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Abstract
Millions of people throughout the world have been harmed by plastic pollution. There are microscopic pieces of 
plastic in the food we eat, the water we drink, and even the air we breathe. Every year, the average human 
consumes 74,000 microplastics, which has a significant impact on their health. This pollution must be addressed 
before it has a significant negative influence on the population. This research benchmarks six state-of-the-art 
convolutional neural network models pre-trained on the ImageNet Dataset. The models Resnet-50, ResNeXt, 
MobileNet_v2, DenseNet, SchuffleNet and AlexNet were tested and evaluated on the WaDaBa plastic dataset, to 
classify plastic types based on their resin codes by integrating the power of transfer learning. The accuracy and 
training time for each model has been compared in this research. Due to the imbalance in the data, the under-
sampling approach has been used. The ResNeXt model attains the highest accuracy in fourteen minutes.

Keywords: Plastic, transfer learning, recycling, waste, classification

1. INTRODUCTION
Plastic finds itself in everyday human activities. The mass production of plastic was introduced in 1907 by 
Leo Baekeland, proved to be a boon to humankind[1]. Over the years, plastic has increasingly become an 
everyday necessity for humanity. The population explosion has a critical part in increasing domestic plastic 
usage[2]. Lightweight plastics have a crucial role in the transportation industry. Their usage in space 
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exploration gives enormous leverage over heavy and expensive alternatives[3]. The packaging industry widely 
uses plastics after the e-commerce revolution because they are lightweight, cheap, and abundant. In 2015, 
the packing sector produced 141 million metric tons of garbage, accounting for 97 percent of all waste 
produced concerning the total consumption in the packaging sector[4]. Discarded polyethylene terephthalate 
(PETE) bottles are a common source of household waste. In 2021, global waste plastic bottle consumption 
will surpass 500 billion as estimated[2].

The increasing use of plastics and their wastage negatively affect the global economy. This surge in 
consumption and the low degradability of plastic have resulted in massive plastic accumulation in the 
environment, which has harmed ecosystems and human health[5]. This has resulted in countries formulating 
strict policies for plastics and even banning some types of single-use plastics. Plastics are non-biodegradable 
and considerably take a longer time to degrade. Reusing and recycling are viable ways to stop contaminating 
the environment with plastic pollution[6]. Plastic wastes can be retrieved after entering the municipal 
treatment plants or before it. However, the plastic waste from the municipal treatment plants is usually 
contaminated and ends up in landfills or incineration centers. The plastic waste collected outside of such 
plants is relatively cleaner and can be reused or recycled. Recovered plastics from such wastes have varied 
types of plastic, making it extremely difficult to identify and sort different kinds of plastics.

By integrating transfer learning, the Dataset needs only a limited number of input images to acquire high 
accuracy, and it also accelerates the training of neural networks, consequently improving the classification 
of multiple classes in a dataset[7]. Balancing the number of images in each class compensates for the class 
imbalance problem. This research contributes towards benchmarking of pre-trained models and concluding 
that the ResNeXt model achieves the highest accuracy on the WaDaBa dataset from the list of pre-trained 
models specified in this paper.

1.1. Literature review
Seven different varieties of plastics exist in the modern day. They are classified as Polyethylene terephthalate 
(PET or PETE), high-density polyethylene (HDPE), polyvinyl chloride (PVC or Vinyl), low-density 
polyethylene (LDPE), polypropylene (PP), polystyrene (PS or Styrofoam) and Others, which does not 
belong to any of the above types, has been shown in Figure 1[3].

1.1.1. Traditional sorting techniques
Initially, segregation of wastes and separation of different types of plastics were done manually. However, 
this results in increased labor costs and time consumption[6]. Traditional macro sorting of plastics was 
performed with the aid of sensors which included near-infrared spectrometers[8,9], x-ray transmission sensor, 
Fourier transformed Infrared Technique[10], laser aided identification, and marker identification by 
identifying the resin type[11]. However, these approaches are limited to recognizing just particular types of 
plastics and are costly due to the large equipment required. The intricacy of mechanical sorting and its 
maintenance, as well as the high initial investment, are the drawbacks of traditional sorting methods.

1.1.2. Modern sorting techniques
Deep learning has made classification easier, more efficient, and cost-effective, with less human 
intervention. The deep learning approach was enhanced by convolutional neural networks (CNN)[12]. CNNs 
are excellent for object classification and detection[13]. After the model has been trained on the data, the 
plastics may be sorted into the appropriate classes with the assistance of CNN. They do, however, require a 
huge quantity of training data, which might be difficult to get at times. When the input data is small, the 
problem of overfitting develops, resulting in inaccurate classifications[14]. Transfer learning reduces the 
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Figure 1. Types of plastic, its resin code and everyday examples of plastics. PETE: Polyethylene terephthalate; HDPE: high-density 
polyethylene; PVC: polyvinyl chloride; LDPE: low-density polyethylene; PP: polypropylene, PS: polystyrene.

training time of a CNN by pre-training the model using benchmark datasets such as ImageNet.

Bobulski et al.[15] proposed an end-to-end system with a micro-computer embedded with the vision to sort 
the PETE types of plastics in the WaDaBa dataset. The authors introduced data augmentation, which 
reduced the number of parameters but exponentially increased the number of samples, increasing the 
training time. Bobulski et al.[16] also proposed to classify distinct plastic categories based on a gradient 
feature vector. Agarwal et al.[17] presented Siamese and triplet loss neural networks to classify the WaDaBa 
dataset and succeeded with very high accuracy. However, this method requires a significant amount of time 
for training the neural networks. Chazhoor et al.[18] Anthony utilised transfer learning to compare the three 
most often used architectures (ResNeXt, Resnet-50-50 and AlexNet) on the WaDaBa dataset to select the 
optimal model; however, the K-fold cross validation technique was not applied; as a result, testing accuracy 
would vary widely.

The aim of the paper is to provide researchers with benchmark accuracies and the average time required to 
train on the WaDaBa dataset using the latest CNN models utilising cross-validation to categorise a range of 
plastics into their appropriate resin types. An unbiased and concrete set of parameters has been set to 
evaluate the Dataset to compare the models fairly[19]. This benchmark work will assist in gaining an 
impartial view of numerous recent CNN models applied to the WaDaBa dataset, establishing a baseline for 
future research. The models used in this paper are AlexNet[20], Resnet-50[21], ResNeXt[22], SqueezeNet[23], 
MobileNet_v2[24] and DenseNet[25].

a
图章
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2. METHODS
2.1. Dataset
The WaDaBa dataset is a sophisticated collection that contains images of common plastics used in society. 
The dataset includes seven distinct varieties of plastic. Images show several forms of plastics on a platform 
under two lighting conditions: an LED bulb and a fluorescent lamp and is displayed in Figure 2. Table 1 
shows the distribution of the 4000 images in the dataset according to their classes. As there are no images in 
the PVC and PE-LD classes, both the classes have been excluded from the deep learning models. Deep 
learning models are trained on five class types with images in the current work i.e., PETE, PE-HD, PP, PS, 
and Other. The deep learning models are set up in such a way that each output matches one of the five class 
categories. When the images for PVC and PE-LD are released, these classes can be included in the models. 
The dataset’s classes are imbalanced, with the last class holding just 40 images and the PETE class consisting 
of 2000 images. The dataset is freely accessible to the public[15].

2.2. Transfer learning
A large amount of data is needed to get optimum accuracy in a neural network. Data needs to be trained for 
hours on a powerful Graphical Processing Unit (GPU) to get the results. With the advent of transfer 
learning[26], there has been a significant change in the learning processes in deep neural networks. The 
model which has been already trained on a large dataset like ImageNet[27], known as the pre-trained model, 
enhances the transfer learning process. The transfer learning process works by freezing[28] the initially 
hidden layers of the model and fine-tuning the final layers of the models. The layer’s frozen state indicates 
that it will not be trained. As a result, its weights will remain unchanged. As the data set used in this 
research is relatively small with a limited number of images in each class, transfer learning best suits this 
research. The pre-trained models used in the research are further explained in the subsection.

2.2.1. AlexNet
AlexNet is a neural network with three convolutional layers and two fully connected layers, and it was 
introduced in 2012 by Alex Krizhevesky. AlexNet increases learning capacity by increasing network depth 
and using multi-parameter tuning techniques. AlexNet uses ReLU to add non-linearity and dropout to 
decrease the overfitting of data. CNN-based applications gained popularity following AlexNet's excellent 
performance on the ImageNet dataset in 2012[23]. The architecture of AlexNet is shown in Figure 3.

2.2.2. Resnet-50
Residual networks (Resnet-50) are convolutional neural networks with skip connections with an extremely 
deep convolution and 11 million parameters. A skip connection after each block solves the vanishing 
gradient problem. The skip connection skips some layers in the network. With batch normalization and 
ReLU activation, two 3 × 3 convolutions are used in each block to achieve the desired result[21]. The 
architecture of Resnet-50-50 is displayed in Figure 4.

2.2.3. ResNeXt
Proposed by Facebook and ranking second in ILSVRC 2016, ResNeXt uses the repeating layer strategy of 
Resnet-5050, and it appends the split-transform-merge method[22]. The magnitude of a set of 
transformations is known as cardinality. Cardinality provides a novel approach to modifying model capacity 
by increasing the number of separate routes. Having width and depth as critical characteristics, ResNeXt 
adds on Cardinality as a new dimension. Increasing cardinality is a practical approach to enhance the 
accuracy of the model[22]. The architecture of ResNeXt is shown in Figure 5.
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Table 1. The number of images corresponding to each class in the WaDaBa dataset[15]

Resin code Class type Number of images

1 PETE 2200

2 PE-HD 600

3 PVC 0

4 PE-LD 0

5 PP 640

6 PS 520

7 Other 40

PETE: Polyethylene terephthalate; PVC: polyvinyl chloride; PP: polypropylene, PS: polystyrene; PE-HD: high-density polyethylene; PE-LD: low-
density polyethylene.

Figure 2. Examples of different types of plastics from the WaDaBa dataset in Figure 1. (A) Class 1 representing PETE (polyethylene 
terephthalate); (B) Class 2 representing HDPE (high-density polyethylene); (C) Class 5 representing PP (polypropylene); (D) Class 6 
representing PS (polystyrene) ; (E) Class 7 representing Others[15].

Figure 3. The architecture of AlexNet, having five convolutional layers and three fully connected layers. This figure is quoted with 
permission from Han et al.[29].

Figure 4. Architecture of Resnet-50-50. This figure is quoted with permission from Talo et al.[30].



Page 6         Chazhoor et al. Intell Robot 2022;2:1-19 https://dx.doi.org/10.20517/ir.2021.15

Figure 5. Architecture of ResNeXt. (Figure is redrawn and quoted from Go et al.[31])

2.2.4. MobileNet_v2
MobileNet_v2 is a CNN architecture built on an inverted residual structure, shortcut connections between 
narrow bottleneck layers to improve the mobile and embedded vision systems. A Bottleneck Residual Block 
is a type of residual block that creates a bottleneck using 1 × 1 convolutions. The number of parameters and 
matrix multiplications can be reduced by using a bottleneck. The goal is to make residual blocks as small as 
possible so that depth may be increased, and the parameters can be reduced. The model uses ReLU as the 
activation function. The architecture comprises a 32-filter convolutional layer at the top, followed by 19 
bottleneck layers[24]. The architecture of MobileNet_v2 is shown in Figure 6.

2.2.5. DenseNet
Using a feed-forward system, DenseNet connects each layer to every other layer. Layers are created using 
feature maps from all previous levels, and their feature maps are utilized in all future layers to create new 
layers. They solve the vanishing-gradient problem and improve feature propagation and reuse while 
reducing the number of parameters significantly. The architecture of DenseNet is shown in Figure 7.

2.2.6. SqueezeNet
SqueezeNet is a small CNN that shrinks the network by reducing parameters while maintaining adequate 
accuracy. An entirely new building block has been introduced in the form of SqueezeNet’s Fire module. A 
Fire module consists of a squeeze convolution layer containing only a 1 × 1 filter, which feeds into an 
expand layer having a combination of 1 × 1 and 3 × 3 convolution filters. Starting with an independent 
convolution layer, SqueezeNet then moves to 8 Fire modules before concluding with a final convolution 
layer. The architecture of SqueezeNet is shown in Figure 8.
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Figure 6. The architecture of MobileNet_v2. This figure is quoted with permission from Seidaliyeva et al.[32]

Figure 7. The architecture of DenseNet. This figure is quoted with permission from Huang et al.[25].

Figure 8. The architecture of SqueezeNet. This figure is quoted with permission from Nguyen et al.[33].

2.3. Experimental settings and the experiment
All the experiments were run on Ubuntu Linux operating system. The models were trained on Intel i7,
3.60 GHz, 32 GB ram and the graphical processing unit used was the Nvidia GeForce RTX 2080 Super. The
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deep learning framework used in this research is PyTorch[34]. The images from the WaDaBa dataset are 
input to the pre-trained models after performing under-sampling in the dataset. The batch size chosen for 
this experiment is 4 such that the GPU doesn’t run out of memory while processing. The learning rate is 
0.001 and is decayed by a factor of 0.1 every seven epochs. Decaying the learning rate aids the network’s 
convergence to a local minimum and also enhances the learning of complicated patterns[35]. Cross-Entropy 
loss is utilized for training, accompanied by a momentum of 0.9, which is widely used in the machine 
learning and neural network communities[36]. The Stochastic Gradient Descent (SGD) optimizer[37], a 
gradient descent technique that is extensively employed in training deep learning models, is used. The 
training is done using a five-fold cross-validation technique, and the result is generated, along with graphs 
showing the number of epochs vs. accuracy and number of epochs vs. loss. On the WaDaBa dataset, each 
model was subjected to twenty epochs.

Before being forwarded on to the training, the data was normalized. These approaches, which were applied 
to the data, included random horizontal flipping and centre cropping.

The size of the input picture is 224 × 224 pixels [Figure 9].

2.3.1. Imbalance in the dataset
The number of images for each class in the dataset is uneven. The first class (PETE) contains 2200 photos, 
while the last class (Others) contains only 40. Due to the size and cost of certain forms of plastic, obtaining 
datasets is quite tricky. Because of the class imbalance, the under-sampling strategy was used. Images were 
split into training and validation sets, eighty percent for the training and twenty percent for the testing 
purposes.

2.3.2. K-fold cross-validation
The 5-fold cross-validation was considered for all the tests to validate the benchmark models[38]. The data 
was tested on the six models and the training loss and accuracy, validation loss and accuracy and the 
training time was recorded for 20 epochs with identical model parameters. The resultant average data was 
tabulated, and the corresponding graphs were plotted for visual representation. The flow chart of the 
experimental process is displayed in Figure 8.

3. RESULTS
3.1 Accuracy, loss, area under curve and receiver operating characteristic curve
The metrics used to benchmark the models on the WaDaBa dataset are accuracy and loss. The accuracy 
corresponds to the correctness of the value[39]. It measures the value to the actual value. Loss is a prediction 
of how erroneous the predictions of a neural network are, and the loss is calculated with the help of a loss 
function[40]. The area under curve (AUC) measures the classifier’s ability to differentiate between classes and 
summarize the receiver operating characteristic (ROC) curve. ROC plots the performance of a classification 
model’s overall accuracy. The curve plots the True Positive Rate against the False Positive Rate.

Table 2 clearly shows that the ResNeXt architecture achieves the maximum accuracy of 87.44 percent in an 
average time of thirteen minutes and eleven seconds. When implemented in smaller and portable devices, 
smaller networks such as MobileNet_v2, SqueezeNet, and DenseNet offer equivalent accuracy. AlexNet 
trains the model in the shortest period but with the lowest accuracy. In comparison to the other models, 
DenseNet takes the longest to train. With a classification accuracy of 97.6 percent, ResNeXt comes out as 
the top model for reliably classifying PE-HD. When compared to other models, MobileNet_v2 classifies PS 
with more accuracy. Also, from Table 2, we can see that PP has the least classification accuracy for all the 
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Table 2. The mean and class wise accuracies of the models pretrained on the ImageNet dataset, along with the time taken for 
training for 20 epochs. The standard deviation indicates the average deviation in accuracy across the five-folds in the respective 
model along with the total number of parameters for each model

AlexNet Resnet-50 ResNeXt MoblineNet_v2 DenseNet SqueezeNet

Mean 
accuracy (%)

80.08 85.54 87.44 87.35 85.58 82.59

PETE (%) 84.8 85 85 85 88.8 84.4

PE-HD (%) 85.0 95.4 97.6 94.2 95.6 91.4

PP (%) 67.2 68.6 74 74.8 66.4 66.8

PS (%) 80.2 86.0 83.2 89.6 85.4 82.2

Other (%) 100 100 100 100 100 97.5

Time 
(min)

11.8 12.05 13.11 12.06 17.33 12.01

Std. deviation 
σ (%)

7.5 4.9 5.4 6.0 5.3 1.7

No. of parameters 
(in million)

57 23 22 2 6 0.7

PETE: Polyethylene terephthalate; PP: polypropylene, PS: polystyrene.

Figure 9. Flowchart summarizing the experiment.

models. In Table 2, the standard deviation, σ, is displayed, which is a measure of how far values deviate from 
the mean. The standard deviation is given by the following unbiased estimation:
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xi = accuracy at the ith epoch

   = mean of the accuracies

n = total number of epochs (e.g., 20)

4. DISCUSSION
In the results section from Table 2, we can observe that ResNeXt architecture performs better than all the 
other architectures discussed in this paper. MobileNet_v2 architecture falls behind ResNeXt architecture 
with 0.1 % accuracy. Considering the time factor, MobileNet_v2 trains faster than ResNext by a minute’s 
advantage. When the data is considerably large, the difference in time factor will increase, giving the 
MobileNet_v2 architecture dominance.

The validation loss of AlexNet architecture from Table 3 and SqueezeNet architecture from Table 4 does not 
significantly drop compared to other models used in the research and from the graph, it can be observed 
from Figure 10 and Figure 11 that there is a diverging gap between its accuracy loss and validation loss 
curves for both models. Fewer images in the Dataset and multiple classes cause this effect on the AlexNet 
architecture. Similar results can be observed for SqueezeNet from Table 4 and Figure 11, which have a 
similar architecture to AlexNet. Table 5 and Figure 12 represent the training and validation accuracies and 
loss values and their corresponding graphs for the pre-trained Resnet-50 model. From Table 6 and 
Figure 13, we can observe the training and validation accuracy and loss values and their plots for ResNeXt 
architecture. Similarly, from Table 7 and Figure 14, the accuracies and their graphs for MobileNet_v2 can be 
observed. The DenseNet architecture represented in Table 8 and Figure 15 takes the longest time to train 
and has a good accuracy score of 85.58%, which is comparable to the Resnet-50 architecture, having an 
accuracy of 85.54%. The five-fold cross-validation approach tests every data point in the dataset and helps 
improve the overall accuracy.

Figure 16 shows the AUC and ROC for all the models in this paper. The SqueezeNet and AlexNet 
architecture display the lowest AUC score. MobileNet_v2, Resnet-50, ResNext and DenseNet have a 
comparable AUC score. From the ROC curve, it can be inferred that the models can correctly distinguish 
between the types of plastics in the Dataset. ResNeXt architecture achieves the largest AUC.

