based methods conduct deep learning methods directly on the point cloud in continuous
vector space without transforming the point cloud into other intermediate data representations. This approach
avoids the loss caused by transformation and data quantification and preserves the detailed information of the
point cloud. The visualization of the three representations is illustrated in Figure 1.

The point cloud carries point-level information (e.g., the x, y, and z coordinates in 3D space, color, and in-
tensities) and keeps invariant under rigid transformation, scaling, and permutation. An azimuth-like physical
quantity can be easily acquired from the point cloud, and thus diverse features can be generated for deep learn-
ing. Although the point cloud is less affected by the variation of illumination and scale when compared to the
image, the point cloud suffers more from the intensity and often ignores sparse information reflected by the
surface of objects. The laser emitted by LiDAR cannot bypass obstacles and will be greatly disturbed or even
unable to work in the rain, fog, sand, and other severe weather. Thus, challenges exist when extracting fea-
tures from the spatial-sparse and unordered point sets. Algorithms have evolved from hand-crafted features
extraction to deep-learning ones. Among them, point-wise and region-wise methods treat different paths that
lead to the same destination. Meanwhile, the cooperation with other sensors shows huge potential to improve
the performance through supplementing insufficient information, which may unexpectedly lead to extra com-
putational cost or information redundancy if not well designed. Therefore, studies focus on how to reach a
compromise on the cost and the performance when conducting LiDAR-fusion tasks.

With the development of LiDAR, increasing LiDAR point cloud datasets are available, facilitating the training
and evaluation among different algorithms. Table 1 [14–28] lists datasets recorded by LiDAR-based visual system.
Among them, KITTI [14] provides a comprehensive real-world dataset for autonomous driving, providing a
benchmark for 3D object detection, tracking, and scene flow estimation. The evaluation metrics vary for
different tasks. For 3D classification, the overall accuracy (OA) and the mean class accuracy (mAcc) are widely
used. For 3D object detection, the average precision (AP) and mean average precision (mAP) are mostly-used.
For 3D object tracking, precision and success are commonly used as evaluation metrics of single object tracker.
Average multi-object tracking Accuracy (AMOTA) and average multi-object tracking precision (AMOTP) are
used as evaluation metrics for a 3D multi-object tracker. For 3D segmentation, mean intersection over union
(mIoU), OA, and mAcc are widely used for the algorithm evaluation.

http://dx.doi.org/10.20517/ir.2021.20
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Table 1. Dataset recorded by LiDAR-based visual system

Types Dataset Year Data Source Application

LiDAR-only

Sydney Urban Objects [15] 2013 LiDAR point cloud Classification
ScanObjectNN [16] 2019 LiDAR point cloud Classification
DALES [17] 2020 LiDAR point cloud Segmentation
LASDU [18] 2020 LiDAR point cloud Segmentation
Campus3D [19] 2020 LiDAR point cloud Segmentation
Toronto-3D [20] 2020 LiDAR point cloud Segmentation

LiDAR-fusion

KITTI [14] 2012 RGB image + LiDAR point cloud Majority of tasks
RueMonge2014 [21] 2014 RGB image + RGB-D image + LiDAR point cloud Segmentation
Matterport3D [22] 2017 RGB-D image+ LiDAR point cloud Segmentation
H3D [23] 2019 RGB image + LiDAR point cloud Detection + tracking
Argoverse [24] 2019 RGB image + LiDAR point cloud Detection + tracking
Lyft_L5 [25] 2019 RGB image + LiDAR point cloud Detection + tracking
Waymo Open [26] 2020 RGB image + LiDAR point cloud Detection + tracking
nuScenes [27] 2020 RGB image + LiDAR point cloud Detection + tracking
MVDNet [28] 2021 RaDAR + LiDAR point cloud Detection

3. 3D SHAPE CLASSIFICATION
Object classification on point cloud is generally known as 3D shape classification or 3Dobject recognition/classi
fication. There are both inheritance and innovation when transferring 2D object classification to 3D space. For
multi-view-based methods, methods for 2D images can be adopted since the point cloud is projected into 2D
image planes. However, finding an effective and optimal way to aggregate features of multiple views is still
challenging. For point-based methods [29,30], designing novel networks according to the characteristics of the
point cloud is the key task. 3D object recognition frameworks usually follow a similar pipeline: Point clouds
are first aggregated with an aggregation encoder in order to extract a global embedding. Subsequently, the
global embedding is passed through several fully connected layers, after which the object category can be pre-
dicted. According to different forms of input data, 3D classifiers can be divided into LiDAR-only classifiers
and LiDAR-fusion classifiers. This section reviews existing methods for 3D shape classification. A summary
of the algorithms is shown in Table 2, including modalities and representations of data, algorithm novelty, and
performance on ModelNet40 [31] dataset for 3D object classification.

3.1. LiDAR­only classification
In terms of diverse representations of the point cloud as input data, LiDAR-only classifiers can be divided
into volumetric representation, 2D views representation, and point representation. Different from volumet-
ric representation- and 2D views representation-based models, which preprocess point cloud into voxel or
2D multi-views by projection, point representation-based methods apply a deep learning model on the point
cloud directly. Qi et al. [1] proposed a path-breaking architecture called PointNet, which works on raw point
cloud for the first time. A transformation matrix learned by T-Net can align the input data and a canonical
space in order to ensure immutability after certain geometric transformations. Therefore, a global feature can
be learned through several multi-layer perceptrons (MLP), T-Net, and max-pooling. Then, the feature is uti-
lized to predict the final classification score by MLP. Shortly after, PointNet++ [2] extracts local features that
PointNet [1] ignores at diverse scales and attains deep features through a multi-layer network. It also uses two
types of density adaptive layers, multi-scale grouping (MSG) and multi-resolution grouping (MRG), to deal
with the feature extraction of unevenly distributed point cloud data. These two works [1,2] can be implemented
simply but achieves extraordinary performance at the same time; therefore, several networks are developed on
their basis. MomNet [32] is designed on the basis of a simplified version of the PointNet [1] architecture, which
consequently requires relatively low computational resources. Inspired by PointNet++ [2], Zhao et al. [33] pro-
posed adaptive feature adjustment (AFA) to exploit contextual information in a local region. SRN [34] builds a
structural relation network in order to consider local inner interactions. Recently, Yan et al. [35] introduced an
end-to-end network named PointASNL with an adaptive sampling (AS) module and a local-nonlocal (L-NL)
module, achieving excellent performance on the majority of datasets.
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While the above methods learn point-wise features through multi-layer perceptrons, some other works adopt
3D convolutional kernels to design convolutional neural networks for point clouds, which can preserve more
spatial information of point clouds. One of the typical networks is PointConv [36], which uses a permutation-
invariant convolution operation. As an extension of traditional image convolution, the weight functions and
the density functions of a given point in PointConv are learned from MLP and kernel density estimation, re-
spectively. Boulch et al. [37] built a generalization of discrete convolutions for point clouds by replacing the
discrete kernels for grid sampled data with continuous ones. Relation-shape convolutional neural network
(RS-CNN) [38] is a hierarchical architecture which leverages the relation-shape convolution (RS-Conv) to learn
the geometric topology constraint among points from their relations with an inductive local representation.
Inspired by dense connection mode, Liu et al. [39] introduced DensePoint, a framework that aggregates outputs
of all previous layers through a generalized convolutional operator in order to learn a densely contextual rep-
resentation of point clouds from multi-level and multi-scale semantics. Apart from continuous convolutional
kernels, discrete convolutional kernels play a role in deep learning for point clouds as well. ShellNet [29], a con-
volution network that utilizes an effective convolution operator called ShellConv, achieves a balance of high
performance and short run time. ShellConv partitions the domain into concentric spherical shells and con-
ducts convolutional operation based on this discrete definition. Mao et al. [40] proposed InterpConv for object
classification, whose key parts are spatially-discrete kernel weights, a normalization term and an interpolation
function. Rao et al. [41] introduced an architecture named spherical fractal convolutional neural network, in
which point clouds are projected into a discrete fractal spherical structure in an adaptive way. Unlike other
CNN methods, a novel convolution operator [30] is proposed, which convolves annularly on point clouds and
is applied in an annular convolutional neural network (A-CNN), leading to higher performance. Through
specified regular and dilated rings along with constraint-based K-NN search methods, the annular convolu-
tional methods can order neighboring points and attain the relationship between ordered points. DRINet [42]

develops a dual-representation (i.e., voxel-point and point-voxel ) to propagate features between these two
representations, performing SOTA on the ModelNet40 dataset with high runtime efficiency.

3.2. LiDAR­fusion classification
Sensors-fusion architectures have become an emerging topic due to their balance among the compatibility with
application scenarios, the complementarity of perception information, and the cost. LiDAR is fused with other
sensors to deal with specific tasks for autonomous driving. For instance, point clouds and images are fused in
order to accomplish the 2D object detection [43,44] and the fusion of LiDAR and radar is applied to localize and
track objects more precisely in terms of 3D object detection [4,45]. However, it is desirable to carry out the point
cloud based object classification as a single task with fused methods in the field of real-world self-driving cars.
Generally, 3D classification is implemented as a branch of 3D object detection architecture to classify targets
of a proposal region and help predict the bounding box. Moreover, since the PointNet [1] was proposed in
2017, many studies dealing directly with raw point clouds have been inspired. For 3D classification task, the
overall accuracy can achieve 93.6% [16] on the generic benchmark ModelNet40, which satisfies the demand
for applications of autonomous car so that 3D classification is not regarded as an independent task. On the
other hand, LiDAR-based fusion methods for the object category prediction are not feasible due to the lack
of corresponding image datasets aligned with existing point cloud datasets. Only a few works concentrate on
the fusion method specifically for 3D classification in the field of autonomous driving. Therefore, this section
focuses on the classifier integrated into the LiDAR-fusion 3D detectors or segmentators.

According to the different stages in which sensors data are fused, fusion methods can be divided into early
fusion and late fusion. For early fusion, features from different data sources are fused in the input stage by
concatenating each individual feature into a unified representation. This representation is sent to a network
to get final outputs. For late fusion, the prediction results from the individual uni-modal streams are fused
to output the final prediction. Late fusion merges results by summation or averaging in the simplest cases.
Compared with early fusion, late fusion lacks the ability to exploit cross correlations among multi-modal data.
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Table 2. Experiment results of 3D object classification methods on ModelNet40 benchmark. Here ”I”, ”mvPC”, ”vPC”, ”pPC”, ”rm”
stands for image, multiple view of point cloud, voxelized point cloud, point cloud, range map respectively. ”OA” represents the overall
accuracy that is the mean accuracy for all test instance; ”mAcc” represents the mean accuracy that is the mean accuracy for all shape
categories. Here the ’%’ after the number is omitted for simplicity. ”-” means the result is not available

Category Model Modal.
&Repr.

Novelty OA mAcc

LiDAR-
Only

PointNet [1] pPC point-wise MLP+T-Net+global max pooling 89.2 86.2
PointNet++ [2] pPC set abstraction (sampling, grouping, feature learning)+fully connected layers 90.7 90.7
Momen(e)t [32] pPC MLP+max pooling+pPC coordinates and their polynomial functions as input 89.3 86.1
SRN [34] pPC structural relation network(geometric and locational features+MLP) 91.5 -
PointASNL [35] pPC adaptive sampling module+local-nonlocal module 92.9 -
PointConv [36] pPC MLP to approximate a weight function+a density scale 92.5 -
RS-CNN [38] pPC relation-shape convolution(shared MLP+channel-raising mapping) 92.6 -
DensePoint [39] pPC PConv+PPooling(dense connection like) 93.2 -
ShellNet [29] pPC shellconv(KNN+max pooling+shared MLP+conv order) 93.1 -
InterpConv [40] pPC interpolated convolution operation+max pooling 93.0 -
DRINet [42] vPC+pPC sparse point-voxel feature extraction+sparse voxel-point feature extraction 93.0 -

LiDAR-
Fusion

MV3D [12] I&mvPC 3D proposals network+region-based fusion network - -
SCANet [46] I&mvPC multi-level fusion+spatial-channel attention+extension spatial upsample module - -
MMF [47] I&mvPC point-wise fusion+ROI feature fusion - -
ImVoteNet [48] I&pPC lift 2D image votes, semantic and texture cues to the 3D seed points - -

Classifiers integrated into two-stage LiDAR-fusion 3D detectors can be divided into two categories: (1) clas-
sifiers to distinguish the target and background; and (2) classifiers to predict the final category of the target
object. Chen et al. [12] designed a deep fusion framework named multi-view 3D networks (MV3D) combining
LiDAR point clouds and RGB images. This network designs a deep fusion scheme that alternately performs
feature transformation and feature fusion, which belongs to the early fusion architecture. MV3D comprises a
3D proposal network and a region-based fusion network, both of which have a classifier. The classifier in the
3D proposal network regresses to distinguish whether it belongs to the foreground or background, and then
the results along with 3D box generated by the 3D box regressor are fed to 3D Proposal Module to generate 3D
proposals. The final results are obtained by a multiclass classifier that predicts the category of objects through
a deep fusion approach using the element-wise mean for the join operation and fusing regions generated from
multi-modal data. Motivated by deep fusion [12], ScanNet [46] proposes multi-level fusion layers fusing 3D re-
gion proposals generated by an object classifier and a 3D box regressor to enable interactions among features.
ScanNet also introduces the attention mechanism in spatial and channel-wise dimensions in order to capture
global and multi-scale context information. The multi-sensor fusion architecture [47] can accomplish several
tasks by one framework, including object classification, 3D box estimation, 2D and 3D box refinement, depth
completion, and ground estimation. In the 3D classification part, LiDAR point clouds are first projected into
ground relative bird’s eye view (BEV) representation through the online mapping module, and then features
extracted from LiDAR point clouds, and RGB images are fused by the dense fusion module and fed into Li-
DAR backbone network to predict the probability of the category. This multi-task multi-sensor architecture
performs robustly and qualitatively on the TOR4D benchmark. For one-stage 3D fused detectors, the classifier
is generally applied in a different way because the one-stage detectors aim to conduct classification and regres-
sion simultaneously. Qi et al. [48] proposed a one-stage architecture named ImVoteNet, which lifts 2D vote
to 3D to improve 3D classification and detection performance. The architecture consists of two parts: One
leverages 2D images to pass the geometric, semantic, and texture cues to 3D voting. The other proposes and
classifies targets on the basis of a voting mechanism such as Hough voting. The results show that this method
boosts 3D recognition with improved mAP compared with the previous best model [49].

4. 3D OBJECT DETECTION
All the deep learning detectors follow a similar idea: they extract the feature from the input data with the
backbone and neck of the framework to generate proposals and then classify and locate the objects with a 3D
bounding box with the head part. Depending on whether region proposals are generated or not, the object

http://dx.doi.org/10.20517/ir.2021.20


Page 112 Wu et al. Intell Robot 2022;2(2):105­29 I http://dx.doi.org/10.20517/ir.2021.20

detectors can be categorized into two-stage and single-stage detectors. Two-stage detectors detect the target
from the region of interests proposed from the feature map, while single-stage detectors perform tasks based
on sliding dense anchor boxes or anchor points from the pyramid map directly. This section summarizes
contemporary 3D object detection research, focusing on diverse data modalities from different sensors. Table
3 shows the summary for 3D object detection. Table 4 summarizes experiment results of 3D object detection
methods on the KITTI test 3D object detection benchmark.

4.1. LiDAR­only detection
LiDAR-only detection generates a 3D bounding box based on networks that are only fed with a LiDAR point
cloud. In general, two-stage detection processes LiDAR data with point-based representation, while single-
stage detection performs the task onmultiple formats, including point cloud-based, multi-viewed, and volumet
ric-based representations.

4.1.1. Two-stage detection
For the two-stage detection, segmentation is a widely-used method to remove noisy points and generate pro-
posals in the first sub-module of the detection. One of the typical detection models is IPOD [50], which seeds
instance-level proposals with context and local features extracted by projected segmentation. In 2019, STD [51]

created point-level spherical anchors and parallel intersection-over-union (IOU) branches to improve the accu-
racy of the location. Following the proposal scheme of PointRCNN [52] (whose network is illustrated in Figure
2a), PointRGCN [53] introduces a graph convolutional network which aggregates per-proposal/per-frame fea-
tures to improve the detection performance. Shi et al. [54] extended the method of PointRCNN [52] in another
way, by obtaining 3D proposals and intra-object part locations with a part-aware module and regressing the
3D bounding boxes based on the fusion of appearance and location features in the part-aggregation frame-
work. HVNet [55] fuses multi-scale voxel features point-wisely, namely hybrid voxel feature encoding. After
voxelizing the point cloud at multiple scales, HVNet extracts hybrid voxel features with an attentive voxel fea-
ture encoder, and then pseudo-image features are available through scale aggregation in point-wise format.
To remedy the proposal size ambiguity problem, LiDAR R-CNN [56] uses boundary offset and virtual point,
designing a plug-and-play universal 3D object detector.

4.1.2. Single-stage detection
Unlike the two-stage detector that outputs final fine-grained detection results on the proposals, the single-stage
detector classifies and locates 3D objects with a fully convolutional framework and transformed representa-
tion. Obviously, this method makes the foreground more susceptible to adjacent background points, thus de-
creasing the detection accuracy. Multiple methods emerge to solve this problem. For example, VoxelNet [57]

extracts voxel-wise features from point clouds in volumetric-based representation with random sampling and
normalization, after which it utilizes a 3D-CNN-based framework and region proposal network to detect 3D
objects. To bridge the gap between the 3D-CNN-based and 2D-CNN-based detection, the authors of [58] ap-
plied PointNet [1] to point clouds to generate vertical-columned representation, which enables point clouds to
be processed by the following 2D-CNN-based detection framework. Multi-task learning work [59] introduces
a part-sensitive warping module and an auxiliary module to refine the feature extracted from the backbone
network by adapting the ROI pooling fromR-FCN [60] detectionmodule. As illustrated in Figure 2c, TANet [61]

designs a stacked triple attention module and a coarse-to-fine regression module to reduce the disturbance of
noisy points and improve the detection performance on hard-level objects. SE-SSD [62] contains a teacher SSD
and a student SSD. The teacher SSD produces soft targets by predicting relatively accurate results (after global
transformation) from the input point cloud. The student SSD takes augmented input (a novel shape-aware
data argumentation) as input, and then is trained with a consistency loss under the supervision of hard-level
targets. 3D auto-labeling [63], which aims at saving the cost of human labeling, proposes a novel off-board
3D object detector to exploit complementary contextual information from point cloud sequences, achieving a
performance on par with human labels.
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Table 3. Summary of 3D object detection methods. Here ”I”, ”mvPC”, ”vPC”, ”pPC”, ”RaPC” stands for image, multiple view of point
cloud, voxelized point cloud, point cloud, Radar point cloud respectively

Detector Category Model Modality &
Representation

Novelty

Two-stage
Detection

LiDAR
-Only

IPOD [50] pPC a novel point-based proposal generation
STD [51] pPC proposal generation(from point-based spherical anchors)+PointPool
PointRGCN [53] pPC RPN+R-GCN+C-GCN
SRN [34] pPC structural relation network(geometric and locational features+MLP)
Part-A2 [54] pPC intra-object part prediction+RoI-aware point cloud pooling
HVNet [55] vPC multi-scale voxelization+hybrid voxel feature extraction
LiDAR R-CNN [56] pPC R-CNN style second-stage detector(size aware point features)

LiDAR
-Fusion

3D-CVF [64] I & vPC CVF(auto-calibrated projection)+adaptive gated fusion network
Roarnet [65] I & pPC RoarNet 2D(geometric agreement search)+RoarNet 3D(RPN+BRN)
MV3D [12] I & mvPC 3D proposals network+region-based fusion network
ScanNet [46] I & mvPC multi-level fusion+spatial-channel attention +extension spatial upsample
MMF [47] I & mvPC point-wise fusion+ROI feature fusion
Pointpainting [66] I & pPC image based semantics network+appended (painted) point cloud
CM3D [67] I & pPC pointwise feature fusion+proposal genaration+ROI-wise feature fusion
MVDNet [28] RaPC & mvPC two-stage deep fusion(region-wise feature fusion)

One-stage
Detection

LiDAR
-Only

VoxelNet [57] vPC voxel feature encoding+3D convolutional middle layer+RPN
PointPillars [58] pillar points pillar feature net+backbone(2D CNN)+SSD detection head
SASSD [59] pPC backbone(SECOND)+auxiliary network+PSWarp
TANet [61] vPC Triple Attention module(channel-wise, point-wise, and voxel-wise attention)
SE-SSD [62] pPC teacher and student SSDs+shape aware augumentation+consistency loss
3D Auto Label [63] mvPC motion state classification+static object and dynamic object auto labeling
ImVoteNet [48] I & pPC lift 2D image votes, semantic and texture cues to the 3D seed points
EPNet [68] I & pPC two-stream RPN+LI-Fusion Module+refinement network

LiDAR-Fusion CLOCs [69] I & vPC a late fusion architecture with any pair of pre-trained 2D and 3D detectors

Table 4. Experiment results of 3D object detection methods on KITTI test 3D object detection benchmark. Average Precision (AP) for
car with IoU threshold 0.7, pedestrian with IoU threshold 0.5, and cyclist with IoU threshold 0.5 is shown. ”-” means the result is not
available

Model
Car Pedestrian Cyclist

Easy Medium Hard Easy Medium Hard Easy Medium Hard

IPOD [50] 79.75% 72.57% 66.33% 56.92% 44.68% 42.39% 71.40% 53.46% 48.34%
STD [51] 79.71% 87.95% 75.09% 42.47% 53.29% 38.35% 61.59% 78.69% 55.30%
PointRGCN [53] 85.97% 75.73% 70.60% - - - - - -
Part-A2 [54] 85.94% 77.86% 72.00% 89.52% 84.76% 81.47% 54.49% 44.50% 42.36%
LiDAR R-CNN [56] 85.97% 74.21% 69.18% - - - - - -
3D-CVF [64] 89.20% 80.05% 73.11% - - - - - -
Roarnet [65] 83.71% 73.04% 59.16% - - - - - -
MV3D [12] 71.09% 62.35% 55.12% - - - - - -
SCANet [46] 76.09% 66.30% 58.68% - - - - - -
MMF [47] 86.81% 76.75% 68.41% - - - - - -
CM3D [67] 87.22% 77.28% 72.04% - - - - - -
VoxelNet [57] 77.47% 65.11% 57.73% 39.48% 33.69% 31.51% 61.22% 48.36% 44.37%
PointPillars [58] 79.05% 74.99% 68.30% 52.08% 43.53% 41.49% 75.78% 59.07% 52.92%
SASSD [59] 88.75% 79.79% 74.16% - - - - - -
TANet [61] 84.81% 75.38% 67.66% 54.92% 46.67% 42.42% 73.84% 59.86% 53.46%
SE-SSD [62] 91.49% 82.54% 77.15% - - - - - -
EPNet [68] 89.81% 79.28% 74.59% - - - - - -
CLOCs [69] 88.94% 80.67% 77.15% - - - - - -

4.2. LiDAR­fusion detection
LiDAR-fusion detection enriches the information with the aspect of data sources to improve the performance
at a low cost. Its auxiliary input data include RGB images, angular velocity (acceleration), depth images, and
so on.

4.2.1. Two-stage detection
The input data of the LiDAR-fusion detector vary in diverse fields with aspects of sampling frequency and
data representations. Hence, simple summation or multiplication at the source side contributes little to the
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improvement of the algorithm performance. In general, two-stage detection fuses the feature map before or
after the proposals. To enhance the quality of proposals, 3D-CVF [64] fuses spatial features from images and
point clouds in cross-wise views with the auto-calibrated feature projection. Based on PointNet [1], Roarnet [65]

designs a two-stage object detection network whose input data contain RGB image and LiDAR point cloud
to improve the performance with 3D pose estimation. As for the fusion of ROI-wise feature, Chen et al. [12]
fused the feature extracted from the bird’s eye view and front view of LiDAR as well as the RGB image. As
shown in Figure 2b, Scanet [46] applies a spatial-channel attention module and an extension spatial up-sample
module to generate proposals of RGB images and point clouds, respectively, in the first stage and then classifies
and regresses the 3D bounding box with a novel multi-level fusion method. Meanwhile, some studies adopt
multi-fusion methods in the proposed schemes. For instance, the authors of [47] completed a two-stage detec-
tion framework with front-end fusion and medium fusion. Its front-end fusion is to merge the sparse depth
image (projected from LiDAR point cloud) and RGB image for the image backbone network to extract dense
depth feature. The depth feature would be fed into the dense fusion module with LiDAR point clouds and
pseudo-LiDAR points to prepare for medium fusion. Vora et al. [66] complemented the context information of
point cloud with the semantic segmentation results of the image. Through the point painting operation, point
clouds are painted by semantic scores, and then the painted point cloud is fed into a point-based 3D detector
to produce final results. The pipeline [67] fuses point-wise features and couples 2D–3D anchors (which are
generated from images and point clouds, respectively) to improve the quality of proposals in the first stage,
after which it handles ROI-wise feature fusion in the second stage. To deal with adverse weather, MVDNet [28]

exploits LiDAR and radar’s potential complementary advantages. This novel framework conducts a deep late
fusion, whichmeans that proposals are generated from two sensors first and then region-wise features are fused.
Moreover, MVDNet provides a foggy weather focused LiDAR and radar dataset generated from the Oxford
Radar Robotcar dataset. EPNet [68] is a closed-loop two-stage detection network. Its LI-fusionmodule projects
point cloud to images and then generates point-wise correspondence for the fusion. To form the closed-loop,
EPNet achieves 3D end-to-end detection on the high definitionmap and estimates themap on the fly from raw
point clouds. ImVoteNet [48] (which is an extension of VoteNet [49]) supplements the point-wise 3D informa-
tion with the geometrical and semantic features extracted from 2D-images. In its head module, LiDAR-only,
image-only, and LiDAR-fusion features all participate in the voting to improve the detection accuracy.

4.2.2. Single-stage detection
Single-stage detectors outperform two-stage detectors in terms of runtime due to their compact network struc-
ture. With the goal of high efficiency and accuracy, the fusion of single stage detector is placed in the post-
processing stage (i.e., late fusion) in order to maintain the superior single-shot detection performance and
improve through supplementary multi-sensor data at the same time. This indicates that only the results of
detectors for LiDAR point cloud and other sensor data (e.g., RGB image) are fused in post-processing module
without changing any network structure of detectors. CLOCs [69] builds a late fusion architecture with any pair
of pre-trained image and LiDAR detectors. The output candidates of LiDAR and image are combined before
the non-maximum suppression operation to exploit geometric and semantic consistencies. Individual 2D and
3D candidates are first pre-processed through specific tensor operation so that they are both in a consistent
joint representation using sparse tensor. Then, a set of 2D convolution layers are utilized to fuse, which takes
the sparse tensor as input and output a processed tensor. The max-pooling operation is conducted on this
tensor to map it to the targets (formatted as a score map). Experiment results on the KITTI dataset show
that single-stage 3D detector SECOND [70] fusion with 2D detector Cascade R-CNN [71] achieves better per-
formance by a large margin compared to single-modality SECOND. The architecture of CLOCs is shown in
Figure 2d.
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Figure 2. Typical architectures for two categories of LiDAR-based two-stage 3D detection: (a) LiDAR-only and (b) LiDAR-fusion methods.
Typical networks for two categories of LiDAR-based one-stage detector: (c) LiDAR-only and (d) LiDAR-fusion methods.

5. 3D OBJECT TRACKING
All the trackers obey the same rule: they estimate the states of targets contained in the subsequent frames
under the guidance of the targets in the first frame. Trackers need to overcome more difficulties, including
illumination and scale variation, because trackers perform tasks with richer geometric information and context
information compared to image-based trackers and LiDAR-based detectors. Unlike the isolation of single-
object tracking and multi-object tracking in the field of the image, in the field of 3D tracking, both trackers are
related and the former one can be regarded as a simplified version of the latter one. This section reviews two
methods of achieving online 3D tracking: detection and siamese network. Table5 summarizes these works.
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5.1. LiDAR­only tracking
As the temporal extension of detection, tracking achieves higher and more precise performance based on
appearance similarity and motion trajectory. Tracking-by-detection is an intuitive method. For example, Va-
quero et al. [72] fused vehicle information segmented from dual-view detectors (i.e., a front view and a bird’s
eye view) and then utilized extended Kalman filter, Mahalanobis distance, and motion update module to per-
form 3D tracking. Furthermore, Shi et al. [73] performed 3D tracking and domain adaption based on a variant
of the 3D detection framework (i.e., PV-RCNN), which comprises temporal information incorporation and
classification with RoI-wise features, and so on. In addition, detection results can be enhanced by extra target
templates. As a typical example, P2B [74] first matches the proposals with augmented target-specific features
and then regresses target-wise centers to generate high-quality detection results for tracking. Following Cen-
terTrack [75], CenterPoint [76] develops an object-center-tracking network through velocity estimation and the
point-based detection that views objects as points, achieving more accurate and faster performance.

As for the image-based tracking, the siamese network eliminates the data redundancy and speeds up the
task through the conversion from tracking to patch matching, whose idea can be extended in the field of
LiDAR-based tracking. Inspired by SAMF [77], Mueller et al. [78] designed a correlation filter-based tracker (i.e.,
SAMF_CA) which incorporates global context in an explicit way. Experiments show that the improved opti-
mization solution achieves a better performance in the single target tracking domain. The work of Zarzar et
al. [79] shows that the siamese network-based tracking with LiDAR-only data performs well in aerial navigation.
Holding the belief that appearance information is insufficient to track, Giancola et al. [80] encoded the model
shape and candidate shape into latent information with a Siamese tracker. Zarzar et al. [81] generated efficient
proposals with a siamese network from the BEV representation of point clouds, after which it tracks 3D ob-
jects in accordance with the ROI-wise appearance information regularized by the latter siamese framework.
PSN [82] first extracts features through a shared PointNet-like framework and then conducts feature augmenta-
tion and the attention mechanism through two separate branches to generate a similarity map so as to match
the patches. Recently, MLVSNet [83] proposes conducting Hough voting on multi-level features of target and
search area instead of only on final features to overcome insufficient target detection in sparse point clouds.
Moreover, ground truth bounding box in the first frame can be regarded as a strong cue, enabling a better
feature comparison [84], as shown in Figure 3a.

5.2. LiDAR­fusion tracking
Sensors capture data from various views, which is beneficial to supplement insufficient information for trackers.
A challenge of tracking-by-detection is how to match the detection results with the context information. The
simplest way is to conduct an end-fusion of the tracking results, as done by Manghat et al. [85]. In addition,
Frossard et al. [86] produced precise 3D trajectories for diverse objects in accordance with detection proposals
and linear optimization. Introducing the 2D visual information, Complexer-YOLO [87] first performs joint 3D
object detection based on the voxelized semantic points clouds (which are fused by image-based semantic
information) and then extends the model to multi-target tracking through multi-Bernoulli filter. This work
demonstrates the role of scale–rotation–translation, which enables the framework to track in real time.

However, data sampled by different sensors vary in frequency and dimension, and thus it is challenging and not
cost-effective to match the similarity among diverse data sources. Recent years have witnessed the emergence
of ingenious algorithms while tracking based on a siamese network is still in its infancy. Developed for single
object tracking, F-Siamese Tracker [88] extrudes a 2D region-of-interest from a siamese network for the purpose
of generating several valid 3D proposals, which would be fed into another siamese network together with a
LiDAR template. Although these studies achieve a lot, there is still a long way to go to further integrate point
clouds and other sensor data (i.e., RGB images) into the siamese network for LiDAR-fusion tracking. The
pipeline of F-Siamese Tracker is explained in Figure 3b.
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Figure 3. Typical networks for two categories of LiDAR-based tracker: (a) LiDAR-only and (b) LiDAR-fusion methods.

Table 5. Summary of 3D object tracking. Here ”I”, ”mvPC”, ”vPC”, ”pPC”, ”FrustumPC” stands for image, multiple view of point cloud,
voxelized point cloud, point cloud, Frustum point cloud respectively

Category Model Modality &
Representation

Architecture

LiDAR
-Only

DualBranch [72] mvPC Bbox growing method + multi-hypothesis extended Kalman filter
PV-RCNN [73] pPC & vPC Voxel-to-keypoint 3D scene encoding + keypoint-to-grid RoI feature abstraction
P2B [74] pPC Target-specific feature augmentation + 3D target proposal and verification
CenterPoint [76] pillar/vPC Map-view feature representation + center-based anchor-free head
SC-ST [80] pPC Siamese tracker(resemble the latent space of a shape completion network)
BEV-ST [81] mvPC Efficient RPN+Siamese tracker
PSN [82] pPC Siamese tracker(feature extraction + attention module + feature augumentation)
MLVSNet [83] pPC Multi-level voting+Target-Guided Attention+Vote-cluster Feature Enhancement
BAT [84] pPC Box-aware feature fusion + box-aware tracker

LiDAR
-Fusion

MSRT [85] I&pPC 2D object detector-Faster-RCNN+3D detector-Point RCNN
MS3DT [86] I&mvPC Detection proposals+proposals matching&scoring+linear optimization
Complexer-YOLO [87] I&vPC Frame-wise 3D object detetcion+novel Scale-Rotation-Transalation score
F-Siamese Tracker [88] I&FrustumPC Double Siamese network

6. 3D SEGMENTATION
3D Segmentation methods can be classified into semantic segmentation and instance segmentation, which are
both crucial for scene understanding of autonomous driving. 3D Semantic segmentation focuses on per-point
semantic label prediction so as to partition a scene into several parts with certain meanings (i.e., per-point
class labels), while 3D instance segmentation aims at finding the edge of instances of interest (i.e., per-object
masks and class labels). Since Kirillov et al. [89] first came up with the concept “panoptic segmentation” that
combines semantic segmentation and instance segmentation, several works [90,91] inspired by this concept have
been published recently, which build architectures for panoptic segmentation of point cloud. This section
specifically focuses on research concerning both 3D semantic segmentation and 3D instance segmentation

http://dx.doi.org/10.20517/ir.2021.20


Page 118 Wu et al. Intell Robot 2022;2(2):105­29 I http://dx.doi.org/10.20517/ir.2021.20

tasks whose input data are divided into LiDAR point cloud data or LiDAR point cloud fused data. Summaries
can be seen in Tables 6 and 7.

6.1. 3D Semantic segmentation
6.1.1. LiDAR-only semantic segmentation
PointNet [1] provides a classic prototype of point cloud semantic segmentation architecture utilizing shared
MLPs and symmetrical poolings. On this basis, several dedicated point-wise MLP networks are proposed to
attain more information and local structures for each point. PointNet++ [2] introduces a novel hierarchical
architecture applying PointNet recursively to capture multi-scale local context. Engelmann et al. [92] proposed
a feature network with K-means and KNN to learn a better feature representation. Besides, an attention mech-
anism, namely group shuffle attention (GSA) [93] is introduced to exploit the relationships among subsets of
point cloud and select a representative one.

Apart from MLP methods, convolutional methods on pure points also achieve some state-of-the-art perfor-
mance, especially after a fully convolutional network (FCN) [94] is introduced to semantic segmentation, which
replaces the fully connected layer with a convolution and thus makes any size of input data possible. Based on
the idea of GoogLeNet [95] that takes fisheye cameras and LiDAR sensors data as input, Piewak et al. [96] pro-
posed an FCN framework called LiLaNet aiming to label emi-dense LiDAR data point-wisely and multi-class
semantically with cylindrical projections of point clouds as input data. The dedicated framework LiLaNet is
comprised of a sequence of LiLaBlocks that have various kernels and a 1×1 convolution so that lessons learned
from 2D semantic label methods can be converted to the point cloud domain. Recently, a fully convolutional
network called 3D-MiniNet [97] extends MiniNet [98] to 3D LiDAR point cloud domain to realize 3D seman-
tic segmentation by learning 2D representations from raw points and passing them to 2D fully convolutional
neural network to attain 2D semantic labels. The 3D semantic labels are obtained through re-projection and
enhancement of 2D labels.

Based on the pioneering FCN framework, an encoder–decoder framework, U-Net [99] is proposed to conduct
multi-scale and large size segmentation. Therefore, several point cloud-based semantic segmentation works
extend this framework to 3D space. LU-Net [100] proposes an end-to-end model, consisting of a model that
extracts high-level features for each point and an image segmentation network similar to U-Net that takes the
projections of these high-level features as input. SceneEncoder [101] presents an encode module to enhance the
performance of global information. As shown in Figure 4a, RPVNet [13] exploits fusion advantages of point,
voxel, and range map representations of point clouds. After extracting features from the encoder–decoder of
three branches and projecting these features into point-based representation, a gated fusion module (GFM) is
adopted to fuse features.

Due to the close relationship between the receptive field size and the network performance, a few works con-
centrate on expanding the receptive fields through dilated/A-trous convolution, which can preserve the spatial
resolution at the meanwhile. As an extension of SqueezeSeg [102], the CNN architecture named PointSeg [103]

also utilizes SqueezeNet [104] as a backbone network with spherical images generated from point clouds as in-
put. However, PointSeg [103] takes several image-based semantic segmentation networks into consideration
and transfers them to the LiDAR domain, instead of using CRF post-processing as in SqueezeSeg [104]. The
PointSeg [103] architecture includes three kinds of main layers: fire layer adapted from SqueezeNet [104], squeeze
reweighting layer, and enlargement layer where dilated convolutional layers are applied to extend the receptive
field. Hua et al. [105] introduced a point-wise convolution for 3D point cloud semantic segmentation, which
orders point cloud before feature learning and adopts A-trous convolution. Recently, Engelmann et al. [106]
proposed dilated point convolutions (DPC) to systematically expand the receptive field with an awesome gen-
eralization so that it can be applied in most existing CNN for point clouds.

http://dx.doi.org/10.20517/ir.2021.20


Wu et al. Intell Robot 2022;2(2):105­29 I http://dx.doi.org/10.20517/ir.2021.20 Page 119

Figure 4. Typical frameworks for two categories of LiDAR-based semantic segmentation: (a) LiDAR-only and (b) LiDAR-fusion methods.

6.1.2. LiDAR-fusion semantic segmentation
One of the challenges existing in point cloud-based semantic segmentation is that the sparseness of the point
cloud makes the object seem see-through, thus increasing the difficulty of discernment. Due to the differ-
ent viewpoints of the RGB camera and LiDAR, RGB images can provide supplementary information about
occluding objects. The fusion of RGB images and point clouds for 3D semantic segmentation is intensively
researched in recent years due to the achievement of deep learning on 2D image segmentation. 3DMV [107]

designs a feature-level fused joint 3D-multi-view prediction network, which combines geometric features of
point clouds and color features of RGB images. This work leverages a 2D network to downsample the fea-
tures extracted from full-resolution RGB input data and then leverages back-projection from a 2D feature
into 3D space, rather than just mapping the RGB image on the voxel grid of point cloud. The final results
are attained by the 3D convolution layers that take these back-projected 2D features and 3D geometric fea-
tures as their input. As a result, 3DMV improves 3D semantic segmentation accuracy by 17.2 % in terms of
the best volumetric framework at that time. Varga et al. [95] proposed an association of fisheye cameras and
LiDAR sensors to segment feature-level 3D LiDAR point clouds. In this work, motion correction of point
clouds and the undistortion and unwarping process of images are implemented first to ensure the reliability
of the information. Subsequently, the undistorted fisheye image is segmented by computing the multiresolu-
tion filtered channels and deep CNN channels. Then, to transfer the pixel-wise semantic information to 3D
points, the coordinates of 3D points are learned from projections of LiDAR points onto the camera image.
With these coordinates, point clouds are augmented with color information and 2D semantic segmentation.
Thanks to the well-settled sensor configuration, this super-sensor enables 360-degree environment perception
for autonomous cars. MVPNet [108] presents a novel aggregation for feature fusion of point clouds and RGB
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images. In this work, a proposed multi-view point cloud (MVPC) representation indicates a transformation
from 2D image to the 3D point that expresses a discrete approximation of a ground-truth 3D surface by gen-
erating a sequence of 1-VPCs and forming predicted MVPC with their union, instead of simply combining
projections. FuseSeg [3] proposes a LiDAR point clouds segmentation method that fuses RGB and LiDAR data
at feature level and develops a network, whose encoder can be applied as a feature extractor for various 3D
perception tasks. Figure 4b demonstrates details of its network. As an extension of SqueezeSeg [102], FuseSeg
establishes correspondences between the two input modalities first and warps features extracted from RGB
images. Then, the features from images and point clouds are fused by utilizing the correspondences. PMF [109]

exploits supplementary advantages between appearance information from RGB images and 3D depth informa-
tion from LiDAR point clouds. The two-stream network including camera-stream and LiDAR-stream extracts
features from projected point cloud and RGB image, and then features from two modalities are fused by a
novel residual-based fusion module into LiDAR stream. Additionally, a perception-aware loss contributes to
the fusion network’s ability. Unlike the ideas above, a novel permutohedral lattice representation method for
data fusion is introduced [110]. SParse LATtice Networks (SPLATNet) [110] directly processes a set of points
in the representation of a sparse set of samples in a high-dimensional lattice. To reduce the memory and
computational cost, SPLATNet adopts a sparse bilateral convolutional layer as the backbone instead. This
network incorporates point-based and image-based representations to deal with multi-modal data fusion and
processing.

6.2. 3D Instance segmentation
Instance segmentation is themost challenging task of scene understanding because of the necessity to combine
object detection and semantic segmentation, which focuses on each individual instance within a class.

6.2.1. LiDAR-only instance segmentation
One of the ideas is a top-down concept (also called the proposal-based method) which detects the bounding
box of an instance with object detection methods first and then performs semantic segmentation within the
bounding box. GSPN [111] designs a novel architecture for 3D instance segmentation named region-based
PointNet (R-PointNet). A generative shape proposal network is integrated into R-PointNet to generate 3D
object proposals with instance sensitive features by constructing shapes from the scene, which is converted
into a 3D bounding box. The point ROIAlign module aligns features for proposals to refine the proposals
and generates segmentation. Different from GSPN [111], the single-stage, anchor-free, and end-to-end 3D-
BoNet [112] directly regresses 3D bounding boxes for all instances with a bounding box prediction branch.
The backbone network exploits local point features and global features, which are then fed into a point mask
prediction branch with a predicted object bounding box, as shown in Figure 5a.

However, the top-down idea ignores the relation between masks and features and extracts masks for each fore-
ground feature, which is redundant. Down-top methods, also named proposal-free methods, may provide a
solution for these problems, which performs point-wise semantic segmentation first and then distinguishes
different instances. For example, Zhou et al. [113] presented an instance segmentation and object detection com-
bined architecture to exploit detailed and global information of objects. It is a two-stage network, containing
a spatial embedding (SE)-based clustering and bounding box refinement modules. For instance, segmenta-
tion, semantic information is attained by an encoder–decoder network, and object information is attained by
SE strategy that takes center points of objects as important information. Aside from the above ideas, utiliz-
ing conditional random fields (CRFs) as post-processing methods contributes to the refinement of the label
map generated by CNN and further improves the segmentation performance. Inspired by SqueezeNet [104],
SqueezeSeg [102] proposes a pioneering lightweight end-to-end pipeline CNN to solve 3D semantic segmenta-
tion for road-objects. This network takes transformed LiDAR point cloud as input and then leverages network
based on SqueezeNet [104] to extract features and label points semantically, whose results are fed into CRF to
refine and output final results. As an extension of SqueezeSeg [102], SqueezeSegV2 [114] introduces three novel
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Figure 5. Typical frameworks for two categories of LiDAR-based instance segmentation: (a) LiDAR-only and (b) LiDAR-fusion methods.

modules to dropout noise and improve the accuracy.

6.2.2. LiDAR-fusion instance segmentation
Studies on LiDAR-fusion instance segmentation can also be divided into proposal-based and proposal-free.
As for proposal-based methods, 3D-SIS [115] introduces a two-stage image and RGB-D data fused architecture,
leveraging both geometric and color signals to jointly and semantically learn features, for instance, segmen-
tation and detection. 3D-SIS consists of two branches, i.e., a 3D detection branch and a 3D mask workflow
branch. The backbone of a 3D mask takes projected color, geometry features of each detected object, and 3D
detection results as input and outputs final per-voxel mask prediction of each instance. For mask prediction,
3D convolutions with the same spatial resolutions that preserve spatial correspondence with raw point inputs
are applied. Then, bounding box prediction generated from 3D-RPN is utilized to attain the key associated
mask feature. The final mask of each instance is predicted by a 3D convolution which reduces the dimen-
sionality of features. PanopticFusion [116] presents an online large-scale 3D reconstruction architecture that
fuses RGB images and depth images. The 2D instance segmentation network based on Mask-CNN takes the
incoming RGB frame as input and fuses both semantic and instance segmentation results to attain point-wise
panoptic labels that are integrated into the volumetric map with depth data. As illustrated in Figure 5b, Qi
et al. [117] proposed a pioneering object detection framework named Fustrum PointNets with point cloud and
RGB-D fusion data as input. Frustum PointNets contains three modules: frustum proposal, 3D instance seg-
mentation and amodal 3D box estimation, in order to fuse efficient mature 2D object detector into point cloud
domain. The frustum point cloud is extracted from RGB-D data frustum proposal generation first and then
is fed into set abstraction layers and point feature propagation layers based on PointNet to predict a mask for
each instance by point-wise binary classification. When it comes to proposal-free methods, 3D-BEVIS [118]

introduces a framework for 3D semantic and instance segmentation that transfers 2D bird’s eye view (BEV)
to 3D point space. This framework concentrates on both local point geometry and global context informa-
tion. 3D instance segmentation network takes point cloud as input, which consists of 2D (i.e., RGB and height
above ground) and 3D feature network jointly to exploit point-wise instance features and predicts final instance
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Table 6. Summary of 3D semantic segmentation. ”I”, ”mvPC”, ”vPC”, ”pPC” and ”rm” stands for image, point cloud in multi-view based
representation, point cloud in voxel-based representation, point cloud in point-based representation and range map separately

Category Model Modality &
Representation

Architecture

LiDAR
-Only

PointNet [1] pPC Point-wise MLP+T-Net+global max pooling
PointNet++ [2] pPC Set abstraction (sampling, grouping, feature learning)+interpolation+skip link concatentation
KWYND [92] pPC Feature network + neighbors definition + regional descriptors
MPC [93] pPC PointNet++-like network+ gumbel subset sampling
3D-MiniNet [97] pPC Fast 3D point neighbor search + 3DMiniNet + post-processing
LU-Net [100] pPC & vPC U-Net for point cloud
SceneEncoder [101] pPC Multi-hot scene descriptor + region similarity loss
RPVNet [13] rpc&pPC&vPC Range-point-voxel fusion network(deep fusion + gated fusion module)
SqueezeSeg [102] mvPC SqueezeNet + conditional random field
PointSeg [103] mvPC SqueezeNet + new feature extract layers
Pointwise [105] pPC Pointwise convolution operator
Dilated [106] pPC Dilated point convolutions

LiDAR
-Fusion

3DMV [107] I & vPC A novel end-to-end network(back propagation layer)
SuperSensor [95] I & mvPC Associate architecture+360 degree sensor configuration
MVPNet [108] I & mvPC Multi-view point regression network+geometric loss
FuseSeg [3] I & rPC Point correspondece+feature level fusion
PMF [109] I & mvPC Perspective projection+a two-stream network(fusion part)+perception-aware loss

Table 7. Summary of 3D instance segmentation. ”I”, ”mvPC”, ”vPC”, ”pPC”,”FPC” and ”rm” stands for image, point cloud in multi-
view based representation, point cloud in voxel-based representation, point cloud in point-based representation, point cloud in Frustum
representation and range map separately

Category Model Modality &
Representation

Architecture

LiDAR-Only

GSPN [111] pPC Region-based PointNet(generative shape proposal network+Point RoIAlign)
3D-BoNet [112] pPC Instance-level bounding box prediction + point-level mask prediction
Joint [113] pPC Spatial embedding object proposal + local Bounding Boxes refinement
SqueezeSeg [102] mvPC SqueezeNet + conditional random field
SqueezeSegV2 [114] mvPC SqueezeSeg-like + context aggregation module
3D-BEVIS [118] mvPC 2D-3D deep model(2D instance feature+3D feature propagation)

LiDAR-Fusion
PanopticFusion [116] I & vPC Pixel-wise panoptic labels+a fully connected conditional random field
Fustrum PointNets [117] I & FPC Frunstum proposal+3D instance segmentation(PointNet)

segmentation results through clustering.

7. DISCUSSION
As the upstream and key module of an autonomous vehicle, the perception system outputs its results to down-
stream modules (e.g., decision and planning modules). Therefore, the performance and reliability of the per-
ception system determine the implementation of downstream tasks, thus affecting the performance of the
whole autonomous system. For now, although sensor fusion (Table 8 shows a summary for LiDAR fusion ar-
chitectures in this paper) can make up for the shortcomings of single LiDAR in bad weather and other aspects,
there is still a huge gap between the algorithm design and practical applications in the real world. For this
reason, it is necessary to be properly aware of existing open challenges and figure out possible directions to the
solution. This section discusses the challenges and possible solutions for LiDAR-based 3D perception.

• Dealing with large-scale point clouds and high-resolution images. The need for higher accuracy has
prompted researchers to consider larger scale point clouds and higher resolution images. Most the existing
algorithms [2,29,36,119] are designed for small 3D point clouds (e.g., 4k points or 1 m × 1 m blocks) without
good extending capability to larger point clouds (e.g., millions of points and up to 200m× 200m). However,
larger point clouds come with a higher computational cost that is hard to afford for self-driving cars with
limited computational processing ability. Several recent studies have focused on this problem and proposed
some solutions. A deep learning framework for large-scale point clouds named SPG [120] partitions point
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clouds adaptively to generate a compact yet rich representation by superpoint graph. RandLA-Net [121]

leverages random sampling to downsample large-scale point clouds and local feature aggregationmodule to
increase the receptive field size. SCF-Net [122] utilizes the spatial contextual features (SCF) module for large-
scale point clouds segmentation. As for sensor fusion, deep learning approaches tackling the fusion of large-
scale and high-resolution data should place more emphasis on point-based and multi-view based fusion
approaches, which are more scalable than voxel-based ones. Overall, the trade-off between performance
and computational cost is inevitable for real application of autonomous driving.

• A robust representation of fused data. For deep learning methods, how to pre-process the multi-modal
input data is fundamental and important. Although there are several effective representations for point
clouds, each of them has both disadvantages and advantages: voxel-based representation has tackled the
ordering problem, but, when enlarging the scales of point cloud or increasing the resolution of voxel, the
computational cost grows cubically. The quantity of point cloud that can be processed by point based repre-
sentation methods is limited due to the permutation invariance and computational capacity. A consensus
of a unified robust and effective representation for point clouds is necessary. For the data fused with images
and point clouds, the representation approaches depend on fusion methods. Image representation-based
methods mainly utilizes point clouds projected onto multi-view planes as additional branches of the image.
(1) Image representation is not applicable for 3D tasks because the network output results on image plane.
(2) Point representation-based methods leverages features or ROI extracted from RGB image as additional
channels of point clouds. The performance of this representation is limited by the resolution differences
between image (relatively high-resolution) and point clouds (relatively low-resolution). (3) Intermediate
data representation methods introduce an intermediate data representation to (e.g., Frustum point cloud
and voxelized point cloud). Voxel-based methods are limited in large scale, while frustum based methods
have much potential to generate a unified representation based on contextual and structural information
of RGB images and LiDAR point clouds.

• Scene understanding tasks based on data sequences. The spatiotemporal information implied in the tem-
porally continuous sequence of point clouds and images has been overlooked for a period. Especially for
sensor fusion methods, the mismatch of refresh rate between LiDAR and camera causes incorrect time-
synchronization between inner perception system and surrounding environment. In addition, predictions
based on spatiotemporal information can improve the performance of tasks, such as 3D object recognition,
segmentation, and point cloud completion. Research has started to take temporal context into consider-
ation. RNN, LSTM, and derived deep learning models are able to deal with temporal context. Huang et
al. [123] proposed a multi-frame 3D object detection framework based on sparse LSTM. This work predict
3D objects in the current frame by sending features of each frame and the hidden andmemory features from
last frame into LSTM module. Yuan et al. [124] designed a temporal-channel transformer, whose encoder
encodes multi-frame temporal-channel information and decoder decodes spatial-channel information for
the current frame. TempNet [125] presents a lightweight semantic segmentation framework for large-scale
point cloud sequences, which contains two key modules, temporal feature aggregation (TFA) and partial
feature update (PFU). TFA aggregates features only on small portion of key frames with an attentional
pooling mechanism, and PFU updates features with the information from non-key frame.

8. CONCLUSIONS
LiDAR captures point-wise information which is less sensitive to illumination than that of cameras. More-
over, it possesses invariance of scale and rigid transformation, showing a promising future in 3D scene un-
derstanding. Focusing on the LiDAR-only and LiDAR-fusion 3D perception, this paper first summarizes the
LiDAR-based dataset as well as the evaluation metric and then presents a contemporary review of four key
tasks: 3D classification, 3D object detection, 3D object tracking, and 3D segmentation. This work also points
out the existing challenges and possible development direction. We always hold the belief that LiDAR-only
and LiDAR-fusion 3D perception systems would feedback a precise and real-time description of the real-world
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Table 8. Fusion stage and fusion methods of LiDAR-fusion tasks. Here, ”I” represents image; ”L” represents LiDAR point cloud; ”R”
represents Radar point cloud. Duplicate articles between classification and detection are merged to detection part

Task Model Input FusionStage Details of the Fusion Method

Classification ImVoteNet [48] I&L Late fusion Lift 2D image votes, semantic and texture cues to the 3D seed points

Detection

3D-CVF [64] I&L Early fusion Adaptive Gated Fusion: spatial attention maps to mix features according to the region
Roarnet [65] I&L Late fusion 3D detection conducts in-depth inferences recursively with candidate regions from 2D
MV3D [12] I&L Early fusion Region-based fusion via ROI pooling
SCANet [46] I&L Early fusion The multi-level fusion module fuses the region-based features
MMF [47] I&L Multi fusion Region-wise features from multiple views are fused by a deep fusion scheme

Pointpainting [66] I&L Early fusion Sequential fusion: project point cloud into the output of image semantic seg. network
CM3D [67] I&L Early fusion Two stage: point-wise feature and ROI-wise feature fusion

MVDNet [28] R&L Early fusion Region-wise features from two sensors are fused to improve final detection results
CLOCs [69] I&L Late fusion Output candidates of image and LiDAR point cloud before NMS are fused

Tracking

MSRT [85] I&L Late fusion 2D bbox is converted to 3D bbox that are fused to associate between sensor data
MS3DT [86] I&L Early fusion Object proposals generated by MV3D as input of the match network to link detections

Compl.-YOLO [87] I&L Late fusion Semantic Voxel Grid: project all relevant voxelized points into the semantic image
F-Siamese [88] I&L Late fusion 2D region proposals are extruded into 3D viewing frustums

Semantic
Seg.

3DMV [107] I&L Early fusion 3D geometry and per-voxel max-pooled images features are fed into two 3D conv.
SuperSensor [95] I&L Late fusion Segmentation results from the image space are transferred onto 3D points

FuseSeg [3] I&L Early fusion Fuse RGB and range image features with point correspondences and feed to net
PMF [109] I&L Early fusion Residual-based fusion modules fuse image features into LiDAR stream network

Instance
Seg.

Pano.Fusion [116] I&L Late fusion 2D panoptic segmentation outputs are fused with depth to output volumetric map
F-PointNets [117] I&L Late fusion Frunstum proposal: extrud each 2D region proposal to a 3D viewing frustum

environment. We hope that this introductory survey serves as a step in the pursuit of a robust, precise, and
efficient 3D perception system and guides the direction of its future development.
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Abstract
Movingobject detection is a challenging task in the automaticmonitoring field, which plays a crucial role inmost video-
based applications. The visual background extractor (ViBe) algorithm has been widely used to deal with this problem
due to its high detection rate and low computational complexity. However, there are some shortcomings in the general
ViBe algorithm, such as the ghost area problem and the dynamic background problem. To deal with these problems,
an improved ViBe approach is presented in this paper. In the proposed approach, a mode background modeling
method is used to accelerate the process of the ghost elimination. For the detection of moving object in dynamic
background, a local adaptive threshold and update rate is proposed for the ViBe approach to detect foreground and
update background. Furthermore, an improved shadow removal method is presented, which is based on the HSV
color space combined with the edge detection method. Finally, some experiments were conducted, and the results
show the efficiency and effectiveness of the proposed approach.
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1. INTRODUCTION
The real-time detection of moving objects is an essential task in the computer vision field, which has wide ap-
plications, including target tracking, video surveillance, abnormal behavior analysis, intelligent robot, etc [1–5].
There are still many challenges of the moving object detection under natural scenes, such as illumination
changes, swaying leaves, and shadow changes [6,7]. Therefore, it has attracted more and more attention from
researchers recently.