5. CONCLUSION
When we compare our findings to previous studies in the field, we find that including transfer learning 
reduces total training time significantly. It will be simple to train the existing model and attain improved 
accuracy in a short amount of time if the WaDaBa dataset is enlarged in the future. This paper has 
benchmarked six state-of-the-art models on the WaDaBa plastic dataset by integrating deep transfer 
learning. This work will be laid out as a baseline work for future developments on the WaDaBa dataset. The 
paper focuses on supervised learning for plastic waste classification. Unsupervised learning procedures are 
one area where the article has placed less focus. The latter might be beneficial for pre-training or enhancing 
the supervised classification models using pre-trained feature selection. Pattern decomposition methods[41] 
like nonnegative matrix factorization[42] and ensemble joint sparse low rank matrix decomposition[43] are 

a
图章

a
图章
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Table 3. The mean training and validation accuracies and losses for AlexNet architecture for 20 epochs

Mean_AlexNet
Epoch

Training accuracy Validation accuracy Training loss Validation loss

1 0.5815 0.57302 1.00228 1.1308

2 0.6675 0.64806 0.80658 1.09448

3 0.7177 0.5804 0.69244 1.1246

4 0.73384 0.64656 0.6721 1.01474

5 0.77882 0.67598 0.55144 0.9506

6 0.78652 0.66568 0.51194 1.04706

7 0.79548 0.7093 0.50188 0.84044

8 0.84654 0.7696 0.36054 0.82302

9 0.87302 0.7642 0.30162 0.89168

10 0.87962 0.77646 0.28896 0.90384

11 0.87458 0.77746 0.29108 0.92258

12 0.88206 0.78874 0.28282 0.8886

13 0.88462 0.78236 0.26542 0.99196

14 0.88192 0.78532 0.26406 0.99434

15 0.89248 0.78972 0.25636 0.98168

16 0.89126 0.78972 0.2576 0.98266

17 0.88914 0.79118 0.25864 0.95596

18 0.897 0.79608 0.24166 0.95004

19 0.89344 0.79706 0.24634 0.9735

20 0.89602 0.79414 0.24826 0.98582

Table 4. The mean training and validation accuracies and losses for SqueezeNet architecture for 20 epochs

Mean SqueezeNet
Epoch

Training accuracy Validation accuracy Training loss Validation loss

1 0.47992 0.7281 1.02608 1.32476

2 0.64688 0.7437 0.78012 0.96076

3 0.7134 0.718 0.68612 1.05972

4 0.74428 0.67796 0.6426 1.14184

5 0.76116 0.7003 0.5903 0.81164

6 0.79006 0.70916 0.53186 0.88014

7 0.81026 0.65862 0.51222 0.89182

8 0.85586 0.69658 0.42766 0.81594

9 0.87364 0.70138 0.3871 0.89832

10 0.87874 0.70724 0.37834 0.99886

11 0.88684 0.6838 0.3752 0.9401

12 0.89062 0.69988 0.36256 0.93402

13 0.89798 0.69218 0.3465 0.94986

14 0.88878 0.7183 0.36842 0.8951

15 0.89504 0.70776 0.35906 0.97796

16 0.89798 0.70376 0.35146 1.0066

17 0.89896 0.70712 0.35242 0.99574

18 0.90166 0.70396 0.34732 1.00284

19 0.90422 0.70202 0.34508 1.01182

20 0.90238 0.70606 0.34562 0.9707
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Table 5. The mean training and validation accuracies and losses for Resnet-50 architecture for 20 epochs

Mean Resnet-50 values
Epoch

Training accuracy Validation accuracy Training loss Validation loss

1 0.5515 0.6706 1.12794 1.04068

2 0.69346 0.70782 0.81024 0.96718

3 0.7455 0.7691 0.66772 0.86036

4 0.77918 0.76568 0.5758 0.82058

5 0.80062 0.77648 0.52012 0.66052

6 0.8256 0.75932 0.44886 0.85278

7 0.83992 0.74364 0.42794 1.16314

8 0.87704 0.82598 0.32214 0.60218

9 0.89198 0.82254 0.2835 0.6571

10 0.90986 0.82942 0.24506 0.62152

11 0.90324 0.83382 0.2566 0.58042

12 0.91498 0.83234 0.23156 0.63032

13 0.91182 0.81626 0.23618 0.6429

14 0.91476 0.83726 0.23086 0.65462

15 0.9151 0.83484 0.2235 0.6636

16 0.91464 0.82894 0.22348 0.70444

17 0.91684 0.8343 0.21748 0.65494

18 0.91684 0.83776 0.21546 0.6189

19 0.91708 0.83482 0.22578 0.68982

20 0.91352 0.83922 0.22412 0.61236

Table 6. The mean training and validation accuracies and losses for ResNeXt architecture for 20 epochs

Mean ResNeXt values
Epoch

Training accuracy Validation accuracy Training loss Validation loss

1 0.57454 0.71078 1.09714 0.97576

2 0.69518 0.74312 0.8304 0.87308

3 0.752 0.67498 0.66784 1.3998

4 0.79228 0.76764 0.57174 0.93114

5 0.81336 0.78234 0.52164 0.7225

6 0.83306 0.83136 0.4542 0.70478

7 0.84494 0.81374 0.42144 0.7807

8 0.88366 0.8564 0.30548 0.5644

9 0.89836 0.85442 0.28038 0.64594

10 0.90642 0.85294 0.26156 0.62974

11 0.90826 0.85834 0.2503 0.65006

12 0.9145 0.85 0.2385 0.6518

13 0.9084 0.84118 0.2411 0.64972

14 0.91084 0.8544 0.24424 0.59668

15 0.91316 0.85246 0.2417 0.55656

16 0.92564 0.84854 0.2097 0.58186

17 0.91156 0.85882 0.23282 0.58778

18 0.916 0.85688 0.22358 0.63122

19 0.91598 0.84658 0.223 0.62936

20 0.92014 0.85246 0.21606 0.65276
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Table 7. The mean training and validation accuracies and losses for MobileNet_v2 architecture for 20 epochs

Mean MobileNet_v2
Epoch

Training accuracy Validation accuracy Training loss Validation loss

1 0.55528 0.66322 1.12416 0.97572

2 0.64264 0.71714 0.94286 0.79604

3 0.6871 0.77108 0.806 0.77816

4 0.72912 0.7392 0.70786 0.89686

5 0.75566 0.74462 0.6542 0.8389

6 0.7858 0.78334 0.57576 0.75382

7 0.78846 0.7799 0.54498 0.86344

8 0.8392 0.83332 0.4141 0.62084

9 0.85942 0.8495 0.36976 0.57796

10 0.8649 0.85296 0.35118 0.57304

11 0.87458 0.84954 0.33336 0.57328

12 0.87606 0.85734 0.32184 0.5281

13 0.8768 0.86618 0.3207 0.50986

14 0.88106 0.84902 0.31194 0.545

15 0.88464 0.85344 0.30746 0.53638

16 0.88756 0.86178 0.2966 0.5141

17 0.88804 0.8613 0.30038 0.50172

18 0.88342 0.8608 0.30566 0.52828

19 0.88512 0.85688 0.30972 0.53054

20 0.8822 0.86176 0.31576 0.50632

Table 8. The mean training and validation accuracies and losses for DenseNet architecture for 20 epochs

Mean DenseNet
Epoch

Training accuracy Validation accuracy Training loss Validation loss

1 0.55724 0.6446 1.0884 1.04494

2 0.68426 0.73088 0.81858 0.74552

3 0.7488 0.72302 0.6718 1.14064

4 0.76168 0.75196 0.64602 0.90288

5 0.7874 0.79118 0.5675 0.69646

6 0.81936 0.76862 0.50594 0.85718

7 0.82216 0.77744 0.48568 0.76844

8 0.87188 0.79952 0.36034 0.66998

9 0.87814 0.83136 0.31836 0.51186

10 0.8911 0.80736 0.30766 0.5814

11 0.8954 0.82354 0.28282 0.58526

12 0.90164 0.83874 0.27306 0.59644

13 0.89908 0.8392 0.2748 0.5592

14 0.9019 0.84118 0.27446 0.57224

15 0.90704 0.83578 0.25116 0.5755

16 0.9096 0.84366 0.24786 0.5398

17 0.90582 0.84216 0.24938 0.5301

18 0.9063 0.84316 0.26094 0.60658

19 0.91196 0.8299 0.24698 0.57962

20 0.9079 0.84364 0.24388 0.52476
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Figure 10. Accuracy and loss curves for AlexNet architecture.

Figure 11. Accuracy and loss curves for SqueezeNet architecture.

examples of unsupervised learning strategies. Higher order decomposition approaches, such as low-rank 
tensor decomposition[44,45] and hierarchical sparse tensor decomposition[46], can result in improved 
performance. This would be the future path of study to improve plastic waste classification.



Chazhoor et al. Intell Robot 2022;2:1-19 https://dx.doi.org/10.20517/ir.2021.15          Page 15

Figure 12. Accuracy and loss curves for Resnet-50 architecture.

Figure 13. Accuracy and loss curves for ResNeXt architecture.
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Figure 14. Accuracy and loss curves for MobileNet_v2 architecture.

Figure 15. Accuracy and loss curves for DenseNet architecture.
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Figure 16. Area under curve and receiver operating characteristic for Resnet-50, ResNeXt, DenseNet, SqueezeNet, MobileNet_v2 and 
AlexNet models. AUC: Area under curve; ROC: receiver operating characteristic.
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Abstract
The next generation of wireless networks, 5G, and beyond will bring more complexities and configuration issues to 
set the new wireless networks, besides requirements for important and new services. These new generations of 
wireless networks, to be implemented, are in extreme dependence on the adoption of artificial intelligence 
techniques. The integration of unmanned aerial vehicles (UAV) in wireless communication networks has opened 
several possibilities with increased flexibility and performance. Besides, they are considered as one of the most 
promising technologies to be used in the new wireless networks. Thus, UAVs are expected to be one of the most 
important applications to provide a new way of connectivity to the 5G network, and it is expected to grow from 
being a 19.3 billion USD industry in 2019 to 45.8 billion USD by 2025. In this paper, we provide a proposal of 
handover management on aerial 5G network utilizing the fuzzy system. The simulations performed prove the 
benefits of our proposal by QoS/QoE (quality of service/quality of experience) metrics.

Keywords: UAV, FANET, drone, fifth generation, fuzzy system, handover

1. INTRODUCTION
Unmanned aerial vehicles (UAVs) are considered as an interesting technology recently, mainly because of 
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their deployment advantages and mobility[1]. There are two types of UAVs: fixed-wing and multi-rotor. The 
first is better applied to military applications, while the second is applied to provide wireless coverage to 
ground users. Moreover, UAVs are being applied in the following areas: efficient crop monitoring, delivery 
of goods, intelligent monitoring of places for security, carrying out surveys of various locations, developing 
a real-time map, coverage in telecommunications areas, and so on[2]. In addition, UAVs can support many 
Internet of Things (IoT) applications by providing real-time, accurate sensing/monitoring data[2].

UAVs as aerial base stations will be an essential module for future wireless technologies, as they can support 
high data rate transmission for users located in disaster situations (e.g., after earthquakes, terrorist attacks, 
and so on) and when there is no typical cellular infrastructure.

Cellular networks are considered to be an alternative for drone communications because most commercial 
UAV systems employ IEEE 802.11 WLAN technology for sensor data, commands, and control, which 
operates in the unlicensed spectrum raising issues such as reliability and security[3]. Moreover, cellular 
networks with UAV-mounted base stations can enhance cellular networks, offering services where the 
traditional networks do not due to, e.g., costs. Besides all the applications cited above, UAVs as aerial base 
stations could be promptly dispatched, cheaply maintained, and easily maneuvered. UAVs can be used as 
end devices through cellular networks too[4]. Thus, UAVs could benefit the current network infrastructure, 
in terms of coverage, reliability, and security. There are also some ongoing standardization activities 
(security monitoring, rescue services, etc.) with UAVs[4].

Some challenges to using UAVs as a main part of future mobile communications networks, serving as 
mobile users or mobile base stations, are interference, special mobility, and handover management. Unlike 
terrestrial networks, UAVs are mobile devices that move in a three-dimensional (3D) environment, which 
further complicates mobility issues[5] as moving to a new location would disconnect the current users. 
Despite these problems, UAVs are becoming important for aerial communication[6,7]. Although UAVs offer 
numerous benefits for future wireless communication networks, their handover is a concern that must be 
studied deeply[5].

The future generation wireless networks will be extremely dense and heterogeneous (with different 
technologies), likely equipped with moving and flying BSs (base stations). This makes the existing network 
planning techniques, which are mainly static and designed based on expensive field tests, not suitable for the 
future wireless networks. The utilization of artificial intelligence (AI) techniques for network planning has 
recently received interest in the research community. UAVs as aerial base stations for cellular networks are 
commonly used to support wireless coverage. However, an intelligent handover method must be proposed 
for UAV networks for when handover is triggered for a device moving to different UAVs.

One of the key premises in this development is the integration of AI into mobile communication networks. 
In this context, AI and machine learning techniques are expected to provide solutions for the various 
problems that have already been identified when UAVs are used for communication purposes such as 
channel modeling, resource management, positioning, interference from the terrestrial node, and handover.

This paper is structured as follows. Flying ad hoc network (FANET) concepts are discussed in Section 2. 
Section 3 outlines the FANET challenges and perspectives. The related works are presented in Section 4. 
Section 5 describes the proposed handover management by the fuzzy system in detail and the results 
obtained from the simulation. Section 6 summarizes the conclusion and makes suggestions for future work.



Ayass et al. Intell Robot 2022;2(1):20-36 https://dx.doi.org/10.20517/ir.2021.07    Page 22

2. FLYING AD HOC NETWORK
Ad hoc networks, referred to by the IETF (Internet Engineering Task Force) as MANET (mobile ad hoc 
networks), have as their main characteristic the fact that they do not have infrastructure. As a result, all their 
functions must be performed by the devices. Thus, the devices that make up an ad hoc network must be 
able to communicate with each other acting as routers[1].

Ad hoc networks are often used in scenarios where there is a need to quickly set up a network, usually 
where there is no proper infrastructure. The devices can move arbitrarily, unpredictably modifying the 
network topology, which requires a permanent adaptation and reconfiguration of routes so that the devices 
can still communicate with each other.

In the new context of fifth-generation networks (5G), a derivation of the ad hoc networks called FANET has 
emerged. FANETs are ad hoc networks composed of remotely controlled flying devices (UAVs) that 
communicate with each other[2]. Due to the flexibility, versatility, and even easy operation of FANETs, they 
are used for both military and civil applications, for example plantation control in agriculture, forest 
clearing, and city security (see Figure 1).

In recent years, because of technological advances in areas such as robotics, telecommunications, and 
computer networks, UAVs have emerged as alternatives in civil and military areas, providing several 
applications. Thus, UAVs are intended to improve or create a network infrastructure in places that are 
difficult to access, such as natural disaster areas or enemy territories. With this, FANET appears as an 
acceptable solution in this new context, allowing the collection of information in a flexible, fast, and reliable 
way.

One of the goals of FANETs is to create a cooperative network, using multiple UAVs to cover an area that 
cannot be covered by a single UAV. Thus, it is possible to create an aerial mesh network in which its devices 
(drones) communicate and transmit information with each other. Therefore, it is necessary to have reliable 
and stable communication between devices to maintain good levels of quality of service/quality of 
experience (QoS/QoE).

In FANETs, the mobility index is much higher than a traditional ad hoc network, leading to frequent 
topology changes. This is the reason FANETs must be self-configuring and self-organizing. Such a network 
must be prepared for sudden changes in its topology, organization, and even communication.

The mobility of UAVs and their spatial location are also very important for determining communication 
routes. With the motion, these routes are usually remade to continue with the interconnection of the UAVs. 
For this reason, routing must be done dynamically, and the routing protocol must be efficient and simple, 
increasing the autonomy of the UAVs and reducing the delay in data delivery between the drones.

UAVs are responsible for overflying the environment. They have sensors to collect information and can 
establish communication with each other more easily by finding fewer obstacles in their line of sight, 
reducing the number of UAVs needed to cover a certain area. However, weather conditions can impair 
communication due to wind, rain, and other factors.

FANETs have a high computational power. Thus, they have a greater capacity for transmitting information 
since in many cases they are responsible for transmitting information in real time (with videos from the 
monitored environment). Thus far, there are no specific routing protocols for FANETs. Traditional 
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Figure 1. Flying ad hoc network scenario for city security monitoring.

protocols (AODV, OLSR, etc.) used in ad hoc networks are also used in this context [Figure 2].

Therefore, the location of devices within a coverage area directly impacts the performance of the network, 
which may improve or deteriorate according to their mobility. Thus, one of the main challenges to be solved 
in this type of network is the handover management after motion of UAVs.

Communication between UAVs depends a lot on their location since all information collected from the 
environment is concentrated in a relay node (which is responsible for relaying the data to a control center). 
Therefore, its positioning with respect to the other nodes is a strategic point to maintain a good 
performance of the network; it is not ideal that a UAV relay has excellent communication with some UAVs 
but poor communication with others in the network (see Figure 3).

Due to the high rate of mobility of UAVs in a FANET, updating the location of all nodes in the network is a 
critical factor. Network devices need to know the location of the other elements in real time; thus, in 
addition to the use of GPS (which on average sends the location once per second), UAVs have an inertial 
measurement unit, capable of sending its location in an interval smaller than the GPS at any time.

3. CHALLENGES AND PERSPECTIVES
The technology used in UAVs has great advantages for current generation telecommunications networks 
and provides a great framework of improvements, challenges, and promises for the next generations of 
wireless communications, especially in areas with difficult access or in regions lacking physical 
infrastructure, providing a structure and ensuring connectivity where terrestrial devices may fail. Many 
smart solutions are proposed in the literature, involving the context of using drones and UAVs. Some of 
these solutions promise implementations to adequately serve numerous services in addition to Internet data 
network communications and distribution, e.g., surveillance services, military systems, intelligent traffic 
control and distribution, and other important points including in the concept of smart cities.
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Figure 2. Flying ad hoc network routing protocol.

Figure 3. Unmanned aerial vehicle relay communication.

Although these systems have many advantages and benefits, they also present numerous challenges and 
perspectives, often due to inadequate or obsolete implementations, without updates or improvements.

3.1. Challenges
Communication networks through UAVs in the context of data communication and distribution present 
numerous challenges:

(1) Communication and transmission protocols are limited, due to the protocols currently used in 
communication networks and the Internet being obsolete for this new type of network and the way data are 
transmitted, with new characteristics.
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(2) There is an increased probability of errors and loss of information and data due to interference and 
signal strength problems, impairing communication, data packet delivery, and network system reliability.

(3) There are mobility management challenges, due to the high mobility of these devices, constant change of 
topology, and challenging coverage management and control processes. A sub-problem in this case is 
related to the increase in altitude, which can generate other challenges.

(4) The reliability of communication and handovers between devices and equipment, also due to the high 
mobility of UAVs, is lower, which can increase the delay, impair wireless communication, make it more 
difficult to maintain communication links with higher quality, and bring new problems in the heterogeneity 
of this type of networks, especially in the context of technologies linked to 4G and 5G. UAVs experience 
dynamic channel swings and sudden changes due to high mobility and have constant problems with 
handover and ping-pong effects.

(5) Challenges regarding the battery capacity of the devices, their replacement, the transformation of the 
network and communications topology, and the computational and communications cost because of these 
constant changes, among others, also exist[8].

3.2. Perspectives 
However, in another direction, communications through UAVs also have numerous proposals and 
possibilities for the future, as is constantly observed in current academic works, providing new possibilities 
for multi-hop scenarios, which allow communication services for fixed and mobile devices and the creation 
of new scenarios and dynamic ranges, quickly and reliably.

Among the possibilities that go beyond a communication system, we can highlight: (1) the use of UAVs for 
people with special needs, providing visual information, among others, for those who need it; (2) delivery 
services, constantly speeding up the competitive system of delivery of letters and products or assisting in 
this type of need; (3) environmental monitoring systems, with sensors for agriculture, water resources, 
temperature, and other monitoring systems, providing intelligent and dynamic decision-making; (4) 
offering an important resource in military scenarios or places without infrastructure, including serving as a 
base in scenarios of DTNs (delay tolerant networks); and (5) intelligent transport systems, helping to 
monitor and control traffic, accidents, and other unexpected scenarios using UAVs. Other benefits include 
inspection of electrical systems, use in telepresence and telemedicine, assistance in disaster and accident 
scenarios, smart cities, etc.

Thus, it can be said that the use of UAVs in wireless networks is contributing and taking network 
communications to a new level, integrating existing 4G and 5G networks with mobile device systems that 
dynamically and constantly recreate new scenarios, providing topologies, greater ranges and transmission 
rates, airbase station services, supporting terrestrial communications networks, helping in communication 
between devices and IoT environments in healthcare systems, transport with the accident detection, 
communication between vehicles, and energy management[9].

4. RELATED WORK
This section describes related published work on handover decision techniques on UAV networks. These 
are mainly about strategies to ensure an efficient handover to maintain service continuity and acceptable 
performance in delivering content to users.
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Hu et al.[10] proposed an intelligent handover control method for UAVs in cellular networks. They 
introduced a deep learning model to predict the user’s trajectory to provide mobility management. The 
handover decision is conceived by calculating the received signal power based on the predicted location and 
the characteristics of the air-ground channel, for accurate decision making. The simulation results 
demonstrate that the proposal’s handover success rate was 8% higher than the traditional handover method.

Lee et al.[11] emphasized that the traditional handover decision is not suitable for drones that move and 
communicate in 3D space. The drone’s characteristics are considered as input parameters, namely the speed 
limit and coverage area, which are used as input in a fuzzy system for decision making on the handover. 
Thus, the calculation of the number of handover decisions showed that considering the parameters related 
to the terminal (drone) and the parameters related to the network has a positive effect on the handover 
decision.

Madelkhanova et al.[12] developed a new algorithm based on Q-learning to manage the handover between 
airbase stations and static BSs, to maximize the total capacity of the UEs served by the air BSs. The Q-
learning agent states are described in terms of the load of the ground bases and the reward function is 
defined in terms of the capacity of the UEs served by the air BSs. The results show an increase in the 
capacity of the UEs by up to 18% and 20% in the level of satisfaction with the solution. They also 
demonstrated that the Q-learning process converges quickly and only dozens of handovers are needed to 
achieve a significant gain.