There aremany research achievements inmoving object detection. For example, Sengar andMukhopadhyay [8]

proposed a motion detection method using block based bi-directional optical flowmethod. Chen et al. [9] pro-
posed an end-to-end deep sequence learning architecture for moving object detection. Li et al. [10] presented
a novel technique for background subtraction based on the dynamic autoregressive moving average (ARMA)
model. These methods used for moving objects detection can be divided into three main types: the optical
flow method, the deep learning method, and the difference method. In addition, the difference methods are
further divided into three categories [11,12], namely the unsupervised method [13], the supervised method [14,15],
and the semi-supervised method [16,17]. There are some drawbacks in the optical flow method, such as com-
plex computation and sensitivity to illumination mutation, which is not suitable for real-time moving objects
detection [18]. Compared with traditional algorithms, deep learning methods have the advantages of high de-
tection accuracy and strong fitting ability, but the size of the dataset determines the effect of detection, and
it is difficult to meet the needs of deploying in some special scenarios at any time without sufficient samples.
At the same time, they have higher requirements on the hardware environment, so the computational cost of
deep learning-based algorithms is higher than that of traditional algorithms [19–21]. The background difference
method has become the most widely used method for its outstanding superiorities in computation complexity
and efficiency, which is the hot spot in moving object detection field [22]. However, the detection results of the
background difference method depend on the accuracy of the background model. The way of establishing a
robust background model is the key to this method.

There are many methods for moving object detection based on background difference methods, including
Gaussian single model (GSM), Gaussian mixture model (GMM), and visual background extractor (ViBe)
method [23,24]. ViBe algorithm is a sample-basedmoving object detectionmethod, which has the advantages of
less calculation, small footprint, and fast processing speed. It is suitable for the real-time detection of moving
objects. Many researchers are focusing on the ViBe-based method of moving object detection. For example,
Talab et al. [25] proposed an approach for moving crack detection in video based on ViBe and multiple filter-
ing. Gao and Cheng [26] presented the use of the ViBe algorithm to extract smoke contours and shapes, which
finally makes the detection of smoke root more accurate. However, there are some deficiencies of the general
ViBe algorithm. For example, when the first frame of the video contains a moving object, there will be a ghost
area left in the current location, which will need a long time to be removed. In addition, there is often a shadow
problem in moving object detection based on the general ViBe algorithm.

To deal with the problems above for moving object detection based on ViBe method, various improvements
have been proposed. For example, Huang et al. [27] proposed a moving target detection algorithm based on the
improved ViBe algorithm by joining TOM (time of map) mechanism in the process of detection, where both
the spatial domain and the time domain information of the pixels were used to eliminate the ghost area. Qiu
et al. [28] presented a moving object detection method based on the strategy of ViBe algorithm and fused the
infrared imaging features, which can establish the pure background in a variety of complex conditions. Yue
et al. [29] introduced ant colony clustering algorithm and integrated it into the traditional ViBe framework and
extended the ViBe based on local modeling to a global modeling algorithm, which can deal with the target
adhesion problems but cannot effectively process shadows. The works above improve the performance of the
ViBe-based method to some extent. However, few of them considered the problems comprehensively. For
example, some methods considered the shadow problem, but they need a long computation time [30,31].
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In this paper, an improved ViBe-based approach is proposed, where the problems of moving object detection
under natural scenes are fully considered including the ghost area problem, the dynamic background problem,
and the shadows problem, and some solutions are presented. Finally, various experiments were conducted
under different scenes for moving object detection task. The results show the efficiency and effectiveness of
the proposed approach.

The main contributions of this paper are summarized as follows: (1) A new background model based on
mode background modeling method is proposed to eliminate the ghost areas quickly; (2) An improved ViBe
approach is proposed based on an adaptive foreground detection and background updating method, where
the value of the eight neighboring pixels difference between the background and the current frame is used. (3)
A novel shadow elimination approach is presented, which is based on the HSV color space combined with
the edge detection method. Furthermore, the computation time and background updating mechanism of the
proposed approach are discussed.

This paper is organized as follows. Section 2 provides the related works about the ViBe-based method. Sec-
tion 3 presents the improved ViBe-based method for moving object detection. The moving object detection
experiments under various natural scenes are given in Section 4. Section 5 discusses the performance of the
proposed approach. Finally, the conclusions are given in Section 6.

2. RELATED WORKS
In the past few years, various foreground target detection methods have been proposed to build powerful and
flexible background models that can be used in surveillance scenarios with different challenges. One of the
most widely used probabilistic models is the GMM [32], which models each pixel using a mixture of Gaussian
models rather than modeling all pixel values as a distribution. For example, Kaewtrakulpong and Pakorn [33]

modified the update equation of GMM for improving the accuracy and proposed a shadow detection scheme
based on the existing GMM. Hofmann et al. [34] used a constantly adapted number of Gaussian distributions
of the GMM for each pixel.

As for nonparametric approaches, Barnich and Droogenbroeck [35,36] proposed the ViBe-based method, where
the current pixel value is compared to its closest sample within the collection of samples. First, the pixel values
of the detected frames are matched with the corresponding models. The threshold value determines whether
it belongs to the background or the foreground; for the matching pixel, the background model of the pixel and
its neighborhood is updated by a random update mechanism. The method is simple to operate and detects
well in static backgrounds but has fixed parameters. This limits the algorithm’s ability to adapt to dynamic
backgrounds (surface ripples, leaf shaking, etc.), and its neighborhood diffusion update strategy causes slower-
moving foreground targets to blend into the background too quickly, increasing false detections. Its single-
frame input image initialization strategy creates a “ghost” area when the input image contains foreground
targets. In addition, there is often a shadow problem in moving object detection based on the general ViBe
algorithm, which affects the accuracy of the background model.

To deal with the problems above for moving object detection based on ViBe method, various improvements
have been proposed. For example, Zhu et al. [37] proposed a fast and efficient improvement of ViBe algorithm
based on the edge characteristic info and neighborhoodmean filter, but there are a lot of holes inside the detec-
tion area. Chen et al. [38] combined physical shadow theory and C1C2C3 color space for the shadow removal.
Yang et al. [39] used two thresholds to describe the uncertainty in the ViBe-based color video detection, and
they used evidence theory to model and handle the uncertainty. Liu et al. [40] used the temporal and spatial
information of the pixels to initialize the background model, and then combined the background sample set
with the neighborhood pixels to determine the complexity of the background and obtain an adaptive segmen-
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Figure 1. Flow diagram of the improved ViBe-based approach for moving object detection.

tation threshold, which can also obtain a better performance in complex dynamic backgrounds but cannot
effectively remove shadows.

3. METHODS
In this paper, the problem of moving object detection based on ViBe method is studied. The basic idea of the
ViBe method uses neighboring pixels to establish the background model and then compares the background
model with the current pixel value to detect the foreground. There are three main steps in the ViBe method,
namely the background initialization, the foreground object detection, and the background model updating.
Aiming at the problems in the three main steps, some improvements are proposed in this study. The flow chart
of the proposed approach is shown in Figure 1 and the main steps of the proposed approach are introduced in
detail as follows.

3.1. Mode method based background modeling
The initial background selection is the first step in the ViBe-based method, which will directly influence the
detection results. If it can be extracted correctly, the accuracy of the object detection will increase. In general,
the ViBe method uses the first frame as the initial background [41], namely

𝐵(𝑥, 𝑦) = 𝑉𝐹 (𝑥, 𝑦) (1)

where 𝐵(𝑥, 𝑦) is the pixel value of the background and𝑉𝐹 (𝑥, 𝑦) is the pixel value of the first frame in the video.
Although the method using the first frame is simple and efficient, it will fail when there is a moving object
in the first frame. To deal with this problem, some improvements are proposed, such as the mean method,
which needs to store more video frames and has the problem of shadows [42]. In this paper, the mode method
is introduced to extract the initial background frame [43]. The basic idea of the mode method for background
modeling is that few previous frames are used to obtain an optimized background model. The pixel value of
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 Initialize the parameters; Input the prepared image to matrix Im; 

For  n = 1:N_Frame      % N_Frame is first few frames of video；

Iy = Convert_gray ( Im )   % Convert the image Im to a gray image Iy; 

Θ = Save_gray ( Iy )      % Save the grayscale value of Iy to the array; 

End for 

For  j = 1:N_Pixel         % N_Pixel is the number of pixels in the image;

C = Ceil ( Θ/E ) 

% Ceil ( ) is a function to rounds the elements of the data to the nearest integers towards 

infinity; E is an integer number. 

Mf = Mode ( C ) 

% Mode ( ) is a function to returns the sample mode of C, which is the most frequently 

occurring value in C; 

Num = Count ( C==Mf ) 

%Count ( ) is a function to calculate the number of the pixel where C==Mf 

Mode_save = Mf 

% Save the mode value of Mf to the array;  

R (x, y) = Mode_save (x, y)*E  

% Calculate the value of the array; 

End for 

Return B (x, y) = R (x, y) 

% Output the initial background image Ib, which is constructed by the pixel B(x, y); 

//// The pseudo-code of the Mode Background Method //// 

Figure 2. The pseudo-code of the mode background method.

the background is calculated by

𝐵(𝑥, 𝑦) =

𝑁𝑢𝑚∑
𝑘=1

𝑉𝑘 (𝑀ode(𝐶))

𝑁𝑢𝑚
(2)

where𝑀𝑜𝑑𝑒(𝐶) is a function to return themode number of the sample, which is themost frequently occurring
value in this sample. 𝑁𝑢𝑚 is the number of the mode numbers in the sample. Here, 𝐶 is defined as follows:

𝐶 = 𝐶𝑒𝑖𝑙 (Θ/𝐸) (3)

where 𝐶𝑒𝑖𝑙 (·) is a function to round the elements of the data to the nearest integers towards infinity. Θ is the
grayscale value of the gray image obtained from the original image. To extract most of the numbers appearing
in the array Θ by the function 𝐶𝑒𝑖𝑙 (·), the range of Θ is reduced by dividing an integer 𝐸 . In this study, 𝐸 is
set as 5, namely the grayscale images are separated with five grayscale levels, which can improve the contrast
of different elements in the image and reduce the influence of small speckles on target extraction. The pseudo-
code of the mode method for background modeling is shown in Figure 2.

After the background of the video is established, the ViBe method is used to initialize the background model,
which is based on the domain model. For each pixel 𝑝(𝑥, 𝑦) of the background image, the sample set 𝑀 (𝑥, 𝑦)
of it is:

𝑀 (𝑥, 𝑦) = {𝑉1, 𝑉2, · · ·𝑉𝑛}, 𝑖 = 1, 2, · · · 𝑛 (4)

where 𝑛 is the number of the neighboring sample. 𝑉𝑖 is the value of a sample that is randomly chosen from
the 8-connected neighborhood of each pixel (see Figure 3a). When the sample sets of all the pixels in the
background are obtained, a background model is set up.
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Figure 3. The ViBe-based method: (a) the eight neighbor domain; and (b) the background model of ViBe.

3.2. Adaptive updating mechanism for ViBe method
When the background of the video is established, the next step is to detect the moving objects. The basic
discrimination mechanism for the general ViBe method is as follows: for each pixel in the new frame of the
video, a sphere 𝑆𝑅 (𝑉 (𝑥, 𝑦)) of radius 𝑅 centered on the value 𝑉 (𝑥, 𝑦) of the pixel is defined (see Figure 3b).
Then, the pixel of the new frame can be determined as the background or foreground by [44]:

𝐹𝑙𝑎𝑔1(𝑥, 𝑦) =
{

1, Ψ{𝑆𝑅 (𝑉 (𝑥, 𝑦)) ∩ 𝑀 (𝑥, 𝑦)} ≤ 𝐾
0, Ψ{𝑆𝑅 (𝑉 (𝑥, 𝑦)) ∩ 𝑀 (𝑥, 𝑦)} > 𝐾

(5)

where functionΨ{𝑆𝑅 (𝑉 (𝑥, 𝑦))∩𝑀 (𝑥, 𝑦)}means the cardinality of the set intersection of the sphere 𝑆𝑅 (𝑉 (𝑥, 𝑦))
and the collection of 𝑀 (𝑥, 𝑦). 𝐾 is a threshold. If 𝐹𝑙𝑎𝑔1(𝑥, 𝑦) = 1, it means the pixel point 𝑝(𝑥, 𝑦) belongs to
foreground. Otherwise, it means the pixel point 𝑝(𝑥, 𝑦) belongs to background.

The last step is to randomly update the backgroundmodelwith each new frame. Because of the strong statistical
correlation between a pixel and its neighboring pixel, when a pixel is detected as the background pixel, it has
a probability of 1/𝛼 to update model sample set (where 𝛼 is called update rate). Meanwhile, it also has the
probability of 1/𝛼 to update the background model of neighboring pixels.

From the discriminationmechanism of the original ViBe algorithm in Figure 3a,b, we can see that the detection
radius 𝑅 and the update rate 𝛼 are two very important parameters. In general, the detection radius 𝑅 should be
larger and the update rate 𝛼 should be smaller in the dynamic background, to make more pixels be classified
as background, and vice versa. However, in the general ViBe algorithm, the values of the parameters 𝑅 and 𝛼
are predefined by the designers, which reduce the adaptivity of the ViBe algorithm. Because the value of the
eight neighboring pixels difference between the background and the current frame is the factor that can reflect
the complex degree of background, it is used to determine the values of the detection radius 𝑅 and the update
rate 𝛼 adaptively. Namely,

𝑅 =

{
𝑅0 · (1 + 𝑎), 𝑎 > 𝜏0
𝑅0 · (1 − 𝑎), 𝑎 ≤ 𝜏0

(6)

𝛼 =

{
𝛼0 · (1 − 𝑎), 𝑎 > 𝜏0
𝛼0 · (1 + 𝑎), 𝑎 ≤ 𝜏0

(7)

where 𝑅0 and 𝛼0 are the initial values of the detection radius 𝑅 and the update rate 𝛼; 𝜏0 is a threshold; and 𝑎
is a parameter to judge the change of the current scenario, which is calculated by

𝑎=
∑
𝐷𝑘+1(𝑥, 𝑦)
𝑁

(8)
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Here, 𝑁 is the number of pixels. 𝐷 (𝑥, 𝑦) is the difference of the pixels between two images 𝐼𝑘+1(𝑥, 𝑦) and
𝐼𝑘 (𝑥, 𝑦), namely

𝐷𝑘+1(𝑥, 𝑦) =
{

0, |𝐼𝑘+1(𝑥, 𝑦) − 𝐼𝑘 (𝑥, 𝑦) | < 𝜏1
1, Otherwise

(9)

where 𝜏1 is a threshold to reduce the effects of the moving objects.

Remark: The mode background method can eliminate the foreground target that appears in the previous
frames. The subsequent frames of the video sequence continuously update the “ghost” area to set it as the
background, which can effectively speed up the “ghost” area removal.

3.3. Shadow removal strategy
Shadow is a common problem in moving object detection, and how to remove the shadow is a hot topic in
the field of computer vision [45,46]. In this paper, an improved method based on the HSV color space is used
to complete the shadow removal task. The main reason for using the HSV color space is that it is very close to
the characteristics of human vision considering the existing methods, which is more accurate than RGB color
space for shadow removal. However, there are many parameters of the traditional HSV that need to be set in
different video environments, such as the thresholds used for the shadow judgment [47]. In addition, when there
is no significant difference on the color attribute between the moving object and the shaded area, the accuracy
of shadow removal based on the traditional HSV color space will be decreased. To deal with these problems,
an improved shadow removal strategy is proposed in this paper. The basic idea of the proposed method is that
the shadow area can be effectively distinguished by using the characteristics of shadow intensity reduction and
color invariance theory, because the HSV color space can directly reflect the color characteristics of the image.
The main procedures of the proposed method are as follows:

(1) The HSV space transformation is done. Then, the values of the 𝐻, 𝑆, and 𝑉 components are obtained.
Since the value𝑉 is a direct measure of the brightness of the color, the brightness of these pixels is significantly
reduced in the shadow part. The difference of the brightness is denoted as 𝐷𝑉 (𝑥, 𝑦), which is defined as follows:

𝐷𝑉 (𝑥, 𝑦) = 𝑡𝑉 (𝑥, 𝑦)/𝐵𝑉 (𝑥, 𝑦) (10)

where 𝑡𝑉 (𝑥, 𝑦) is the 𝑉 value of current image frame. 𝐵𝑉 (𝑥, 𝑦) is the 𝑉 value of background frame. For any
pixel points 𝑝(𝑥, 𝑦), the brightness value between the current frame and background frame is used to determine
whether the current pixel is a shadow point. The decision strategy is as follows:

𝐹𝑙𝑎𝑔2(𝑥, 𝑦) =
{

1, 𝜏2 ≤ 𝐷𝑉 (𝑥, 𝑦) ≤ 𝜏3
0, Otherwise

(11)

where 𝐹𝑙𝑎𝑔2(𝑥, 𝑦) is a flag. 𝜏2 and 𝜏3 are two thresholds for shadow detection.

(2) When the chromaticity of the object is similar to the shadow, the shadow area will be enlarged based on
the brightness detection above. To deal with this problem, an improved method is proposed based on the
forming mechanism of shadow. Namely, for each shadow pixel 𝑝(𝑥, 𝑦), its darkness level is limited, because it
is darkened for the blocking out of the illumination source, but there is the presence of ambient illumination.
In addition, the shadow pixels are mostly in gray areas. The decision strategy is as follows:

𝐹𝑙𝑎𝑔3(𝑥, 𝑦) =
{

1, 𝑡𝑆 (𝑥, 𝑦) ≤ 𝜆1 and 𝑡𝑉 (𝑥, 𝑦) ≥ 𝜆2
0, Otherwise

(12)

where 𝐹𝑙𝑎𝑔3(𝑥, 𝑦) is a flag; 𝑡𝑆 (𝑥, 𝑦) is the saturation of the pixel point of current image frame; 𝜆1 is the maxi-
mum value of the saturation in the gray range; and 𝜆2 is the minimum value within the gray range. Then, the
shadow area can be detected by:

𝐼 (𝑥, 𝑦) =
{

1, 𝐹𝑙𝑎𝑔2(𝑥, 𝑦) = 1 and 𝐹𝑙𝑎𝑔3(𝑥, 𝑦) = 1
0, Otherwise

(13)
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At the same time, to ensure the integrity of the foreground targets, the Canny edge detection is performed after
finding the different image between the current frame and the background frame [48].

The whole work flow of the proposed approach for the moving objects detection is as follows:

Step1: Initialize the background model based on the mode method.

Step2: Convert the current frame and the background model to gray space, and then detect the foreground
objects which include shadows, based on the proposed ViBe algorithm with the adaptive detection radius 𝑅
and update rate 𝛼.

Step3: Convert HSV color space transformation for the current frame and detect the shadows by the color
invariance theory at the shadow and the background.

Step4: Carry out an “AND” operation on the results obtained from Steps 2 and 3 to remove the shadow of the
foreground targets.

Step5: Find the difference image between the current image frame and the background frame and perform
Canny edge detection.

Step6: Carry out an “OR” operation on the results obtained from Steps 4 and 5 to ensure the integrity of the
foreground objects.

4. RESULTS
To test the performance of the proposed approach, some experiments were carried out on several benchmark
datasets including Highway, Bungalow, Cars, and People [49,50]. These experiments were coded by Python on a
computer with 8G RAM and i7-4720HQ 2.60GHz CPU. Seven indices were used to evaluate the performance
of detection: recognition rate of foreground (RE), recognition rate of background (SP), false positive rate (FPR),
false negative rate (FNR), percentage of wrong classification (PWC), precision (PRE), and F-score (F) (see [51]

for the details of these indices). For these indices, the larger are the RE, SP, PRE, F, the more accurate is the
detected target area, and the smaller are the FPR, FNR, PWC, the more accurate is the detected background.
The values of the parameters used in these experiments are the same and listed in Table 1. To show the efficiency
of the proposed improved approach (I-ViBe), it was compared with the Gaussianmixturemodel basedmethod
(GMM) and the general ViBe-basedmethod (G-ViBe). In the general ViBe-basedmethod, the detection radius
𝑅 and the update rate 𝛼 are equal to 𝑅0 and 𝛼0 in the proposed approach.

4.1. The experiment for single object detection
To test the basic performance of the proposed approach, two experiments were conducted where only one
object was detected. The datasets used for this experiment were Walk (Clip1) and Bungalows (Clip2). Two
clips of the two videos were used to test the three detection methods, where the frame with the moving object
was used as the detection frame (see Figure 4b). The results of the two experiments are shown in Figure 4. The
evaluations for the three methods are listed in Table 2.

The results in Figure 4 show that all the three methods can detect the moving object effectively in this simple
experiment, and the results in Table 2 show that the proposed approach has better detection results in most
of the indices than the other two methods. In addition, the detection results on Walk (Clip1) show that the
general ViBe cannot deal with the ghost problem, while the proposed ViBe can remove the ghost area very
well. The detection results on Bungalows (Clip2) show that the proposed ViBe can remove the shadow more
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Table 1. Parameters of the proposed method

Parameters Values Remarks

𝐸 5 A given threshold in Equation (3)

𝐾 1 A given threshold in Equation (5)

𝑅0 20 The initial detection radius

𝛼0 16 The initial update rate

𝜏0 0.2 A given threshold in Equations (6) and (7)

𝜏1 1 A given threshold in Equation (9)

𝜏2 0.2 A given threshold in Equation (11)

𝜏3 0.7 A given threshold in Equation (11)

𝜆1 43 A given threshold in Equation (12)

Clip1

Clip2

  (a)   (b)   (c)   (d)   (e)   (f)

Figure 4. The moving object detection experiments on the videoWalk (Clip1) and Bungalows (Clip2): (a) the first frame; (b) the frame for
detection; (c) the ground-truth; (d) the result of GMM; (e) the result of G-ViBe; and (f) the result of I-ViBe.

Table 2. The valuation of the three methods for moving object detection inWalk and Bungalows

The valuation The video clip of Walk The video clip of Bungalows

indices GMM [32] G-ViBe [35] I-ViBe GMM [32] G-ViBe [35] I-ViBe

SP 0.9995 0.9804 0.9985 0.9310 0.9401 0.9854

RE 0.7758 0.9483 0.9612 0.8570 0.7999 0.9636

FPR 0.0004 0.0195 0.0014 0.0689 0.0598 0.0145

FNR 0.2241 0.0516 0.0387 0.1429 0.2000 0.0363

PWC 0.0060 0.0203 0.0021 0.0826 0.0879 0.0186

PRE 0.9779 0.5647 0.9272 0.7395 0.7702 0.9390

F 0.8652 0.7079 0.9493 0.7939 0.7847 0.9511

effectively than the other two methods (see Figure 4e,f).

4.2. The experiment for multiple objects detection
To test the performance of the proposed approach in multiple moving objects detection, two experiments
were conducted on the dataset Highway (Clip1) and People (Clip2). The results are shown in Figure 5, and the
evaluations for the three methods in this experiment are shown in Table 3.

The results of the experiment onHighway (Clip1) show that there are lots of errors based on the GMMmethod
and the general ViBe method, because there are some leaves shaking in the background having similar color
attribute with the vehicles. However, the proposed approach can deal with this problem efficiently, which is
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Clip1

Clip2

  (a)   (b)   (c)   (d)   (e)   (f)

Figure 5. The moving object detection experiments on the video Highway (Clip1) and People (Clip2): (a) the first frame; (b) the frame for
detection; (c) the ground-truth; (d) the result of GMM; (e) the result of G-ViBe; and (f) the result of I-ViBe.

Table 3. The valuation of the three methods for moving objects detection on Highway and People

The valuation The video clip1 The video clip2

indices GMM [32] G-ViBe [35] I-ViBe GMM [32] G-ViBe [35] I-ViBe

SP 0.8765 0.9910 0.9979 0.9998 0.9915 0.9992

RE 0.7843 0.8554 0.9674 0.1545 0.8616 0.9849

FPR 0.1234 0.0089 0.0020 0.0001 0.0084 0.0007

FNR 0.2156 0.1445 0.0325 0.8454 0.1383 0.0150

PWC 0.1307 0.0196 0.0041 0.0059 0.0097 0.0008

PRE 0.3532 0.8918 0.9713 0.8834 0.5110 0.8943

F 0.4871 0.8732 0.9694 0.2630 0.6415 0.9374

Clip1

Clip2

  (a)   (b)   (c)   (d)   (e)   (f)

Figure 6. The moving object detection experiments under challenging conditions: (a) the first frame; (b) the frame for detection; (c) the
ground-truth; (d) the result of GMM; (e) the result of G-ViBe; and (f) the result of I-ViBe.

combined with the edge information (see Figure 5 and Table 3). Furthermore, there are also ghost problems in
the detection results of the experiment on People (Clip2) based on the G-ViBe, because the first frame includes
the moving objects (see Figure 5e).

4.3. The experiment under challenging conditions
To further test the performance of the proposed method for moving object detection under some challenging
conditions, two extensive experiments were conducted in the dataset of Fall (Clip1) and Boulevard (Clip2),
respectively. In the Fall dataset, the background is changing obviously because of the leaves shaking violently.
In the Boulevard dataset, the video is blurry due to the shake of the camera. The results of these experiments
are shown in Figure 6 and Table 4.

The results in the two experiments show that the performances of all the three methods decrease under dy-
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Table 4. The valuation of the three methods for moving object detection under challenging conditions

The valuation The video Clip1 The video Clip2

indices GMM [32] G-ViBe [35] I-ViBe GMM [32] G-ViBe [35] I-ViBe

SP 0.9547 0.8765 0.9960 0.9850 0.9025 0.9974

RE 0.8755 0.7496 0.7184 0.8643 0.9258 0.9574

FPR 0.0452 0.1234 0.0039 0.0149 0.0974 0.0025

FNR 0.1244 0.2503 0.2815 0.1356 0.0741 0.0425

PWC 0.0481 0.1285 0.0106 0.0219 0.0957 0.0051

PRE 0.4245 0.2016 0.8202 0.7819 0.4173 0.9617

F 0.5718 0.3178 0.7659 0.8210 0.5753 0.9595

  (a)   (b)   (c)   (d)   (e)   (f)

Figure 7. The moving object detection experiments on the video Fall: (a) the first frame; (b) the frame for detection; (c) the ground-truth;
d) the result of G-ViBe; (e) the result of F-ViBe; and (f) the result of I-ViBe.

namic environments. Themain reason is that all the threemethods are based on themechanism of background
subtraction. However, the performance of the proposed approach does not decrease dramatically compared
with other two methods (see the values of PRE and F in Table 4). This performance of the proposed approach
is very important for the real application of moving object detection.

5. DISCUSSION
The results presented in Section 3 show that the proposed approach can deal with the ghost area problem and
remove the shadow very well. In addition, the evaluation indices of the proposed approach are better than the
GMM method and the general ViBe method. In this section, some performances of the proposed approach
are discussed, including the computation complexity and the background updating mechanism.

One key part of the ViBe-based approach is the background updating mechanism, so the performance of the
improvement in this part for the proposed method is discussed first. An experiment was conducted in the
dataset of Fall, where the proposed approach was compared with two methods. The first one is the general
ViBe. The second one is a method which has the same parameters and work flow as the proposed approach,
except that the background updating mechanism is based on the fixed detection radius and updating rate,
and this method is called F-ViBe. The experimental results of Section 3.3 are used as reference, as shown in
Figure 7 and Table 5. The experimental results show that the proposed approach can deal with the dynamic
environment better than the other two methods. Thus, the background updating mechanism is very efficient
for moving object detection under complex environment. In addition, the detection radius and updating rate
of the F-ViBe method are given by the designer, which need more experience and time.

Another important index of themoving object detectionmethod is the real time problem, because the speed of
the moving object is very high sometimes. The proposed approach has two main differences with the general
ViBe method, the background modeling and updating mechanism and the shadow removal strategy. Thus,
the time needed in all the three experiments of Clip1 in Section 3 is divided into two parts, the time for the
background modeling and the time for moving object detection (including background updating).
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Table 5. The moving object detection experiments based on different background discrimination mechanism

The valuation indices G-ViBe [35] F-ViBe I-ViBe

SP 0.8765 0.9738 0.9960

RE 0.7496 0.7394 0.7184

FPR 0.1234 0.0261 0.0039

FNR 0.2503 0.2605 0.2815

PWC 0.1285 0.0328 0.0106

PRE 0.2016 0.4551 0.8202

F 0.3178 0.5634 0.7659

Table 6. The moving object detection experiments based on different background discrimination mechanism

The video Computation time (s) GMM [32] G-ViBe [35] I-ViBe

Clip1 of Section 4.1 background modeling 0.4042 1.9662

(180 ∗ 144) object detection 0.0337 0.1028 0.1508

Clip1 of Section 4.2 background modeling 0.4077 2.0265

(320 ∗ 240) object detection 0.0353 0.1049 0.2503

Clip1 of Section 4.3 background modeling 0.4966 2.2822

(720 ∗ 480) object detection 0.0798 0.1229 0.4138

The results in Table 6 show that more time for the object detection is needed using G-ViBe and I-ViBe than the
GMMmethod, because the GMMmethod selects the initial background frame randomly. For high resolution
videos, the proposed ViBe method takes more time to compare the values of pixels in each channel of the HSV
space, so the time for object detection increases. In addition, the results show that more time is needed in
the ViBe based approach during the background modeling process, which can be off-line proceeded and will
not affect the real-time moving object detection. For off-line processing, multiple images of the detection area
can be collected in advance, and the mode background method can be used for modeling. In the subsequent
detection tasks, there is no need to repeat the modeling. Thus, the proposed approach has a better comprehen-
sive performance than both the GMMmethod and the G-ViBe method, although the computation time of the
proposed approach is relatively higher than the other two methods, which is a problem for further study.

6. CONCLUSIONS
In this paper, we present an improved moving object detection approach based on ViBe algorithm. During
the process of foreground region extraction, the initial background is obtained by the previous few frames
and then updated by the value of the eight neighboring pixel difference between the background and the
current frame. In addition, a shadow removal strategy is adopted by combining the HSV color space and the
edge information. Most of the parameters in the proposed method are calculated adaptively, which is very
important for the adaptivity of moving object detection method. The experiments showed that the proposed
approach can deal with moving object detection efficiently in various situations, such as the severe shadow
problems in the foreground and the presence of moving objects in the first frame. In addition, the proposed
approach can be used for real-time moving object detection. In future work, some more efficient methods
based on artificial intelligence algorithms should be studied to improve the accuracy and real-time ability for
moving object detection.
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Abstract
Since 2016 federated learning (FL) has been an evolving topic of discussion in the artificial intelligence (AI) research
community. Applications of FL led to the development and study of federated reinforcement learning (FRL). Few
works exist on the topic of FRL applied to autonomous vehicle (AV) platoons. In addition, most FRL works choose a
single aggregation method (usually weight or gradient aggregation). We explore FRL’s effectiveness as a means to
improve AV platooning by designing and implementing an FRL framework atop a custom AV platoon environment.
The application of FRL in AV platooning is studied under two scenarios: (1) Inter-platoon FRL (Inter-FRL) where FRL
is applied to AVs across different platoons; (2) Intra-platoon FRL (Intra-FRL) where FRL is applied to AVs within a
single platoon. Both Inter-FRL and Intra-FRL are applied to a custom AV platooning environment using both gradient
and weight aggregation to observe the performance effects FRL can have on AV platoons relative to an AV platooning
environment trained without FRL. It is concluded that Intra-FRL using weight aggregation (Intra-FRLWA) provides the
best performance for controlling anAVplatoon. In addition, we found thatweight aggregation in FRL forAVplatooning
provides increases in performance relative to gradient aggregation. Finally, a performance analysis is conducted for
Intra-FRLWA versus a platooning environment without FRL for platoons of length 3, 4 and 5 vehicles. It is concluded
that Intra-FRLWA largely out-performs the platooning environment that is trained without FRL.

Keywords: Deep reinforcement learning, autonomous driving, federated reinforcement learning, platooning

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0
International License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, shar­

ing, adaptation, distribution and reproduction in any medium or format, for any purpose, even commercially, as long as you
give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate
if changes were made.

www.intellrobot.com

https://creativecommons.org/licenses/by/4.0/
www.intellrobot.com


Page 146 Boin et al. Intell Robot 2022;2(2):145­67 I http://dx.doi.org/10.20517/ir.2022.11

1. INTRODUCTION
In recent years, federated learning (FL) and its extension federated reinforcement learning (FRL) have become
a popular topic of discussion in the artificial intelligence (AI) community. The concept of FL was first proposed
byGoogle with the development of the federated averaging (FedAvg) aggregationmethod [1]. FedAvg provided
an increase in the performance of distributed systems while also providing privacy advantages when compared
to centralized architectures for supervised machine learning (ML) tasks [1–3]. FL’s core ideology was initially
motivated by the need to train ML models from distributed data sets across mobile devices while minimizing
data leakage and network usage [1].

Research on the topics of reinforcement learning (RL) and deep reinforcement learning (DRL) has made great
progress over the years; however, there remain important challenges for ensuring the stable performance of
DRL algorithms in the real world. DRL processes are often sensitive to small changes in the model space
or hyper-parameter space, and as such the application of a single trained model across similar systems often
leads to control inaccuracies or instability [4,5]. In order to overcome the stability challenges that DRL poses,
often a model must be manually customized to accommodate the finite differences amongst similar agents
in a distributed system. FRL aims to overcome the aforementioned issues by allowing agents to share private
information in a secure way. By utilizing an aggregation method, such as FedAvg [1], systems with many agents
can have decreased training times with increased performance.

Despite the popularity of FL and FRL, to the best of our knowledge at the time of this study, there are no works
applying FRL to platoon control. In general, there are two types of “models” for AV decision making: vehicle-
following modeling and lane-changing modeling [6]. For the purposes of this study, the vehicle-following ap-
proach known as co-operative adaptive cruise control (CACC) is explored. Vehicle followingmodels are based
on following a vehicle on a single lane road with respect to a leading vehicle’s actions [7]. CACC is a multi-
vehicle control strategy where vehicles follow one another in a line known as a platoon, while simultaneously
transmitting vehicle data amongst each other [8]. CACC platoons have been proven to improve traffic flow sta-
bility, throughput and safety for occupants [8,9]. Traditionally controlled vehicle following models have limited
accuracy, poor generalization from a lack of data, and a lack of adaptive updating [7].

We are motivated by the current state-of-the-art for CACC AV Platoons, along with previous works related
to FRL, to apply FRL to the AV platooning problem and observe the performance benefits it may have on the
system. We propose an FRL framework built atop a custom AV platooning environment in order to analyse
FRL’s suitability for improvingAVplatoon performance. In addition, two approaches are proposed for applying
FRL amongst AV platoons. The first proposed method is inter-platoon FRL (Inter-FRL), where FRL is applied
to AVs across different platoons. The second proposed method is intra-platoon FRL (Intra-FRL), where FRL is
applied to AVs within the same platoon. We investigate the possibility of Inter-FRL and Intra-FRL as a means
to increase performance using two aggregation methods: averaging model weights and averaging gradients.
Furthermore, the performance of Inter-FRL and Intra-FRL using both aggregation methods is studied relative
to platooning environments trained without FRL (no-FRL). Finally, we compare the performance of Intra-FRL
with weight averaging (Intra-FRLWA) against a platooning environment trained without FRL for platoons of
length 3, 4 and 5 vehicles.

1.1. Related works
In this subsection, the current state-of-the-art is presented for FRL and DRL applied to AV’s. In addition the
contributions of this paper are presented.
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1.1.1. Federated reinforcement learning
There are two main areas of research in FRL currently: horizontal federated reinforcement learning (HFRL),
and vertical federated reinforcement learning (VFRL). HFRL has been selected as the algorithm of choice
for the purposes of this study. HFRL and VFRL differ with respect to the structure of their environments and
aggregationmethods. All agents in anHFRL architecture use isolated environments. It follows that each agent’s
action in an HFRL system has no effect on the other agents in the system. An HFRL architecture proposes
the following training cycle for each agent: first, a training step is performed locally, second, environment
specific parameters are uploaded to the aggregation server, and lastly, parameters are aggregated according to
the aggregation method and returned to each agent in the system for another local training step. HFRL may
be noted to have similarities to “Parallel RL”. Parallel RL is a long studied field of RL, where agent gradients are
transferred amongst each other [5,10,11].

Reinforcement learning is often a sequential learning process, and as such data is often non-IID with a small
sample space [12]. HFRL provides the ability to aggregate experience while increasing the sample efficiency,
thus providing more accurate and stable learning [13]. Some of the current works applying HFRL to a variety
of applications are summarized below.

A study by Lim et al. aims to increase the performance of RL methods applied to multi-IoT device systems.
RL models trained on single devices are often unable to control devices in a similar albeit slightly different
environment [5]. Currently, multiple devices need to be trained separately using separate RL agents [5]. The
methods proposed by Lim et al. sped up the learning process by 1.5 times for a two agent system. In a study
by Nadiger et al., the challenges in the personalization of dialogue managers, smart assistants and more are
explored. RL has proven to be successful in practice for personalized experiences; however, long learning times
and no sharing of data limit the ability for RL to be applied at scale. Applying HFRL to atari non-playable
characters in pong showed a median improvement of 17% for the personalization time [10]. Lastly, Liu et al.
discuss RL as a promising algorithm for smart navigation systems, with the following challenges: long training
times, poor generalization across environments, and storing data over long periods of time [14]. In order to
address these problems, Liu et al. proposed the architecture ‘Lifelong FRL’, which can be categorized as an
HFRL problem. It is found the Lifelong FRL increased the learning rate for smart navigation system when
tested on robots in a cloud robotic system [14].

The successes of the FedAvg algorithm as a means to improve performance and training times for systems
have inspired further research into how aggregation methods should be applied. The design of the aggregation
method is crucial in providing performance benefits to that of the base case where FRL is not applied. The
FedAvg [3] algorithm proposed the averaging of gradients in the aggregation method. In contrast, Liang et al.
proposed using model weights in the aggregation method for AV steering control [15]. Thus, FRL applications
can differ based upon the selection of which parameter to use in the aggregation method. A study by Zhang
et al. explores applying FRL to a decentralized DRL system optimizing cellular vehicle-to-everything commu-
nication [16]. Zhang et al. utilize model weights in the aggregation method, and describe a weighting factor
dividing the sum batch size for all agents by the training batch size for a specific agent [16]. In addition, the
works of Lim et al. explore how FRL using gradient aggregation can improve convergence speed and perfor-
mance on the OpenAI-gym environments CartPole-V0, MountainvehicleContinuous-V0, Pendulum-V0 and
Acrobot-V1 [17]. Lim et al. determined that aggregating gradients using FRL creates high performing agents
for each of the OpenAI-gym environments relative to models trained without FRL [17]. In addition, Wang et al.
apply FRL to heterogeneous edge caching [18]. Wang et al. show the effectiveness of FRL using weight aggrega-
tion to improve hit rate, reduce average delays in the network and offload traffic [18]. Lastly, Huang et al. apply
FRL using model weight aggregation to Service Function Chains in network function virtualization enabled
networks [19]. Huang et al. observe that FRL using model weight aggregation provides benefits to convergence
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speed, average reward and average resource consumption [19].

Despite the differences in FRL applications within the aforementioned studies, each study maintains a similar
goal: to improve the performance of each agent within the system. None of the aforementioned works explore
the differences in whether gradient or model weight aggregation is favourable in performance, and many of
the works apply FRL to distributed network or communications environments. It is the goal of this study to
conclude whether model weight or gradient aggregation is favourable for AV platooning, as well as be one of
the first (if not the first) to apply FRL to AV platooning.

1.1.2. Deep reinforcement learning applied to AV platooning
In recent years, there has been a surge in autonomous vehicle (AV) research, likely due to the technologies
potential for increasing road safety, traffic throughput and fuel economy [6,20]. Two areas of research are often
considered when delving into an AV model: supervised learning or RL [20]. Driving is considered a multi-
agent interaction problem, and due to the large variability of road data, it can be quite challenging (or near
impossible) to gather a data set variable enough to train a supervised model [21]. Driving data is collected from
humans, which can also limit an AI’s ability to that of human level [6]. In contrast, RL methods are known to
generalize quite well [20]. RL approaches are model-free and a model may be inferred by the algorithm while
training.

In order to improve the limitations of vehicle following models, DRL has been a steady area of research in the
AV community, with many authors contributing works to DRL applied to CACC [8,9,22,23]. In a study by Lin
et al., a DRL framework is designed to control a CACC AV platoon [22]. The DRL framework uses the deep
deterministic policy gradient (DDPG) [24] algorithm and is found to have near-optimal performance [22]. In
addition, Peake et al. identify limitations in platooning with regard to the communication in platooning [23].
Through the application of a multi-agent reinforcement learning process, i.e. a policy gradient RL and LSTM
network, the performance of a platoon containing 3-5 vehicles is improved upon that of current RL applications
to platooning [23]. Furthermore, Model Predictive Control (MPC) is the current state-of-the-art for real-time
optimal control practices [25]. The study performed by Lin et al. applies both MPC and DRL methodologies
to the AV platoon problem, observing a DRL model trained using the DDPG algorithm produces merely a
5.8% episodic cost higher than the current state-of-the-art [25]. The works of Yan et al. propose a hybrid
approach to the AV platooning problem where the platoon is modeled as a Markov Decision Process (MDP)
in order to collect two rewards from the system at each time step simultaneously [26]. This approach also
incorporates jerk, the rate of change of acceleration in the calculation of the reward for each vehicle in order
to ensure passenger comfort [26]. The hybrid strategy led to increased performance to that of the base DDPG
algorithm, as the proposed framework switches between using classic CACCmodeling and DDPG depending
on the performance degradation of the DDPG algorithm [26]. In another study by Zhu et al., a DRL model is
formulated and trained using DDPG to be evaluated against real world driving data. Parameters such as time
to collision, headway, and jerk were considered in the DRLmodel’s reward function [27]. The DDPG algorithm
provided favourable performance to that of the analysed human driving data, with regard to more efficient
driving via reduced vehicle headways, and improved passenger comfort with lower magnitudes of jerk [27]. As
Vehicle-to-Everything (V2X) communications are envisioned to have a beneficial impact on the performance
of platoon controllers, the works of Lei et al. investigates the value of V2X communications for DRL-based
platoon controllers. Lei et al. emphasizes the trade-off between the gain of including exogenous information in
the system state for reducing uncertainty and the performance erosion due to the curse-of-dimensionality [28].

When formulating the AV platooning problem as a DRLmodel DDPG is prominently selected as the algorithm
for training. DDPG’s ability to handle continuous actions space and complex state’s is perfect for the CACC
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platoon problem. However, despite the DDPG algorithm’s success in literature, there are still instability chal-
lenges related to the algorithm along with a time consuming hyper-parameter tuning process to account for
the minute differences in vehicle models/dynamics amongst platoons. As previously discussed, FRL provides
advantages in these areas where information sharing can accelerate performance during training and improve
the performance of the system as a whole. In addition, the ability to share experience across like models has
been proven to allow for fast convergence of models, which further optimizes the performance of DDPGwhen
applied to AV platoons [5].

1.2. Contributions
To the best of our knowledge, no works at the time of this study existed covering the specific topic of FRL
applied to platoon control. Many of the works existing on FRL have shown the benefits of FRL with regard
to the increased rate of convergence and overall system performance with distributed networks, edge caching
and communications [16–19]. Furthermore, of the works cited in this study, the works closely related to FRL
for platoon control are those of Peake et al. and Liang et al. [15,23]. In contrast to Liang et al., where FedAvg
is applied successfully to control the steering angle of a single vehicle, we apply FRL to an AV platooning
problem where the control of multiple vehicles’ positions and spacing are required [15]. Peake et al. explore
multi-agent reinforcement learning and its ability to improve the performance of AV platoons experiencing
communication delays [23]. Although Peake et al. are also successful in their approach, there is no specific
reference to FRL in the paper [23]. In addition, a variety of existing works on FRL choose to use either gradients
or model weights in the FRL aggregation method. This study explores how both aggregation methods can
provide benefits to the AV platooning problem and, most importantly, which provides a better result. Finally,
this study further distinguishes its approach from existing literature by declaring two possible ways to apply
FRL to AV platooning:

1. Intra-FRL: where multi-vehicle platoons share data during training to increase the performance of vehicles
within the same platoon.

2. Inter-FRL: where multi-vehicle platoons share data during training across platoons amongst vehicles in the
exact same platoon position to increase performance.

In contrast to existing literature, where it is common to average the parameters across eachmodel in the system,
for Intra-FRL, we propose a directional averaging where follower vehicles incorporate the preceding vehicle
parameters in the computation of the gradients or weights. Thus, in Intra-FRL, the leading vehicle trains
independently of those following. The AV platoon provides a unique playground environment suitable for
exploring the suitability of FRL as a means to increase the performance of systems with regard to convergence
rate and performance.

2. PROPOSED FRAMEWORK

In this section, a state space model is formulated and presented for the AV platooning problem. Next, the
MDP model is presented, outlining the platoon system’s state space, action space and reward function. Lastly,
the FRL DDPG algorithm design and application to AV platooning are described.

2.1. CACC CTHP model formulation

Consider a platoon 𝑃 of vehiclesV = 𝑉1, 𝑉2, ..., 𝑉𝑛 where the leader of the platoon is 𝑉1.
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Figure 1. An example platoon modeled with system parameters.

As illustrated in Figure 1, for a general vehicle (𝑉𝑖), the position of 𝑉𝑖 ’s front bumper is defined as 𝑝𝑖 . The
velocity, acceleration and control input of 𝑉𝑖 are denoted as 𝑣𝑖 , 𝑎𝑖 and 𝑢𝑖 . Furthermore, the acceleration of 𝑉𝑖 ’s
predecessor may be denoted as 𝑎𝑖−1. The control input for 𝑉𝑖 is defined as 𝑢𝑖 (whether 𝑉𝑖 should accelerate
or decelerate). 𝑉𝑖 ’s drive-train dynamics coefficient is defined as 𝜏𝑖 , where large values of 𝜏𝑖 indicate larger
response times for a given input 𝑢𝑖 to generate acceleration 𝑎𝑖 . Lastly, the length of 𝑉𝑖 is denoted as 𝐿𝑖 . The
system dynamics for 𝑉𝑖 are thus provided below as

¤𝑝𝑖 (𝑡) = 𝑣𝑖 (𝑡)
¤𝑣𝑖 (𝑡) = 𝑎𝑖 (𝑡)

¤𝑎𝑖 (𝑡) = −
1
𝜏𝑖
𝑎𝑖 (𝑡) +

1
𝜏𝑖
𝑢𝑖 (𝑡)

¤𝑎𝑖−1(𝑡) = −
1
𝜏𝑖−1

𝑎𝑖−1(𝑡) +
1
𝜏𝑖−1

𝑢𝑖−1(𝑡)

(1)

The headway 𝑑𝑖 (𝑡) in a CACC model is the positional difference of the current vehicle relative to the rear
bumper of its leader, which can be derived as [22,29]

𝑑𝑖 (𝑡) = 𝑝𝑖−1(𝑡) − 𝑝𝑖 (𝑡) − 𝐿𝑖−1. (2)

In addition, the desired headway 𝑑𝑟,𝑖 (𝑡) is defined as

𝑑𝑟,𝑖 (𝑡) = 𝑟𝑖 + ℎ𝑖𝑣𝑖 (𝑡), (3)

where 𝑟𝑖 is the standstill distance, and ℎ𝑖 is the time-gap for 𝑉𝑖 to maintain relative to it’s predecessor 𝑉𝑖−1. The
position error 𝑒𝑝𝑖 and the velocity error 𝑒𝑣𝑖 are defined as:

𝑒𝑝𝑖 (𝑡) = 𝑑𝑖 (𝑡) − 𝑑𝑟,𝑖 (𝑡)
𝑒𝑣𝑖 (𝑡) = 𝑣𝑖−1(𝑡) − 𝑣𝑖 (𝑡)

(4)

Therefore, the state of 𝑉𝑖 can be defined as 𝑥𝑖 (𝑡) =
[
𝑒𝑝𝑖 (𝑡) 𝑒𝑣𝑖 (𝑡) 𝑎𝑖 (𝑡) 𝑎𝑖−1(𝑡)

]>, and the derivative of the
state is:

¤𝑒𝑝𝑖 (𝑡) = 𝑒𝑣𝑖 (𝑡) − ℎ𝑖𝑎𝑖 (𝑡),
¤𝑒𝑣𝑖 (𝑡) = 𝑎𝑖−1(𝑡) − 𝑎𝑖 (𝑡),

¤𝑎𝑖 (𝑡) = −
1
𝜏𝑖
𝑎𝑖 (𝑡) +

1
𝜏𝑖
𝑢𝑖 (𝑡),

¤𝑎𝑖−1(𝑡) = −
1
𝜏𝑖−1

𝑎𝑖−1(𝑡) +
1
𝜏𝑖−1

𝑢𝑖−1(𝑡).

(5)

The state space formula for 𝑉𝑖 is thus given as

¤𝑥𝑖 (𝑡) = 𝐴𝑖𝑥𝑖 (𝑡) + 𝐵𝑖𝑢𝑖 (𝑡) + 𝐶𝑖𝑢𝑖−1(𝑡), (6)

where 𝐴𝑖 , 𝐵𝑖 , and 𝐶𝑖 are defined below as
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𝐴𝑖 =


0 1 −ℎ𝑖 0
0 0 −1 1
0 0 − 1

𝜏𝑖
0

0 0 0 − 1
𝜏𝑖−1


𝐵𝑖 =


0
0
1
𝜏𝑖
0


𝐶𝑖 =


0
0
0
1
𝜏𝑖−1


. (7)

2.2. MDP model formulation
The AV platooning problem can be formulated as an MDP problem, where the optimization objective is to
minimize the previously defined 𝑒𝑝𝑖 , 𝑒𝑣𝑖 , 𝑢𝑖 and lastly jerk.

2.2.1. State space

The state space formula (6) can be discretized using the forward euler method giving the system equation
below

𝑥𝑖,𝑘+1 = 𝐴𝐷𝑖𝑥𝑖,𝑘 + 𝐵𝐷𝑖𝑢𝑖,𝑘 + 𝐶𝐷𝑖𝑢𝑖−1,𝑘 , (8)

where 𝑥𝑖,𝑘 = [𝑒𝑝𝑖,𝑘 , 𝑒𝑣𝑖,𝑘 , 𝑎𝑖,𝑘 , 𝑎𝑖−1,𝑘 ] is the observation state for the MDP problem that includes the position
error 𝑒𝑝𝑖,𝑘 , velocity error 𝑒𝑣𝑖,𝑘 , acceleration 𝑎𝑖,𝑘 , and the acceleration of the predecessor vehicle 𝑎𝑖−1,𝑘 at time
step 𝑘 . Moreover, 𝐴𝐷𝑖 , 𝐵𝐷𝑖 , and 𝐶𝐷𝑖 are given as

𝐴𝐷𝑖 =



1 𝑇 −𝑇ℎ𝑖 0
0 1 −𝑇 𝑇

0 0 −𝑇
𝜏𝑖
+ 1 0

0 0 0 − 𝑇

𝜏𝑖−1
+ 1


𝐵𝐷𝑖 =


0
0
𝑇

𝜏𝑖
0


𝐶𝐷𝑖 =


0
0
0
𝑇
𝜏𝑖−1


. (9)

2.2.2. Action space
Each vehicle within a single lane platoon follows the vehicle in front of it, and as such the only action the vehicle
may take to maintain a desired headway is to accelerate, or decelerate. The action for the system is defined as
the control input 𝑢𝑖,𝑘 to the vehicle.

2.2.3. Reward function
The design of a reward in a DDPG system is critical to providing good performance within the system. In
the considered driving scenario, it is logical to minimize position error, velocity error, the amount of time
spent accelerating and the jerkiness of the driving motion. The proposed reward thus includes the normalized
position error, 𝑒𝑝𝑖,𝑘 , velocity error 𝑒𝑣𝑖,𝑘 , control input 𝑢𝑖,𝑘 and lastly the jerk. The vehicle reward 𝑐𝑖,𝑘 is given
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Figure 2. High level flow diagram of the DDPG model for a general vehicle 𝑉𝑖 in a platoon.

below, where 𝑎 𝑏, 𝑐 and 𝑑 are system hyperparameters.

𝑐𝑖,𝑘 = −
(
𝑎
|𝑒𝑝𝑖,𝑘 |

max(𝑒𝑝𝑖,𝑘 )
+ 𝑏 |𝑒𝑣𝑖,𝑘 |

max(𝑒𝑣𝑖,𝑘 )
+ 𝑐 |𝑢𝑖,𝑘 |

max(𝑢𝑖,𝑘 )
+ 𝑑

¤|𝑎𝑖,𝑘 |
2 max(𝑎𝑖,𝑘 )

)
(10)

2.3. FRL DDPG algorithm
In this section, the design for implementing the FRL DDPG algorithm on the AV platooning problem is pre-
sented.

2.3.1. DDPG model description
The DDPG algorithm is composed of an actor, 𝜇 and a critic, 𝑄. The actor produces actions 𝑢𝑡 ∈ U given
some observation 𝑥𝑡 ∈ X and the critic makes judgements on those actions while training using the Bellman
equation [12,24]. The actor is updated by the policy gradient [24]. The critic network uses its weights 𝜃𝑞 to ap-
proximate the optimal action-value function 𝑄(𝑥, 𝑢 |𝜃𝑞) [24]. The actor network uses weights 𝜃𝜇 to represent
the agents’ current policy 𝜇(𝑥 |𝜃𝜇) for the action-value function [24]. The actor 𝜇(𝑥) : X −→U maps the obser-
vation to the action. Experience replay is used to mitigate the issue of training samples not being independent
and identically distributed due to their generation from sequential explorations [24]. Two additional models,
the target actor 𝜇′ and critic 𝑄′ are used in DDPG to stabilize the training of the actor and critic networks by
updating parameters slowly based on the target update coefficient 𝜏. A sufficient value of 𝜏 is chosen such that
stable training of 𝜇 and 𝑄 is observed. Figure 2 provides a high level simplified overview of how the DDPG
algorithm interacts with a single vehicle in a platoon.

2.3.2. Inter and intra FRL
Modifications to the base DDPG algorithm are needed in order to implement Inter-FRL and Intra-FRL. In
order to implement FedAvg the following modifications are required:

1. An FRL server: responsible for averaging the system parameters for use in a global update
2. Model weight aggregation: storing of each model’s weights for use in aggregation
3. Model gradient aggregation: storing of each model’s gradients for use in aggregation
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Figure 3. Inter-FRL.

Figure 4. Intra-FRL.

In order to perform FRL, it has been proven that including an update delay between global FRL updates is
beneficial for performance [5]. In addition, turning off FRL partway through training is important to allow
each agent to refine their models independently of each other such that they can perform best with respect
to their environments [5]. Lastly, it has also been shown that global updates and local updates should not be
performed in the same episode [15].

Two methods of aggregation are implemented in the system design, Inter-FRL (see Figure 3), and Intra-FRL
(see Figure 4). The proposed system is capable of aggregating both the model weights and gradients for each
model so that either type of parameter may be averaged for use in global updates. The FRL server has the
responsibility of averaging the parameters (model weights or gradients) across each agent in the system.

The pseudo-code for the Inter/Intra-FRL algorithm is presented in Algorithm 1. The system is designed to
allow the training of any number of equal length platoons. At the lowest level, a DDPG agent exists for each
vehicle in each platoon. As such, a DRL model must be initialized for each vehicle in the whole system. Each
DDPG agent trains separately from the others before data is uploaded to the FRL server. Federated averaging
is applied at a given time delay known as the FRL update delay, while being terminated at a given episode as
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defined by the cutoff ratio as seen in Table 3. Currently, Algorithm 1 is synchronous, and the FRL server is
also synchronous.

3. EXPERIMENTAL RESULTS
In this section, the experimental setup for applying both Inter and Intra-FRL to theAVplatooning environment
is presented. The AV platooning environment and Inter/Intra FRL algorithms are implemented in Python 3.7
using Tensorflow 2.

3.1. Experimental setup
The parameters specific to the AV platoon environment are summarized in Table 1. The time step interval is
𝑇 = 0.1𝑠, and each training episode is composed of 600 time steps. Furthermore, the coefficients 𝑎, 𝑏, 𝑐 and
𝑑 given in the reward function (10) are a means to define how much each component of (10) contributes to
the calculation of the reward. These coefficients may be tuned in order to determine a balance amongst each
component, leading to better optimization during training. The coefficients were tuned using a grid search
strategy and are listed as 𝑎 = 0.4, 𝑏 = 𝑐 = 𝑑 = 0.2.