Park et al.[13] presented an efficient handover mechanism for aerial networks in three-dimensional space, 
which differs considerably from conventional two-dimensional schemes. The proposed scheme adjusts the 
height of a drone and the distance between drones. For this purpose, the probability of successful handover 
without interruption and the false probability of starting the handover were considered to evaluate the ideal 
coverage decision algorithm. The proposed method was the first attempt to offer a handover scheme for 
drones in three-dimensional space.

Bai et al.[14] pointed out that the support of drones in cellular networks has allowed a wide range of new 
applications for next-generation wireless systems. However, they discussed that these networks were 
traditionally designed to serve terrestrial users, which contributes to the emergence of challenges to support 
wireless communication by drones. As these devices experience increased interference and channel 
fluctuation, they must perform handover more frequently and are more susceptible to failure rate and ping-
pong during movement.

Faced with these challenges, the authors proposed an improved mobility management algorithm for drones, 
exploring pre-configured flight path information and their air channel properties. That is the proposal of a 
route-aware handover decision algorithm to minimize the failure and reduce the number of unnecessary 
handovers. The simulation results also demonstrate that the algorithm can reduce the ping-pong effect in 
certain cases.

Dong et al.[15] proposed a scheme that dynamically adjusts the HO trigger parameters (handover) to reduce 
the number of unnecessary transfers. The scheme specifically considers the UAV sailing at a certain altitude 
and taking off. Experiments showed that the presented solution can significantly reduce the number of 
unnecessary HOs and improve network performance. They also showed that the channel quality between 
the UAV and the BS is very different from that on the ground, and therefore selecting the most appropriate 
target BS is also important.
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Goudarzi et al.[16] stated that the main challenges of communications assisted by UAVs today are to have 
adequate accessibility in wireless networks through mobile devices with an acceptable quality of service 
based on user preferences. To this end, they presented a new method based on game theory to select the 
best UAV during the HO process and optimize the transfer between UAVs, decreasing end-to-end delay, 
transfer latency, and signaling overhead. The results demonstrate the effectiveness of the proposed approach 
in terms of handover numbers, cost, and delay.

Azari et al.[17] recommended a machine learning-based approach for the HO mechanism and resource 
management for cellular-connected drones. They offered a machine learning-based solution that captures 
the correlations in temporal and spatial levels to help make HO decisions. Peng et al.[18] proposed a solution 
based on machine learning for predicting node mobility. They used the classification of movements to 
different classes based on predicting the nodes near a future location.

In the work of Angjo et al.[5], the handover decision is optimized gradually using Q-learning to provide 
efficient mobility and ping-pong support. The proposed scheme reduces the total number of handovers. 
Simulation results demonstrate that the proposed algorithm can effectively minimize the handover cost in a 
learning environment.

To avoid the ping-pong handover, Shakhatreh et al.[19] proposed a weighted fuzzy self-optimization (WFSO) 
approach for the optimization of the handover control parameters. The HO decision relies on three 
considered attributes: signal-to-interference-plus-noise ratio, the traffic load of serving and target base 
station, and user equipment’s velocity. The results indicate that the proposed WFSO approach significantly 
lowers the rates of HOPP, radio link failure, and HOF in comparison with the other algorithms found in the 
literature.

In this way, several studies have been conducted to address various types of HO issues, mainly in support of 
mobility management to reduce handover failures as well as to reduce the ping-pong effect. The ping-pong 
effect is the frequent connections and disconnections with the BS as the served device changes locations.

However, few proposals support energy efficiency. Battery capacity is one of the main limitations, becoming 
a critical factor for the continuity of the application. Therefore, effective power management is required for 
devices that operate on battery power. Some solutions such as wireless charging, solar charging technology, 
and even artificial intelligence techniques[9] are indicated for effective energy management that provides 
longer missions.

Finally, Singh et al.[20] proposed reinforcement learning (RL) based on an energy‐aware ABS deployment 
algorithm. Dynamic movements of ABSs are managed by defining the user mobility pattern. However, this 
study does not support the quality of experience.

In this way, another critical factor would be the quality of user experience because it can measure the degree 
of quality of service through the user’s perception. It is noteworthy that expectations about the satisfaction 
of different services and applications vary among different users. This means that QoE is an important 
attribute to be considered in the handover decision-making process.

Furthermore, research work carried out in recent years has focused on the field of artificial intelligence. 
Approaches based on machine learning and deep learning can ensure improvements in handover decision 
making and save computational costs[8]. On the other hand, handover decisions consider several parameters 
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instantly, which advantages a fuzzy approach[8,11].

Based on the survey of related literature (see Table 1), it is noted that the applicability of traditional 
handover schemes, as well as new propositions that support energy consumption and QoE, are still poorly 
investigated.

Thus, this paper proposes a fuzzy system strategy for handover decision, that is, combining support for 
mobility level, battery, displacement direction, throughput, and received signal strength indication (RSSI), 
proving that a fuzzy system is a promising technique for contributing to UAV networks.

5. FANET FUZZY SYSTEM EVALUATION
UAVs comprise a significant part of future wireless communication networks, acting as a mobile base 
station. While these devices provide several solutions related to mobile communication networks, UAVs 
also have numerous challenges, especially when it comes to handover management. Unlike terrestrial 
networks, drones are mobile devices that move in a 3D environment, which further complicates mobility 
issues.

Handover is one of the essential processes in wireless communication networks that guarantee continuous 
connection and quality of service while users are mobile. The criterion for the conventional handover 
decision is based primarily on the RSSI to indicate whether the device will remain attached to the current 
point of access or not. In the context of FANETs, this single premise for network selection can result in 
failures or even interruptions in service, since the UE can connect to a UAV with a low battery level, which 
is one of the most critical factors in these devices.

Similarly, high user mobility can compromise the quality of experience, due to the excessive number of 
handovers and the “ping-pong” effect that can direct the UE to a saturated network that offers low 
bandwidth.

Given this context, this work contributes with a study case that consists of presenting a system based on 
fuzzy logic as it is widely used in dynamic scenarios, as in the case of networks composed of UAVs, to assist 
in the decision making of handover in a FANET. The fuzzy system considers three input parameters: user 
speed, RSSI, and drones battery level. These inputs are processed by the inference system for the defuzzifier 
to evaluate and generate the decision-making outputs.

In fuzzy systems, the results are classified into a range from 0 to 1. A value of 0 denotes an absolute 
exclusion, while a value of 1 denotes a complete correlation. The gap between the two extremes results in 
intermediate degrees of relevance. Elements can also belong to two or more defined sets, observing the 
values of the membership functions for each element.

One or more linguistic variables can be associated with the set of Fuzzy values, which represent the universe 
of the possibility of the expected results. In this work, the terms used to classify the outputs with the 
possibility of triggering the handover are: no, probably no, probably yes, and yes. The handover process is 
executed when the inference value is equal to or greater than 0.6.

The system considers three input parameters that are processed by the inference system so that the 
defuzzifier can evaluate and generate the decision-making outputs. The first is related to the user’s level of 
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Table 1. Related works

Paper Proposed solution Ping-pong handover 
reduction

Energy efficiency 
support

Mobility management 
support

QoE 
support

[10] Deep learning No No Yes No

[11] Fuzzy No No Yes No

[12] Q-learning algorithm No No Yes No

[13] Coverage decision algorithm which controls 
the coverage of each net-drone

No No Yes No

[14] Route-aware handover algorithm Yes No Yes No

[15] Dynamic parameters to handover decision No No Yes No

[16] Cooperative game theory Yes No Yes No

[17] Machine learning-based solution No No Yes No

[18] Machine learning-based solution No No Yes No

[5] Q-learning based Yes No Yes No

[19] Fuzzy system Yes No Yes No

[20] Reinforcement learning No Yes Yes No

QoE: Quality of experience.

mobility and indicates how long a mobile device remains in the coverage area of a station. The faster the 
device travels, the less time it will be connected to that access point. This first input is divided into three sets 
of linguistic values: slow (range 0-1.5 m/s), moderate (1.3-3 m/s), and fast (2.5-4 m/s).

The second input refers to the received signal level, represented by RSSI. This is a factor used to assess how 
likely the device is to disconnect from the access point if the signal strength is weak. In this metric, signal 
levels are defined for language sets as follows: weak (-120 to -100 dBi), moderate (-115 to -65 dBi), and 
strong (> -72 dBi).

The last input metric considers the drone’s flight range, which is linked to how long the devices can remain 
in operation. This is an important criterion because, given the knowledge of the remaining time each UAV 
can still operate, unnecessary transfers are avoided for those drones that are in the unloading phase and will 
not be able to continue the service. For this parameter, the defined sets are: low (0-10 min), medium 
(8-20 min), and high (18-30 min) battery levels.

Given the inputs, the fuzzy inference system will determine the outputs according to the set of 27 rules 
previously established from the combination of the three parameters. In this work, the Gaussian 
membership function is applied to all inputs and outputs. This function is chosen because of its 
characteristic of reducing the noise of input variables and its ability to represent real-world phenomena 
more naturally.

The output of the fuzzy system indicates the probability of the mobile device starting the handover process. 
In general, if a user has high mobility and high levels of RSSI, the transfer process to another network will 
not occur. The system indicates a trend of execution of the handover, as its inference value is equal to 0.6.

In the 3D surface graphics in Figure 4, it is possible to visualize the relationship between the chosen 
parameters. The region in blue corresponds to a user with high mobility and excellent signal strength. In 
this context, the handover process will not trigger. The yellow region indicates the opposite, the user with 
low speed and receiving a bad signal; in this case, the handover is executed.
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Figure 4. Inference fuzzy system.

The fuzzy system was implemented using the Matlab Fuzzy logic toolbox, where its inputs were defined 
and, after going through the defuzzification process, produced the numerical outputs that indicated the 
tendency to carry out the handover or not. To evaluate the performance of the network, according to the 
outputs that were indicated by the fuzzy system as being ideal for the handover decision, the technique used 
was to implement the scenarios in the simulation environment of the Network Simulator 2 (NS2) tool. The 
UAVs were placed at the same height of 100 m, in an area of 1000 m × 1000 m, as shown in Figure 5. In the 
simulation, a WI-FI network is considered where the UAVs serve as access points to promote the 
connection of users within a given environment, according to the displacement of the UEs. The main 
parameters used in simulation are summarized in Table 2.

To better understand the results, the evaluation considered the network throughput metric to verify the 
behavior of the proposal through the solution that was based on fuzzy logic for handover decision making.

In a first scenario, CBR-type applications were received by mobile users through the WI-FI interface 
enabled by UAVs that are operating as a network access point. The scenario was simulated by comparing 
the traditional handover process, which prioritizes RSSI as a transfer trigger, and handover from the 
proposed fuzzy architecture.

It was considered a high mobility environment within the UAVs’ coverage area. In this context, it can be 
seen from the graph in Figure 6 that, by the traditional handover method, the UEs were subject to the ping-
pong handover effect and suffered a lot of instability in the connection. This behavior is perceived by the 
fact that the conventional handover model does not consider parameters that are characteristic of FANETs, 
especially regarding the UAV battery.

It is noticed that, between Seconds 90 and 120 of the simulation, there was an interruption in the service, 
caused by the unloading of the UAV. Even though the UE is reconnected from Second 120, right after the 
device suffers another disconnection because, even with good signal strength, the UAV was in full 
unloading phase. Differently, the handover proposed using the fuzzy system parameters that meet the 
characteristic requirements of UAVs, such as battery time, proved to be efficient when selecting a new 
network.
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Table 2. Simulation parameters

Parameter Value

UAV 12

Access technology IEEE 802.11 g

Propagation model Shadowing

Pathloss 2 (dB)

Shadowing deviation 4 (dB)

Mobility model Random waypoint

Application CBR/Video

Rate 54 Mbps

Simulation time 130 s

UAV: Unmanned aerial vehicle.

Figure 5. Flying ad hoc network scenario simulation.

Figure 6. Throughput of Network I.
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From the criteria established in the architecture, it is noted that at around Second 19 of simulation the 
handover is performed, causing the average flow rate to reach twice the value of the previous connection 
and remain stable until the end of the simulation. This better performance is possible due to the 
management made by the proposal of handover with the fuzzy system, which prevents the UE from 
selecting a new access point where the UAV is about to discharge, even if it presents good signal strength.

In the second scenario illustrated in Figure 7, the network was subjected to a greater demand for data due to 
the increase in the number of users overloading the network. It is possible to see that, without the proposed 
solution, the network presented an even worse performance than in the previous scenario, where the flow 
rate drops drastically when using the traditional handover model.

The running application is also CBR type, and, by the traditional model, the transfer was made to the 
nearest network, even though there was no interruption in the connection. The new network was more 
overloaded and ended up causing the throughput to be below 0.1 Mbps. Conversely, the proposed method 
performed the handover only when necessary and maintained a stable connection when selecting a better 
network.

As in the first scenario, the handover with intelligent management of parameters by the fuzzy system was 
more efficient as it managed to maintain a constant connection, in addition to identifying the best access 
point and promoting a better flow rate to the UE from Second 90 of the simulation.

The study also analyzed the effects of the traditional process of handover and the one proposed by fuzzy 
inference, through simulations involving video application. To evaluate the quality of the media received, 
the QoE results in the same previous scenarios were compared. The video used in the simulation has a 
resolution of 176 × 144, 1000 frames, and decoding in YUV 4:2:0 format, which stands for the color 
difference encoding system whether composite or component.

In this way, the peak signal-to-noise ratio (PSNR), structural similarity metric (SSIM), and video quality 
metric (VQM) metrics were considered, being these objective metrics that complement each other, to assess 
the impacts of signal degradation in the original video with the reference when the traditional handover was 
performed, as well as the proposed one. At the end of the transmission, the values of the metrics in question 
were calculated and displayed frame by frame.

PSNR has a range of values between 0 and 100 dB. For values above 30 dB, it is understood that the video 
has good quality. On the other hand, videos that are below the 20 dB range are considered of poor quality. 
For the network in the first scenario, Figure 8 shows the PSNR values for each frame of the video. 
Comparison with the original file shows that the PSNR of the video received had an average of 21.3 dB in 
the traditional handover, classifying it as a low-quality video. Differently, the PSNR for the video with the 
Fuzzy criteria obtained an average of 42.41 dB, characterizing it as being of excellent quality.

The range of SSIM values is between 0 and 1, where 1 represents the exact correlation with the original 
image. Figure 9 shows the SSIM values of frames in the traditional handover obtaining an average of 0.59. 
For the proposed handover, the result obtained was 0.98, being very close to 1, which is the accepted value 
for a perfect correlation of images. In this sense, it could be seen that the reference video had low distortion 
for this parameter.
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Figure 7. Throughput of Network II.

Figure 8. Peak signal-to-noise ratio traditional (A) and fuzzy handover (B).

The evaluation of the video quality of VQM is illustrated in Figure 10. For this metric, 0 characterizes the 
best possible value. The result obtained after the evaluation shows that the average was equal to 6.01 for the 
handover without the fuzzy system. The proposal achieved an average VQM of 0.50, which indicates that 
the video did not suffer considerable degradation in this sense, being close to the ideal value of 0.

The superiority in the quality of the transmitted video that considers the HO by the fuzzy system can also be 
seen visually, making a frame-by-frame comparison between the original and received video in the two 
methods covered in the work. In Figure 11, Frame 305 presents degradations and distortions in the pixels of 
the video transmitted over the network without supporting the efficient handover scheme. However, the 
same frames remained undistorted in the video that was broadcast considering the fuzzy proposal.
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Figure 9. Structural similarity metric traditional (A) and fuzzy handover (B).

Figure 10. Video quality metric traditional (A) and fuzzy handover (B).

Figure 11. Frames comparison without fuzzy (A) and with the fuzzy proposal (B).

From the simulations and evaluative analysis on the performance of both the conventional handover model 
and the proposed one, it is possible to see the traditional model does not satisfy the peculiarities of these 
networks and their components, causing the low quality of service, compromising the quality of experience 
of the user, and not guaranteeing a transparent handover, which impacts the continuity of the service.



Page 35      Ayass et al. Intell Robot 2022;2(1):20-36 https://dx.doi.org/10.20517/ir.2021.07

By the proposed architecture, the handover process proved to be effective to mitigate handover issues in 
FANETs, since it achieved superior results in both QoS and QoE parameters, proving itself as a viable 
proposal.

6. CONCLUSIONS
In the context of fifth-generation networks, new connectivity alternatives emerge, such as the use of UAVs 
as an access point, mainly for locations with difficult access or without available network infrastructure.

To set up fast and temporary networks, FANETs are used in different scenarios to provide 5G access to 
users, but, due to the mobility of UAVs and the users themselves, the network topology is constantly 
modified. The constant topology changes in FANET due to mobility can disrupt the user’s connection.

Thus, this paper proposes a FANET as an alternative way of connecting to 5G networks, in which drones 
work as access points for users. The paper also proposes the use of a fuzzy system for UAV mobility 
management for anticipating handovers to avoid network connection breaks.

The results prove a better performance when compared to a traditional FANET (without the use of the 
fuzzy system). The results were proven through the throughput metric and QoE metrics (for video 
transmissions), as well as the shown frames of transmitted videos. As future work, we intend to use other 
artificial intelligence techniques, as well as other wireless transmission technologies.
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Abstract
The extreme nonlinearity of robotic systems renders the control design step harder. The consideration of adaptive 
control in robotic manipulation started in the 1970s. However, in the presence of bounded disturbances, the 
limitations of adaptive control rise considerably, which led researchers to exploit some “algorithm modifications”. 
Unfortunately, these modifications often require a priori knowledge of bounds on the parameters and the 
perturbations and noise. In the 1990s, the field of Artificial Neural Networks was hugely investigated in general, and 
for control of dynamical systems in particular. Several types of Neural Networks (NNs) appear to be promising 
candidates for control system applications. In robotics, it all boils down to making the actuator perform the desired 
action. While purely control-based robots use the system model to define their input-output relations, Artificial 
Intelligence (AI)-based robots may or may not use the system model and rather manipulate the robot based on the 
experience they have with the system while training or possibly enhance it in real-time as well. In this paper, after 
discussing the drawbacks of adaptive control with bounded disturbances and the proposed modifications to 
overcome these limitations, we focus on presenting the work that implemented AI in nonlinear dynamical systems 
and particularly in robotics. We cite some work that targeted the inverted pendulum control problem using NNs. 
Finally, we emphasize the previous research concerning RL and Deep RL-based control problems and their 
implementation in robotics manipulation, while highlighting some of their major drawbacks in the field.

Keywords: Adaptive control, deep reinforcement learning, manipulators, neural networks, reinforcement learning, 
robotics
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1. INTRODUCTION
By running a numerical model of a robotic mechanism and its interactions with surroundings, one can 
define a control algorithm that delivers torque (input) signals to actuators, and that is how a mechanism is 
able to anticipate the movement. Since robotic systems are extremely nonlinear, the control design is usually 
a hard step. Figure 1 illustrates a simplified representation of a two-link robot manipulator. Given a system 
of (dynamic) equation of a robotic system, it contains variables that change when the robot is in motion, 
which alters the equation mid-task. In this case, a traditional control technique will have to divide the 
nonlinear mechanism into linear subsystems, which are reasonable for low-speed actions; however, with a 
high-speed system, their efficacy becomes close to none. For these reasons, adaptive control strategies were 
first considered.

The system defined by a robot and its controller is complete. Since reconfigurations of the robotic 
mechanism are needed due to the functional requirements changes, the controller has to adapt to these 
reconfigurations. In comparison to a non-adaptive control, the adaptive control is able to function without 
relying on the prior data from the system, since it constantly changes and adjusts to the altered states. That 
is specifically what makes adaptive control “almost perfect” for systems with unpredictable surroundings, 
with many probable interferences that could change the system parameters anytime.

In the early years, there were many interests in research and books about the adaptive control[1-5] that 
considered continuous-time systems in most cases. Since 1970, researchers have started dealing with the 
realization of adaptive control in digital systems. Multiple surveys[6-8] show that the consideration of 
adaptive control systems with discrete-time signals has been around for a while. Many applications of the 
general adaptive control have been made afterward. There are two fundamental approaches within the 
adaptive control theory. The first approach is called Learning Model Adaptive Control, where we find the 
well-known self-tuning adaptive control technique. This approach consists of an improved model of the 
plant obtained by on-line parameter estimation techniques, and then used in the feedback control. The 
second approach is called Model Reference Adaptive Control (MRAC). In this case, the controller is 
adjusted so that the behaviors of the closed-loop system and the preselected model match according to some 
criterion[9].

Due to the limitations of adaptive control when it comes to bounded disturbances, many researchers turned 
to “Algorithm Modification” approaches in the 1980s. Typically, these approaches alter least squares 
adaptation by putting bounds on the error, the parameters, or employing a first order modification of the 
least squares type of adaptation algorithm. When the observed error is not attributable to an error in the 
parameter estimations, these strategies effectively turn off or limit the effects of parameter adaptation. The 
Algorithm Modification techniques essentially perform the same function as the input-output rule-based 
approaches, but they attempt to have the adaptation algorithm monitor its own level of certainty. The 
second section of this paper will present more details about the most famous modifications among control 
researchers, such as Dead-zone modification, σ-modification, and ϵ-modification. Unfortunately, these 
modifications often require a priori knowledge of bounds on the parameters and the perturbations and 
noise[10]. Furthermore, they often improve robustness at the expense of performance.

In a control engineering sense, AI and classical control-based approaches are just different sides of the same 
coin. Therefore, the limitation of Adaptive control has driven many researchers to consider AI-based 
controllers. In the 1990s, the field of neural networks was vastly investigated in general, and for control of 
dynamical systems in particular. The control problem can be formulated as a machine learning (ML) 
problem, and that is how ML can be mixed with control theory. One of the fundamentally new approaches 
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Figure 1. Simple schematic of a two-link robot manipulator.

is the PILCO approach[11].

Artificial Neural Networks (ANNs) have been explored for a long time in the hopes of obtaining human-
like performance in speech and image processing. Several types of Neural Networks (NNs) appear to be 
promising candidates for control system applications. Multilayer NNs (MLNs), recurrent NNs (RNNs), and 
the cerebellar model articulation controller (CMAC) are examples of these. The decision of the NN to 
employ and which training technique to utilize is crucial, and it changes according to the application. The 
type of NNs most commonly used in control systems is the feedforward MLNs, where no information is fed 
back during operation. There is, however, feedback information available during training. Typically, 
supervised learning methods, where the neural network is trained to learn input-output patterns presented 
to it, are used. Most often, versions of the backpropagation (BP) algorithm are used to adjust the NN’s 
weights during training. The feedforward MLNs are the most often employed NNs in control systems since 
no information is fed back during operation. During training, however, there is feedback information 
accessible. In most cases, supervised learning methods are utilized, in which the NN is taught to learn input-
output patterns that are provided to it. During training, variants of the BP algorithm are frequently 
employed to change the NN weights. More details about NNs, for dynamical systems in general and for 
robotics in particular, are discussed in section 3 of this work.

In robotics, it all boils down to making the actuator perform the desired action. The basics of control 
systems tell us that the transfer function decides the relationship between the output and the input given the 
system or plant. While purely control-based robots use the system model to define their input-output 
relations, AI-based robots may or may not use the system model and rather manipulate the robot based on 
the experience they have with the system while training or possibly enhance it in real-time as well.

Reinforcement learning (RL) is a type of experience-based learning that may be used in robotics when on-
line learning without knowledge of the environment is necessary. The controller may learn which of its 
possible actions will result in the greatest performance for a particular job for each of its states. If the mobile 
robot collides with an obstacle, for example, it will learn that this is a poor action, but if it achieves the 
objective, it will learn that this is a positive activity. Reinforcement or reward is the term for such contextual 
feedback. The goal of the controller is to maximize its predicted future rewards for state-action pairings, 
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which are represented by action values. Q-learning is a popular type of RL in which the best policy is 
learned implicitly as a Q-function. There have been several publications on the use of RL in robotic systems.

This review is organized into 3 sections besides the present introductory chapter and a concluding section. 
In section 2, we talk about adaptive control limitations for nonlinear systems and introduce the probable 
drawbacks in the presence of disturbances. We also present the main modifications proposed in the 1980s to 
overcome these limitations. Section 3 will focus on presenting the work that implemented NNs in nonlinear 
dynamical systems and particularly in robotics, while we cite some work that targeted the inverted 
pendulum control problem using NNs. Finally, section 4 emphasizes the previous research concerning RL 
and Deep RL (DRL) based control problems and their implementation in robotics manipulation, while 
highlighting some of their major drawbacks in the field.

2. ADAPTIVE CONTROL LIMITATIONS - BOUNDED DISTURBANCES
Given a system/plant with an uncertainty set, it is clear that the control objective will be intuitively 
achievable through either identification, robust control, or a combination of both as in adaptation. The 
identification is the capability to acquire information in reducing uncertainty. This problem 
characterization had seen some rigorous analysis over a long period of time and can become very 
challenging. In 2001, Wang and Zhang[12] explored some fundamental limitations of robust and adaptive 
control by employing a basic first-order linear time-varying system as a vehicle. One can notice that robust 
control cannot deal with much uncertainty, while the use of adaptive control shows a much better capability 
of dealing with uncertain parameters and providing better robustness. However, adaptive control requires 
additional information on parameter evolution and is fundamentally limited to slowly time-varying 
systems. Furthermore, adaptation is not capable of achieving proximity to the nominal performance when 
under near-zero variation rates.

2.1. Problem statement
The design of adaptive control laws is always under the assumption that system dynamics are exactly 
specified by models. Hence, when the true plant dynamics is not perfectly described by any model, as 
expected from a practice point of view, one can only question the real behavior of the control. The robust 
stability, required for any adaptive control to achieve practical applicability of the algorithms, can be 
provided when only the modeling error is sufficiently “small”. Unfortunately, stability alone cannot 
guarantee robustness, since the modeling error appears as a disturbance and usually causes divergence of 
the adaptive process.

While one of the fundamental fields of application of adaptive control is in systems with unknown time-
varying parameters, the algorithms have been proved robust, in the presence of noise and bounded 
disturbances, only for systems with constant parameters[13]. Ideally, when there are no disturbances or noise 
and when parameters are constant, adaptation shows smooth convergence and stability properties. On the 
other hand, the adaptive laws are not robust in the presence of bounded disturbances, noise and time-
varying parameters.

In order to mathematically state the problem of non-robustness of adaptive control to bounded 
disturbances, let us start by considering a MIMO system in the form[14,15],

a
图章



Harib et al. Intell Robot 2022;2(1):37-71 https://dx.doi.org/10.20517/ir.2021.19                                                              Page 41

where ξ(t) ∈ Rn is a bounded time-dependant disturbance, x ∈ Rn is the extended system state vector, y ∈ 
Rn is the controlled system output, u ∈ Rm is the control input and Ψ ∈ RN is the known N-dimensional 
regressor vector. We assume (Aref, B, Bref, Cref) are known and Aref is Hurwitz. ycmd ∈ Rm in this case is a 
bounded command for y. Λ ∈ Rm×m is a diagonal positive definite matrix and Κ ∈ RN×m is a constant matrix, 
where both matrices represent the matched uncertainties of the system. In addition, we assume that,

and that the disturbance upper bound ξmax ≥ 0 is known and constant.

The control goal is bounded tracking of the reference model dynamics,

driven by a bounded time-dependant command ycmd ∈ Rm.

Based on Equation (1), the control input is selected as,

where K ∈ RN×m is the matrix of adaptive parameters. If we substitute Equation (4) into Equation (1), we 
get,

where,

is the matrix of estimation errors. The tracking error is e = x - xref. Subtracting the reference model dynamics 
in Equation (3) from that of Equation (1) yields the tracking error dynamics,

The Lyapunov function candidate is selected,
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where ΓK = ΓK
T > 0 represents constant rates of adaptation, and P = PT > 0 is the unique symmetric positive 

definite solution of the algebraic Lyapunov equation,

with Q = QT > 0. The time derivative of V, along the trajectories of Equation (7),

Applying the trace identity,

yields,

Using the following adaptive law yields,

then,

and, consequently, V < 0 outside of the set,

Hence, trajectories [e(t),ΔK(t)], of the error dynamics in Equation (7) coupled with the adaptive law in 
Equation (13), enter the set E0 in finite time and stay there for all future times. However, the set E0 is not 
compact in the (e,ΔK) space. Moreover, it is unbounded since ΔK is not restricted. Inside the set E0, V can 
become positive and consequently, the parameter errors can grow unbounded, even though the tracking 
error norm remains less then e0 at all times. This phenomenon is caused by the disturbance term ξ(t). It 
shows that the adaptive law in Equation (13) is not robust to bounded disturbances, no matter how small 
the latter is.

In the 1980s, several studies analyzed the stability of adaptive control systems and many of them 
concentrated on linear disturbance-free systems[16-20]. The results, however, are not completely satisfactory, 
since they do not consider the cases where disturbances are present, which could completely change the 
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efficiency of the control system, even when very small, leading to instability. In the years that followed, there 
have been many attempts to overcome the limitations of adaptive control in the presence of bounded 
disturbances. In these published papers[21-25], it is shown that unmodelled dynamics or even very small 
bounded disturbances can cause instability in most of the adaptive control algorithms.

Many efforts to design robust adaptive controllers in the case of unknown parameters have consistently 
progressed along two different shapes[26-31]. In the first, the adaptive law is altered so that the overall system 
has bounded solutions in the presence of bounded disturbances. The second relies on the persistent 
excitation of certain relevant signals in the adaptive loop. The next subsections will present some of the 
main “modifications” proposed to enforce robustness with bounded disturbances.

2.2. Dead-zone modification
In many physical devices, the output is zero until the magnitude of the input exceeds a certain value. Such 
an input-output relation is called a dead-zone[32]. In a first approach to prevent instability of the adaptive 
process in the presence of bounded external disturbances, Egardt[26] introduced a modification of the law so 
that adaptation takes place when the identification error exceeds a certain threshold. The term dead-zone 
was first proposed by Narendra and Peterson[18] in 1980, where the adaptation process stops when the norm 
of the state error vector becomes smaller than a prescribed value. In 1980, the study was initiated by 
Narendra to determine an adaptive control law that ensures the boundedness of all signals in the presence 
of bounded disturbances, in the case of continuous systems. In the study of Peterson and Narendra[30], they 
highlight the cruciality of the proper choice of the dead zone for establishing global stability in the presence 
of an external disturbance. A larger dead zone implies that adaptation will take place in shorter periods of 
time, which also means larger parameter errors and larger output. One of the assumptions made in this 
paper is that a bound of the disturbance can be determined even though the plant parameters are unknown. 
The adaptive law shall consider that the module of the augmented error is not greater than the bound plus 
an arbitrary positive constant. Hence, the only knowledge needed to calculate the size of the dead zone is 
the bound of the disturbance, which can be computed[30]. It is also worth noting that no prior knowledge of 
the zeros of the plant’s transfer function is needed to find the bound.

Samson[28] presented a brief study in 1983 based on all his previous works and the analysis of Egardt in his 
book. Although his paper was only concerned with the stability analysis and not the convergence of the 
adaptive control to an optimal state, he was able to efficiently introduce a new attempt to use the possible 
statistical properties of the bounded disturbances. The three properties P1-P3 should be verified by the 
identification algorithm and are similar to the ones demanded for the disturbance-free cases, but less 
restrictive. The first property states that the identified vector has to be uniformly bounded, which prevents 
the system from diverging faster than exponentially. The second property ensures that the prediction error 
remains relatively small, which indicates that the “adaptive observer” transfer function is very similar to that 
of the system. Finally, the third property allows the control of the time-varying adaptive observer of the 
system.

In 1983, a modified dead-zone technique was proposed in Bunich’s research[33] and was widely used. This 
modification permits a size reduction of the residual set for the error, hence, simplifying the convergence 
proof. The drawback is the necessary, yet restrictive, knowledge of a bound on the disturbance in order to 
appropriately determine the size of the dead-zone.

The work of Peterson and Narendra invigorated a new study by Sastry[34] where he examined the robustness 
aspects of MRAC. Sastry used the same approach to show that a suitably chosen dead-zone can also stabilize 
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the adaptive system against the effects of unmodelled dynamics. Though, the error between the plant and 
the model output does not converge to zero but rather to a magnitude less than the size of the dead-zone. In 
other terms, no adaptation takes place when the system is unable to distinguish between the error signal and 
the disturbance.

The issue in the dead-zone modification is that it is not Lipschitz, which may cause high-frequency 
oscillations and other undesirable effects when the tracking error is at or near the dead-zone boundary. In 
1986, Slotine and Coetsee[35] proposed a “smoother” version of the dead-zone modification. Unfortunately, 
we were not able to get a hold of a copy of this paper, but the major idea was explained in his book in 
1990[32].

2.3. σ-modification
The dead-zone modification assumes a priori knowledge of an upper bound for the system disturbance. On 
the other hand, the σ-modification scheme does not require any prior information about bounds for the 
disturbances. This modification was proposed by Ioannou and Kokotovic[36] in 1983, which Ioannou 
referred to later as “fixed σ-modification”. The modification basically adds damping to the ideal adaptive 
law. They introduced the modification by adding a decay term -σΓθ to the disturbance-free integral adaptive 
law, where σ is a positive scalar to be chosen by the designer. The stability properties with the modification 
were established based on the existence of a positive constant p such that, for σ > p, the solutions for the 
error and adaptive law equations are bounded for any bounded initial condition. A conservative value of σ 
has to be chosen in order to guarantee σ > p. It was also shown that the modification yields the local stability 
of an MRAC scheme when the plant is a linear system of relative degree one and has unmodeled parasitics.

However, even though the robustness achievement is done smoothly and in a simpler way with the 
σ-modification scheme, there is thepotential destruction of some of the convergence properties, since there 
is no more asymptotic convergence and the fine tracking error is confined within a bounded region. 
Consequently, many additional modifications have been suggested later, motivated by the aforementioned 
drawback of the σ-modification. In 1986, Ioannou and Tsakalis[37] proposed the “switching σ-modification”. 
In contrast to Ioannou’s earlier work[38,39], the switching of σ from 0 to σ0 is modified so that σ is a continuous 
function of |θ(t)| [Equation (16)], since the previous modification choices forced the adaptive law to be 
discontinuous, which might not guarantee the existence of a solution and would probably cause oscillations 
on the switching surface during implementation. Hence, the continuous switching, as shown in Figure 2, 
replaces the discontinuous one and is defined in Equation (16),

where M0 > 0, σ0 > 0 are design constants and M0 is chosen to be large enough so that M0 > |θ*|.

In 1992, Tsakalis[40] employed the σ-modification to target the adaptive control problem of a linear, time-
varying SISO plant. The signal boundedness for adaptive laws was guaranteed using the σ-modification, 
normalization and a sufficient condition. The condition relates the speed and the range of the plant 
parameter variations with the σ value and simplifies the selection of the design parameters in the adaptive 
law.
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Figure 2. Switching σ-modification (continuous).

In a more recent study, He et al.[41] opted to revisit the fundamental σ-modification scheme and propose a 
qualitative analysis for all the scenarios where this modification can lead to perfect tracking, and where it 
can allow proper modification of the adaptive laws. The analysis method pre-supposes the existence of a 
Lyapunov function for an extended system, as shown in the reference[42]. The efficacy of the proposed 
analysis was demonstrated in a Robust adaptive control system in order to detect its global asymptotic 
convergence under the fixed σ-modification scheme. When it comes to simulation results, the system shows 
asymptotic convergence of its trajectories without the modification; however, it may lose its asymptotic 
stability when the feedback gain and the modification gain are not well designed when using the 
modification. The recovery of the global asymptotic convergence is primarily dependant on the proper 
design of both gains, as shown in their last simulation.

2.4. ϵ-modification
The downside of the σ-modification is that when the tracking error becomes small enough, the adaptive 
parameters have an inclination to revert to the origin, which undoes the gain values that caused the tracking 
error to become small in the first place. In order to overcome this undesirable effect, Narendra and 
Annaswamy[43] developed the ϵ-modification. The suggested modification was motivated by that given in the 
work of Ioannou and Kokotovic[36], which similarly guarantees bounded solutions in the presence of 
bounded disturbances when the reference input is not persistently exciting, and needs less prior information 
regarding plant and disturbance. However, the catching point comes when the reference input is 
persistently exciting and has a sufficiently large amplitude. In this case, as we mentioned earlier, the origin 
of the error equations is exponentially stable, unlike that in Ioannou’s σ-modification. The new adaptive law 
replaces the σ with a term proportional to the magnitude of the output error, called ϵ (or e1 in the work of 
Narendra and Annaswamy[43]).

Ideally, let’s consider the first order plant described with Equation (17),
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where ap is an unknown constant. The reference model is defined in Equation (18),

where am > 0 and r is a bounded piecewise continuous function. Equation (19) shows how the aim of the 
adaptive control is to choose the control input, u, such that the output of the plant approaches that of the 
model,

where θ is the control parameter. Therefore, we deduct the error equations in Equation (20),

and hence, based on Equation (21), the proposed adaptive law can be defined,

where ϵ is playing a double role since it attempts to decrease the magnitude of the output error while 
keeping the parameter θ or the parameter error φ bounded. The choice of the Lyapunov function, in 
Equation (22), gives the time derivative of V,

If we define a set D,

we then can deduct that V ≤ 0 inside the set D. The modification, which is synthesized by the additional 
term -|ϵ|θ in the adaptive law, shows that the set D is compact, which allows us to apply LaSalle’s theorem[44] 
and prove that all solutions of the error equations are bounded.

a
图章
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If we distinguish between the three possible cases based on the reference input states: null, constant or 
persistently excited, and as mentioned earlier, the third case’s application highlights the difference between 
the proposed modification and the aforementioned σ-modification. When the σ-modification is used to 
adjust the control parameter θ, in the presence of the disturbance v, we can set the error equations as in 
Equation (23),

where it has been shown that three stable equilibrium states exist in case xm = 0, none of them is the origin, 
and has a single equilibrium state whose distance from the origin decreases as the amplitude of xm increases, 
and that is in case xm is a constant. Which clearly highlights the addition of the ϵ-modification.

2.5. Summary
Basically, the approaches discussed above reduce the effects of parameter adaptation when the measure 
error is not due to an error in the parameter estimates. They contribute to either parameter error, noise 
error, high-frequency unmodelled dynamics error, or disturbances, which consist of anything undescribed 
by the three previous groups[45]. A brief comparison of all the aforementioned modification techniques is 
shown in Table 1.

Considering the robustness problem, one can see that the disturbance is generated internally, which makes 
it dependable in the actual plant’s input-output signals. Particularly, the disturbance will grow unboundedly 
if the adaptive system is unstable and the input-output signals are growing without bound. Videlicet, the 
stability problem becomes internal and signal dependant. Thus, the boundedness of the disturbance should 
not be presumed, which proves that, despite the intrinsic results shown in the previous literature, the 
aforementioned approaches do not necessarily solve the robustness problem in the presence of bounded 
disturbances[46].

Over the years, the adaptive controllers have proven themselves effective, especially in the process that can 
be modeled linearly with slowly time-varying parameters relative to the system’s dynamics. The 1980s were 
the peak of theoretical research on this case. On the other hand, many practical examples can be found in 
these research[8,47-52].

An overview of some practical examples of adaptive control applications in two different fields, thermal 
exchange and robotics, is given in Table 2[53-57]. We would also like to refer the readers to a very concise 
survey written by Åström[8] in 1983 for more practical examples of the applications of adaptive control. In 
addition, adaptive controllers are extremely practical and fruitful when it comes to servo systems that have 
large disturbances, like load changes, or uncertainties, like frictions, and that have measurable states. The 
number one practical field in that era was robotics[53-57].

Obviously, adaptive controllers are not the “perfect” solution to all control problems. For instance, they do 
not provide stability for systems where parameter dynamics are at least the same magnitude as the system’s 
dynamics. The controller robustness can be improved by employing artificial intelligence (AI) techniques, 
such as fuzzy logic and neural networks[58-60]. Essentially, these methods approximate a nonlinear function 
and provide a good representation of the nonlinear unknown plant[61], although it is typically used as a 
model-free controller. The plant is treated as a “black box”, with input and output data gathered and trained 
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Table 1. Stability analysis of each modification technique

Dead-zone modification σ-modification ϵ-modification

• Developed based on adaptation 
hibernation principle.