Each DDPG agent consists of a replay buffer, and networks for the actor, target actor, critic and target critic.
The actor network contains four layers: an input layer for the state, two hidden layers with 256 and 128 nodes,
respectively, and an output layer. Both hidden layers use batch normalization and the relu activation function.
The output layer uses the tanh() activation function. The output layer is scaled by the high bound for the control
output, in this case 2.5𝑚/𝑠2. The critic network is structured with two separate input layers for state and action.
These two layers are concatenated together, and fed into a single hidden layer before the output layer. The layer
with the state input has 48 nodes, the relu activation function and batch normalization. The same is applied for
the action layer, but instead with 256 nodes. The post concatenation layer uses 304 input nodes, followed by
a hidden layer with 128 nodes, again with relu activation and batch normalization applied. The output of the
critic uses a linear activation function. Ornstein-Uhlenbeck noise is applied to the model’s predicted action, 𝑢𝑖 .
The structure of the models is presented in Figure 5a and 5b. All except the final layers of the actor and critic
networks were initialized within the range

[
− 1√

𝑓 𝑎𝑛 𝑖𝑛
,

1√
𝑓 𝑎𝑛 𝑖𝑛

]
, where-as the final layer is initialized using a random

uniform distribution bounded by [−3 × 10−3, 3 × 10−3]. Table 2 presents the hyperparameters specific to the
DDPG algorithm.

The hyperparameters specific to Inter and Intra-FRL are presented in Table 3. During a training session with
FRL, both local updates and FRL updates with aggregated parameters are applied to each DDPG agent in the
system. FRL updates usually occur at a given frequency known as the FRL update delay, and furthermore, FRL
updates may be terminated at a specific training episode as defined by the FRL cutoff ratio. The FRL update
delay is defined as the time in seconds between FRL updates during a training episode. The FRL cutoff ratio
is the ratio of the number of episodes where FRL updates are applied divided by the total number of episodes
in a training session. Note that the aggregation method denotes whether the model gradients or weights are
averaged during training using FRL.

For the purposes of this study, an experiment is defined as a training session for a specific configuration of
hyper-parameters, using the algorithm defined in Algorithm 1. During each experiment training session,
model parameters were trained through the base DDPG algorithm or FRL in accordance with Algorithm
1. Once training has concluded, a simulation is performed using a custom built evaluator API. The evaluator
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Algorithm 1: FRL applied to an AV platoon.
for each platoon 𝑝 ∈ 𝑝𝑙𝑎𝑡𝑜𝑜𝑛𝑠 do

for 𝑣 ∈ 𝑣𝑒ℎ𝑖𝑐𝑙𝑒𝑠 do
initialize replay buffer 𝑅𝑖 ;
initialize actor 𝜇𝑖 , critic 𝑄𝑖 , target actor 𝜇′𝑖 , target critic 𝑄

′
𝑖 ;

end
end
for 𝑒𝑝𝑖𝑠𝑜𝑑𝑒 ∈ 𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔_𝑒𝑝𝑖𝑠𝑜𝑑𝑒𝑠 do

for 𝑝 ∈ 𝑝𝑙𝑎𝑡𝑜𝑜𝑛𝑠 do
collect all vehicles states 𝑥𝑖,𝑘 from 𝑝;

end
for 𝑠𝑡𝑒𝑝 ∈ 𝑠𝑡𝑒𝑝𝑠_𝑝𝑒𝑟_𝑒𝑝𝑖𝑠𝑜𝑑𝑒 do

for 𝑝 ∈ 𝑝𝑙𝑎𝑡𝑜𝑜𝑛𝑠 do
for 𝑣 ∈ 𝑣𝑒ℎ𝑖𝑐𝑙𝑒𝑠 do

collect actions 𝑢𝑖,𝑘 from actor;
end
advance the platoon 𝑝, with 𝑢𝑖,𝑘 ;
collect (𝑥𝑖,𝑘 , 𝑥𝑖,𝑘+1, 𝑐𝑖,𝑘 , 𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑙) from 𝑝;

end
for 𝑝 ∈ 𝑝𝑙𝑎𝑡𝑜𝑜𝑛𝑠 do

for 𝑣 ∈ 𝑣𝑒ℎ𝑖𝑐𝑙𝑒𝑠 do
add (𝑥𝑖,𝑘 , 𝑥𝑖,𝑘+1, 𝑐𝑖,𝑘 , 𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑙) to replay buffer 𝑅𝑖 ;
if FRL update is not required then

train 𝜇𝑖 , 𝑄𝑖 , 𝜇′𝑖 , 𝑄
′
𝑖 locally;

end
append gradients of 𝜇𝑖 and 𝑄𝑖 to all_gradients;
append weights of 𝜇𝑖 and 𝑄𝑖 to all_weights;

end
end
if FRL update required then

if gradient averaging enabled then
avg_gradients←− global_update(all_gradients);
train 𝜇𝑖 , 𝑄𝑖 using avg gradients;

end
if weight averaging enabled then

avg_weights←− global_update(all_weights);
update weights 𝜇𝑖 , 𝑄𝑖 , 𝜇′𝑖 , 𝑄

′
𝑖 using avg weights;

end
end

end
end
Function global_update(params) is

upload params to FRL server;
collect averaged params from FRL server;
return averaged params;

end
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Table 1. Parameters of the AV platoon environment

Parameter Value

Time step 𝑇 interval 0.1 s
Number of time steps per training episode 600
Time gap ℎ𝑖 1 s
Driveline dynamics coefficient 𝜏 0.1 s
Maximum absolute control input 𝑢𝑚𝑎𝑥 2.5 𝑚/𝑠2

Reward coefficient 𝑎 0.4
Reward coefficient 𝑏 0.2
Reward coefficient 𝑐 0.2
Reward coefficient 𝑑 0.2

(a) The actor network for 𝑉𝑖 . (b) The critic network for 𝑉𝑖 .

Figure 5. Actor and critic networks for 𝑉𝑖 .

Table 2. Hyperparameters for the DDPG Algorithm

Hyperparameter Value

Actor learning rate 5e-05
Critic learning rate 0.0005
Batch size 64
Noise Ornstein-Uhlenbeck Process with 𝜃 = 0.15, 𝜎 = 0.02
Weights and Biases random uniform distribution [−3 × 10−3 , 3 × 10−3 ] (final layer),

Initialization
[
− 1√

𝑓 𝑎𝑛 𝑖𝑛
, − 1√

𝑓 𝑎𝑛 𝑖𝑛

]
(other layers)

Table 3. FRL Specific Initial Hyperparameters

FRL type Aggregation method Hyperparmeter Value

Inter-FRL Gradients FRL update delay 0.1
Inter-FRL Gradients FRL cutoff ratio 0.8
Inter-FRL Weights FRL update delay 30
Inter-FRL Weights FRL cutoff ratio 1.0
Intra-FRL Gradients FRL update delay 0.4
Intra-FRL Gradients FRL cutoff ratio 0.5
Intra-FRL Weights FRL update delay 0.1
Intra-FRL Weights FRL cutoff ratio 1.0

performs simulations for a single 60 second episode using the trained models, calculating the cumulative re-
ward of the model(s) in the experiment. The entire project is designed and implemented using Python3, and

http://dx.doi.org/10.20517/ir.2022.11


Boin et al. Intell Robot 2022;2(2):145­67 I http://dx.doi.org/10.20517/ir.2022.11 Page 157

Table 4. Performance after training across 4 random seeds. Each simulation result contains 600 time steps

Training method Seed 1 Seed 2 Seed 3 Seed 4 Average system reward Standard deviation

No-FRL -3.73 -2.89 -4.69 -3.38 -3.67 0.66
Inter-FRLGA -2.79 -2.81 -3.05 -2.76 -2.85 0.11
Inter-FRLWA -2.64 -2.88 -2.92 -2.93 -2.84 0.12

Tensorflow. As previously stated, each vehicle in the platoon is modelled using the CACC CTHP model de-
scribed in Section 3. For the purposes of this study, multiple sets of DRL experiments were conducted, using
4 random seeds (1-4) for training and a single random seed (6) across all evaluations.

3.2. Inter­FRL
In order to evaluate the effectiveness of Inter-FRL relative to the base case where a DRL model is trained using
DDPG without FRL, 4 experiments are conducted without Inter-FRL (no-FRL), and 8 with. For each of the 12
conducted experiments, 2 platoons with 2 vehicles each were trained using one of the four random seeds. Once
training across the four seeds has completed, the cumulative reward for a single evaluation episode is evaluated.
For the experiments using Inter-FRL, two aggregation methods are examined. First, the gradients of each
model are averaged during training, and second, the model weights are averaged. The multi platoon system
trains and shares the aggregated parameters (gradients or weights) amongst vehicles with the same index across
platoons. The federated server is responsible for performing the averaging, and each vehicle performs a training
episode with the averaged parameters in addition to their local training episodes in accordance with the FRL
update delay and FRL cutoff ratio (see Table 3). Note that here-after Inter-FRL with gradient aggregation is
denoted Inter-FRLGA, and Inter-FRL with weight aggregation is denoted Inter-FRLWA.

3.2.1. Performance across 4 random seeds
The performance for each of the systems is calculated by averaging the cumulative reward of each vehicle in
the 2 vehicle 2 platoon system, as summarized in Table 4. For each of the 3 cases (base case, Inter-FRLGA and
Inter-FRLWA), training sessions were run using 4 random seeds. In order to determine the highest performing
system overall, an average and standard deviation is obtained from the result of training using the 4 random
seeds. FromTable 4, it is observed that both Inter-FRL scenarios using gradient andweight aggregation provide
large performance increases to that of the base case.

3.2.2. Convergence properties
The cumulative reward is calculated over each training episode, and a moving average is computed over 40
episodes to generate Figure 6a-6f. It can be seen that the cumulative reward for Inter-FRLWA not only con-
verges more rapidly than both no-FRL and Inter-FRLGA, but Inter-FRLWA also appears to have a more stable
training session as indicated by the lower magnitude of the shaded area (the standard deviation across the four
random seeds).

3.2.2. Test results for one episode
In Figure 7a and 7b, a simulation is performed over a single training episode plotting the jerk, along with the
control input 𝑢𝑖,𝑘 , acceleration 𝑎𝑖,𝑘 , velocity error 𝑒𝑣𝑖,𝑘 , and position error 𝑒𝑝𝑖,𝑘 for each platoon. There are 2
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(a) No-FRL: Platoon 1 (b) Inter-FRLGA: Platoon 1 (c) Inter-FRLWA: Platoon 1

(d) No-FRL: Platoon 2 (e) Inter-FRLGA: Platoon 2 (f) Inter-FRLWA: Platoon 2

Figure 6. Average performance across 4 random seeds for a 2 platoon 2 vehicle scenario trained without FRL (Figure 6a, 6d), with Inter-
FRLGA (Figure 6b, 6e), and with Inter-FRLWA (Figure 6c, 6f). The shaded areas represent the standard deviation across the 4 seeds.

platoons in the Inter-FRL scenario, and a simulation is provided for each platoon. The simulation environment
is subject to initial conditions of (𝑒𝑝𝑖 = 1.0 𝑚, 𝑒𝑣𝑖 = 1.0 𝑚/𝑠, 𝑎𝑖 = 0.03 𝑚/𝑠2). It can be seen that each
DDPG agent for both vehicles within both platoons quickly responds to the platoon leader’s control input 𝑢𝑖,𝑘
to bring the position error, velocity error and acceleration error to 0. In addition, each DDPG agent closely
approximates the Gaussian random input of the platoon leader, eliminating noise in the response to maintain
smooth tracking across the episode. Finally, eachDDPG agent in the platoon alsominimizes the jerk effectively.
These results are indicative of both a good design of the reward function (10), and also a suitable selection of
parameters 𝑎, 𝑏, 𝑐 and 𝑑 in (10).

3.3. Intra­FRL
In order to evaluate the effectiveness of Intra-FRL relative to the base AV platooning scenario, 4 experiments
are conducted without Intra-FRL (no-FRL), and 8 with. For each of the conducted experiments, 1 platoon with
2 vehicles is trained using 4 random seeds. A single platoon is required for studying Intra-FRL as parameters
are shared amongst vehicles within the platoon (no sharing is performed from vehicle’s in one platoon to
another). Once training across the four seeds is completed, the cumulative reward for a single evaluation
episode is evaluated. Similar to the experiments using Inter-FRL, two aggregation methods are examined.
First, the gradients of each model are averaged during training, and second, the model weights are averaged.
The platoon trains and shares the aggregated parameters (gradients or weights) from vehicle to vehicle such that
data is averaged and updated amongst vehicles within the same platoon. The federated server is responsible
for performing the averaging, and each vehicle performs a training episode with the averaged parameters in
addition to their local training episodes in accordance with the FRL update delay and FRL cutoff ratio (see
Table 3). Note that here-after Intra-FRL with gradient aggregation is denoted Intra-FRLGA, and Intra-FRL
with weight aggregation is denoted Intra-FRLWA.
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(a) Platoon 1 (b) Platoon 2

Figure 7. Results for a specific 60s test episode using the 2 vehicle 2 platoon environment trained using Inter-FRL with weight aggregation.

3.3.1. Performance across 4 random seeds
The performance for the platoon is calculated by averaging the cumulative reward generated by the simulation
for each of the 4 random seeds and is summarized in Table 5. The results in Table 5 summarize the performance
for no-FRL, Intra-FRLGA, and lastly Intra-FRLWA. It is observed that Intra-FRLWAperformsmost favourably,
followed by no-FRL and lastly Intra-FRLGA.
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Table 5. Performance after training across 4 random seeds. Each simulation result contains 600 time steps

Training method Seed 1 Seed 2 Seed 3 Seed 4 Average system reward Standard deviation

No-FRL -3.84 -3.40 -3.29 -3.21 -3.44 0.24
Intra-FRLGA -2.85 -8.05 -4.23 -2.99 -4.53 2.10
Intra-FRLWA -2.56 -2.60 -2.68 -2.75 -2.65 0.07

(a) No-FRL (b) Intra-FRLGA (c) Intra-FRLWA

Figure 8. Average performance across 4 random seeds for 1 platoon 2 vehicle scenario trainedwithout FRL (Figure 6a), Intra-FRLGA (Figure
6b), and with Intra-FRLWA (Figure 6c). The shaded areas represent the standard deviation across the 4 seeds.

3.3.2. Convergence properties
The cumulative reward is calculated over each training episode, and a moving average is computed over 40
episodes to generate Figure 8. Similar to the Inter-FRL experiments, Intra-FRLWA shows the most favourable
training results. In addition, the rate of convergence increases with Intra-FRLWA over no-FRL and Intra-
FRLGA. Lastly, the stability during training is also shown to be improved as the standard deviation across the
four random seeds is much smaller than the other two cases (as evident in the shaded regions of Figure 8).

3.3.3. Test results for one episode
A single simulation is performed on an episode plotting the jerk, along with the control input 𝑢𝑖,𝑘 , acceleration
𝑎𝑖,𝑘 , velocity error 𝑒𝑣𝑖,𝑘 , and position error 𝑒𝑝𝑖,𝑘 . Figure 9 shows the precise control of Intra-FRLWA on the
environment. The environment is initialized to the same conditions as that of the Inter-FRLWA scenario (𝑒𝑝𝑖 =
1.0𝑚, 𝑒𝑣𝑖 = 1.0𝑚/𝑠, 𝑎𝑖 = 0.03𝑚/𝑠2), and each DDPG agent in the platoon quickly and precisely tracks the
Gaussian random input 𝑢𝑖,𝑘 from the leader while minimizing position error, velocity error, acceleration , and
jerk. Much like the Inter-FRLWA scenario, it is observed that a strong optimization of the reward function
(Equation 10) has occurred. This is an indication of a good design of the reward function in addition to a good
balance of parameters 𝑎, 𝑏, 𝑐 and 𝑑 in the reward function.

3.4. Comparison between inter and intra­FRL

The results for both Inter-FRL and Intra-FRL are summarized in Table 6 below.

It is clear that using weight aggregation in both Inter-FRL and Intra-FRL is favourable to gradient aggregation.
In addition, Intra-FRLWA provides the overall best result. Intra-FRL likely converges to the best model due
to conditions each agent experiences during training. For Inter-FRL, the environment is independent and
identically distributed. For Intra-FRL, each follower’s training depends on the policy of the preceding vehicle.
For the 2 vehicle scenario studied, vehicle 1 will converge prior to vehicle 2 as vehicle 1 learns based on the
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Figure 9. Results for a specific 60s test episode using the 2 vehicle 1 platoon environment trained using Intra-FRLWA.

Table 6. Performance after training across 4 random seeds for both Inter and Intra FRL. Each simulation result contains 600 time steps.

Training Method Seed 1 Seed 2 Seed 3 Seed 4 Average system reward Standard deviation

Inter-FRLGA -2.79 -2.81 -3.05 -2.76 -2.85 0.11
Inter-FRLWA -2.64 -2.88 -2.92 -2.93 -2.84 0.12
Intra-FRLGA -2.85 -8.05 -4.23 -2.99 -4.53 2.10
Intra-FRLWA -2.56 -2.60 -2.68 -2.75 -2.65 0.07

stochastic random input generated by the platoon leader. As vehicle 1 is training, vehicle 2 trains based off
the policy of vehicle 1. As previously stated, Inter-FRL shares parameters amongst vehicles in the same index
across platoons, where-as Intra-FRL provides the advantage of sharing parameters from preceding vehicles to
following vehicles. Our implementation of Intra-FRL includes a directional parameter averaging. For exam-
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Table 7. Performance after training across 4 random seedswith varying platoon lengths. Each simulation result contains 600 time steps.

Training Method No. Vehicles Seed 1 Seed 2 Seed 3 Seed 4 Avg. System Reward Std. Dev.

No-FRL 3 -3.64 -3.28 -3.76 -3.52 -3.55 0.20
No-FRL 4 -123.58 -4.59 -7.39 -4.51 -35.02 59.06
No-FRL 5 -4.90 -5.94 -6.76 -6.11 -5.93 0.77
Intra-FRLWA 3 -3.44 -3.16 -3.43 -4.14 -3.54 0.42
Intra-FRLWA 4 -3.67 -3.56 -4.10 -3.60 -3.73 0.25
Intra-FRLWA 5 -3.92 -4.11 -4.33 -3.97 -4.08 0.18

ple, vehicle 1 does not train with averaged parameters from the followers, but vehicle 2 has the advantage of
including vehicle 1’s model in its averaging. This directional averaging provides an advantage to vehicle 2, as
evidenced by the increased performance in Table 6.

3.5. Intra­FRL with variant number of vehicles
An additional factor to consider when evaluating FRL in relation to the no-FRL base scenario is how FRL
performs with increasing agents relative to no-FRL. In this section, 12 experiments are conducted with no-
FRL, and 12 with Intra-FRLWA. Each set of 12 experiments for no-FRL and Intra-FRLWA are broken up by
number of vehicles and random seed. The random seed is selected to be a value between 1 and 4, inclusive.
In addition, the platoons under study contain either 3, 4, or 5 vehicles. Once training has been completed for
all experiments, the cumulative reward for each experiment is evaluated using a single simulation episode in
which the seed is kept constant. Intra-FRLWA is used as the FRL training strategy since Intra-FRLWA was
identified to be the highest performing FRL strategy in the previous section.

3.5.1. Performance with varying number of vehicles
The performance for each experiment is calculated by taking the average cumulative episodic reward across
each vehicle in the platoon at the end of the simulation episode. Table 7 presents the results for no-FRL
and Intra-FRLWA for platoons with 3, 4, and 5 follower vehicles. Table 7 shows that Intra-FRLWA provides
favourable performance in all platoon lengths. A notable example of Intra-FRLWA’s success is highlighted
when considering the poor performance of the 4 vehicle platoon trained with no-FRL using seed 1. The Intra-
FRLWA training strategy was able to overcome the performance challenges, correcting the poor performance
entirely.

3.5.2. Convergence properties
The cumulative reward is calculated over each training episode, and a moving average is computed over 40
episodes to generate Figure 10. Intra-FRLWA shows favourable training performance to that of the no-FRL
scenario for all platoon lengths. In addition, the rate of convergence is increased using Intra-FRLWA versus
no-FRL. Furthermore, the shaded areas corresponding to standard deviation across the seeds are reduced
significantly, indicating better stability across the seeds for Intra-FRLWA than no-FRL. Last, the overall stability
is improved as shown by the large noise reduction during training in Figure 10d, 10e, 10f when compared with
no-FRL’s Figure 10a, 10b, 10c.

http://dx.doi.org/10.20517/ir.2022.11


Boin et al. Intell Robot 2022;2(2):145­67 I http://dx.doi.org/10.20517/ir.2022.11 Page 163

(a) No-FRL: 3 Vehicles (b) No-FRL: 4 Vehicles (c) No-FRL: 5 Vehicles

(d) Intra-FRLWA: 3 Vehicles (e) Intra-FRLWA: 4 Vehicles (f) Intra-FRLWA: 5 Vehicles

Figure 10. Average performance across 4 random seeds for 3 platoons with 3, 4 and 5 followers trained without FRL (Figures 10a, 10b, 10c),
and with Intra-FRLWA (Figure 10d, 10e, 10f). The shaded areas represent the standard deviation across the four seeds.

3.5.3. Test results for one episode
As with all previous sections, a single simulation is performed on a 60 second episode plotting the jerk along
with the control input 𝑢𝑖,𝑘 , acceleration 𝑎𝑖,𝑘 , velocity error 𝑒𝑣𝑖,𝑘 , and position error 𝑒𝑝𝑖,𝑘 . Figure 11 showcases
the ability of Intra-FRLWA to control a 5 platoon environment precisely when compared to a platoon trained
without Intra-FRLWA. The environment for Intra-FRLWA is initialized with the same values as no-FRL, just
like all previous experiments: (𝑒𝑝𝑖 = 1.0𝑚, 𝑒𝑣𝑖 = 1.0𝑚/𝑠, 𝑎𝑖 = 0.03𝑚/𝑠2). Each DDPG agent trained with
Intra-FRLWA quickly and precisely tracks the Gaussian random control input 𝑢𝑖,𝑘 from the leader minimizing
𝑒𝑝𝑖,𝑘 , 𝑒𝑣𝑖,𝑘 , 𝑎𝑖,𝑘 and jerk. In particular, the response for 𝑒𝑝𝑖,𝑘 and 𝑒𝑣𝑖,𝑘 in the platoon trained using Intra-FRLWA
(Figure 11b) appears to respond to the platoon leader’s input quicker and in a much smoother manner than
that of the no-FRL scenario (Figure 11a).

The large difference in performance for no-FRL versus Intra-FRL can be explained by understanding how
Intra-FRLWA works. With no-FRL, each agent trains independently, and the inputs to the following vehicles
are directly outputted from the predecessors. Thus, the followers farther back in the platoon take longer to
train as their predecessors’ outputs can be highly variable while training. As the policies of the predecessors
converge, the policy of each follower can then begin to converge. This sequential convergence frompredecessor
to follower can be seen in Figure 10, where the convergence during training is slower for vehicles 4 and 5 than
it is for 3, 2 and 1. Intra-FRLWA helps to resolve this challenge by allowing vehicles to average their model
weights, thus distributing an aggregation of more mature predecessor parameters amongst the platoon.
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(a) No-FRL (b) Intra-FRLWA

Figure 11. Results for a specific 60s test episode using the 5 vehicle 1 platoon environment trained using no-FRL (Figure 11a), and with
Intra-FRLWA (Figure 11b).

4. CONCLUSION
In this paper, we have formulated an AV platooning problem and successfully applied FRL in a variety of meth-
ods to AV platooning. In addition, we proposed new approaches for applying FRL to AV platoons: Inter-FRL
and Intra-FRL. By comparing FRL performance with both gradient and weight averaging in the AV platoon-
ing scenario, it has been shown that weight averaging was the optimal aggregation method regardless of using
Inter-FRL or Intra-FRL. Furthermore, it was found that the Intra-FRLWA strategy was most advantageous for
applying FRL to AV platooning. Finally, it was proven that applying Intra-FRLWA to AV platoons up to 5 vehi-
cles in length provided large performance advantages during and after training when compared to AV platoons
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that were controlled by DDPG agents trained without FRL.These results are backed by simulations performed
using models trained across four random seeds, and an additional simulation set with variable platoon sizes.
The focus of this paper was on decentralized platoon control, where each follower in the platoon trains locally
with respect to their individual reward.

In the future, improvements to the system could be made by implementing weighted averaging in the FRL
aggregation method. Moreover, in AV platooning, communication delays can be considered in the model to
give a more concrete real life example.
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Abstract
For a non-stationary opponent in a multi-agent environment, traditional methods model the opponent through its
complex information to learn one or more optimal response policies. However, the response policy learned earlier is
prone to catastrophic forgetting due to data imbalance in the online-updated replay buffer for non-stationary changes
of opponent policies. This paper focuses on how to learn new response policies without forgetting old policies that
have been learned when the opponent policy is constantly changing. We extract the representation of opponent
policies and make explicit clustering distinctions through the contrastive learning autoencoder. With the idea of
balancing the replay buffer, we maintain continuous learning of the trajectory data of various opponent policies that
have appeared to avoid policy forgetting. Finally, we demonstrate the effectiveness of the method under a classical
opponent modeling environment (soccer) and show the clustering effect of different opponent policies.

Keywords: Non-stationary, opponent modeling, contrastive learning, trajectory representation, data balance

1. INTRODUCTION
In the field of multi-agent reinforcement learning (MARL) [1–3], the non-stationary problem [4,5] caused by
policy changes of other agents has always been challenging. Since the policy and behavior of other agents are
generally unknownwhen the policies of other agents change, the environment is no longer considermed to be a
stationary arkov decision process (MDP), and it cannot be solved by simply using a single-agent reinforcement
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learning algorithm [6–8]. A common class of ideas is to introduce additional information to aid training by
modeling other agents i.e. opponent modeling [4,9].

Opponentmodeling is a common idea in theMARL domain, which hasmany works of different points of view,
such as explicitly representing the opponent’s policies through neural networks to train some optimal response
policies [10–12] or implicitly learning the opponent policy’s representation to assist training [13–16]. Since the
goal of the agent under our control is to maximize its local reward, other agents are viewed collectively as an
opponent, although “opponent” does not always imply a fully competitive environment. However, existing
opponent modeling methods, whether explicitly or implicitly, set the opponent to use a fixed policy or switch
between fixed policies, which is not suitable for most real-world situations. Therefore, we further set the
opponent policy in the form of a probability distribution, so as to learn a general policy that can deal with all
kinds of opponents, which requires additional consideration of policy forgetting.

Specifically, when the opponent policy changes, the data in the replay buffer [17] are constantly replaced by the
interactive trajectory with the new opponent policy so that the agent’s response policy converges to deal with
the new opponent policy. However, at the same time, the agent may forget the response policy it has learned
before because of the loss of previous interaction data; therefore, it still needs to re-learn when some opponent
policies appear again, which greatly reduces the response efficiency.

We believe that the main reason for this type of policy forgetting problem is that there are not enough tra-
jectories of interactions with various opponent policies saved in the replay buffer. Thus, this paper uses the
idea of data balancing [18,19] to ensure the diversity of trajectories interacting with various opponent policies
in the replay buffer as much as possible. Data balancing is widely used in continuous learning [20] to solve
catastrophic forgetting problems. In contrast, in most continuous learning settings, task IDs are given to dis-
tinguish between different tasks, but we do not know the types of opponent policies. Thus, to distinguish vari-
ous trajectories, we self-supervise extracted policy representations from interactive trajectories by contrastive
learning [21–24] and clustering at the representational level. Our proposed method, trajectory representation
clustering (TRC), can be combined with any existing reinforcement learning (RL) algorithm, to avoid policy
forgetting in non-stationary multi-agent environments.

The contributions of this paper can be summarized as follows: (1) Interaction trajectories are self-supervised
encoded through a contrastive learning algorithm so that different opponent policies can be more accurately
represented and distinguished in the representation space. No additional information is required except the
opponent observation; (2) From the perspective of balancing data types, we artificially retain the types of data
that account for a small proportion in the replay buffer to avoid catastrophic policy forgetting.

The rest of this paper is organized as follows. The related work on opponent modeling and contrastive learning
is discussed in Section 2. Section 3 details the used network architecture, loss function, and algorithm flow.
Then, some experiments based on the classic environment of soccer are presented to verify the performance
of our method in Section 4. Finally, the conclusions and future work are introduced in Section 5.

2. RELATED WORK
2.1. Opponent modeling
Opponent modeling stems from a naive motivation that infers the opponent’s policy and behavior through
the information about the opponent to obtain a higher reward for itself. Early opponent modeling work [25,26]

mainly focused on simple game scenarios where the opponent policy is fixed. With the development of deep
reinforcement learning, scholars have begun to apply the idea of opponent modeling inmore complex environ-
ments and settings. The following introduces the opponent modeling work in recent years in terms of explicit
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modeling and implicit modeling.

2.1.1. Implicit opponent modeling
Implicit opponent modeling generally refers to extracting representations from opponent information to aid
training. He et al. first used the opponent’s observation and agent’s observation as merged input in a deep
network to train the agent end-to-end. They also pointed out that information such as the opponent’s policy
type can be used to assist the training of RL [13]. Subsequently, Hong et al. additionally used the information
of opponent action, fitted the opponent policy through the neural network, and then multiplied the output
of the hidden layer of the opponent’s policy network with the output of the hidden layer of the Q network
to calculate the Q value [14]. Considering that the opponent may also have learning behaviors, Foerster et al.
maximized the agent’s reward by estimating the parameters of the opponent policy network based on the idea
of recurrent reasoning [16]. Raileanu et al. considered the parameters of the opponent policy network from
another perspective and used the agent policy to make decisions based on the opponent observation, so as
to infer the opponent’s goal and achieve better performance [15]. Due to the different assumptions about the
opponent, the effects of different algorithms are also difficult to compare.

2.1.2. Explicit opponent modeling
Explicit opponentmodeling generally refers to explicitly modeling opponent policies, dividing opponent types,
and detecting and responding online during the interaction process. Rosman et al. first proposed Bayes policy
reuse (BPR) to be used in multi-task learning, maintaining a belief for each task through Bayesian formula,
judging the task type, and choosing the optimal response policy for unknown tasks [27]. Since then, Hernandez-
Leal et al. extended the environment to a multi-agent system, used MDP to model opponents, and added a
detectionmechanism for unknown opponent policies [10] . In the face ofmore complex environments, Zheng et
al. used neural networks tomodel opponents and the rectified beliefmodel (RBM) tomake opponent detection
more accurate and rapid, as well as policy distillation technology to reduce the scale of the network [11]. On
this basis, Yang et al. introduced the theory of mind [28] to defeat opponents with higher-level decision-making
methods for opponents who also use opponent modeling method [12].

2.2. Contrastive learning
Contrastive learning, as the most popular self-supervised learning algorithm in recent years, is different from
generative encoding algorithms. Contrastive learning focuses on learning common features between similar
instances and distinguishing differences between non-similar instances. van den Oord et al. first proposed
InfoNCE loss, which encodes time-series data. By separating positive and negative samples, it can extract
data-specific representations [21]. Based on similar ideas, He et al. achieved high performance in the field of
image classification, by improving the similarity between the query vector and its corresponding key vector
while reducing the similarity with the key vector of other images [23]. From the perspective of data augmenta-
tion, Chen et al. performed random cropping, inversion, grayscale, and other transformations on the image
and extracted the invariant representation behind the image through contrastive learning [22]. The subsequent
series of works [29–31] continued with a series of improvements, and the performance on some tasks is close to
that of supervised learning algorithms.

From the above works, we can see that most of the previous opponent modeling work is to additionally input
representations into neural networks for policy training. This paper provides another perspective on training
a general policy to respond to various opponents by balancing the data in the replay buffer interacting with
different opponent policies. Through the powerful representation extraction ability of contrastive learning, we
distinguish various opponent policies at the representation level. It is worth noting that we only additionally
use opponent observations, which is a looser setting compared to other work in multi-agent settings.
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3.1. Problem formulation
We describe the problem as a partially-observable stochastic game (POSG) [32] composed of a finite set I =
{1, 2, . . . , 𝑁}, a state space S, the joint action space A = A1 × . . . × A𝑁 , the joint observation space O =
O1 × . . . × O𝑁 , a transition function P : S × A × S → [0, 1] denoting the transition probabilities between
two states when given a joint action, and a reward function R𝑖 : S × A × S → R for each agent 𝑖 ∈ I. Since
we only focus on the performance of the agent under our control, we denote this agent by 1 and other agents
are denoted by −1 with joint observation 𝑜−1 and joint action 𝑎−1.

We design a set of 𝐾 fixed policies for agent −1 Π =
{
𝜋−1,𝑘 | 𝑘 = 1, . . . , 𝐾

}
, which can be rule-based (artificial)

or network (pre-trained). Assume that an opponent policy 𝜋𝑤 is a probability distribution on Π, 𝑤 ∈ Δ(Π),
which means at the beginning of each episode, the agent −1 samples a policy from Π with probability distribu-
tion 𝑤 and executes this policy throughout the episode. Different from the setting of only switching between
fixed policies in previous work, we allow more complex opponent policy changes, making the setting looser
and more general.

Ideally, our goal is to find a general response policy 𝜋𝜃 parameterized by 𝜃, which can maximize the reward of
agent 1 against each opponent policy 𝜋𝑤 . However, considering the reality, we maximize the minimum reward
of 𝜋𝜃 against 𝜋𝑤 :

max
𝜃

min
𝑤∈Δ(Π)

E𝜋𝜃 ,𝜋𝑤

[
𝐻−1∑
𝑡=0

𝛾𝑡𝑟1
𝑡

]
(1)

where 𝑟1
𝑡 is the reward of agent 1 at step 𝑡 after performing the action 𝑎1

𝑡 determined by 𝜋𝜃 , 𝐻 is the horizon
of episode, and 𝛾 ∈ (0, 1) is a discount factor. It is also important to note that at any time the agent 1 knows
neither the policy type 𝑘 of opponent nor the distribution 𝑤. This gives us the motivation to infer the type of
opponent policy.

3.2. Representation extraction module
Different from previous opponent modelingmethods that model opponent policies, we use a contrastive learn-
ing approach to self-supervised distinguish trajectories against different opponent policies, so that we only use
the opponent’s observations. We denote trajectory as 𝜏 = {𝑜1

𝑡 , 𝑜
−1
𝑡 }𝑡=𝐻−1

𝑡=0 where 𝑜1
𝑡 and 𝑜−1

𝑡 are the obser-
vations of agent 1 and agent −1 at step t, respectively. Given a set of trajectories T = {𝜏1, 𝜏2, . . . , 𝜏𝑀 }, the
representation of each trajectory is self-supervised extracted by the CPC [21] algorithm.

Figure 1 shows the architecture of the contrastive predictive coding algorithm. First, we encode the observa-
tions by a multi-layer perceptron (MLP) to get a sequence of latent representation 𝑧𝑡 :

𝑧𝑡 = 𝑓MLP(𝑜1
𝑡 , 𝑜
−1
𝑡 ) (2)

Then, use a gated recurrent unit (GRU) to extract the context information for the first t steps:

𝑐𝑡 = 𝑓GRU(𝑧:𝑡) (3)

In addition, we also need to define the similarity function 𝑓𝑘 . To unify the dimensions, we use a bilinear
product function:

𝑓𝑘 (𝑧𝑡+𝑘 , 𝑐𝑡) = 𝑧𝑇𝑡+𝑘𝑊𝑘𝑐𝑡 (4)

where 𝑘 = 1, . . . , 𝐻 − 𝑡 − 1 and𝑊𝑘 is different for each k. For given set of trajectory T = {𝜏1, 𝜏2, . . . , 𝜏𝑀 }, 𝑐𝑖𝑡
and 𝑧𝑖𝑡+𝑘 are calculated from 𝜏𝑖 . Since representations extracted from the same trajectory have similarities, we

3. METHOD
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Figure 1. Overview of contrastive predictive coding (CPC), a representation extraction algorithm by contrasting positive and negative sam-
ples.The context 𝑐𝑡 and subsequent state embeddings {𝑧𝑡+1 , 𝑧𝑡+2 , . . . , 𝑧𝐻−1 } are regarded as positive samples when they come from the same
trajectory; otherwise, they are regarded as negative samples. By increasing the similarity between positive samples and reducing the simi-
larity between negative samples, we obtain trajectory representations to distinguish different opponent policies.

maximize 𝑓𝑘 (𝑧𝑖𝑡+𝑘 , 𝑐
𝑗
𝑡 ) when 𝑖 = 𝑗 and minimize 𝑓𝑘 (𝑧𝑖𝑡+𝑘 , 𝑐

𝑗
𝑡 ) when 𝑖 ≠ 𝑗 . The InfoNCE loss is:

LInfoNCE = − 1
𝑀 (𝐻 − 𝑡 − 1)

𝐻−𝑡−1∑
𝑘=1

𝑀∑
𝑖=1


log

𝑒𝑥𝑝( 𝑓𝑘 (𝑧𝑖𝑡+𝑘 , 𝑐
𝑖
𝑡))

𝑀∑
𝑗=1
𝑒𝑥𝑝( 𝑓𝑘 (𝑧 𝑗𝑡+𝑘 , 𝑐

𝑖
𝑡))


(5)

where 𝑡 is random sampling within a suitable range, M is the size of the trajectory set (batch size), and H is
the horizon. Optimizing this loss will extract a unique representation of each trajectory that is different from
others.

As described above, we self-supervise the extraction of policy representations from trajectories through con-
trastive learning, which can discriminate different opponent policies in representation space. Especially the
contrast between positive and negative samples makes the representation highlight the differences between
trajectories, which is beneficial for subsequent clustering operations.

3.3. Experience replay module
In Section 3.2, we introduce how to extract the representations of opponent policies from the trajectories that
interact with opponents. Different from the previous approaches of directly using representations to assist
training, we focus on another aspect, that is, the impact of non-stationary opponents on the experience replay.
Experience replay is a commonly used method in reinforcement learning whose purpose is to improve the
sample efficiency. When the replay buffer is full, the data are usually processed in a first-in, first-out (FIFO)
manner. When the opponent uses a fixed policy, the environment can be treated as a deterministic MDP, and
FIFO is feasible. When the opponent is non-stationary, the replay buffer will pass through data that interacts
with different types of opponent policies. The decrease in the proportion of certain types of data will affect the
effectiveness against such an opponent, and the loss of old data may lead to the forgetting of learned strategies.
Therefore, we design new data in and out, a mechanism to keep as many types of trajectory data as possible in
the replay buffer.
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We cluster the trajectory data in the replay buffer in the representation space, and, for the representation, 𝑧𝑖:𝐻
and 𝑧 𝑗:𝐻 of the trajectories 𝜏𝑖 and 𝜏𝑗 , we use the average Euclidean distance to measure the distance between
them:

𝑑𝑖, 𝑗 =
1
𝐻

𝐻−1∑
ℎ=0
| |𝑧𝑖ℎ, 𝑧

𝑗
ℎ | | (6)

For all trajectories in the replay buffer, we can calculate the representation distance matrix 𝐷 by Equation
(6). Additionally, the truncation method can be used for trajectory representations of different lengths, or the
dynamic time warping (DTW) can be used instead of the Euclidean distance.

Since the number of opponent policies is unknown, some clustering methods such as K-means are not suitable
for use. We use agglomerative clustering to distinguish trajectory representations in the replay buffer, which is
implemented in the standard algorithm library scikit-learn, and the clustering threshold is set as the average
distance of all trajectory representations. Then, the labels of the trajectories that interact with the opponents
are obtained in a self-supervised manner.

To balance the proportion of different types of data in the replay buffer, we no longer pop the oldest data when
the replay buffer is full, but pop the oldest data from the largest class based on the clustering results. This
ensures the dynamic balance of various types of data to a certain extent. Even if a certain type of opponent
policy has a very low probability of appearing in a period, the data interacting with it can maintain a certain
proportion in the replay buffer, thereby avoiding policy forgetting. However, this approach will lead to some
useless old data existing in the replay buffer for a long time, reducing the training effect of reinforcement
learning. We introduce a probability threshold 𝜌, where the replay buffer pops the oldest data from the largest
class with the probability of 𝜌 and pops the oldest data from the entire replay buffer with the probability of
1 − 𝜌. This allows the data that hinder training to be popped. In this paper, we set 𝜌 = 0.9.

3.4. Combine with reinforcement learning
This section describes the overall algorithm flow in combination with the classic reinforcement learning algo-
rithm soft actor–critic (SAC) whose optimization goal is:

𝐽 (𝜋) =
𝑇∑
𝑡=0
E(s𝑡 ,a𝑡 )∼𝜌𝜋 [𝑟 (s𝑡 ,a𝑡) + 𝛼H (𝜋 (· | s𝑡))] (7)

whereH (𝜋 (· | s𝑡)) is the additional policy entropy added to encourage exploration and 𝛼 is the temperature
parameter determines the relative importance of the entropy term. However, our method can be combined
with any off-policy reinforcement learning algorithm.

Since the training speed of representation learning ismuch faster than that of reinforcement learning, we set the
training frequency 𝐹𝑐 for it to balance their learning rate. In addition, this also considers that the flow of data in
the replay buffer in the short term will not change the data distribution in it. Considering that the introduction
of the clustering requires a large amount of extra computation, and the data that newly entered replay buffer
will not be popped in the short term, we update the labels of trajectory representations by clustering every 𝐹𝑙
episode.

The complete algorithm is described inAlgorithm 1. The training of representation learning and reinforcement
learning process alternately. Since the FIFO rule is still followed in the class, ourmethodwill not have toomuch
influence on the training of reinforcement learning; at the same time, the diversity of the data in the replay
buffer is guaranteed as much as possible, so that the policy forgetting caused by the non-stationary of the
opponent policy is avoided.
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Algorithm 1 SAC with TRC.

Require: Initialize SAC parameter vector 𝜃, CPC parameter vector 𝜑, total episode 𝑇 , episode horizon 𝐻,
batch size 𝑀 , CPC training frequency 𝐹𝑐 , labels update frequency 𝐹𝑙 , and threshold 𝜌.

1: for episode 𝑖 = 0 . . . 𝑇 − 1 do
2: opponent choose policy 𝜋−1

3: for step 𝑡 = 0 . . . 𝐻 − 1 do
4: 𝑎1

𝑡 ∼ 𝜋𝜃
(
𝑎1
𝑡 | 𝑜1

𝑡 , 𝑜
−1
𝑡

)
5: 𝑎−1

𝑡 ∼ 𝜋−1 (𝑎−1
𝑡 | 𝑜1

𝑡 , 𝑜
−1
𝑡

)
6: 𝑜1

𝑡+1, 𝑜
−1
𝑡+1 ∼ 𝑝

(
𝑜1
𝑡+1, 𝑜

−1
𝑡+1, | 𝑜1

𝑡 , 𝑜
−1
𝑡 , 𝑎

1
𝑡 , 𝑎
−1
𝑡

)
7: 𝜏𝑖 ← 𝜏𝑖 ∪ {(𝑜1

𝑡 , 𝑜
−1
𝑡 , 𝑎

1
𝑡 , 𝑟 (𝑜1

𝑡 , 𝑜
−1
𝑡 , 𝑎

1
𝑡 , 𝑎
−1
𝑡 ), 𝑜1

𝑡+1, 𝑜
−1
𝑡+1)}

8: end for
9: 𝐷 ← 𝐷 ∪ 𝜏𝑖
10: if 𝑖 mod 𝐹𝑐 == 0 then
11: Sample trajectory batch T from 𝐷

12: Update 𝜑 by Equation (5)
13: end if
14: if |𝐷 | == 𝑀 then
15: if random sample a probability value greater than 𝜌 then
16: Pop the oldest trajectory from 𝐷

17: else
18: if 𝑖 mod 𝐹𝑙 == 0 then
19: Compute 𝑧:𝐻 = 𝑓𝜑 (𝜏) for each 𝜏 in 𝐷
20: Compute distance matrix of trajectory representations by Equation (6)
21: Cluster trajectory representations by agglomerative clustering
22: end if
23: Pop the oldest trajectory from the largest class
24: end if
25: end if
26: Update 𝜃 by SAC algorithm.
27: end for

4. RESULTS
We evaluate our approach in a more complex soccer environment and compare the average returns during RL
training against three baselines. We also discuss the impact of the proportion of data in the replay buffer on
reinforcement learning training and the improvement of our approach to the diversity of trajectories in the re-
play buffer. In addition, we analyze representational clustering by t-distributed stochastic neighbor embedding
(t-SNE) to analyze the properties of different adversary policies at the representational level.

4.1. Game description
Soccer is a classic competitive environment that has been used by many opponent modeling approaches [11,13]

to verify their performance. We extend the rules based on the classic soccer environment and design more
complex rule-based opponent policies based on this. As shown in Figure 2, the environment is a 15 × 15 grid
world, and there are two goals on each end line. At the beginning of the episode, the two agents are in the
center of their respective end lines with 0 energy, and one random agent holds the ball. Each agent has 13
optional actions, moving to any of the 12 grid points within a two-grid range around itself or staying in place,
but moving 2 grids requires 2 energy. The agent with the ball recovers 0.5 energy per step, while the agent
without the ball recovers 1 energy per step, and the upper limit of energy is 2. When both agents are about
to enter the same grid, they stop in place and exchange the ball possession. When the agent dribbles the ball
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Figure 2. The configuration of soccer. The goal of each agent is to drive the ball into the opponent’s goal.

(a) (b)

Figure 3. (a) The average reward curve of interacting with opponent policy 𝜋−1
1 ; and (b) the proportion change curve of opponent 𝜋−1

1

trajectory in replay buffer.

into the opponent’s goal, it gets a +5 reward, while the opponent gets a −5 reward, and then ends this episode.
If the interaction exceeds 50 steps, the episode will also be terminated and each agent will get 0 rewards. The
position, energy, and ball possession are fed back to the agent as observation.

The opponent policies are designed to be random policies based on given rules, which makes it more complex.
Specifically, we design two base opponent policies 𝜋−1

1 and 𝜋−1
2 with different styles. 𝜋−1

1 : Keep away from
the opponent while attacking the upper goal when holding the ball, and get close to the opponent when not
holding the ball. 𝜋−1

2 : Keep away from the opponent while attacking the lower goal when holding the ball, and
defend near its end line when not holding the ball. As described in Section 3.1, we define 𝑤 ∈ [0, 1] as a class
of opponent policies, and, at the beginning of the episode, the opponent chooses a policy from {𝜋−1

1 , 𝜋−1
2 } with

probability distribution {𝑤, 1 − 𝑤}.

4.2. Non­stationary opponent
Wemake the opponent policy switch from 𝑤 = 0.5 to 𝑤 = 0.05 at step 100k to observe the performance of the
agent training by different algorithms in a non-stationary environment. Figure 3a shows the comparison of
the reward curves of our algorithm and three baselines against opponent policy 𝜋−1

1 . In these baselines, vanilla
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Figure 4. The average reward curve of interacting with opponent policy 𝜋−1
1 when 𝑤 change from 0.5 to 0, 0.02, 0.04, 0.06, 0.08, and 0.1.

SAC uses no opponent information and performs the worst. DRON uses the opponent’s observation as an
additional input, while DPIQN further uses the opponent’s actions to obtain the representations of opponent
policy to aid training. However, they both perform worse than our work due to a lack of consideration of data
balance. Figure 3b shows the change in the proportion of interaction trajectories with opponent strategy 𝜋−1

1
in the replay buffer. It can be seen that, when the probability of an opponent policy decreases, only our method
can maintain a relatively high proportion of the data obtained by interacting with it in the replay buffer. This
improves responsiveness to such an opponent policy and avoids forgetting the learned policy.

To explain the impact of data ratio on policy forgetting in more detail, we make the opponent policy change
from 𝑤 = 0.5 to 𝑤 = 0, 0.02, 0.04, 0.06, 0.08, 0.1 at step 100k and use SAC for training with the other condi-
tions remaining the same. As shown in Figure 4, when a certain opponent policy appears very infrequently,
a small proportional increase in the replay buffer can bring about higher performance improvement, but, for
data that already exist in significant proportions, the impact of adjusting the data ratio is minimal. This also
explains our motivation to balance the proportion of various data.

4.3. Analysis of clustering
In Section 4.2, we show the performance of the algorithm and analyze the rationale behind data balancing. In
this section, from the perspective of policy representation, we analyze the clustering properties of the policy
representations obtained by contrastive learning in the representation space. Figure 5 shows the visualization
of trajectory encoding after dimensionality reduction by t-SNE. Self-supervised contrastive learning is not
very accurate in distinguishing two types of opponent policies. Because policies may have similar parts, a
type of policy can also be decomposed into several more refined sub-policies. Self-supervised learning of
policy representations only with trajectory information can only be used for coarse clustering. However, our
algorithm does not rely on extremely accurate trajectory clustering and strategy identification but balances the
proportion of various trajectory data generally. This also makes the algorithm have certain robustness.

5. CONCLUSION
This paper constructs a general sampling algorithm based on data balance formulti-agent non-stationary prob-
lems. The trajectory representation of the interaction with the opponent is extracted by comparative learning,
and then the representation is distinguished by hierarchical clustering. Finally, the data balance in the replay
buffer is realized by changing the order of in and out of the replay buffer. We get better performance against
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(a) (b)

Figure 5. t-SNE projection of the embeddings in the soccer environment: (a) the two colors represent the two base opponent policies 𝜋−1
1

and 𝜋−1
2 ; and (b) the different colors represent the classes of trajectory representations encoded by the contrastive learning.

a non-stationary opponent. In particular, we only use the observation information of the opponent, and the
setting is looser than other opponent modeling algorithms. In the future, we would like to combine multi-task
learning algorithms to learn different opponent policies as different tasks and explore more efficient ways to
distinguish opponent policies.
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Abstract
In the last few years, there have been many new developments and significant accomplishments in the research of 
bionic robot fishes. However, in terms of swimming performance, existing bionic robot fishes lag far behind fish, 
prompting researchers to constantly develop innovative designs of various bionic robot fishes. In this paper, the 
latest designs of robot fishes are presented in detail, distinguished by the propulsion mode. New robot fishes 
mainly include soft robot fishes and rigid-soft coupled robot fishes. The latest progress in the study of the 
swimming mechanism is analyzed on the basis of summarizing the main swimming theories of fish. The current 
state-of-the-art research in the new field of motion coordination and communication of multiple robot fishes is 
summarized. The general research trend in robot fishes is to utilize more efficient and robust methods to best 
mimic real fish while exhibiting superior swimming performance. The current challenges and potential future 
research directions are discussed. Various methods are needed to narrow the gap in swimming performance 
between robot fishes and fish. This paper is a first step to bring together roboticists and marine biologists 
interested in learning state-of-the-art research on bionic robot fishes.

Keywords: Bionic robot fish, motion mechanism, motion coordination, group communication

1. INTRODUCTION
Propellers are frequently used as actuators in conventional underwater robots, and their propulsion 

https://creativecommons.org/licenses/by/4.0/
https://www.intellrobot.com/
https://dx.doi.org/10.20517/ir.2022.10


Page 181 Yu et al. Intell Robot 2022;2:180-99 https://dx.doi.org/10.20517/ir.2022.10

efficiency is only 40%-50%. Furthermore, their shapes employ a non-bionic structure that cannot be 
integrated into the underwater environment, making close observation of underwater organisms difficult. 
Fish have undergone extensive natural selection and can swim with an efficiency of more than 90%[1]. Fish 
also have distinct advantages in terms of speed, maneuverability, and stealth[2-6]. For example, swordfish can 
reach a speed up to 30 m·s-1[3]. Bionic robot fishes, which treat fish as bionic objects, can effectively absorb 
these advantages to overcome the defects of traditional underwater robots and become more effective tools 
for ocean exploration.

The propulsion modes of fish are usually classified into two categories according to the body parts used for 
propulsion, namely body and/or caudal fin (BCF) propulsion and median and/or paired fin (MPF) 
propulsion[7,8]. It is worth noting that the median fin refers to the dorsal or anal fin, while the paired fin 
refers to the pectoral or pelvic fin. Taking tilapia as an example, the structure and position of each fin are 
shown in Figure 1. The BCF propulsion mode, in which the body and/or caudal fin acts as a propeller, is the 
most common in fish and first discovered by researchers. This propulsion mode has the advantages of high 
swimming speed and quick start performance, making it suitable for applications requiring high speed or 
instantaneous acceleration[9]. The median and/or paired fin acts as a propeller in the MPF propulsion mode. 
This propulsion mode has the advantages of high maneuverability, high propulsion efficiency, and good 
stability, making it suitable for applications requiring maneuvering to turn or long-term swimming, as well 
as scenes with rapid water flow[10]. After summarizing recent research results, we show that existing robot 
fishes already have the BCF and MPF combined (BCF-MPF) propulsion mode. This propulsion mode is 
based on the cooperation of the caudal and pectoral fins. With proper design, it is capable of balancing 
swimming speed and propulsion efficiency, which has a wider application than either individually. 
Furthermore, it is a promising research topic. The basic elements of the three propulsion modes are 
summarized in Table 1.

Some review papers focus on the motion control of robot fishes[11-14], while others focus on the design, 
fabrication, and propulsion methods of robot fishes[15-17]. There is also a review paper that focuses on the 
perception of robot fishes[18]. However, the majority of them were published more than five years ago. In 
these years, unprecedented attention has been paid to the study of bionic robot fishes. Related achievements 
have proliferated and enriched the research in the field of robot fishes. As a result, this paper provides a new 
survey on various major fields of robot fishes, addressing some gaps in related fields. Figure 2 depicts the 
paper’s framework, which includes three objectives. Firstly, we provide a comprehensive survey of the most 
recent designs of robot fishes, as well as the most recent progress in the study of motion mechanism. A new 
field of study, namely motion coordination and communication of multiple robot fishes, is discussed. 
Second, based on the survey, the challenges of current research and potential future research directions are 
summarized. Three aspects are included: the gap between robot fishes and fish in terms of swimming 
performance, methods to study the swimming mechanism of robot fishes, and the motion coordination and 
communication of multiple robot fishes. Finally, a summary of the paper is provided.

The rest of the article is organized as follows. Section 2 elaborates on the latest designs of robot fishes. 
Section 3 analyzes the motion mechanism of robot fishes. The motion coordination and communication of 
multiple robot fishes are discussed in Section 4. Section 5 provides a comprehensive discussion on the 
challenges and future works. Finally, in Section 6, some concluding remarks are made.

2. DESIGNS OF ROBOT FISHES
According to their body structure, robot fishes are classified into three types: rigid, soft, and rigid-soft 
coupled. The strengths and weaknesses of different body structures are summarized in Table 2. The rigid 
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Table 1. Propulsion modes of robot fishes

Propulsion 
modes Propellers Strengths Applications

BCF Body and/or caudal fin 1. High swimming speed 
2. High quick start performance

Requiring high speed 
Requiring instantaneous 
acceleration

MPF Median and/or paired fin High maneuverability 
High propulsion efficiency 
Good stability

Requiring maneuvering to turn 
Requiring long-term swimming 
Rapid water flow

BCF-MPF Cooperation of the caudal and pectoral 
fins

Balancing swimming speed and propulsion 
efficiency

Broader than either individually

Table 2. The body structures of robot fishes

Body structures Strengths Weaknesses

Rigid High swimming speed Poor maneuverability

Soft Great maneuverability Low swimming speed

Rigid-soft coupled Achieving great maneuverability while generating high swimming speed with a reasonable design

Figure 1. Types of fins in tilapia.

robot fish has high swimming speed, but its maneuverability is poor. In contrast, the soft robot fish has 
great maneuverability, but its swimming speed is low. The rigid-soft coupled robot fish lies between the two. 
Through reasonable design, it can achieve great maneuverability while generating high swimming speed. 
The rigid robot fish has received little attention in recent years. This is primarily due to the fact that the 
rigid structure of the rigid robot fish is far from the elastic skin and muscles of fish. As a result, we only 
discuss soft and rigid-soft coupled robot fishes in this paper.
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Figure 2. The review framework.

2.1. Robot fishes in BCF propulsion mode 
2.1.1. Soft robot fishes
This robot fish generally uses intelligent materials or other special devices to simulate the muscles of fish, 
expecting to significantly improve the swimming performance. The first attempt was made by Katzschmann 
et al.[19]. The robot fish SoFi was designed by them, which used a soft fluid actuator to simulate muscle 
tissue. The soft caudal fin had two lateral chambers symmetrical along the central axis. A gear pump drove 
fluid flow from one side of the chamber to another, causing the caudal fin to bend. SoFi successfully swam 
around aquatic life at depths of 0-18 m and effectively integrated into the marine environment. However, 
SoFi still has room for improvement, such as optimizing the geometry of the tail section. Dielectric 
elastomer actuators (DEAs), a type of smart material, are also used in robot fishes. Shintake et al. attached 
two DEAs to both sides of the robot fish’s body, as shown in Figure 3A[20]. The DEAs were stretched by the 
same length so that the initial state of the robot fish was straight. The voltage was applied to each side of the 
body in turn, so that one side of the DEA was elongated while the other side was contracted. As a result, the 
robot fish’s body oscillated from one side to another side, causing the caudal fin to oscillate. The maximum 
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Figure 3. Soft robot fishes in BCF propulsion mode: (A) a robot fish with DEAs[20]; and (B) Flexi- Tuna[21]. BCF: Body and/or caudal fin; 
DEAs: dielectric elastomer actuators.

swimming speed of the robot fish was 0.25 BL·s-1 at 0.75 hertz oscillation frequency. However, the authors 
needed to test the fish in different sizes and swimming types (e.g., turning) to figure out how much 
swimming ability the fish had. Liu et al. proposed using gas-driven units to simulate muscle fibers of fish 
and successfully designed the robot fish Flexi-Tuna[21]. As shown in Figure 3B, 14 drive units were 
symmetrically distributed on both sides of the robot fish’s body. Then, alternating pressure was applied to 
the drive units to make the tail oscillate back and forth. According to the results, under the optimal 
frequency of 3.5 Hz, the maximum swing angle of Flexi-Tuna was 20° and the maximum thrust was 0.185 
N. This research realized the application of artificial muscles in robot fishes and provided new ideas for the 
design of soft robot fishes. However, some optimizations, such as variable stiffness design of caudal fin, are 
still needed to achieve better swimming performance of robot fishes.