• Adding a damping term to the 
adaptation law: 
K = ΓK(ΨeTPB - σK), where σ > 0

• Adding an error dependent leakage term to the law: 
K = -ΓKeTBP(Ψ - ϵK), where ϵ > 0

• Stops adaptation when the error 
touches the boundary of a compact 
set βd: 
βd = {(e,ΔKT), e∈Rn, ΔK∈RN×m ||e|| ≤ 
ed}

• Takes different forms depending on the 
choice of sigma

• Reduces the unbounded behavior of the adaptive law

• Adaptation will be disabled once 
reaches ed 
• Stability is guaranteed outside of βd 
• The adaptive law is defined in both 
conditions as:

• The Lyapunov function derivative is 
negative under some conditions that 
define a compact set βσ: 
βσ = {(e,ΔKT), e∈Rn, ΔK∈RN×m ||e|| ≤ eσ ∧ 
(||ΔK||F ≤ ΔKσ)}

• Following the same argument as in sigma modification: the 
Lyapunov function derivative is negative under certain 
conditions that define a compact set βϵ: 
βϵ = {(e,ΔKT), e∈Rn, ΔK∈RN×m ||e|| ≤ eϵ ∧ (||ΔK||F ≤ ΔKϵ)}

• Error UUB is guaranteed and 
boundedness of all adaptive gains is also 
guaranteed

• Error UUB is guaranteed and boundedness of all adaptive 
gains is also guaranteed

Drawbacks: a prior knowledge about 
the upper bound of the disturbance is 
required

Drawbacks: the damping term addition 
may not be convenient in some situations

• The upper bound of the set  is determined by the upper 
bound of the disturbance

Table 2. Practical examples of adaptive control implementation

Approach Employed by…

Robotic manipulators

MRAC Dubowsky and DesForges[53] (1979) and Nicosia and Tomei[55] (1984)

STAC Koivo and Guo[56] (1983)

Adaptive algorithm Dubowsky[54] (1981) and Horowitz and Tomizuka[57] (1986)

Other applications

MRAC Harrell et al.[49] (1987) and Davidson[47] (2021)

STAC Davison et al.[48] (1980) and Harris and Billings[52] (1981)

Direct AC Zhang and Tomizuka[50] (1985)

Function Blocks Lukas and Kaya[51] (1983)

MRACL Model Reference Adaptive Control; STAC: self-tuning adaptive control.

on. The AI framework addresses the plant’s model after the training phase, and can handle the plant with 
practically no need for a mathematical model. It is feasible to build the complete algorithm using AI 
techniques, or to merge the analytical and AI approaches such that some functions are done analytically and 
the remainder are performed using AI techniques[62].

3. NEURAL NETWORKS FOR DYNAMIC SYSTEMS
The sophisticated adaptive control techniques that have been created complement computer technology 
and offer significant potential in the field of applications where systems must be regulated in the face of 
uncertainty. In the 1980s, there was explosive growth in pure and applied research related to NN. As a 
result, MLN and RNN have emerged as key components that have shown to be exceptionally effective in 
pattern recognition and optimization challenges[63-68]. These networks may be thought of as components that 
can be employed efficiently in complicated nonlinear systems from a system-theoretic standpoint.

The topic of regulating an unknown nonlinear dynamical system has been approached from a variety of 
perspectives, including direct and indirect adaptive control structures, as well as multiple NN models. 
Because NN may arbitrarily simulate static and dynamic, highly nonlinear systems, the unknown system is 
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replaced by a NN model with a known structure but a number of unknown parameters and a modeling 
error component. With regard to the network nonlinearities, the unknown parameters may appear both 
linearly and nonlinearly, changing the original issue into a nonlinear robust adaptive control problem.

3.1. Neural network and the control of dynamic nonlinear systems
The characteristic of neural networks is that they are quite parallel. They can speed up computations and 
assist in the solving of issues that need much processing. Since NNs have nonlinear representations and can 
respond to changes in the environment, they easily reflect physical conditions like industrial processes and 
their control, whereas precise mathematical models are harder to construct.

One of the few theoretical frameworks for employing NNs for the controllability and stability of dynamical 
systems has been established by Levin and Narendra[69]. Their research is limited to feedforward MLNs with 
dynamic BP and nonlinear systems with full state information access. Figure 3 presents the proposed 
architecture of the NNs. Equation (24) considers a system at a discrete-time index k,

where x(k) ∈ χ ⊂ Rn, u(k) ∈ U ⊂ Rr and f(0,0) = 0 so that x = 0 is an equilibrium. Conditions are given, in 
Equation (25), under which the two following NNs can be trained to feedback linearize and stabilize the 
system.

The results are extended to non-feedback linearizable systems. If the controllability matrix around the 
origin has a full rank, a methodology and conditions for training a single NN to directly stabilize the system 
around the origin have been devised. Narendra and Parthasarathy[70] use NNs to create various 
identification and controller structures. Although the MLNs represent static nonlinear maps and the RNNs 
represent nonlinear dynamic feedback systems, they suggest that the feedforward MLNs and RNNs are 
comparable. They describe four network models of varying complexity for identifying and controlling 
nonlinear dynamical systems using basic examples.

Sontag proposed an article where he tried to explore the capabilities and the ultimate limitations of 
alternative NN architectures[71]. He suggests that NNs with two hidden layers may be used to stabilize 
nonlinear systems in general. Intuitively, the conclusion contradicts NNs approximation theories, which 
claim that single hidden layer NNs are universal approximators. Sontag’s solutions are based on the 
description of the control issue as an inverse kinematics problem rather than an approximation problem.

In 1990, Barto[72] drew an interesting parallel between connectionist learning approaches and those 
investigated in the well-established field of classical adaptive control. When utilizing NNs to address a 
parameter estimate problem, the representations are frequently chosen based on how nervous systems 
represent information. In contrast, in a traditional method, issue representation options are made based on 
the physics of the problem. As opposed to conventional methods, a connectionist approach is dependent on 
the structure of the network and the correlation between the connectionist weights. A traditional controller 
may readily include a priori information; however, in NNs, it is often an input-output connection. In both 
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Figure 3. Architecture of the proposed NNs in the work of Levin and Narendra[69]. NNs: Neural Networks.

techniques, performance may be assessed using cost functions such as least mean squared error.  All of the 
training data is available at the same time with off-line approaches. However, with on-line approaches, the 
required feature is continuous learning, and as a result, the methods must be extremely efficient in order to 
keep up with the changing events over time.

Adaptive NNs have recently been used by a growing number of academics and researchers to construct 
acceptable control rules for nonlinear systems. An overview of the primarymost recent literature that 
implemented adaptive NNs-based techniques is discussed in Table 3[73-82].

3.2. Inverted pendulum
Many researchers have studied learning control using the inverted pendulum problem. The canonical 
underactuated system, called the cart-pole system, is illustrated in Figure 4. Because deriving the dynamics 
is relatively simple, it is considered a basic control issue, yet it still hides some underlying complexity owing 
to its underactuated character. The multiple obstacles that must be addressed to properly regulate such 
extremely complex nonlinear unstable systems include severe nonlinearities, variable operating 
circumstances, structured and unstructured dynamical uncertainties, and external disturbances. The 
purpose of the control is to balance the pole by moving the cart, which has a restricted range of movements. 
We distinguish between the position of the cart h and its velocity h, and the angle of the pole θ with its 
angular velocity θ.

In 1983, Barto et al.[83] showed how a system consisting of two neuronlike adaptive elements, associative 
search element (ASE) and adaptive critic element (ACE), can solve a difficult learning control problem such 
as the cart-pole system. Their work was based on the addition of a single ACE to the ASE developed by 
Michie and Chambers in the works of Michie and Chambers[84,85]. They have partitioned the state space into 
162 boxes. Their simulations revealed that the ASE/ACE system outperformed the boxes system in terms of 
run time. The system was more likely to solve the problem before it had 100 failures, but the boxes system 
was less likely to do so. The ASE/ACE system’s high performance was nearly completely owing to the ACE’s 
provision of reinforcement throughout the trials. Learning occurs only upon failure with box systems and 
ASEs without an ACE, which happens less frequently as learning progresses. An ASE can get input on each 
time step with the ACE in place. The system attempts to access some areas of the state space and avoids 
others as a result of the learning achieved by this input.

Anderson[86] built on the work of Barto et al.[83] by using a variant of the common error BP algorithm to two-
layered networks that learn to balance the pendulum given the inverted pendulum’s real state variables as 
input. Two years later[87], he summarized both aforementioned works by discussing the neural network 
structures and learning methods from a functional viewpoint and by presenting the experimental results. He 
described NN learning techniques, which use two functions to learn how to construct action sequences. The 
first is an action function, which converts the current state into control actions. The second is an evaluation 
function, which converts the present state into an assessment of that state. There were two sorts of networks 
that emerged: “action and evaluation” networks. This is an adaptive critic architecture version
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Table 3. Different adaptive NN-based controls in the recent years

Research Method/approach Solved problem

1. Nonaffine nonlinear systems

Dai et al.[73] Obtaining the implicit desired control input (IDCI), and use of 
NNs to approximate it

Learning from adaptive NN-based control for a class of 
nonaffine nonlinear systems in uncertain dynamic 
environments

Chen et al.[74] The unknown functions are approximated by using the 
property of the fuzzy-neural control

Adaptive fuzzy-NN (FNN) for a class of nonlinear 
stochastic systems with unknown functions and a nonaffine 
pure-feedback form

2. Tracking control

Dai et al.[75] Radial basis function NNs (RBF-NNs) to learn the unknown 
dynamics, and adaptive neural control to guarantee the 
ultimate boundedness (UB)

Stabilization of the tracking control problem of a marine 
surface vessel with unknown dynamics

Li et al.[76] NNs to approximate the unknown functions, and Barrier 
Lyapunov function (BLF) for nonstrict-feedback stochastic 
nonlinear system

Adaptive tracking control for a category of SISO stochastic 
nonlinear systems with dead zone and output constraint

Cheng et al.[77] Use of NN-based inversion-free controller, and construction of 
dynamic model using feedforward MLNs

Displacement tracking control of piezo-electric actuators 
(PEAs)

Ren et al.[78] Use of adaptive neural control, and inclusion of σ-modification 
to the adaptation law to establish stability

Tracking control problem of unknown nonlinear systems in 
pure-feedback form with the generalized P-I hysteresis 
input

3. Unknown model/direction

Luo et al.[79] Implementing three NNs to approximate the value function, 
control and disturbance policies, respectively

Date-driven H∞ control for nonlinear distributed parameter 
systems with a completely unknown model

Liu et al.[80] Two types of BLFs are used to design the controller and 
analyze the stability

Stabilize a class of nonlinear systems with the full state 
constraints and the unknown control direction

4. Backstepping design

Li et al.[81] Adaptive backstepping control and RBF-NNs. Overcoming the robustness issues of backstepping design 
and its uncertainty.

5. Discrete-time systems

Zhang et al.[82] Iterative adaptive dynamic programming algorithm, with two 
NNs to approximate the costate function and the 
corresponding control law

Solving the optimal control problem for discrete-time 
systems with control constraints

NNs: Neural Networks.

In 1991, Lin and Kim integrated the CMAC into the self-learning control scheme that was based on the 
work of Lin and Kim[88]. The CMAC model was originally proposed by Albus[89-92] and it was based on 
models of human memory and neuromuscular control. The CMAC-based technique in the work of Lin and 
Kim[88] is tested using the inverted pendulum problem, and the results are compared to those of 
Barto et al.[83] and Anderson[87]. The technique has the highest learning speed due to its capability of 
generalization and good learning behavior. Furthermore, the memory size can be reduced compared to the 
box-based system. A summarized timeline of the above literature, where NN-based control was 
implemented to balance the inverted pendulum, is presented in Figure 5.

Many control laws for inverted pendulums have been presented in those research work[93-95], including 
classical, robust, and adaptive control laws, but they all take structured parametric uncertainty into account. 
In 2009, Chaoui et al.[96] proposed an ANN based adaptive control strategy for inverted pendulums that 
accomplishes asymptotic motion tracking and posture control with unknown dynamics. Two neural 
networks ANNx and ANNθ are designed to control the motion along the x axis and the pendulum posture 
with unknown dynamics. Figure 6 shows the block diagram of the proposed system.

Three experiments are carried out to evaluate the performance of the proposed controller. The velocity and 
posture of the pendulum progressively decrease to zero in the first experiment. The proposed adaptive 
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Figure 4. The Cart-pole scheme.

Figure 5. Timeline scheme of the works that kickstarted the use of NNs to control the inverted pendulum. NNs: Neural Networks.

control, on the other hand, produces a smooth control signal. The controllers also deal with friction 
nonlinearities and accomplish quick error convergence and tracking. The second experiment introduces a 
starting posture position to test the controller’s capacity to correct for a non-zero position error. Posture 
control takes precedence over motion tracking, as posture is critical for such systems. The purpose of the 
third experiment is to demonstrate the modularity of the proposed controller in terms of adjusting for 
external disturbances. The suggested controller’s design does not clearly model the induced external 
disturbance, which generally has a considerable impact on the positioning system’s accuracy and generates 
unacceptably high-frequency oscillations. The controller is able to deal with the unexpected force change 
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Figure 6. Block diagram of the ANN-based adaptive control scheme[96]. ANN: Artificial Neural Network.

successfully. Furthermore, the motion and posture errors are kept to a minimum, resulting in a smooth 
control signal.

3.3. Applications for robotic manipulators
There has been great interest in universal controllers that mimic the functions of human processes to learn 
about the systems they are controlling on-line so that performance improves automatically. NN-based 
controllers are derived for robot manipulators in a variety of applications, including position control, force 
control, link flexibility stabilization and the management of high-frequency joint and motor dynamics. The 
nature of joint torques must be determined for the end effector to follow the required trajectory as quickly 
and accurately as feasible, which is a common difficulty for robot manipulators. Both parametric and 
structural uncertainties necessitate adaptive control. Parametric uncertainties originate from a lack of 
accurate information about the manipulator’s mass characteristics, unknown loads, and load location 
uncertainty, among other things. Structural uncertainties are a result of the presence of high-frequency 
unmodeled dynamics, resonant modes, and other structural reservations.

The late 1980s and early 1990s were booming years for both NNs and robotic manipulators research. In this 
era, the literature survey concerning the application of NNs in robotic manipulators is very rich. Thus, we 
direct the readers to some interesting approaches in these studies[97-102] and the references therein.

From 1987 to 1989, Miller et al.[103-107] discuss a broad CMAC learning technique and its application to 
robotic manipulators’ dynamic control. The dynamics do not need to be known in this application. 
Through input and output measurements, the control scheme learns about the process. The findings show 
that when compared to fixed-gain controllers, the CMAC learning control performs better. Also, because 
measured and estimated values must be transformed to discrete form, each variable’s resolution and range 
must be carefully selected, and the number of memory regions handled by each input state in the CMAC 
architecture is the most important design parameter. In another popular approach, Miller et al.[108] used 
CMAC in the real-time control of an industrial robot and other applications. In their network, they utilize 
hundreds of thousands of adjustable weights that, in their experience, converge in a few iterations.
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Huan et al.[109] examine the issue of building robot hand controllers that are device-dependent. Their 
argument for a controller like this is that it would isolate low-level control issues from high-level 
capabilities. They employ a BP algorithm with a single hidden layer comprised of four neurons to achieve 
this goal. The inputs are determined by the object’s size, while the outputs are determined by the grab 
modes. In this way, they have demonstrated how to build a p-g table using simulation. Another BP 
architecture was used by Wang and Yeh[110] to control a robot model which simulates PUMA560. A network 
to simulate the plant and a controller network make up their self-adaptive neural controller (SANC). The 
plant model is trained either off-line with mathematical model outputs or on-line with plant outputs 
through excitations. The control network is modified by working in series with the plant network during 
the “controlling and adapting” phase. The control network is also trained off-line in a “memorizing phase” 
with data from the adapting phase in a random way, which is another element of this training. This trait, 
according to the authors, aids in overcoming the temporal instability that is inherent with BP. Their 
numerical findings show that the SANC technique produces good trajectory-tracking accuracy.

Up to the early 2000s, the main goal of robotic manipulators designs was to minimize vibration and achieve 
good position accuracy, which led to maximizing stiffness. This high stiffness is achieved by using heavy 
material and a bulky design. As a result, it is demonstrated that heavy rigid manipulators are wasteful in 
terms of power consumption and operational speed. It is necessary to reduce the weight of the arms and 
increase their speed of action in order to boost industrial output. As a result of their light weight, low cost, 
bigger work volume, improved mobility, higher operational speed, power economy, and a wider range of 
applications, flexible-joint manipulators have gotten much attention. Figure 7 shows a representation of a 
flexible joint manipulator model.

Controlling such systems, however, still challenges significant nonlinearities, such as coupling caused by the 
manipulator’s flexibility, changing operating conditions, structured and unstructured dynamical 
uncertainties, and external disturbances. Complex dynamics regulate flexible-joint manipulators[111-114]. This 
emphasizes the need to examine alternate control techniques for these types of manipulator systems in 
order to meet their increasingly stringent design criteria. Many control laws for flexible joints have been 
presented in those studies[115-118] to solely address (structured) parametric uncertainties. The proposed 
controllers need a complete a priori knowledge of the system dynamics. Several adaptive control 
systems[119-121] have been proposed to alleviate this necessity. The majority of these control strategies use 
singular perturbation theory to extend adaptive control theory established for rigid bodies to flexible 
ones[122-125].

Based on all the above reasons, computational intelligence techniques, such as ANNs and fuzzy logic 
controllers, have been credited in a variety of applications as powerful controllers of the types of systems 
that may be subjected to structured and unstructured uncertainties[126,127]. As a result, there have been 
advancements in the field of intelligent control[128,129]. Various neural network models have been used to 
operate flexible-joint manipulators, and the results have been adequate[130]. Chaoui et al.[131,132] developed a 
control strategy inspired by sliding mode control that uses a feedforward-NN to learn the system dynamics. 
Hui et al.[133] proposed a time-delay neuro-fuzzy network. The joint velocity signals were estimated using a 
linear observer in this system, which avoided the need to measure them directly. Subudhi and Morris[134] 
proposed a hybrid architecture that included a NN for controlling the slow dynamic subsystem and an H∞ 
for controlling the rapid dynamic subsystem. Despite its effectiveness, NN-based control systems are still 
unable to incorporate any humanlike experience already obtained about the dynamics of the system in 
question, which is regarded as one of the soft computing approaches’ primary flaws.
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Figure 7. Flexible-joint manipulator model.

Chaoui et al.[135] suggested an ANN-based control technique in 2009, which used ANNs’ learning and 
approximation skills to estimate the system dynamics. The MRAC is made up of feedforward (ANNFF) and 
feedback (ANNFBK) NN-based adaptive controllers. The reference model is built in the same manner as a 
sliding hyperplane in variable structure control, and its output, which may be regarded as a filtered error 
signal, is utilized as an error signal to adjust the ANNFBK’s weights. It comprises a first-order model that 
specifies the required dynamics of the error between the desired and real load locations, as well as between 
the motor and load velocity, in order to maintain internal stability. The ANNFF offers an approximate 
inverse model for the positioning system, while the ANNFBK corrects residual errors, assuring the 
manipulator’s internal stability and rapid controller response.

The feedback’s learning rate is dependent on the load inertia, which is a flaw in this construction. To 
improve the stability region of the NN-based controllers, a supervisor is proposed to modify the learning 
rate of the ANNs. The supervisor also increases the adaptation process’s convergence qualities.

Nowadays, the subject of multiple-arms manipulation highlights some interesting progress in using 
intelligent control approaches. Hou et al.[136] used a dual NN to solve a multicriteria optimization problem 
for coordinated manipulation. Li et al.[137,138] are representatives who operate on several mobile manipulators 
with communication delays. Some promising approaches, such as LMI and fuzzy-NN controls, were used in 
both articles[137,138], to improve motion/force performances, which were crucial in multilateral teleoperation 
applications.
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In 2017, He et al.[139] proposed an Adaptive NN-based controller for a robotic manipulator with time-
varying output constraints. The adaptive NNs were utilized to adjust for the robotic manipulator system's 
uncertain dynamics. The disturbance-observer (DO) is designed to compensate for the influence of an 
unknown disturbance, and asymmetric barrier Lyapunov Functions (BLFs) are used in the control design 
process to avoid violating time-varying output constraints. The effects of system uncertainties are 
successfully corrected, and the system's resilience is increased using the adaptive NN-based controller. The 
NN estimating errors are coupled with the unknown disturbance from people and the environment to form 
a combined disturbance that is then approximated by a DO.

In a recent interesting paper, He et al.[140] attempted to control the vibrations of a flexible robotic 
manipulator in the presence of input dead-zone. The lumped technique is used to discretize the flexible link 
system[141,142]. A weightless linear angular spring and a concentrated point mass are used to partition the 
flexible link into a finite number of spring-mass parts. They design NN controllers with complete state 
feedback and output feedback based on the constructed model. All state variables must be known to provide 
state feedback. An observer is presented to approximate the unknown system state variables in the case of 
control with output feedback. In summary, an overview of the evolution of NNs implementation in robotic 
manipulation is shown in Table 4. Each of these papers has been categorized based on the nature of its 
approach.

3.4. From machine learning to deep learning
ML has transformed various disciplines in the previous several decades, starting in the 1950s. NN is a 
subfield of ML, a subset of AI, and it is this subfield that gave birth to Deep Learning (DL). There are three 
types of DL approaches: supervised, semi-supervised, and unsupervised. There is also a category of learning 
strategy known as RL or DRL, which is commonly considered in the context of semi-supervised or 
unsupervised learning approaches. Figure 8 shows the classification of all the aforementioned categories.

The common-sense principle behind RL is that if an action is followed by a satisfying state of affairs, or an 
improvement in the state of affairs, the inclination to produce that action is enhanced, or in other words 
reinforced. Figure 9 presents a common diagram model of general RL. The origin of RL is well rooted in 
computer science, though similar methods such as adaptive dynamic programming and neuro-dynamic 
programming (NDP)[143] were developed in parallel by researchers and many others from the field of 
optimal control. NDP was nothing but reliance on both concepts of Dynamic-Programming and NN. For 
the 1990’s AI community, NDP was called RL. This is what makes RL one of the major NN approaches to 
learning control[60].

On the other hand, deep models may be thought of as deep-structured ANNs. ANNs were first proposed in 
1947 by Pitts and McCulloch[144]. Many major milestones in perceptrons, BP algorithm, Rectified Linear 
Unit, Max-pooling, dropout, batch normalization, and other areas of study were achieved in the years that 
followed. DL’s current success is due to all of these ongoing algorithmic advancements, as well as the 
appearance of large-scale training data and the rapid development of high-performance parallel computing 
platforms, such as Graphics Processing Units[145]. Figure 10 shows the main types of DL architectures. In 
2016, Liu et al.[146] proposed a detailed survey about DL architectures. Four main deep learning architectures, 
which are restricted Boltzmann machines (RBMs), deep belief networks (DBNs), autoencoder (AE), and 
convolutional neural networks (CNNs), are reviewed.

4. RL/DRL FOR THE CONTROL OF ROBOT MANIPULATION
DRL combines ANN with an RL-based framework to assist software agents in learning how to achieve their 
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Table 4. NN-based control in robotic manipulation - an overview

Approach Employed by…

Backpropagation Elsley[98] (1988), Huan et al.[109] (1988), Karakasoglu and Sundareshan[100] (1990) and Wang and Yeh[110] (1990)

CMAC learning Miller et al.[103-108] (1987-1990)

Adaptive NNs/PG 
table

Huan et al.[109] (1988) and He et al.[139] (2017)

NNs for flexible joints Hui et al.[133] (2002), Gueaieb et al.[128] (2003), Chaoui et al.[131,132] (2004), Subudhi and Morris[134] (2006), 
Chaoui et al.[130] (2006), Chaoui and Gueaieb[126] (2008), He et al.[140] (2017) and Sun et al.[142] (2017)

NNs for multiple arms Hou et al.[136] (2010), Li and Su[137] (2013) and Li et al.[138] (2014)

Feedforward and 
feedback

Chaoui et al.[135] (2009)

RNNs

Hopfield net Xu et al.[101] (1990)

Comparison Wilhelmsen and Cotter[102] (1990)

NNs: Neural Networks; CMAC: cerebellar model articulation controller; RNNs: recurrent NNs.

Figure 8. Classification of AI categories.

objectives. It combines function approximation and goal optimization to map states and actions to the 
rewards they result in. The combination of NN with RL algorithms led to the creation of astounding 
breakthroughs like Deepmind’s AlphaGo, an algorithm that beat the world champions of the Go board 
game[147].

As mentioned earlier, RL is a powerful technique for achieving optimal control in robotic systems. 
Traditional optimal control has the drawback of requiring complete understanding of the system’s 
dynamics. Furthermore, because the design is often done offline, it is unable to deal with the changing 
dynamics of a system during operation, such as service robots that must execute a variety of duties in an 
unstructured and dynamic environment. The first chapter of this paper has shown that adaptive control, on 
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Figure 9. Universal model of RL. RL: Reinforcement learning.

the other hand, is well known for online system identification and control. Adaptive control, on the other 
hand, is not necessarily optimal and may not be appropriate for applications such as humanoid 
robots/service robots, where optimality is essential. Furthermore, robots that will be employed in a human 
setting must be able to learn over time and create the best biomechanical and robotics solutions possible 
while coping with changing dynamics. Optimality in robotics might be defined as the use of the least 
amount of energy or the application of the least amount of force to the environment during physical 
contact. Aspects of safety, such as joint or actuator restrictions, can also be included in the cost function.

4.1. Reinforcement learning for robotic control
The reinforcement learning (RL) domain of robotics differs significantly from the majority of well-studied 
RL benchmark issues. In robotics, assuming that the true state is totally visible and noise-free is typically 
impractical. The learning system will have no way of knowing which state it is in, and even very dissimilar 
states may appear to be quite similar. As a result, RL in robots is frequently represented as a partially 
observed system. Consequently, the learning system must approximate the real state using filters. 
Experience with an actual physical system is time-consuming, costly, and difficult to duplicate. Because each 
trial run is expensive, such applications drive us to concentrate on issues that do not surface as frequently in 
traditional RL benchmark instances. Appropriate approximations of state, policy, value function, and/or 
system dynamics must be introduced in order to learn within a tolerable time period. While real-world 
experience is costly, it can typically not be substituted solely by simulation learning. Even little modeling 
flaws in analytical or learned models of the system might result in significantly divergent behavior, at least 
for highly dynamic jobs. As a result, algorithms must be resistant to under-modeling and uncertainty.

Another issue that arises frequently in robotic RL is generating appropriate reward functions. To cope with 
the expense of real-world experience, rewards that steer the learning system fast to success are required. 
This problem is known as reward shaping, and it requires a significant amount of manual contribution[148]. 
In robotics, defining excellent reward functions necessitates a substantial degree of domain expertise and 
can be difficult in practice.

Not all RL methods are equally appropriate for robotics. Indeed, many of the methods used to solve 
complex issues thus far have been model-based, and robot learning systems frequently use policy search 
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Figure 10. Main DL architectures. (A) Schematic diagram of RBMs; (B) schematic diagram of AEs; (C) schematic diagram of DBNs; (D) 
conceptual structure of CNNs. RBMs: restricted Boltzmann machines; DBNs: deep belief networks; AE: autoencoder; CNNs: 
convolutional neural networks.

methods rather than value function-based approaches. Such design decisions are in stark contrast to maybe 
the majority of early ML research. The papers that follow will discuss several approaches to incorporating 
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RL into robotics and manipulation. Kober et al.[149] conducted a comprehensive review of RL in robotics in 
2013. They provide a reasonably comprehensive overview of “Real” Robotic RL and mention the most 
innovative studies, which are organized by significant findings.

In the last 15 years or so, the use of RL in robots has continuously risen. An overview of the RL-based 
implementation in robots’ control is shown in Table 5[150-172], where each of the undermentioned papers has 
been categorized based on the nature of their approach.

A stacked Q-learning technique for a robot interacting with its surroundings was introduced by Digney[150]. 
In an inverted pole-balancing issue, Schaal[151] employed RL for robot learning. For compliance tasks, Kuan 
and Young[152] developed an RL-based mechanism in conjunction with a robust sliding mode impedance 
controller, which they evaluated in simulation. To cope with the variation in the different compliance tasks, 
they apply an RL-based method in their research. Bucak and Zohdy[153,154] proposed an RL-based control 
strategy for one and two link robots in 1999 and 2001. Althoefer et al.[155] used RL to attain motion and avoid 
obstacles in a Fuzzy rule-based system for a robot manipulator. Q-learning for robot control was 
investigated by Gaskett[156]. For a mobile robot navigation challenge, Smart and Kaelbling also opted for an 
RL-based approach[157]. For optimal control of a musculoskeletal-type robot arm with two joints and six 
muscles, Izawa et al.[158] used an RL actor-critic framework. For an optimum reaching task, they employed 
the proposed technique. RL approaches in humanoid robots are characterized, by Peters et al.[159], as greedy 
methods, “vanilla” policy gradient methods, and natural gradient methods. They highly encourage the 
adoption of a natural gradient approach to control humanoid robots, because natural-actor-critic (NAC) 
structures converge fast and are better suited to high-dimensional systems like humanoid robots. They have 
proposed a number of different ways to design RL-based control systems for humanoid robots. An 
expansion of this study was given in 2009 by Bhatnagar et al.[160]. Theodorou et al.[161] employed RL for 
optimal control of arm kinematics. NAC applications in robotics were presented by Peters and Schaal[162]. 
For the estimate, the NAC employs the natural gradient approach. Other works presented here[163-165] go into 
greater depth on actor-critic based RL in robots. Buchli et al.[166] propose RL for variable impedance 
management methods based on policy improvement using a route integral approach. Only simulations were 
used to illustrate the efficiency of the suggested method. Theodorou et al.[167] used a robot dog to evaluate RL 
based on policy improvement using path integral[168]. RL-based control for robot manipulators in uncertain 
circumstances was given by Shah and Gopal[169]. Kim et al.[170,171] applied an RL-based method to determine 
acceptable compliance for various scenarios by interaction with the environment. The usefulness of 
Kim et al.[170,171]’s RL-based impedance learning technique has been demonstrated in simulations.

For a robot goalkeeper and inverted pendulum examples, Adam et al.[172] proposed a very interesting article 
on the experimental implementation of experience replay Q-learning and experience replay SARSA 
approaches. In this form of RL scheme, the data obtained during the online learning process is saved and 
fed back to the RL system continuously[172]. The results are encouraging, albeit the implementation method 
may not be appropriate for all actual systems, as the exploration phase indicates very irregular, nearly 
unstable behavior, which might harm a more delicate plant.

It is worth noting that several of the RL systems outlined above are conceptually well-developed, with 
convergence proofs available. However, there is still much work to be done on RL, and real-time 
implementations of most of these systems are still a great difficulty. Furthermore, adequate benchmark 
challenges[173] are required to test newly created or improved RL algorithms.
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Table 5. RL-based control in robotic control - an overview

Approach Employed by…

Q-learning Digney[150] (1996), Gaskett[156] (2002), Shah and Gopal[169] (2009) and Adam et al.[172] (2012)

Optimal control/bio-mimetic 
learning

Izawa et al.[158] (2002) and Theodorou et al.[161] (2007)

NAC Atkeson and Schaal[163] (1997), Peters et al.[159] (2003), Peters and Schaal[162] (2008), Hoffmann et al.[164] (2008) 
and Peters and Schaal[165] (2008)

Inverted pole-balancing Schaal[151] (1996) and Adam et al.[172] (2012)

Impedance control Kuan and Young[152] (1998) and Buchli et al.[166] (2010)

Fuzzy rule-based system Althoefer et al.[155] (2001)

Navigation challenge Smart and Kaelbling[157] (2002)

Route integral control Buchli et al.[166] (2010)

Path integral Theodorou et al.[167] (2010)

RL: Reinforcement learning; NAC: natural-actor-critic.

4.2. Deep reinforcement learning for robotic manipulation control
In 2012, deep learning (DL) achieved its first major breakthrough with a CNN for classification[174]. It 
iteratively trains the parameters using loss computation and BP using hundreds of thousands of data-label 
pairs. Although this approach has developed steadily since its inception and is currently one of the most 
widely used DL structures, it is not ideal for robotic manipulation control because obtaining a large number 
of pictures of joint angles with labeled data to train the model is too time-consuming. CNN has been used 
in several studies to learn the motor torques required to drive a robot using raw RGB video pictures[175]. 
However, as we will see later, employing deep reinforcement learning (DRL) is a more promising and 
fascinating notion.

In the context of robotic manipulation control, the purpose of DRL is to train a deep policy NN, such as the 
one shown in Figure 10, to discover the best command sequence for completing the job. The present state, 
as shown in Figure 11, is the input, which can comprise the angles of the manipulator’s joints, the location 
of the end effector, and their derivative information, such as velocity and acceleration. Furthermore, the 
current posture of target objects, as well as the status of relevant sensors if any are present in the 
surroundings, can be tallied in the current state. The policy network’s output is an action that specifies 
which control instructions, such as torques or velocity commands, should be applied to each actuator. A 
positive reward will be produced when the robotic manipulator completes a job. The algorithm is supposed 
to discover the best successful control method for robotic manipulation using these delayed and weak data.

The study of sample efficiency for supervised deep learning determines the scale of the training set required 
in learning. Consequently, even though it is more challenging than supervised deep learning, the study of 
sample efficiency for DRL in robotic control provides how much data is needed to build an optimal policy. 
The first demonstration of using DRL on a robot was in 2015, when Levine et al.[176] applied trajectory 
optimization techniques and policy search methods with NNs to accomplish a practical sample efficient 
learning. They employ a recently developed policy search approach to learn a variety of dynamic 
manipulation behaviors with very broad policy representations, without requiring known models or 
example demonstrations in this study. This method uses repeatedly refitted time-varying linear models to 
train a collection of trajectories for the desired motion skill, and then unifies these trajectories into a single 
control policy that can generalize to new scenarios. Some modifications are needed in order to lower the 
sample count and automate parameter selection to enable this technique to run on a real robot. Finally, this 
approach has proven that the learning of robust controllers for complexity is possible, which did achieve 
various compound tasks such as stacking tight-fitting Lego blocks and putting together a toy airplane after 
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Figure 11. DRL scheme for Robotic manipulation control. DRL: Deep reinforcement learning.

minutes of interaction time.

The concept of imitation learning became very popular for robotic manipulation, since relying on learning 
from trial and error required a significant amount of system interaction time if based solely on DRL 
approaches[177]. In 2018, an interesting approach was proposed by Vecerik et al.[178] combining both imitation 
learning and task-reward-based learning, which improved the agent’s abilities in simulation. The approach 
was based on an extension of Deep Deterministic Policy Gradient (DDPG) algorithm for tasks with sparse 
rewards. Unfortunately, in real robot experiments, the location of the object, as well as the explicit states of 
joints like position and velocity, must be specified, which limits the approach’s applications to high-
dimensional data[179].

In 2017, Andrychowicz et al.[180] proposed Hindsight Experience Replay as a novel technique that provides 
for sample-efficient learning from sparse and binary rewards, avoiding the need for complex reward 
engineering. It may be used in conjunction with any off-policy RL algorithm to create an implicit 
curriculum.

In October 2021, AI researchers at Stanford University presented a new technique called deep evolutionary 
reinforcement learning, or DERL[181]. The new method employs a sophisticated virtual environment as well 
as RL to develop virtual agents that can change their physical form as well as their learning abilities. The 
discoveries might have far-reaching ramifications for AI research in general and robotics research in 
particular in the future. Each agent in the DERL architecture employs DRL to gain the abilities it needs to 
achieve its objectives throughout the course of its existence. MuJoCo, a virtual environment that enables 
very accurate rigid-body physics modeling, was employed by the researchers to create their framework. 
Universal Animal is their design space, and the objective is to construct morphologies that can master 
locomotion and item manipulation tasks in a range of terrains. The developed agents were put through their 
paces in eight various tasks, including patrolling, fleeing, manipulating items, and exploring. Their findings 
reveal that AI agents who have developed in different terrains learn and perform better than AI agents who 
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have only seen flat terrain.

An overview of the connection of the above-mentioned work is presented in Table 6. Some basic problems 
are listed in the table, and each paper’s approach is presented and categorized based on observation and 
action space, reward shaping and algorithm types.

Although DRL-based robotic manipulation control algorithms have proliferated in recent years, the issues 
of acquiring robust and diverse manipulation abilities for robots using DRL have yet to be properly 
overcome for real-world applications.

4.3. Summary
Over the last several years, the robotics community has been progressively using RL and DRL-based 
algorithms to manage complicated robots or multi-robot systems, as well as to give end-to-end policies 
from perception to control. Since both algorithms base their knowledge acquisition on trial-and-error, they 
naturally require a large number of episodes, which limits the learning in terms of time and experience 
variability in real-world scenarios. In addition, the real-world experience must consider the potential 
dangers or unexpected behaviors of the considered robot, especially when it comes to safety-critical 
applications. Even though there are some successful real applications to DRL in robotics, especially with 
tasks involving object manipulations[182,183], the success of its algorithms beyond the simulated worlds is fairly 
limited. Transferring DRL policies from simulation environments to reality, referred to as “sim-to-real”, is a 
necessary step toward more complex robotic systems that have DL-defined controllers. This has led to an 
increase in research in “sim-to-real” transfer, which resulted in many publications over the past few years.

Another angle that we see crucial for robotics applications is local vs. global learning. For instance, when 
humans learn a new task, like walking, they automatically build upon the previously learned skill in order to 
learn a new one, like running, which becomes significantly easier. It is essential to reuse other locally 
learned information from past data sets. When it comes to robot RL/DRL, the publicity of the making of 
such data sets with many skills should be available and accessible to everyone in robotic research, which 
would be considered a huge asset. When it comes to reward shaping, RL approaches have significantly 
benefited from it by using rewards that convey closeness and are not only based on binary success or failure. 
For robotics, it is challenging to shape such a reward design, hence, it would be optimal if the reward-
shaping is physically motivated, like for instance, minimizing the torques while achieving a task.

5. CONCLUSION
In this review paper, we have surveyed the evolution of adaptive learning for nonlinear dynamic systems. In 
an initial step, after we introduced adaptive controllers and the modification techniques to overcome 
bounded disturbances, we have concluded that adaptive controllers have proven their effectiveness, 
especially in the processes that can be modeled linearly with slowly time-varying parameters relative to the 
system’s dynamics. However, they do not provide stability for systems where parameter dynamics are at 
least the same magnitude as the system’s dynamics.

In an evolutionary manner, AI-based techniques have emerged to improve the controller robustness. Newer 
methods, such as fuzzy logic and NNs were introduced. Essentially, these methods approximate a nonlinear 
function and provide a good representation of the nonlinear unknown plant, although it is typically used as 
a model-free controller. The plant is treated as a “black box”, with input and output data gathered and 
trained on. The AI framework addresses the plant’s model after the training phase, and can handle the plant 
with practically no need for a mathematical model. It is feasible to build the complete algorithm using AI 
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Table 6. DRL for robotic manipulation categorized by state and action space, algorithm and reward design

State space Action space Algorithm type Reward shaping

Levine et al.[176] (2015)

Joint angles and velocities Joint torque Trajectory optimization algorithm. A penalty term is shaped as the sum of a 
quadratic term, and a Lorentzian ρ-function 
The first term encourages speed while the 
second term encourages precision 
In addition, a quadratic penalty is applied to 
joint velocities and torques to smooth and 
control motions

Andrychowicz et al.[180] (2017)

Joint angles 
& velocities + Objects’ positions, rotations & velocities

4D action space. The first three are position 
related, the last one specifies the desired 
distance

HER combined with any off-policy 
RL algorithm, like DDPG

Binary and sparse rewards

Vecerik et al.[178] (2018)

Joint position and velocity, joint torque, and global pose of the socket and 
plug

Joint velocities An off-policy RL algorithm, called 
DDPGfD, is based on imitation 
learning

First is a sparse reward function: +10 if the plug 
is within a small tolerance of the goal 
The second reward is shaped by two terms: a 
reaching phase for alignment and an inserting 
phase to reach the goal

Gupta et al.[181] (2021)

Depends on the agent morphology and include joint angles, angular 
velocities, readings of a velocimeter, accelerometer, and a gyroscope 
positioned at the head, and touch sensors attached to the limbs and head

Chosen via a stochastic policy determined by 
the parameters of a deep NN that are learned 
via proximal policy optimization (PPO)

DERL, which is a simple 
computational 
framework operating by mimicking 
the intertwined 
processes of Darwinian evolution

Two reward components. First relative to 
velocity and second relative to actuators’ input

DRL: Deep reinforcement learning; HER: Hindsight Experience Replay; DDPG: Deep Deterministic Policy Gradient.

techniques, or to merge the analytical and AI approaches such that some functions are done analytically and the remainder are performed using AI techniques.

We then briefly presented RL and DRL before we surveyed the previous work implementing both techniques in robot manipulation specifically. From this 
overview, it was clear that RL and DRL for robotics are not ready to offer a straightforward task yet. Although both techniques have evolved rapidly over the 
past few years with a wide range of applications, there is still a huge gap between theory and practice. The discrepancy between what we intend to solve and 
what we solve in practice, and accurately explaining the differences and how this affects our solution, we believe, is one of the core difficulties that plague the 
RL/DRL research community.
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As RL/DRL researchers, we should take a step back and concentrate on the basics. By concentrating on the 
basics, we imply concentrating on simple, analyzable domains from which we may draw useful conclusions 
about the algorithms. Above all, areas in which we know what the best possible reward is. We hope that our 
survey helps the nonlinear dynamic control community in general, and the robotics community in 
particular, to quickly learn about this topic and become closely familiar with the current work being done 
and what work remains to be done. We also hope to assist researchers in deriving some conclusions from 
work carried out so far and provide them with new avenues for future research.
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Abstract
Emotion on our face can determine our feelings, mental state and can directly impact our decisions. Humans are
subjected to undergo an emotional change in relation to their living environment and or at a present circumstance.
These emotions can be anger, disgust, fear, sadness, happiness, surprise or neutral. Due to the intricacy and nuance
of facial expressions and their relationship to emotions, accurate facial expression identification remains a difficult
undertaking. As a result, we provide an end-to-end system that uses residual blocks to identify emotions and improve
accuracy in this research field. After receiving a facial image, the framework returns its emotional state. The accuracy
obtained on the test set of FERGIT dataset (an extension of the FER2013 dataset with 49300 images) was 75%. This
proves the efficiency of the model in classifying facial emotions as this database poses a bunch of challenges such
as imbalanced data, intraclass variance, and occlusion. To ensure the performance of our model, we also tested it on
the CK+ database and its output accuracy was 97% on the test set.