2.1.2. Rigid-soft coupled robot fishes
In recent years, researchers have come up with some new ideas to improve the swimming performance of 
this type of robot fish.

The headshaking of robot fishes leads to an increase of water resistance, which in turn reduces their 
swimming speed. To address this issue, Liao et al. proposed using two caudal fins rather than a single caudal 
fin[22]. Caudal fins were mounted symmetrically on the tail of the robot fish, as shown in Figure 4A. They 
were designed to flap oppositely to offset lateral forces, which in turn prevented the headshaking. The robot 
fish had three motions: oscillatory motion, jet motion, and oscillatory and jet cooperative motion. A suitable 
motion type could be chosen based on the distance between two caudal fins. This indicated that the robot 
fish had great flexibility. According to the experimental results, the robot fish could reach the speed of 2.5 
body lengths per second (BL·s-1), demonstrating excellent swimming speed.

Researchers have made great progress in mimicking the body structure of fish. Coral et al. created a robot 
fish using actuators made of shape memory alloys (SMAs)[23]. As shown in Figure 4B, these actuators were 
bent into a continuous structure to resemble the fish backbone. Bio-inspired synthetic skin was used to 
mimic the skin of fish. Nevertheless, the authors only verified the feasibility of this scheme. Zhu et al. 
created Tunabot by mimicking the body structure of tuna and mackerel and discussed the influence of 
oscillation frequency in depth[24]. The robot fish had a streamlined shape with an elastic skin overlaid on the 
actuator system. Tunabot swam at a maximum tail-beat frequency of 15 hertz, reaching 4 BL·s-1 according to 
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Figure 4. Rigid-soft coupled robot fishes in BCF propulsion mode: (A) a robot fish with two caudal fins[22]; and (B) wires actuators of the 
robot fish[23]. BCF: Body and/or caudal fin.

experiments. Tunabot could swim 9.1 km if it swam at 0.4 m·s-1 or 4.2 km if it swam at 1 m·s-1 while powered 
by a 10 Wh battery pack. This highlighted the capabilities of high-frequency swimming. This provided new 
ideas to improve the swimming performance of robot fishes. The variable stiffness design of the robot fish is 
also an imitation of fish. TenFiBot, a robot fish with variable stiffness, was designed by Chen and Jiang[25]. 
The whole structure of TenFiBot was a tandem structure with multiple variable-stiffness tensegrity joints 
(VSTJs). The preload of the springs on the VSTJs could be adjusted to change the stiffness distribution on 
the TenFiBot’s body. Experiments demonstrated that the change of stiffness distribution directly affected 
the swimming performance (such as swimming speed) of the robot fish. By changing the stiffness 
distribution of the robot fish, its swimming performance could be greatly improved.

2.2. Robot fishes in MPF propulsion mode
2.2.1. Soft robot fishes
This robot fish tends to be designed with smart materials and is smaller in size. As MPF propulsion mode is 
adopted, it has greater maneuverability. Therefore, it is ideal for applications in special environments, such 
as fine pipes, deep sea, etc. Inspired by the hadal snail-fish, which lives at 8000 m water depth, Li et al. 
designed an untethered soft robot fish that could withstand extreme hydrostatic pressure[26]. The robot fish 
was driven by DEAs. The electronic components of the robot fish were decentralized on several smaller 
printed circuit boards, which could effectively reduce the shear stress between components. This ensured 
that the robot fish could withstand extreme water pressure. The robot fish successfully swam at a depth of 
10,900 m in the Mariana Trench, showing great potential for application in deep-sea exploration.

2.2.2. Rigid-soft coupled robot fishes
A key condition to achieving high swimming performance is to adjust the distribution of soft and hard 
structures in robot fishes. As shown in Figure 5A, a robot fish with cartilages and soft tissues was designed 
by Yurugi et al.[27]. Experiments revealed that adding cartilages to the fins of the robot fish could improve 
swimming efficiency. The researchers also investigated the fish’s swimming behavior. As shown in 
Figure 5B, Ma et al. designed a robot fish driven by the oscillating and twisting of the pectoral fins after 
studying the pectoral fin movement of the cownose ray[28]. The pectoral fins simultaneously realized 
oscillating motion and chordwise twisting motion. The maximum swimming speed of the robot fish was 
0.94 BL·s-1, and the turning radius was nearly zero. This reflected the excellent turning performance and 
high swimming speed of the robot fish. These authors should conduct additional research into the effect of 
pectoral fin flexibility on swimming performance.
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Figure 5. Rigid-soft coupled robot fishes in MPF propulsion mode: (A) a robot fish with soft tissue and cartilages.[27]; and (B) bionic 
cownose ray robot fish[28]. MPF: Median and/or paired fin.

2.3. Robot fishes in BCF-MPF propulsion mode
2.3.1. Soft robot fishes
The caudal fin of this robot fish mainly serves a steering function, and the pectoral fins mainly provide 
propulsion. Zhang et al. first tried to build a robot fish[29]. The dielectric elastomers (DEs) were attached to 
the elastic frame, and the variable voltage was applied to drive the pectoral fins up and down to generate 
forward thrust. A steering electrical servo drove the caudal fin deflection angle for turning. Figure 6A 
depicts the position of the pectoral and caudal fins. Unfortunately, the authors did not test the performance 
of this robot fish. Li et al., inspired by manta rays, designed a soft electronic robot fish driven by DEAs, as 
shown in Figure 6B[30]. The speed of the robot fish was 0.69 BL·s-1. It could use the surrounding water as an 
electric ground and swim for up to 3 h on a single charge. This thoroughly illustrated the robustness of this 
robot fish.

2.3.2. Rigid-soft coupled robot fishes
The caudal fin of this robot fish is able to oscillate significantly and rapidly, allowing for high propulsion 
power. Simultaneously, the pectoral fins have multiple degrees of freedom, allowing for great 
maneuverability. As a result, the excellent swimming performance of these robot fishes has attracted the 
interest of many researchers. This was attempted by Li et al., who created the robot fish shown in 
Figure 7[31]. The caudal fin of the robot fish had three rigid joints, which ensured its high flexibility. The 
pectoral fins could perform rotary motion and forward-backward motion, and the two motions were 
completely independent. This robot fish could reach a turning speed of 0.6 radians per second (rad·s-1) with 
the coordinated propulsion of the caudal and pectoral fins. This provided the robot fish with more turning 
options and higher maneuverability. Zhong et al. designed a new type of robot fish[32]. The caudal fin of the 
robot fish was driven by wires, which could be deformed along a chordwise direction or both chordwise and 
spanwise directions. Flapping and rowing motions were possible with the pectoral fins. The results show 
that, without using the pectoral fins, the turning radius of the robot fish was 0.6 BL; with the pectoral fins, 
the turning radius was reduced to 0.25 BL. This clearly had higher maneuverability. These experiments only 
tested the turning performance of these robot fishes and did not test their performance in other swimming 
types (e.g., straight swimming).
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Figure 6. Soft robot fishes in BCF-MPF propulsion mode: (A) a soft robot fish[29]; and (B) a soft electronic fish[30]. BCF: Body and/or 
caudal fin; MPF: median and/or paired fin.

Figure 7. A rigid-soft coupled robot fish in BCF-MPF propulsion mode[31]. BCF: Body and/or caudal fin; MPF: median and/or paired fin.

3. THE MOTION MECHANISM OF ROBOT FISHES
The study of the motion mechanism of robot fishes provides an in-depth understanding of the process by 
which robot fishes obtain thrust. The results of this study can be utilized to improve the designs of robot 
fishes. This enables robot fishes to achieve higher propulsion power and efficiency, bridging the swimming 
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performance gap between robot fishes and fish.

Currently, there are three main research methods to study the swimming mechanism of robot fishes. The 
strengths and weaknesses of the three research methods are summarized in Table 3. The first method is 
theoretical analysis. In this method, the swimming equations of robot fishes are established by mathematical 
and physical models. The method is very adaptable, but it is mathematically challenging. Further, the 
difficulty lies in the need to establish equations that can be solved and correctly describe the complex 
swimming of robot fishes. The second method is experimental observation. This method uses particle image 
velocimetry (PIV) or other special equipment to observe robot fishes or fish. The conclusions of the 
research are highly accurate due to real-world observations, but they have poor universality due to the 
experimental setting’s restrictions. The third method is numerical simulation, which uses computers to 
numerically solve existing models to predict the swimming characteristics of robot fishes. The method is 
low cost and accurate, but it cannot solve some complex swimming problems that lack a perfect 
mathematical model. We can see that each of the three research methods has strengths and weaknesses, and 
combining these methods can yield complementary benefits.

3.1. Theoretical analysis
The swimming of robot fishes mimics that of fish. A better understanding of the fish motion mechanism 
aids in the design of robot fishes. There are numerous theories about fish swimming, but only a few widely 
accepted ones are discussed here. In 1970, Lighthill proposed the “elongated-body theory”[33]. This theory 
only investigates the role of the fish’s caudal cross-section in swimming, ignoring the effect of the caudal 
vortex. As a result, the swimming performance obtained by this theory is only related to the flow parameters 
in the cross-section of the fish’s caudal. Furthermore, the theory is only applicable to analyzing the 
swimming of fish with small amplitude. One year later, the “large-amplitude elongated-body theory” was 
further proposed by Lighthill[34]. In 1991, Tong et al. developed the “three-dimensional waving plate theory” 
based on the “two-dimensional waving plate theory” of Wu[35,36]. This theory simplifies the swimming of a 
fish to a flexible deformed plate oscillating in a wave-like motion. It is worth noting that the tail vortex effect 
is considered, which makes the calculation results closer to the real swimming of the fish. This theory is 
applicable to fish swimming with small amplitude. It can be extended to the accelerated swimming of fish 
and large-amplitude non-linear swimming.

In recent years, there have been new developments in the theory of robot fishes’ swimming. They are 
mainly a supplement to the previous theories and thus solve some practical problems. Wang et al. 
incorporated the robot fish’s head oscillation equation into the kinematic model based on the elongated-
body theory[33,37]. The improved kinematic model was established successfully. The results show that the 
maximum swing angle of the head was reduced to 86% of its original value, while the swimming speed was 
increased by 17%. Kirchhoff’s equations of motion were utilized by Kopman et al. to show the dynamics of 
frontal link[38]. Caudal fin oscillation was modeled by Euler-Bernoulli beam theory. The influence of the 
fluid around the robot fish was described by the Morison equation. Finally, the dynamic equation of the 
robot fish propelled by soft fin was established.

3.2. Experimental observation
With the emergence of new experimental equipment, experimental observation has become more popular. 
PIV is the most effective experimental method. It is a method of measuring flow velocity that involves 
recording the position of particles in the flow field with multiple cameras and analyzing the images 
captured. The basic idea is to spread tracer particles in the flow field and then inject a pulsed laser into the 
measured flow field area. The images of the particles are recorded by two or more consecutive exposures. 
Zhu et al. visualized the flow field by PIV and obtained the flow field image of Tunabot during the caudal 
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Table 3. Research methods to study the swimming mechanism of robot fishes

Research methods Strengths Weaknesses

Theoretical analysis Very adaptable Mathematically challenging

Experimental observation Highly accurate Poor universality

Numerical simulation Low cost 
Accurate

Solving a limited number of problems

fin oscillation[24]. It is frequently necessary to construct special experimental platforms in order to meet the 
measurement of specific physical quantities. As shown in Figure 8, the robot fish was immersed in a tank 
and the swimming speed was measured[27].

3.3. Numerical simulation
In recent years, computer technology, computational fluid dynamics (CFD), and other disciplines have 
advanced rapidly. New iterations of computers have led to a significant increase in computing power, 
allowing some complex swimming problems to be solved. The calculation model is continuously improved 
in practice, resulting in increasing accuracy of the calculation. Thus, numerical simulation has made it 
possible to acquire accurate answers to some complex swimming problems. Currently, many research 
results are available. The hydrodynamic performance of fish of different shapes near the water surface using 
CFD was studied by Zhan et al.[39]. Using an incompressible Navier-Stokes flow solver based on the 
immersion boundary method, Liu et al. studied the body-fin and fin-fin interactions[40]. Han et al. used the 
same solver as Liu et al. to simulate the swimming of the fish on the static cartesian grid[40,41]. The 
interactions between the intermediate fins were analyzed in detail. The CFD method was used by Macias et 
al. to simulate the swimming process of the fish in undisturbed water flow[42]. Zhu et al. combined the 
immersed boundary-lattice Boltzmann method in numerical simulation with a deep recurrent Q-network to 
simulate the behavior of fish[43]. It provided an effective method for researching fish adaptation behaviors in 
complex environments. All of the above swimming problems require a massive amount of computation, 
which was previously extremely difficult to achieve. From the results of the calculations, all of the authors 
considered that the accuracy of the calculations met the requirements. We believe that numerical simulation 
as a method will have considerable potential in the future.

3.4. Multiple research methods
Using multiple research methods to analyze a problem, each research method can not only complement 
each other’s strengths but also verify the results of the others, which increases the convincingness of the 
research. Korkmaz et al. established kinematic and dynamic models of the robot fish using the Denavit-
Hartenberg method and Lagrange method, respectively[2]. The swimming of the robot fish was simulated 
using MATLAB/Simulink. Experiments in the pool validated the simulation results. Behbahani et al. 
established the dynamic model of robot fishes using the rigid body dynamics theory[44]. The hydrodynamic 
force acting on the pectoral fin was solved by the blade element theory. The kinetic model was evaluated 
experimentally. The dynamic equation of the fish in autonomous swimming was established by Xin et al.[45]. 
The steering motion of fish was simulated using three-dimensional (3D) CFD software. Liu et al. established 
a kinematic model by simplifying the caudal fin to a rigid hydrofoil and the caudal peduncle to a rigid 
plate[46]. The caudal fin propulsion mechanism was analyzed using CFD to determine the principle of 
generating propulsive power. It can be anticipated that this method will be used by more and more 
researchers and become a new research trend.

4. MOTION COORDINATION AND COMMUNICATION OF MULTIPLE ROBOT FISHES
The research of multiple robot fishes emerged in recent years and is now a hot research field. When 
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Figure 8. Experimental setup for measuring the swimming speed[27].

discussing the problem of multiple robot fishes, we are most concerned with the problems of motion 
coordination and communication of multiple robot fishes. As a result, we review the latest research on these 
two issues in depth.

4.1. Motion coordination of multiple robot fishes
Fish frequently congregate in schools. Fish schools can not only effectively fight against natural enemies but 
also save energy and help them survive in harsh environments. Researchers believe that schools of multiple 
robot fishes can reap the same benefits. Therefore, we focus on coordinated swimming of multiple robot 
fishes and related discussions. The current study is mainly concerned with tandem formation and parallel 
formation. However, there have been studies on other planar formations.

Tandem formation refers to the connection of the heads and tails of two or more fish in a straight line, as 
shown in Figure 9. The fish at the front of the line is known as the leading fish, and the fish behind it is 
known as the following fish. The most basic formation of this is two fish swimming in tandem formation. 
Tandem swimming of two 3D bionic fish was studied by Wu et al.[47]. The results show that, in the absence 
of any control by the two fish, the vortex generated by the leading fish deflected the path of the following 
fish. Khalid et al. found that the undulating frequency of the following fish does not affect the vortex and 
time-averaged drag of the leading fish at a certain Strouhal number[48]. Furthermore, it appeared to be more 
favorable for the leading fish when both fish kept swimming in tandem formation.

Parallel formation refers to two or more fish lining up in a row, as shown in Figure 10. Similarly, the fish at 
the front of the line is called the leading fish, and the fish behind it is called the following fish. The most 
basic form of this is two fish swimming in parallel formation. The efficiency of two fish when swimming in 
parallel was analyzed by Doi et al.[49]. The results show that the highest swimming efficiency was achieved 
when the distance between the two fish (K1) was 0.4 BL under the premise of L1 = 0. A vortex phase 
matching strategy for robot fishes was found by Li et al.[50]. The following robot fish could conserve energy 
when the front-back distance between two robot fishes was linearly connected to the tailbeat phase 
difference. As shown in Figure 11, the following robot fish could save energy by vortex phase matching. By 
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Figure 9. Tandem formation of fish.

Figure 10. Parallel formation of fish (Li ≥ and Ki ≥ 0, i = 1, 2, …, n)

fitting, the phase difference was found to be linearly related to the phase difference, as shown in Figure 11A 
and B. Subsequent experiments confirmed that fish also exhibit this swimming strategy. Without a 
complicated vision system and artificial lateral line system (ALLS), this swimming strategy can reduce 
energy consumption and enhance swimming efficiency. This is quite crucial. The swimming speed and 
energy consumption of a single robot fish and two parallel robot fishes were investigated by Li et al.[51]. It 
was discovered that, regardless of the tail-beat phase difference, maintaining a parallel formation always 
increased their swimming speed and decreased their energy consumption. Furthermore, the authors 
hypothesized that fish can balance their consumption with the benefits they receive from their neighbors by 
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Figure 11. The following robot fish saves energy by vortex phase matching. (A) Relative power coefficient: Positive and negative values, 
respectively, represent energy saving and energy cost relative to swimming alone. The dashed line represents the function between 
phase difference and front-back distance, as shown in (B). (B) Location of energy saving: The size and darkness of the dots represent the 
number of times that the energy saving state occurs[50].

adjusting the tail-beat phase difference as they swim. This suggested that individuals in swimming schools 
might engage in competitive games.

The discussion of various planar formations aids in determining the best formation. The average swimming 
efficiency of robot fish formations formed in tandem, square, diamond, and rectangular shapes was 
investigated by Li et al.[52]. It was found that the average swimming efficiency of the tandem formation was 
highest when the spacing of robot fishes was less than 1.25 BL. The average swimming efficiency of the 
rectangular formation was highest when the spacing was greater than 1.25 BL. In addition, the wake and 
pressure generated by the oscillation of the robot fish had an important effect on the Froude efficiency. The 
wake primarily influenced propulsive force, while pressure primarily influenced the lateral power loss. In 
this study, the phase difference of each robot fish’s oscillation was constant, and the situation when the 
phase difference changed was not discussed.

The 3D formation is closer to a natural school of fish, and therefore it has more practical application. 3D is 
mainly reflected by having the height difference as a variable. The energy consumption of two robot fishes 
when they formed a 3D formation was studied by Li et al.[53]. The results show that the following robot fish 
could save energy consumption when there was a linear relationship between the height difference and 
phase difference of the two robot fishes. This research result is significant because it provided ideas for the 
future 3D formation of robot fishes.

4.2. Communication of multiple robot fishes
When multiple robot fishes form a formation, they must communicate with others in order to maintain the 
formation and avoid a collision. Since the distance between each robot fish is short, this is a problem for 
underwater close communication. Relevant studies have been conducted to date, and some solutions have 
been proposed. Among them, Xie Guangming’s team from Peking University conducted extensive research 
and produced impressive results.
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A proper electronic communication system facilitates the communication of multiple robot fishes. Since the 
robot fish’s electronic communication system frequently uses the same channel, collisions always occur 
during communication. To solve this problem, based on carrier sense multiple access with collision 
avoidance (CSMA/CA), an electronic communication system was proposed by Zhang et al.[54]. This system 
incorporated a communication channel detection circuit and employed a CSMA/CA-based protocol. The 
simulation and experimental results validate the system’s effectiveness. Nevertheless, this communication 
system suffered from effective bandwidth loss.

Fish can perceive information from the surrounding fluid using the lateral line system (LLS)[55]. This has 
serious implications for their underwater survival. Inspired by the excellent performance of the fish’s LLS, 
the artificial lateral line system (ALLS) was designed and applied to the robot fish. Predictably, ALLS plays 
an important role in improving the interaction and collaboration capabilities between adjacent robot fishes. 
Zheng et al. established ALLS by composing an array of pressure sensors[56]. This ALLS could detect vortex 
streets generated by adjacent robot fish. According to the experimental results, it allowed the robot fish to 
perceive the relative vertical distance and yaw/pitch/roll angle with the adjacent robot fish. Furthermore, the 
oscillation amplitude/frequency/offset of the adjacent robot fish could also be sensed. However, the study 
was limited to the perception of the outside world by only one robot fish applying ALLS. Therefore, Zheng 
et al. further investigated ALLS on the perception of longitudinal separation sensing of two robot fishes[57]. 
Longitudinal separation implies that the two robot fishes maintain constant lateral spacing, change the 
longitudinal spacing, and keep the robot fish within the influence of the vortex produced by another robot 
fish. The meaning of longitudinal spacing and lateral spacing is clearly shown in Figure 12. The authors 
experimentally obtained a qualitative relationship between the longitudinal separation of two robot fishes 
and the ALLS-measured hydrodynamic pressure variations. The effectiveness of ALLS in relative state 
awareness applications was also verified. Unfortunately, the study was limited to qualitative analysis, with 
no quantitative analysis.

Using vision for communication is the most straightforward method. Berlinger et al. devised a new method 
of communication in schools of robot fishes that was inspired by the fact that fish could use vision to 
coordinate their motions[58]. The vision system of the robot fish was comprised of two cameras and LEDs. 
Through the algorithm, the robot fish could quickly determine the location of the adjacent robot fish after 
recognizing the light. The experimental results demonstrate that the robot fish could perform a variety of 
school behaviors using visual information. However, it is unclear whether the communication technology is 
still effective in environments that may hinder vision, such as murky waters.

We find that communication can be established between the robot fish and the fish school. When the robot 
fish swims in the water, it attracts the fish school to move closer to it. Eventually, the robot fish becomes the 
leader, leading the whole school of fish to swim forward, as shown in Figure 13. It is worth noting that the 
robot fish does not have smell, sound, or light to attract the fish. We hypothesize that the tail vortices 
created by the robot fish when it swims are the cause of this phenomenon. The swimming performance of 
robot fish is much inferior to that of fish. One of the reasons for this is that the tail vortices are not fully 
utilized. As is known, creatures have always tended to be profit-oriented. When fish perceive tail vortices, 
they tend to take advantage of them. In turn, it follows the robot fish, which eventually leads to this 
phenomenon. This brings the robot fish into communication with the fish school. We are confident that 
finding out how to exploit this communication would be meaningful research.

5. CHALLENGES AND FUTURE WORKS
Thanks to a lot of research on bionic robot fishes in recent years, significant progress has been made. 



Page 194Yu et al. Intell Robot 2022;2:180-99 https://dx.doi.org/10.20517/ir.2022.10

Figure 12. The meaning of longitudinal spacing and lateral spacing.

Figure 13. The robot fish and the school of fish that follows it.

However, there are numerous challenges that need further work.

● Robot fishes are far inferior to fish in terms of swimming performance. Table 4 displays the performance 
parameters of typical robot fishes over the last five years. The maximum swimming speed of robot fishes in 
Table 4 is currently only 4 BL·s-1, whereas a fish can easily reach 8 BL·s-1 with regular swimming[59]. This 
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Table 4. Typical robot fishes and their performance parameters

Maximum swimming speed Frequency (hertz)
Reference

BL·s-1 m·s-1 Minimum turning radius (m) Caudal  
fin Pectoral fins

Swimming type Structural type

Ref. [19] 0.5(Ave) 0.23(Ave) 0.78(Ave) NA --- BCF Soft

Ref. [20] 0.25 0.037 NA 0.75 --- BCF Soft

Ref. [24] 4 1.02 NA 15 --- BCF Rigid-soft

Ref. [22] 2.5 0.25 NA NA --- BCF Rigid-soft

Ref. [25] 0.87 0.31 NA 2.9 --- BCF Rigid-soft

Ref. [26] 0.45 0.052 NA --- 1 MPF Soft

Ref. [28] 0.94 0.43 ≈0 --- NA MPF Rigid-soft

Ref. [27] NA 0.013 NA --- 4 MPF Rigid-soft

Ref. [30] 0.69 0.064 0.085 NA NA BCF-MPF Soft

Ref. [29] NA 0.062 0.234 NA NA BCF-MPF Soft

Ref. [32] 0.66 0.365 0.139 NA NA BCF-MPF Rigid-soft

Frequency (hertz) indicates the value at the maximum (or Ave) swimming speed. The ranking of the references is based on the magnitude of the 
maximum swimming speed (BL·s-1) of the robot fish and is classified by swimming type and structural type. NA: Not available; Ave: average; BCF: 
body and/or caudal fin; MPF: median and/or paired fin.

demonstrates the gap in swimming performance between robot fishes and fish, which is an urgent problem 
to be solved. We believe there are several approaches to solve this problem. The first approach is to 
investigate the effect of the vortices on the swimming efficiency of robot fishes. We believe that the high 
propulsion efficiency of fish is closely related to the vortices they generate when they swim. It is possible to 
improve the swimming efficiency of robot fishes by measuring the vortices generated when fish swim and 
reproducing them in robot fishes. The second approach is to narrow the gap between the drive systems of 
robot fishes and the muscles and skin of fish. Robot fishes simulate the swimming of fish by using multiple 
rigid connecting rods. Fish have a flexible body made up of muscles and skin that allows them to swim 
continuously and supplely. However, due to the rigidity of the connecting rod and the limitation of the 
number of rods, the motion of robot fishes exhibits a discrete and unnatural movement. Attempts can be 
made to flex the connecting rod to achieve continuous motion of robot fishes, thus improving 
maneuverability. The third approach is to further reduce the water resistance of robot fishes when 
swimming. Water resistance is currently decreased mostly by designing the shape of the robot fish to be 
streamlined. Fish, on the other hand, have fish scales and mucous on their bodies, which can considerably 
reduce resistance. However, the relevant design is rarely observed in the current robot fishes. The fourth 
approach is to conduct an in-depth investigation of robot fishes in the BCF-MPF propulsion mode. Robot 
fishes in BCF propulsion mode swim fast but have poor maneuverability. In contrast, robot fishes in MPF 
propulsion mode have great maneuverability but slow swimming speed. The BCF-MPF propulsion mode 
combines the above two propulsion modes, which can accurately imitate the swimming of fish. With a 
reasonable design, it can achieve high swimming speed and great maneuverability and has wider application 
prospects. This is a promising research direction. The final approach is to use sensor technology to create 
close connections between robot fishes and fish. Replicating the swimming process of fish can improve the 
swimming performance of robot fishes. Through the sensors, we obtain real-time feedback data (body 
deformation, etc.) when fish swim, further completing the monitoring of the entire swimming process. 
Finally, the collected data are applied to robot fishes. This allows robot fishes to make rhythmic movements 
similar to fish, improving their swimming performance.

● The majority of studies have only used one research method to investigate the swimming mechanism of 
robot fishes. Actually, each research method has its own strengths and weaknesses. Because of the 
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weaknesses, using only one method may provide unconvincing results. The combined use of multiple 
research methods not only achieves the complementary benefits of each method but also allows each 
method to verify the others to ensure the accuracy of the results.

● There is a lack of sufficient research on motion coordination and communication of multiple robot fishes. 
Multiple robot fishes in an appropriate formation have been shown to reduce energy consumption[47-53]. In 
nature, the number of fish in a school is usually greater than three, and the school is in a three-dimensional 
formation. However, the current study has limitations in terms of the number and formation of robot 
fishes. Specifically, the number of robot fishes is generally two, and the formation of robot fishes is mostly 
flat. The research of three or more robot fishes and the research of three-dimensional formation of robot 
fishes will be future research trends. The communication of multiple robot fishes is an intriguing research 
topic. Robot fishes need to communicate with each other to form formations, thus reducing energy 
consumption. The research on communication among multiple robot fishes has only recently received 
adequate attention. The related technology is not yet fully mature and should be tested in the actual 
environment. In addition, the research on communication between robot fish and fish schools is interesting 
content. We can imagine a future where schools of robot fishes swim together with schools of fish to form a 
larger school, achieving energy savings as well as harmony between robot fishes and fish.