Keywords: Facial expression recognition, emotion detection, convolutional neural network, deep residual network
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1. INTRODUCTION
Detecting a person’s emotions has become increasingly important in recent years. It has attracted interest, in
human emotion detection across a variety of areas including but not limited to human-computer [1], education,
and medicine. Interpersonal communication is impossible without emotions coming into play. In the daily
life of human communication, emotions play a significant role. Human emotional states can be gleaned from
spoken (verbal), and nonverbal information is collected by a variety of sensors. According to the 7-38-55
rule [2], verbal communication accounts for only 7% of all communication, whereas nonverbal components
of our daily conversation, such as voice tonality and body language, account for 38% and 55%, respectively.
Human emotions are exposed via changes on the face, voice intonation as well as body language. Studies have
proven that emotions expressed visually are most prominent which are displayed on individual faces. They
can be shown in a variety of ways, some of which are visible to the human eye and others that are not.

Emotion is a multidisciplinary area that includes psychology, computer science, and other disciplines. It can
be described in psychology terms as a psychological state that is associated with thoughts, feelings, behavioral
reactions, and a level of pleasure or dissatisfaction [3]. Whereas in the field of computer science, it may be
recognized in the form of image, audio, video, and text documents. Emotion analysis from any of those docu-
ment types is not easy. People communicate mostly through their emotional reactions which can be positive,
negative, or neutral. It is generally accepted that good emotions are conveyed as a variety of different adjectives
such as cheerful, happy, joy, excited, while negative emotions can be hate, anger, fear, depression, sadness and
so on. People spend the majority of their time posting and expressing their feelings on social media sites such
as Facebook, Instagram, and others [4]. They allow people to express their emotions in many different ways.

In our daily lives, we are faced with situations that affect our emotions. It has a significant impact on hu-
man cognitive functions such as perception, attention, learning, memory, reasoning, and problem-solving [5].
Among these, attention is the most impacted, both in terms of altering attention’s selectivity and in terms of
driving actions and behaviors. Human emotion can have a great impact on their health if poorly managed. It
weakens the immune system making it more susceptible to colds and other illnesses [6].

Deep learning’s growth has greatly improved the accuracy of facial expression identification tasks. Various
Convolutional Neural Network (CNN) models have recently been built to overcome problems with emotion
recognition from facial expressions. It is one of the leading networks in this field. A CNN architecture is
composed of convolutions, activations, and pooling layers. With the advancement of Artificial Intelligence
technologies such as pattern recognition and computer vision, computing terminal devices can now interpret
the changes in human expressions to a degree, allowing for greater diversity in human-computer communica-
tion [7]. In Facial Expression Recognition (FER), the major aim is to map distinct facial expressions to their
corresponding emotional states. It consists of extracting the features from the facial image and recognizing the
emotion presented. Before feeding facial images to a CNN or other different machine learning classifier, some
image processing techniques need to be done. Existing methods include discrete wavelet transform [8], linear
discriminant analysis [9], histogram equalization [10], histogram of gradients [11], viola-jones algorithm [12], etc.
When it comes to real conditions like occlusion and light, manual feature extraction has a good identification
capacity in specific special situations or laboratory environments, but it struggles when it comes to natural
conditions. Feature extraction approaches based on deep convolution neural networks have attracted a lot of
attention recently [13], and this has helped to improve facial emotion detection performance. Deep Residual
Network [14] (Deep ResNet) which was easier to train and optimize, has played amajor role in the field of image
recognition, introducing a novel approach to Deep Neural Network optimization.

Previous work on emotion recognition depended on a two-stage classical learning strategy. The first stage
consists of extracting features using image processing techniques. The second stage, on the other hand, relied
on the employment of a traditionalmachine learning classifier such as SupportVectorMachine (SVM) to detect
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emotions. FER has used a variety of methodologies to extract the visual highlights of picture layouts such as
weighted random forest (WRF) [15]. Hasani and Mahoor [16] utilized a novel network called ResNet-LSTM
to capture Spatio-temporal data, which combine lower highlights to LSTMs specifically. The deep learning
network has ended up as themost widely utilized strategy in FER due to its powerful feature extraction capacity.

Using histogram of oriented gradients (HOG) in the wavelet domain, Nigam et al. [11] proposed a four steps
process for efficient FER (face processing, domain transformation, feature extraction and expression recog-
nition). In the expression recognition part, the authors used a tree-based multi-class SVM to classify the
retrieved HOG features in discrete wavelet transform (DWT). The system was trained and tested with CK+,
JAFFE and Yale datasets. The accuracy observed in the test set of these three (3) datasets are 90%, 71.43% and
75% respectively.

Upon deeply analyzing the Facial Expression Recognition problem, Minaee et al. proposed the use of Atten-
tional Convolutional Neural Network [17] instead of adding layers/neurons. Aside from that, they also sug-
gested adding a visualization technique that can find important parts of the face that is necessary for detecting
different emotions based on the classifier’s output. Their architecture includes a feature extraction part and
spatial transformer network that takes the input and uses the affine transformation to wrap it to the output.
They achieved a validation accuracy of 70.02 per cent for the categorization of the 7 classes using the FER2013
dataset.

With the help of the ResidualMaskingNetwork [18], the authors focused on deep architecture with the attention
mechanism. They used a segmentation network to refine feature maps, by enabling the network to focus on
relevant information to make the correct decision. Their work was divided into 2 parts: the residual masking
block which contains a residual layer, and the ensemble method for the combination with 7 different CNNs.
In the end, they managed to get an overall accuracy of 74.14% on the test set of FER2013 dataset.

Pu and Zhu [19] developed a FER framework based on the combination of a feature extraction network and
pre-trained model. The feature extraction consists of supervised learning optical flow based on residual block.
The classifier is the Inception architecture. By experimenting with their method on CK+ and FER2013 datasets
they achieved the average accuracy of 95.74% and 73.11% respectively. In order to resolve the fact that CNNs
require a lot of computation resources to train and process emotional recognition, Chowanda [20] proposed a
separable CNN. In the experiment, a comparison of four networks has beenmade. Networks with and without
separable modules, using flatten and fully connected layers, and using global average pooling. Their proposed
architecture was faster, with fewer parameters and achieved an accuracy of 99.4% on the CK+ dataset.

Deep learning methods have recently sparked a lot of interest, and there is a lot of research going on using
deep learning methods to recognize emotions from facial expressions. However, this study proposes the accu-
rate identification of facial emotion using a deep residual-based neural network architecture model. ResNet
was chosen as the study’s foundation because residual-based network models have shown to be effective in a
variety of image recognition applications and have also overcome the problem of overfitting. In our work, we
used emotional expressions such as happiness, surprise, anger, sadness, disgust, neutral, and fear to pick up
emotional changes on individual faces. Furthermore, the main contribution of this work are:

1. Propose a lighter version of CNN using Residual Blocks with fewer number of trainable parameters com-
pared to over 23 millions for the original ResNet network.

2. Locate the best position to use the Residual Blocks to avoid overfitting, and finally get a satisfying perfor-
mance.

3. Show the important of using Residual Blocks compared to the architecture without them.
4. Weight the cross-entropy loss function in order to deal with imbalance problem that suffer the FERGIT
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Figure 1. Architecture model of the proposed framework.

dataset.
5. Confirm the validity of the model by the number of parameters, run-time, and accuracy recorded on the

Cohn–Kanade (CK+) and FERGIT datasets.

2. METHODS
In this section, we introduce our improved Convolution Neural Network with Residual Blocks. This model
is an end-to-end deep learning framework to classify emotions on human face. The model has a total of 7
blocks (3 Convolutional Blocks, 3 Residual Blocks and one Classification Block) in number. This study looked
at strategies that can be used indefinitely, such as CNN for quick and responsive systems with short processing
and reaction times.

2.1. Proposed model architecture
In our proposed architecture, the feature extraction part consists of twelve convolutional sub-blocks with a
Rectified Linear Unit (ReLU) activation function and a kernel initializer set to he_normal in the convolutional
layers. A Residual Block is added after every four convolutional layers. This block also called skip connection
or identity mapping consists of two convolutional layers, each one followed by a batch normalization layer,
and the results from all Residual Blocks are added to the previous convolution and activated. In the basic
network, each pair of a layer is followed by a batch normalization layer, max-pooling layer, and dropout layer.
They are then followed by a global average pooling layer and a dense layer as the output. In the final output
layer, we used the softmax activation function to perform the task of classifying the seven emotions. All details
expressed above can be observed in our proposed framework architecture below shown in Figure 1.

In our framework, we located the best positions to use the residual blocks by trial and error means. Thus,
the number of parameters has been reduced considerably compared to the original Deep ResNet [14], and the
network was fast to train, see Table 1.

2.1.1. Convolution
CNN because of its structure, is arguably the best suitable architecture to use when dealing with computer
vision tasks [21]. The basic operation is the convolution operation, it consists ofmerging two sets of information.
The convolutional layer’s job is to multiply the previous layer’s image pixels by a learnable convolutional kernel
at the corresponding place. And then, calculate the weighted sum of the multiplied results [22]. For the first
convolution operation, we applied a convolution filter (kernel) of size 5 × 5 with a stride of 1 and padding of
2, the latter is used to maintain the same shape of the input image. The output shape is obtained using this
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Table 1. Architecture detail

Layer (type) Output shape Param #

input (InputLayer) [(None, 48, 48, 1)] 0
conv2d_1 (Conv2D) (None, 48, 48, 16) 416
batch_normalization_1 (BatchNormalization) (None, 48, 48, 16) 64
conv2d_2 (Conv2D) (None, 48, 48, 16) 6416
batch_normalization_2 (BatchNormalization) (None, 48, 48, 16) 64
dropout_1 (Dropout) (None, 48, 48, 16) 0
conv2d_3 (Conv2D) (None, 48, 48, 32) 4640
batch_normalization_3 (BatchNormalization) (None, 48, 48, 32) 128
conv2d_4 (Conv2D) (None, 48, 48, 32) 9248
batch_normalization_4 (BatchNormalization) (None, 48, 48, 32) 128
max_pooling2d_1 (MaxPooling2D) (None, 24, 24, 32) 0
dropout_2 (Dropout) (None, 24, 24, 32) 0
conv2d_5 (Conv2D) (None, 24, 24, 32) 9248
batch_normalization_5 (BatchNormalization) (None, 24, 24, 32) 128
activation_1 (Activation) (None, 24, 24, 32) 0
conv2d_6 (Conv2D) (None, 24, 24, 32) 9248
batch_normalization_6 (BatchNormalization) (None, 24, 24, 32) 128
add_1 (Add) (None, 24, 24, 32) 0
activation_2 (Activation) (None, 24, 24, 32) 0
conv2d_7 (Conv2D) (None, 24, 24, 64) 18496
batch_normalization_7 (BatchNormalization) (None, 24, 24, 64) 256
conv2d_8 (Conv2D) (None, 24, 24, 64) 36928
batch_normalization_8 (BatchNormalization) (None, 24, 24, 64) 256
max_pooling2d_2 (MaxPooling2D) (None, 12, 12, 64) 0
dropout_3 (Dropout) (None, 12, 12, 64) 0
conv2d_9 (Conv2D) (None, 12, 12, 128) 73856
batch_normalization_9 (BatchNormalization) (None, 12, 12, 128) 512
conv2d_10 (Conv2D) (None, 12, 12, 128) 147584
batch_normalization_10 (BatchNormalization) (None, 12, 12, 128) 512
max_pooling2d_3 (MaxPooling2D) (None, 6, 6, 128) 0
dropout_4 (Dropout) (None, 6, 6, 128) 0
conv2d_11 (Conv2D) (None, 6, 6, 128) 147584
batch_normalization_11 (BatchNormalization) (None, 6, 6, 128) 512
activation_3 (Activation) (None, 6, 6, 128) 0
conv2d_12 (Conv2D) (None, 6, 6, 128) 147584
batch_normalization_12 (BatchNormalization) (None, 6, 6, 128) 512
add_2 (Add) (None, 6, 6, 128) 0
activation_4 (Activation) (None, 6, 6, 128) 0
conv2d_13 (Conv2D) (None, 6, 6, 256) 295168
batch_normalization_13 (BatchNormalization) (None, 6, 6, 256) 1024
conv2d_14 (Conv2D) (None, 6, 6, 256) 590080
batch_normalization_14 (BatchNormalization) (None, 6, 6, 256) 1024
max_pooling2d_4 (MaxPooling2D) (None, 3, 3, 256) 0
dropout_5 (Dropout) (None, 3, 3, 256) 0
conv2d_15 (Conv2D) (None, 3, 3, 512) 1180160
batch_normalization_15 (BatchNormalization) (None, 3, 3, 512) 2048
conv2d_16 (Conv2D) (None, 3, 3, 512) 2359808
batch_normalization_16 (BatchNomalization) (None, 3, 3, 512) 2048
max_pooling2d_5 (MaxPooling2D) (None, 1, 1, 512) 0
dropout_6 (Dropout) (None, 1, 1, 512) 0
conv2d_17 (Conv2D) (None, 1, 1, 512) 2359808
batch_normalization_17 (BatchNormalization) (None, 1, 1, 512) 2048
activation_5 (Activation) (None, 1, 1, 512) 0
conv2d_18 (Conv2D) (None, 1, 1, 512) 2359808
batch_normalization_18 (BatchNormalization) (None, 1, 1, 512) 2048
add_3 (Add) (None, 1, 1, 512) 0
activation_6 (Activation) (None, 1, 1, 512) 0
global_average_pooling2d_1 (GlobalAveragePooling2D) (None, 512) 0
dense_1 (Dense) (None, 7) 3591
activation_7 (Activation) (None, 7) 0

Total params: 9,773,111
Trainable params: 9,766,391
Non-trainable params: 6,720

formula:

𝑂𝑆 =
𝐼𝑆 − 𝐾𝑆 + 2𝑃

𝑆
+ 1 (1)
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Where 𝐼𝑆 represents the height, or width, assuming that height = width in this study; 𝐾𝑆 the shape one of the
kernel; 𝑃 is the padding (here a zero padding is applied) and 𝑆 represents the stride.
The input grayscale image of size 48 × 48 going through the first convolution layer will get the same output
shape of size 48 × 48 see details Equation (2).

𝑂𝑆 =
48 − 5 + 2 × 2

1
+ 1 =

47
1

+ 1 = 47 + 1 = 48 (2)

We started the convolution with 16 filters and increased it by 2 at each block with the final convolutional layer
having a filters size of 512. When convolving the first layer to output the feature map, the 5 × 5 kernel was
chosen to achieve a more detailed extraction of face expression of various scales, and also significantly reduce
the number of parameters. Themore wemove deeper, themore the convolution kernels get bigger, the stronger
the network learns feature, and the higher is the recognition accuracy. In this work, we havemoderately chosen
an appropriate number of filters after several trials that led to the reduction of the number of parameters, thus
reducing the computational time, and overfitting. The reason for not using that many filters are because, in
FER, the main parts where the networks should focus on are the mouth, towards the corners of the lips, the
nose, the eyebrows, the crow’s feet, the eyelids, and the eyes [23].

2.1.2. Rectified linear unit
The convolution operation given by the following formula:∑

𝑥 × 𝑘 + 𝑏 (3)

Where 𝑥 is the input, 𝑘 the weight and 𝑏 the bias. Equation (3) is linear, so it follows the mathematical rules:

𝑓 (𝑥 + 𝑦) = 𝑓 (𝑥) + 𝑓 (𝑦) (4)

𝑓 (𝛼𝑥) = 𝛼𝑥 (5)

Therefore, to avoid the entire network from collapsing into a single equivalent convolutional layer, the use of a
nonlinear activation function is needed [24]. Rectified Linear Unit (ReLU) [25], is one of themost used nonlinear
activation functions for convolution layers from studied literature [25]. Its function is :

𝑓 (𝑥) = 𝑚𝑎𝑥(0, 𝑥) (6)

Where 𝑥 is the input, and the result will be 0 if 𝑥 < 0 and 𝑥 if 𝑥 > 0. We used this activation function in our
study as we realized that the framework being deep, it reduces considerably the training time.

2.1.3. Initializers
Bias in the neural network is like a constant in a linear function, and research has proved that it plays an impor-
tant role in a Convolutional Neural Network. It helps the model to match the given data better by adjusting the
output [26]. The goal of initializing the weights and bias is to keep layer activation outputs from bursting or dis-
appearing during a deep neural network forward pass [27], because if it does happen, the gradients will be either
too large or too tiny, causing the network to converge slowly or to not converge at all. He Normal [28] weight
initialization has been used in this study. In this case, the weights are randomly initialized and multiplied by
the following formula: √

2
𝑠𝑖𝑧𝑒_𝑙 − 1

(7)

Where 𝑠𝑖𝑧𝑒_𝑙 − 1 is the size of the layer 𝑙 − 1. This strategy ensures that the weights are neither too large nor
too small. The biases are initialized to zero since it’s the common technique and it proved to be efficient.
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2.1.4. Batch-normalization
Batch-Normalization (BN) is a regularization technique [29] that speeds up and stabilizes the training of Deep
Neural Networks (DNN). BN avoids the problem of massive gradient updates, which cause divergent loss and
uncontrollable activation as network depth increases. As a result, it entails using the current batch’s mean and
variance to normalize activation vectors from hidden layers [30]. In this research, we placed the BN layer after
the activation in the simple Convolutional Blocks and before the activation in the Residual blocks, see Figure 1.

2.1.5. Max pooling
Pooling is performed to reduce the dimensionality of the convolved image [24]. By applying pooling operation,
we reduce the number of parameters and fight against overfitting. Max pooling concerns taking the maximum
pixels in the size of the given windows [31]. During this process, the model does not learn. In our work, we
took a 2 × 2 window size and strides of 2 for the whole max-pooling layers. The output size is also given by
the Equation (1), where padding is 0. Using these parameters, we divide the height and width of each feature
map by 2.

2.1.6. Dropout
Dropout [32]is by far the most used Deep Neural Network regularization approach. It boosts the accuracy of
the model and avoids overfitting. The idea of using dropout is to randomly prevent some neurons at one step
to fire with a frequency of rate 𝑝 [33], while the other neurons are scaled up by 1/(1− 𝑝) so that the sum inside
the neuron remains unchanged. The same neuron can be actif at the next step and so on so forth. 𝑝 is the
hyper-parameter of the dropout layer, in our study we found out that the best value of 𝑝 is 0.3 for the early
layers of the feature extraction part and 0.4 for the last Convolutional Block.

2.1.7. Residual block
The Residual Block also known as identity shortcut connection was used in our study. It has a function of

𝐻 (𝑥) = 𝑅(𝑥) + 𝑥 (8)

Where 𝐻 (𝑥) represents the output learning, 𝑥 is the input and 𝑅(𝑥) is the residual layer [14]. The advantage of
this network in our study is that it reduced considerably the loss during the training and increased the accuracy
on the test set. The residual block is used to solve the problem of vanishing gradients. By skipping some
connections, we will allow the back-propagation towards the entire network and so give better performance.
In our implementation, we discovered that using the shortcut branch of 1 × 1 convolution is not suitable as it
does not help to reduce the overfitting, see Figure 1.

2.1.8. Global average pooling
Most of the research in CNN use flatten layer [34] to wrap up into a 1D vector the extracted features from
previous convolutional layers and forward them to the fully connected layers. Global Average Pooling is a
pooling technique used to substitute fully connected layers in traditional CNNs [22]. In this study using the
average pooling layer, the resulting vector, the average of each feature map is fed directly into the softmax layer
instead of constructing fully connected layers on top of the feature maps.

2.2. Data description
In this study, we mainly used the FERGIT dataset which is a combination of the FER-2013 and muxspace
datasets. The FER2013 database was collected from the internet, and most pictures were captured in the wild
using search engine research. It appears to be a low human FER system with an accuracy of about 65% [35].
The FERGIT dataset comprises 49,300 detected faces in a grayscale of 48-by-48 pixels. The images shown in
Figure 2 are sample emotions from the FER2013 dataset.

The FER2013 has many problems itself, thus making it very difficult for deep learning architecture to achieve
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Figure 2. The seven expressions included in the FER-2013 dataset (anger, fear, happiness, sadness, surprise, disgust, and neutral).

better results with its data. Some major issues are imbalanced data, intra-class variation, and occlusion. The
FERGIT database is a largely imbalanced dataset, in the training data, classes have huge different number of
samples. the happy emotion has more than 13 thousand samples, whereas the disgust has just six hundred
samples see Figure 3.