6. CONCLUSION
This paper provides a comprehensive review of recent advances in several important fields of bionic robot 
fishes. The latest achievements in the development of robot fishes are presented. Based on the discussion of 
the main swimming theories of fish, the latest progress in the study of the swimming mechanism is 
summarized. The current state of research in the new field of motion coordination and communication of 
multiple robot fishes is analyzed.

Based on the survey, the data show that robot fishes in BCF propulsion mode can obtain high propulsion 
speed. This reflects the speed advantage of BCF propulsion mode. Robot fishes in MPF propulsion mode 
realize a small radius or even in situ turning. The turning radius is an important indicator of 
maneuverability. This reflects the high maneuverability of the MPF propulsion mode. The maneuverability 
of robot fishes in BCF-MPF propulsion mode is improved compared to robot fishes in BCF propulsion 
mode. However, in terms of swimming speed, compared with robot fishes in MPF propulsion mode, they 
fail to demonstrate the expected superiority. As a result, robot fishes in this propulsion mode have more 
room for advancement. The high-frequency oscillation of the caudal fin can significantly increase the 
propulsive speed. The soft robot fish has a low speed of propulsion compared with the rigid-soft coupled 
robot fish.

This paper primarily summarizes research results on robot fishes from the last five years, and the reader 
should be aware of the paper’s time constraints. In the future, we will make efforts to improve the 
swimming performance of robot fishes and continue to track new advances in the research of robot fishes.
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the manuscript is written in correct scientific English before submission. Authors who publish with OAE journals enjoy a 
special discount for the services of Charlesworth via the following two ways.
Submit your manuscripts directly at http://www.charlesworthauthorservices.com/~OAE;
Open the link http://www.charlesworthauthorservices.com/, and enter Promotion Code “OAE” when you submit.

1.5 Work Funded by the National Institutes of Health
If an accepted manuscript was funded by National Institutes of Health (NIH), the author may inform editors of the 
NIH funding number. The editors are able to deposit the paper to the NIH Manuscript Submission System on behalf 
of the author.

2. Submission Preparation
2.1 Cover Letter
A cover letter is required to be submitted accompanying each manuscript. Here is a guideline of a cover letter for authors’ 
consideration:
List the highlights of the current manuscript and no more than 5 short sentences;
All authors have read the final manuscript, have approved the submission to the journal, and have accepted full responsibilities 
pertaining to the manuscript’s delivery and contents;
Clearly state that the manuscript is an original work on its own merit, that it has not been previously published in whole or 
in part, and that it is not being considered for publication elsewhere;
No materials are reproduced from another source (if there is material in your manuscript that has been reproduced from 
another source, please state whether you have obtained permission from the copyright holder to use them);
Conflicts of interest statement;
If the manuscript is contributed to a Special Issue, please also mention it in the cover letter;
If the manuscript was presented partly or entirely in a conference, the author should clearly state the background information 
of the event, including the conference name, time, and place in the cover letter.

2.2 Types of Manuscripts
There is no restriction on the length of manuscripts, number of figures, tables and references, provided that the manuscript 
is concise and comprehensive. The journal publishes Research Article, Review, Technical Note, etc. For more details about 
paper type, please refer to the following table.

AUTHOR INSTRUCTIONS
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Manuscript 
Type Definition Abstract Keywords Main Text Structure

Research 
Article

A Research Article is a seminal and 
insightful research study and showcases 
that often involves modern techniques or 
methodologies. Authors should justify 
that their work is of novel findings.

The abstract should 
state briefly the 
purpose of the 
research, the principal 
results and major 
conclusions. No more 
than 250 words.

3-8 keywords The main content should include 
four sections: Introduction, 
Methods, Results and 
Discussion.

Review A Review should be an authoritative, 
well balanced, and critical survey of 
recent progress in an attractive or a 
fundamental research field.

Unstructured abstract. 
No more than 250 
words.

3-8 keywords The main text may consist of 
several sections with unfixed 
section titles. We suggest that the 
author include an "Introduction" 
section at the beginning, several 
sections with unfixed titles in the 
middle part, and a "Conclusions" 
section at the end.

Technical 
Note

A Technical Note is a short article 
giving a brief description of a specific 
development, technique, or procedure, 
or it may describe a modification of an 
existing technique, procedure or device 
applied in research.

Unstructured abstract. 
No more than 250 
words.

3-8 keywords /

Editorial An Editorial is a short article describing 
news about the journal or opinions of 
senior Editors or the publisher.

None required None required /

Commentary A Commentary is to provide comments 
on a newly published article or an 
alternative viewpoint on a certain topic.

Unstructured abstract. 
No more than 250 
words.

3-8 keywords /

Perspective A Perspective provides personal points 
of view on the state-of-the-art of a 
specific area of knowledge and its future 
prospects.

Unstructured abstract. 
No more than 250 
words.

3-8 keywords /

2.3 Manuscript Structure
2.3.1 Front Matter
2.3.1.1 Title
The title of the manuscript should be concise, specific and relevant, with no more than 16 words if possible.

2.3.1.2 Authors and Affiliations
Authors’ full names should be listed. The initials of middle names can be provided. The affiliations and email addresses for 
all authors should be listed. At least one author should be designated as the corresponding author. In addition, corresponding 
authors are suggested to provide their Open Researcher and Contributor ID upon submission. Please note that any change 
to authorship is not allowed after manuscript acceptance. The authors’ affiliations should be provided in this format: 
department, institution, city, postcode, country.

2.3.1.3 Abstract
The abstract should be a single paragraph with word limitation and specific structure requirements (for more details please 
refer to Types of Manuscripts). It usually describes the main objective(s) of the study, explains how the study was done, 
including any model organisms used, without methodological detail, and summarizes the most important results and their 
significance. The abstract must be an objective representation of the study: it is not allowed to contain results that are not 
presented and substantiated in the manuscript, or exaggerate the main conclusions. Citations should not be included in the 
abstract.

2.3.1.4 Graphical Abstract
The graphical abstract is essential as this can catch first view of your publication by readers. We recommend you submit an 
eye-catching figure. It should summarize the content of the article in a concise graphical form. It is recommended to use it 
because this can make online articles get more attention.
The graphical abstract should be submitted as a separate document in the online submission system. Please provide an 
image with a minimum of 531 × 1328 pixels (h × w) or proportionally more. The image should be readable at a size of 5 cm 
× 13 cm using a regular screen resolution of 96 dpi. Preferred file types: TIFF, PSD, AI, JPEG, and EPS files.
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2.3.1.5 Keywords
Three to eight keywords should be provided, which are specific to the article, yet reasonably common within the subject 
discipline.

2.3.2 Main Text
Manuscripts of different types are structured with different sections of content. Please refer to Types of Manuscripts to 
make sure which sections should be included in the manuscripts.

2.3.2.1 Introduction
The introduction should contain background that puts the manuscript into context, allow readers to understand why the 
study is important, include a brief review of key literature, and conclude with a brief statement of the overall aim of the 
work and a comment about whether that aim was achieved. Relevant controversies or disagreements in the field should be 
introduced as well.

2.3.2.2 Methods
The methods should contain sufficient details to allow others to fully replicate the study. New methods and protocols should 
be described in detail while well-established methods can be briefly described or appropriately cited. Statistical terms, 
abbreviations, and all symbols used should be defined clearly. Protocol documents for clinical trials, observational studies, 
and other non-laboratory investigations may be uploaded as supplementary materials.

2.3.2.3 Results
This section contains the findings of the study. Results of statistical analysis should also be included either as text or as 
tables or figures if appropriate. Authors should emphasize and summarize only the most important observations. Data on 
all primary and secondary outcomes identified in the section Methods should also be provided. Extra or supplementary 
materials and technical details can be placed in supplementary documents.

2.3.2.4 Discussion
This section should discuss the implications of the findings in context of existing research and highlight limitations of the 
study. Future research directions may also be mentioned.

2.3.2.5 Conclusion
It should state clearly the main conclusions and include the explanation of their relevance or importance to the field.

2.3.3 Back Matter
2.3.3.1 Acknowledgments
Anyone who contributed towards the article but does not meet the criteria for authorship, including those who provided 
professional writing services or materials, should be acknowledged. Authors should obtain permission to acknowledge 
from all those mentioned in the Acknowledgments section. This section is not added if the author does not have anyone to 
acknowledge.

2.3.3.2 Authors’ Contributions
Each author is expected to have made substantial contributions to the conception or design of the work, or the acquisition, 
analysis, or interpretation of data, or the creation of new software used in the work, or have drafted the work or substantively 
revised it.
Please use Surname and Initial of Forename to refer to an author’s contribution. For example: made substantial contributions 
to conception and design of the study and performed data analysis and interpretation: Salas H, Castaneda WV; performed 
data acquisition, as well as providing administrative, technical, and material support: Castillo N, Young V.
If an article is single-authored, please include “The author contributed solely to the article.” in this section.

2.3.3.3 Availability of Data and Materials
In order to maintain the integrity, transparency and reproducibility of research records, authors should include this section 
in their manuscripts, detailing where the data supporting their findings can be found. Data can be deposited into data 
repositories or published as supplementary information in the journal. Authors who cannot share their data should state 
that the data will not be shared and explain it. If a manuscript does not involve such issues, please state “Not applicable.” 
in this section.

2.3.3.4 Financial Support and Sponsorship
All sources of funding for the study reported should be declared. The role of the funding body in the experiment design, 
collection, analysis and interpretation of data, and writing of the manuscript should be declared. Any relevant grant numbers 
and the link of funder’s website should be provided if any. If the study is not involved with this issue, state “None.” in this 
section.
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2.3.3.5 Conflicts of Interest
Authors must declare any potential conflicts of interest that may be perceived as inappropriately influencing the 
representation or interpretation of reported research results. If there are no conflicts of interest, please state “All authors 
declared that there are no conflicts of interest.” in this section. Some authors may be bound by confidentiality agreements. 
In such cases, in place of itemized disclosures, we will require authors to state “All authors declared that they are bound by 
confidentiality agreements that prevent them from disclosing their conflicts of interest in this work.”. If authors are unsure 
whether conflicts of interest exist, please refer to the “Conflicts of Interest” of IR Editorial Policies for a full explanation.

2.3.3.6 Ethical Approval and Consent to Participate
Research involving human subjects, human material or human data must be performed in accordance with the Declaration 
of Helsinki and approved by an appropriate ethics committee. An informed consent to participate in the study should also 
be obtained from participants, or their parents or legal guardians for children under 16. A statement detailing the name of 
the ethics committee (including the reference number where appropriate) and the informed consent obtained must appear 
in the manuscripts reporting such research.
Studies involving animals and cell lines must include a statement on ethical approval. More information is available at 
Editorial Policies.
If the manuscript does not involve such issue, please state “Not applicable.” in this section.

2.3.3.7 Consent for Publication
Manuscripts containing individual details, images or videos, must obtain consent for publication from that person, or in 
the case of children, their parents or legal guardians. If the person has died, consent for publication must be obtained from 
the next of kin of the participant. Manuscripts must include a statement that written informed consent for publication was 
obtained. Authors do not have to submit such content accompanying the manuscript. However, these documents must be 
available if requested. If the manuscript does not involve this issue, state “Not applicable.” in this section.

2.3.3.8 Copyright
Authors retain copyright of their works through a Creative Commons Attribution 4.0 International License that clearly 
states how readers can copy, distribute, and use their attributed research, free of charge. A declaration “© The Author(s) 
2022.” will be added to each article. Authors are required to sign License to Publish before formal publication.

2.3.3.9 References
References should be numbered in order of appearance at the end of manuscripts. In the text, reference numbers should be 
placed in square brackets and the corresponding references are cited thereafter. If the number of authors is less than or equal 
to six, we require to list all authors’ names. If the number of authors is more than six, only the first three authors’ names are 
required to be listed in the references, other authors’ names should be omitted and replaced with “et al.”. Abbreviations of 
the journals should be provided on the basis of Index Medicus. Information from manuscripts accepted but not published 
should be cited in the text as “Unpublished material” with written permission from the source.

References should be described as follows, depending on the types of works:
Types Examples
Journal articles by 
individual authors

Weaver DL, Ashikaga T, Krag DN, et al. Effect of occult metastases on survival in node-negative 
breast cancer. N Engl J Med 2011;364:412-21. [PMID: 21247310 DOI: 10.1056/NEJMoa1008108]

Organization as author Diabetes Prevention Program Research Group. Hypertension, insulin, and proinsulin in 
participants with impaired glucose tolerance. Hypertension 2002;40:679-86. [DOI: 10.1161/01.
HYP.0000035706.28494.09]

Both personal authors and 
organization as author

Vallancien G, Emberton M, Harving N, van Moorselaar RJ; Alf-One Study Group. Sexual dysfunction 
in 1,274 European men suffering from lower urinary tract symptoms. J Urol 2003;169:2257-61. [PMID: 
12771764 DOI: 10.1097/01.ju.0000067940.76090.73]

Journal articles not in 
English

Zhang X, Xiong H, Ji TY, Zhang YH, Wang Y. Case report of anti-N-methyl-D-aspartate receptor 
encephalitis in child. J Appl Clin Pediatr 2012;27:1903-7. (in Chinese)

Journal articles ahead of 
print

Odibo AO. Falling stillbirth and neonatal mortality rates in twin gestation: not a reason for 
complacency. BJOG 2018; Epub ahead of print [PMID: 30461178 DOI: 10.1111/1471-0528.15541]

Books Sherlock S, Dooley J. Diseases of the liver and billiary system. 9th ed. Oxford: Blackwell Sci Pub; 
1993. pp. 258-96.

Book chapters Meltzer PS, Kallioniemi A, Trent JM. Chromosome alterations in human solid tumors. In: Vogelstein 
B, Kinzler KW, editors. The genetic basis of human cancer. New York: McGraw-Hill; 2002. pp. 93-
113.

Online resource FDA News Release. FDA approval brings first gene therapy to the United States. Available from: 
https://www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/ucm574058.htm. [Last accessed 
on 30 Oct 2017]
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Conference proceedings Harnden P, Joffe JK, Jones WG, Editors. Germ cell tumours V. Proceedings of the 5th Germ Cell 
Tumour Conference; 2001 Sep 13-15; Leeds, UK. New York: Springer; 2002.

Conference paper Christensen S, Oppacher F. An analysis of Koza's computational effort statistic for genetic 
programming. In: Foster JA, Lutton E, Miller J, Ryan C, Tettamanzi AG, editors. Genetic 
programming. EuroGP 2002: Proceedings of the 5th European Conference on Genetic Programming; 
2002 Apr 3-5; Kinsdale, Ireland. Berlin: Springer; 2002. pp. 182-91.

Unpublished material Tian D, Araki H, Stahl E, Bergelson J, Kreitman M. Signature of balancing selection in Arabidopsis. 
Proc Natl Acad Sci U S A. Forthcoming 2002.

The journal also recommends that authors prepare references with a bibliography software package, such as EndNote to 
avoid typing mistakes and duplicated references.

2.3.3.10 Supplementary Materials
Additional data and information can be uploaded as Supplementary Materials to accompany the manuscripts. The 
supplementary materials will also be available to the referees as part of the peer-review process. Any file format is 
acceptable, such as data sheet (word, excel, csv, cdx, fasta, pdf or zip files), presentation (powerpoint, pdf or zip files), image 
(cdx, eps, jpeg, pdf, png or tiff), table (word, excel, csv or pdf), audio (mp3, wav or wma) or video (avi, divx, flv, mov, mp4, 
mpeg, mpg or wmv). All information should be clearly presented. Supplementary materials should be cited in the main text 
in numeric order (e.g., Supplementary Figure 1, Supplementary Figure 2, Supplementary Table 1, Supplementary Table 2, 
etc.). The style of supplementary figures or tables complies with the same requirements on figures or tables in main text. 
Videos and audios should be prepared in English, and limited to a size of 500 MB.

2.4 Manuscript Format
2.4.1 File Format
Manuscript files can be in DOC and DOCX formats and should not be locked or protected.
Manuscript prepared in LaTex must be collated into one ZIP folder (including all source files and images, so that the 
Editorial Office can recompile the submitted PDF).
When preparing manuscripts in different file formats, please use the corresponding Manuscript Templates.

2.4.2 Length
There are no restrictions on paper length, number of figures, or number of supporting documents. Authors are encouraged 
to present and discuss their findings concisely.

2.4.3 Language
Manuscripts must be written in English.

2.4.4 Multimedia Files
The journal supports manuscripts with multimedia files. The requirements are listed as follows:
Video or audio files are only acceptable in English. The presentation and introduction should be easy to understand. The 
frames should be clear, and the speech speed should be moderate;
A brief overview of the video or audio files should be given in the manuscript text;
The video or audio files should be limited to a size of up to 500 MB;
Please use professional software to produce high-quality video files, to facilitate acceptance and publication along with the 
submitted article. Upload the videos in mp4, wmv, or rm format (preferably mp4) and audio files in mp3 or wav format.

2.4.5 Figures
Figures should be cited in numeric order (e.g., Figure 1, Figure 2) and placed after the paragraph where it is first cited;
Figures can be submitted in format of TIFF, PSD, AI, EPS or JPEG, with resolution of 300-600 dpi;
Figure caption is placed under the Figure;
Diagrams with describing words (including, flow chart, coordinate diagram, bar chart, line chart, and scatter diagram, etc.) 
should be editable in word, excel or powerpoint format. Non-English information should be avoided;
Labels, numbers, letters, arrows, and symbols in figure should be clear, of uniform size, and contrast with the background;
Symbols, arrows, numbers, or letters used to identify parts of the illustrations must be identified and explained in the 
legend;
Internal scale (magnification) should be explained and the staining method in photomicrographs should be identified;
All non-standard abbreviations should be explained in the legend;
Permission for use of copyrighted materials from other sources, including re-published, adapted, modified, or partial 
figures and images from the internet, must be obtained. It is authors’ responsibility to acquire the licenses, to follow any 
citation instruction requested by third-party rights holders, and cover any supplementary charges.
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2.4.6 Tables
Tables should be cited in numeric order and placed after the paragraph where it is first cited;
The table caption should be placed above the table and labeled sequentially (e.g., Table 1, Table 2);
Tables should be provided in editable form like DOC or DOCX format (picture is not allowed);
Abbreviations and symbols used in table should be explained in footnote;
Explanatory matter should also be placed in footnotes;
Permission for use of copyrighted materials from other sources, including re-published, adapted, modified, or partial tables 
from the internet, must be obtained. It is authors’ responsibility to acquire the licenses, to follow any citation instruction 
requested by third-party rights holders, and cover any supplementary charges.

2.4.7 Abbreviations
Abbreviations should be defined upon first appearance in the abstract, main text, and in figure or table captions and used 
consistently thereafter. Non-standard abbreviations are not allowed unless they appear at least three times in the text. 
Commonly-used abbreviations, such as DNA, RNA, ATP, etc., can be used directly without definition. Abbreviations in 
titles and keywords should be avoided, except for the ones which are widely used.

2.4.8 Italics
General italic words like vs., et al., etc., in vivo, in vitro; t test, F test, U test; related coefficient as r, sample number as n, 
and probability as P; names of genes; names of bacteria and biology species in Latin.

2.4.9 Units
SI Units should be used. Imperial, US customary and other units should be converted to SI units whenever possible. There 
is a space between the number and the unit (i.e., 23 mL). Hour, minute, second should be written as h, min, s.

2.4.10 Numbers
Numbers appearing at the beginning of sentences should be expressed in English. When there are two or more numbers 
in a paragraph, they should be expressed as Arabic numerals; when there is only one number in a paragraph, number < 10 
should be expressed in English and number > 10 should be expressed as Arabic numerals. 12345678 should be written as 
12,345,678.

2.4.11 Equations
Equations should be editable and not appear in a picture format. Authors are advised to use either the Microsoft Equation 
Editor or the MathType for display and inline equations.
Display equations should be numbered consecutively, using Arabic numbers in parentheses;
Inline equations should not be numbered, with the same/similar size font used for the main text.

2.4.12 Headings
In the main body of the paper, three different levels of headings may be used.
Level one headings: they should be in bold, and numbered using Arabic numbers, such as 1. INTRODUCTION, and 2. 
METHODS, with all letters capitalized;
Level two headings: they should be in bold and numbered after the level one heading, such as 2.1 Statistical analyses, 2.2 
..., 2.3..., etc., with the first letter capitalized;
Level three headings: they should be italicized, and numbered after the level two heading, such as 2.1.1 Data distributions,and 
2.1.2 outliers and linear regression, with the first letter capitalized.

2.4.13 Text Layout
As the electronic submission will provide the basic material for typesetting, it is important to prepare papers in the general 
editorial style of the journal.
The font is Times New Roman;
The font size is 12pt;
Single column, 1.5× line spacing;
Insert one line break (one Return) before the heading and paragraph, if the heading and paragraph are adjacent, insert a line 
break before the heading only;
No special indentation;
Alignment is left end;
Insert consecutive line numbers;
For other details please refer to the Manuscript Templates.

2.5 Submission Link 
Submit an article via https://oaemesas.com/login?JournalId=ir.
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3. Publication Ethics Statement
OAE is a member of the Committee on Publication Ethics (COPE). We fully adhere to its Code of Conduct and to its Best 
Practice Guidelines.

The Editors of this journal enforce a rigorous peer-review process together with strict ethical policies and standards to 
guarantee to add high-quality scientific works to the field of scholarly publication. Unfortunately, cases of plagiarism, 
data falsification, image manipulation, inappropriate authorship credit, and the like, do arise. The Editors of IR take such 
publishing ethics issues very seriously and are trained to proceed in such cases with zero tolerance policy.

Authors wishing to publish their papers in IR must abide by the following:

The author(s) must disclose any possibility of a conflict of interest in the paper prior to submission;
The authors should declare that there is no academic misconduct in their manuscript in the cover letter;
Authors should accurately present their research findings and include an objective discussion of the significance of their 
findings;
Data and methods used in the research need to be presented in sufficient detail in the manuscript so that other researchers 
can replicate the work;
Authors should provide raw data if referees and the Editors of the journal request;
Simultaneous submission of manuscripts to more than one journal is not tolerated;
Republishing content that is not novel is not tolerated (for example, an English translation of a paper that is already published 
in another language will not be accepted);
The manuscript should not contain any information that has already been published. If you include already published 
figures or images, please get the necessary permission from the copyright holder to publish under the CC-BY license;
Plagiarism, data fabrication and image manipulation are not tolerated;
Plagiarism is not acceptable in OAE journals.

Plagiarism involves the inclusion of large sections of unaltered or minimally altered text from an existing source without 
appropriate and unambiguous attribution, and/or an attempt to misattribute original authorship regarding ideas or results, 
and copying text, images, or data from another source, even from your own publications, without giving credit to the source.

As to reusing the text that is copied from another source, it must be between quotation marks and the source must be cited. 
If a study’s design or the manuscript’s structure or language has been inspired by previous studies, these studies must be 
cited explicitly.

If plagiarism is detected during the peer-review process, the manuscript may be rejected. If plagiarism is detected after 
publication, we may publish a Correction or retract the paper.

Falsification is manipulating research materials, equipment, or processes, or changing or omitting data or results so that the 
findings are not accurately represented in the research record.

Image files must not be manipulated or adjusted in any way that could lead to misinterpretation of the information provided 
by the original image.

Irregular manipulation includes: introduction, enhancement, moving, or removing features from the original image; the 
grouping of images that should be presented separately, or modifying the contrast, brightness, or color balance to obscure, 
eliminate, or enhance some information.

If irregular image manipulation is identified and confirmed during the peer-review process, we may reject the manuscript. 
If irregular image manipulation is identified and confirmed after publication, we may publish a Correction or retract the 
paper.

OAE reserves the right to contact the authors’ institution(s) to investigate possible publication misconduct if the Editors find 
conclusive evidence of misconduct before or after publication. OAE has a partnership with iThenticate, which is the most 
trusted similarity checker. It is used to analyze received manuscripts to avoid plagiarism to the greatest extent possible. 
When plagiarism becomes evident after publication, we will retract the original publication or require modifications, 
depending on the degree of plagiarism, context within the published article, and its impact on the overall integrity of the 
published study. Journal Editors will act under the relevant COPE guidelines.

4. Authorship
Authorship credit of IR should be solely based on substantial contributions to a published study, as specified in the 
following four criteria:
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1. Substantial contributions to the conception or design of the work, or the acquisition, analysis, or interpretation of data 
for the work;
2. Drafting the work or revising it critically for important intellectual content;
3. Final approval of the version to be published;
4. Agreement to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity 
of any part of the work are appropriately investigated and resolved.

All those who meet these criteria should be identified as authors. Authors must specify their contributions in the section 
Authors’ Contributions of their manuscripts. Contributors who do not meet all the four criteria (like only involved in 
acquisition of funding, general supervision of a research group, general administrative support, writing assistance, 
technical editing, language editing, proofreading, etc.) should be acknowledged in the section of Acknowledgement in the 
manuscript rather than being listed as authors.

If a large multiple-author group has conducted the work, the group ideally should decide who will be authors before the 
work starts and confirm authors before submission. All authors of the group named as authors must meet all the four 
criteria for authorship.

5. Reviewers Exclusions
You are welcome to exclude a limited number of researchers as potential Editors or reviewers of your manuscript. To 
ensure a fair and rigorous peer review process, we ask that you keep your exclusions to a maximum of three people. If you 
wish to exclude additional referees, please explain or justify your concerns—this information will be helpful for Editors 
when deciding whether to honor your request.

6. Editors and Journal Staff as Authors
Editorial independence is extremely important and OAE does not interfere with Editorial decisions. Editorial staff or 
Editors shall not be involved in processing their own academic work. Submissions authored by Editorial staff/Editors 
will be assigned to at least two independent outside reviewers. Decisions will be made by the Editor-in-Chief, including 
Special Issue papers. Journal staff are not involved in the processing of their own work submitted to any OAE journals.

7. Conflict of Interests
OAE journals require authors to declare any possible financial and/or non-financial conflicts of interest at the end of 
their manuscript and in the cover letter, as well as confirm this point when submitting their manuscript in the submission 
system. If no conflicts of interest exist, authors need to state “All authors declared that there are no conflicts of interest”. 
We also recognize that some authors may be bound by confidentiality agreements, in which cases authors need to state “All 
authors declared that they are bound by confidentiality agreements that prevent them from disclosing their competing 
interests in this work”.

8. Editorial Process
8.1. Pre-Check
New submissions are initially checked by the Managing Editor from the perspectives of originality, suitability, structure 
and formatting, conflicts of interest, background of authors, etc. Poorly prepared manuscripts may be rejected at this stage. 
If your manuscript does not meet one or more of these requirements, we will return it for further revisions.

Once your manuscript has passed the initial check, it will be assigned to the Assistant Editor, and then the Editor-in-Chief, 
or an Associate Editor in the case of a conflict of interest, will be notified of the submission and invited to review. Regarding 
Special Issue paper, after passing the initial check, the manuscript will be successively assigned to the Assistant Editor, and 
then to the Editor-in-Chief, or an Associate Editor in the case of conflict of interest for the Editor-in-Chief to review. The 
Editor-in-Chief, or the Associate Editor may reject manuscripts that they deem highly unlikely to pass peer review without 
further consultation. Once your manuscript has passed the Editorial assessment, the Associate Editor will start to organize 
peer-review.

All manuscripts submitted to IR are screened using CrossCheck powered by iThenticate to identify any plagiarized content. 
Your study must also meet all ethical requirements as outlined in our Editorial Policies. If the manuscript does not pass any 
of these checks, we may return it to you for further revisions or decline to consider your study for publication.

8.2. Peer Review
IR operates a single-blind review process, which means that reviewers know the names of authors, but the names of the 
reviewers are hidden from the authors. The scientific quality of the research described in the manuscript is assessed 
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by a minimum of two independent expert reviewers. The Editor-in-Chief is responsible for the final decision regarding 
acceptance or rejection of the manuscript.

All information contained in your manuscript and acquired during the review process will be held in the strictest 
confidence.

8.3. Decisions
Your research will be judged on scientific soundness only, not on its perceived impact as judged by Editors or referees. 
There are three possible decisions: Accept (your study satisfies all publication criteria), Invitation to Revise (more work 
is required to satisfy all criteria), and Reject (your study fails to satisfy key criteria and it is highly unlikely that further 
work can address its shortcomings). All of the following publication criteria must be fulfilled to enable your manuscript 
to be accepted for publication:

Originality
The study reports original research and conclusions.
Data availability
All data to support the conclusions either have been provided or are otherwise publicly available.
Statistics
All data have been analyzed through appropriate statistical tests and these are clearly defined.
Methods
The methods are described in sufficient detail to be replicated.
Citations
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