The intra-class variation is the variance within the same class. Minimizing intra-class variation whiles max-
imizing inter-class variation has a significant effect on classification. Variations, uncontrolled illusions, and
occlusions are problems that face recognition systems face in real-life applications [36]. These problems lead to
accuracy degradation compared to dataset experimental test performance. A facial occlusion posture is one
of several potential stances in which something blocks (occludes) a portion of a person’s face, such as their
hand. Occlusion might be caused by one or both hands being immediately on or in front of the face. Likewise,
hair, caps, and sunglasses are all common items that obstruct the view of the face. Despite occlusion posing a
challenge to face recognition, they could potentially yield valuable information because people face using their
hands when communicating via gestures.

2.3. Data preprocessing
First, we arbitrarily partitioned the training information into three parts: 44,370 faces (90% of the dataset)
were used for preparing our model, 2465 (5% of the dataset) faces for validation, and 2465 (5% of the dataset)
faces for testing, as detailed in Figure 4. The size of the dataset is relatively small; therefore, there is a need to
augment the dataset to create new data that the model has not seen before from the training set.

Since the FERGIT dataset only contains facial images [35], no face detection, localization, cropping, or face
alignment were performed during data preparation for the training. We only performed those steps when

http://dx.doi.org/10.20517/ir.2021.16


Bah et al. Intell Robot 2022;2(1):72­88 I http://dx.doi.org/10.20517/ir.2021.16        Page 80

Figure 3. Data distribution among the 7 emotions.

Figure 4. Data split into training, validation and testing sets.

testing with a personal image. Data augmentation improves and enhances training dataset’s image size and
quality via suitable techniques [37]. The problem of overfitting that is common from the lack of sufficient data
is reduced through data augmentation [38]. This research uses data augmentation to transform an image to its
original state and train the CNN architecture.

The data augmentation is done by applying the geometrical transformation by first creating a new set of the
horizontally flipped datasets, image rotation, shift, and zoom, among other transformation operations [37], and
adjusting the brightness to create new images of the same face. The images are also normalized to make the
pixel values range from 0 to 1. The provided images are then ready to be used to train the model.
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2.4. Training phase
In this work, the models were trained on google colab pro with GPU availability, and they were implemented
using Keras2 and Python3. The training was conducted in two phases. We trained the network with a deep
Convolutional Neural Network without Residual Blocks in the first phase. Then after noticing that the accu-
racy is not increasing that much, we added a residual block to help the network generalize well and improve
the success rate. The two models were allowed to train for 100 epochs with a batch size of 64. The optimizer
used to train the models is the Nadam [39] based on the stochastic gradient descent algorithm, with a learning
rate of 0.001, beta_1 parameter value of 0.9, beta_2 is 0.999. and the loss function used is the categorical cross-
entropy [40] function since we have a model with more than two outputs. For this work, having a problem of
imbalance data, we highly weighted the classes with few number of samples and gave small weights to those
with big number of samples. The learning rate is regulated during the training by the callback class ReduceL-
ROnPlateau [41] implemented in the Keras library. This class has the particularity to update the learning to the
minimum value (min_lr = 0.0000001) when there is no improvement of the validation accuracy and will stop
the training after 15 epochs. We chose 15 epochs to allow the training to last for a long time. Another callback
class used is the EarlyStopping [42]. The patience here is set to 30, and finally, we used the ModelCheckpoint
to save the model after each improvement of the validation accuracy.

3. RESULTS
The training process of the twomodels respectively the basic CNN and ResNet based CNNon FERGIT dataset,
and the ResNet based CNN on CK+ dataset took only 119 minutes of total training time with colab pro (K80
GPUs, 25GB RAM).

3.1. Performance Analysis
To efficiently evaluate the performance of our model, several metrics have been taken into account. They
are precision, recall, F1-Score and accuracy. The recall also called sensitivity is the true positive rate. The
precision is to give details about what is the proportion of the correctly predicted positive. The balance of
these two metrics is given by the f1-score metrics. Accuracy, the most used metric for classification tasks, is
used to find what is the correctly predicted positive and negative in the total test set. Details of the equations
are given below:

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁 (9)

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃 (10)

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 = 2 × 𝑅𝑒𝑐𝑎𝑙𝑙 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
𝑅𝑒𝑐𝑎𝑙𝑙 + 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 (11)

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁 (12)

Where (𝑇𝑃) represents True Positives or where predictions for each emotion were accurately identified. (𝑇𝑁)
represents True Negatives or where the model properly rejected a class prediction. (𝐹𝑃) represents False
Positives or where predictions for a certain class were wrongly recognized. (𝐹𝑁) represents False Negatives
or where the model erroneously rejected for a certain class. The confusion matrix is an important tool for
efficiency estimation as it gives a direct comparison of the real and predicted labels.

The first attempt using the basic Deep Neural Network gave an accuracy of 75% on the training data and
73.7% on the validation data. There was no overfitting of the model as, after each convolutional layer, batch
normalization is added to ensure that the weights are re-centered. But we realized that even after training the
model for more epochs, lasting for only 44 minutes, the maximum accuracy was 75%, and the model gave a
74% success rate on the test set, as mentioned in Table 2.
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Table 2. Basic model classification performance test results on FERGIT

Precision Recall F1-Score Support

Angry 0.64 0.49 0.56 260
Disgust 0.75 0.57 0.65 37
Fear 0.6 0.44 0.51 257
Happy 0.89 0.93 0.91 735
Sad 0.54 0.62 0.57 304
Surprise 0.76 0.73 0.75 218
Neutral 0.75 0.82 0.78 654

Accuracy 0.74 2465
Run time 44 min

Table 3. ResNet based model classification performance test results on FERGIT

Precision Recall F1-Score Support

Angry 0.62 0.54 0.58 260
Disgust 0.71 0.54 0.62 37
Fear 0.62 0.44 0.51 257
Happy 0.89 0.92 0.9 735
Sad 0.55 0.56 0.55 304
Surprise 0.76 0.79 0.77 218
Neutral 0.75 0.84 0.79 654

Accuracy 0.75 2465
Run time 48 min

To improve the success rate and at the same time reduce the loss, we used residual blocks, which proved to be
efficient as the accuracy increased to 86% on the training data, and we finally got an accuracy of 75% on the
test set as shown in Table 3. This training took more time, running for 48 minutes.

The model does well on disgust, happiness, surprise, and neutral or contempt expressions during the two
phases. Despite the very imbalanced training data that is alleviated with class-weighting loss -the happy label
has around 30% of the test split- our model’s overall performance was quite good, as presented in the confusion
matrix (See Figure 5). It can be seen that the residual-based network balanced the performance versus the basic
network that biased more on the neutral and happy classes. In both cases, 93% of the images labelled happy
were truly predicted while the prediction of fear was not good, barely 50% for the residual-based model. This
is due to the mislabeling of most of the images.

3.2. Accuracy and loss during training
For the first attempt with the basic network, we observe that the model is learning very well in the training
data and generalizing to the validation data of the FERGIT database. There was no overfitting during 100
training epochs, but the overall accuracy did not increase much, and the network did not stop the training.
We increased the number of epochs to seek better performance, but the network stuck to 75%, the best the
model could achieve. And which evaluated to the test set it achieved a perfect accuracy of 74%. The loss rate
was 0.48% on the train set, 0.79% on the validation set, and 0.7% on the test set. See Figure 6.

In the second experiment, the accuracy increased a little bit with the help of the residual blocks. Using them
allowed the model to propagate to the early layers and adjust all the weights to get a better result. We observe
that after 35 epochs, the model was not generalizing well anymore. Nonetheless, we did not discontinue train-
ing because the training loss rapidly decreased while the validation loss was stable. However, the accuracy, on
the other hand, was increasing. The model achieved a training accuracy of 86%, validation accuracy of 74%,
and test accuracy of 75%. And the loss rate was 0.2% on the train set, 0.82% on the validation set and 0.8% on
the test set, See Figure 7.
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Figure 5. Confusion matrix for the FER showing the prediction accuracy of the emotional expressions using the proposed architecture with
residual blocks (left) and the basic architecture (right).

Figure 6. The accuracy and the loss of the training and validation data of FERGIT on the basic model over 100 epochs.

To validate our network’s capability of fast generalization and giving the best accuracy, we also trained it on
the CK+ database [43]. The CK+ database is relatively small, with 981 samples well partitioned with seven
classifications of emotions: Angry, Disgust, Fear, Happy, Sadness, Surprise, and Contempt [43]. Using dropout
layers helped the model train on a very small dataset (see Figure 8). Themodel achieved competitive results on
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Figure 7. The accuracy and the loss of the training and validation data of FERGIT on the ResNet based model over 100 epochs.

Figure 8. The accuracy and the loss of the training and validation data of CK+ on the basic model over 100 epochs.

CK+, 97%. See Table 4. These results express the superiority of the presented methodology compared to best
results with CNN architectures such as Pu [19] who achieved an accuracy of 95.74%, and Cheng [44] achieved
success rate of 94.4%. See Table 5.

4. DISCUSSION
Our CNN FER model, which is based on ResNet, took 48 minutes to learn multiple facial images and then
distinguish between seven (7) emotions, although the number of parameters is relatively big (9,766,391 pa-
rameters). The traditional CNN on the other hand took 44 minutes to run 100 epochs, but without improving
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Table 4. ResNet based model classification performance test results on CK+

Precision Recall F1-Score Support

Anger 1.00 1.00 1.00 14
Contempt 1.00 0.6 0.75 5
Disgust 1.00 0.94 0.97 18
Fear 0.88 1.00 0.93 7
Happy 0.91 1.00 0.95 21
Sadness 1.00 1.00 1.00 9
Surprise 1.00 1.00 1.00 25

Accuracy 0.97 99
Run time 29 min

Table 5. Comparison with other CNN based models results on CK+

Methodology Accuracy (%)

Diff ResNet [19] 95.74
Improved VGG-19 [44] 96
Ours 97

Figure 9. Framework testing on an individual pose

much in terms of accuracy. The goal is to build a robust and accurate model. Therefore, looking at Table 2
and Table 3, we observe that for the two models the precisions of all the labels are over 50%, this is to say
that for each emotion at least 50% time the model is giving a good prediction. The harmonic mean of these
of the recall and precision hereafter referred to as the f1-score, is utilized to determine how well the model
performs in terms of facial emotion detection. The value of the f1-score in both cases is 65%, that value is very
acceptable regarding how complex the dataset is. Finally, given that the Residual based model has a large 1%
plus, accuracy was the metric that helped us identify the optimal model.

We experimented on posed images of an individual to test how well our system recognizes facial expressions
that have been previously trained. The first step is to apply some pre-processing such as face detection and face
cropping on these images. The image is reshaped to (48,48,1) to have the same shape as the model is trained
on, then we use the model for the prediction as shown in Figure 9.

On this prediction, the model did very well with a high percentage of confidentiality (86%), which shows
how efficient our framework is. Therefore, the model gave wrong predictions on some labels, but with a low
percentage (40%), it’s due to the resemblance of emotions, sees Figure 10. For example, here, the individual
was asked to pose disgust, but the model predicted neutral. And as already mentioned, the FERGIT dataset
has a lot of mis-classified emotions.
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Figure 10. Wrong prediction on the individual facial image.

5. CONCLUSIONS
This paper proposes a novel model of improved CNN architecture with Residual Blocks for Facial Expression
Recognition. We evaluated the model on two datasets and compare it to a network without Residual Blocks.
The results proved that the proposed architecture performed verywell with an accuracy level of 75%onFERGIT
challenging dataset. With a relatively big number of parameters (9,766,391), the model achieved a state-of-the-
art result in 48 min after running for 100 epochs.This study dataset was augmented to generate similar images
so that themodel can quickly detect the emotion on the face . Hence, our proposedmodel shows an overfitting
issue during training, affecting the classification. In the future, we look forward to reducing the overfitting and
increasing the performance by usingmore image pre-processing and data enhancement to tackle the occlusion
problem. Also, introduce hybrid loss function to handle the intraclass variation problem, and work more on
the CNN architecture like using evolutionary computation algorithms to find the best model and optimize the
parameters.
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Abstract
Precise control is of importance for robots, whereas, due to the presence of modeling errors and uncertainties under
the complexworking environment, it is difficult to obtain an accurate dynamicmodel of the robot, leading to decreased
control performances. Thiswork presents an open-closed-loop iterative learning control applied to a four-limbparallel
Schönflies-motion robot, aiming to improve the tracking accuracy with high movement, in which the controller can
learn from the iterative errors to make the robot end-effector approximate to the expected trajectory. The control
algorithm is compared with classical D-ILC, which is illustrated along with an industrial trajectory of pick-and-place
operation. External repetitive and non-repetitive disturbances are added to verify the robustness of the proposed
approach. To verify the overall performance of the proposed control law, multiple trajectories within the workspace,
different working frequencies for a prescribed trajectory, and different design methods are selected, which show the
effectiveness and the generalization ability of the designed controller.

Keywords: High-speed parallel robot, open-closed-loop, iterative learning control, trajectory tracking control

1. INTRODUCTION
With the rapid development of robotic technology, robots have found their industrial applications in many
fields to replace a large amount of manpower. Among their applications, material handling is an important
aspect, in which the Delta and SCARA robots are extensively deployed [1]. Compared to serial robots, parallel
robots have received more attention thanks to their high speed, high stiffness-to-weight ratio, and low inertia,
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Figure 1. The prototype of the 4-dof parallel robot.

dedicated to pick-and-place operations (PPOs) with high dynamic movements. For instance, Figure 1 depicts
a four-degree-of-freedom (4-dof) robot of this family suitable for PPO. Accordingly, the design of a control
system for the robot under study is the focus of this work, since precise control is of importance, in particular
for such a robot working with highly frequent switching of joint motions.

In the control design, classical model-free controller techniques, such as PID and PD controls, have been ex-
tensively adopted by industrial robots due to their simplicity and ease of implementation. However, these
controllers are not applicable to parallel robots due to the highly nonlinear coupled characteristics [2]. In this
light, some control methods, such as torque feedforward control [3], computed torque control [4], sliding mode
control [5,6], etc, have been proposed to improve the control quality for parallel robots. Although those meth-
ods overcome some problems, such as trajectory tracking accuracy [6], other problems (i.e, increased compu-
tational burden and requirement of an accurate dynamic model) arise. Taking the characteristics of repetitive
tasks for most parallel robots into consideration, it turns out that iterative learning control (ILC) is suitable
for controlling the parallel robots, as ILC can benefit robot control from the system repeatability, wherein ILC
makes use of the last output motion of the robot end-effector to obtain control inputs that can track the desired
trajectory repeatedly.

ILC was first proposed in 1978 [7], but it did not attract the attention of researchers until 1984 because of
language restrictions [8]. Over several decades, ILC has been developed and improved with numerous variants.
One example is the ILC with a P-type switching surface using a proportional structure, which can effectively
cope with external disturbances [9]. Compared with the sliding mode surface, this controller is able to remove
the chattering in the control process. It has been used for mobile robots to improve the robustness of path
tracking against the presence of initial shifts, but it introduced a large trajectory tracking error and had a
poor convergence effect [10]. The D-type ILC is proposed with an initial condition algorithm [11] to specify
the initial state value in each iteration automatically. However, a lot of jittering occurs in the control torque,
leading to damage to the actuator and some other robotic components. Sequentially, a modified D-type ILC
was designed [12] to effectively avoid the jitter and glitch for enhanced convergence accuracy, compared to
the conventional D-type one. By means of the filter, another D-type ILC method with a unit-gain derivative is
proposed to compensate for the unexpected high gain of the conventional derivative at high frequency, wherein
the desired phase compensation can be realized within a designated frequency band.

Despite the advantages of the above-mentioned ILC methods, neither P- nor D-type learning laws can make
full use of system information. In the control law, P- and D-type gains not only play a role in learning gain
but also take the task of accomplishment of the feedback in the control system [13,14]. However, it is difficult to
achieve the compatibility between feedback stability and learning convergence. Alternatively, PD-type ILCs
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are deployed in parallel robots [15]. For instance, an open-loop PD-type ILC algorithm was proposed for a
class of nonlinear time-varying systems with control delay and arbitrary initial value [16]. In this manner, the
learning convergence curve is not smooth, although it solves the problem of initial shift. The robustness of
the controller can be ensured by designing a robust term, aiming at the control of a 3-dof permanent magnet
spherical actuator [17]. Open-loop PD-type ILCs have also been applied in the Delta robot; however, the test on
the controller showed that convergence requires a number of iterations and plenty of computation time, i.e., an
unacceptable computational burden in real applications [18]. To speed up the convergence of the controller, the
constant gain of the PD control can be changed to a time-varying one [19], but this introduces glitches during
the convergence procedure. Alternatively, an adaptive controller can be integrated, where the controller gain
is defined as a function of the number of iterations [20]; sequentially, both the position and velocity tracking
errors can be monotonically and rapidly reduced. In addition, to realize the automatic tuning of a controller, a
method with generalization capabilities is proposed in [21] that can effectively tune the parameters to improve
the trajectory tracking accuracy for robots. Besides, ILC can also be applied in repetitive rehabilitation train-
ing [22], in which a high-order ILC can improve the transient performance and decrease the steady-state error,
compared to traditional PID controllers. Since ILC is equivalent to an integrator along with the iterations, it is
sensitive to external disturbances [23]. The focus of this work is the design of an ILC considering disturbances
for high-speed parallel robots for a pick-and-place application.

In the practical application of industrial robots, classical PD control is still the mainstream algorithm, and
studies on the iterative learning theory applied to control of parallel robots have not been extensively reported.
Consequently, the present work is to illustrate the effectiveness and feasibility of such algorithms for parallel
robots. In this paper, an open-closed-loop PD-type ILC method is proposed and illustrated with a parallel
robot producing Schönflies motion. The proposed ILC law consists of classical PD control and ILC. The iter-
ative learning term can be regarded as feedforward compensation, which can use the information stored in
the last movement. The PD control part belongs to the feedback item and performs real-time compensation.
The controller convergence is proved based on Q operator theory, and the tracking performance is tested by
tracking a pick-and-place trajectory and compared with the classical D-ILC controller. Moreover, different
trajectories and working frequencies are selected to verify the effectiveness of the controller.

2. ROBOT STRUCTURE AND DYNAMIC MODEL
Figure 2 depicts the detailed CAD model of the robot shown in Figure 1, which is composed of a mounting
frame, a screw-pair-based moving platform, and four identical limbs. Each limb consists of a big (inner) arm
and a small (outer) arm. A drive motor and a reducer are installed on the rotating shaft of the big arm. The
outer arm is composed of two carbon fiber rods in a 𝜋-shape. The inner and outer arms are connected by ball
joints, as well as the connection between the outer arm and the mobile platform. The mobile platform can be
split into two subparts, i.e., upper and lower sub-platforms. Through the helix joint, the rotation in the vertical
direction of the end-effector can be generated by the differential motion of the two sub-platforms.

The kinematics and dynamics of the robot have been well documented in the previous work [24], which is
revisited by skipping the details. When ignoring un-modeled errors and external disturbance, the dynamic
model of the robot can be expressed as:

®𝝉 = 𝑴 ( ®𝒒)®¥𝒒 + 𝑪 ( ®𝒒, ®¤𝒒)®¤𝒒 + ®𝑮 ( ®𝒒) (1)

with

𝑴 ( ®𝒒) = 𝑱T
low𝑴p,low𝑱low + 𝑱T

up𝑴p,up𝑱up + 𝑰b (2)

𝑪 ( ®𝒒, ®¤𝒒) = 𝑱T
low𝑴p,low ¤𝐽low + 𝑱T

up𝑴p,up ¤𝑱up (3)
®𝑮 ( ®𝒒) = −𝑱T

low𝑴p,low ®𝒈 − 𝑱T
up𝑴p,up ®𝒈 − 𝑴b ®𝒈 (4)
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Figure 2. CADmodel of the 4-dof robot with a revolute-spherical-spherical limb and a screw pair-based mobile platform.

Table 1. Geometric and dynamic parameters of the robot

Parameters value
Length of inner arm 0.296 m
Length of outer arm 0.600 m
Mass of upper platform 0.855 kg
Mass of lower platform 1.080 kg
Mass of inner arm 0.842 kg
Mass of outer arm 0.073 kg

where ®𝝉 ∈ 𝑅4 is the driving torque and ®¤𝒒, ®¥𝒒 ∈ 𝑅4 represent the joint angular velocity and acceleration, respec-
tively. Moreover, 𝑴 ( ®𝒒) ∈ 𝑅4×4 is the inertia matrix, 𝑪 ( ®𝒒, ®¤𝒒) ∈ 𝑅4×4 is a vector resulting from Coriolis and
centrifugal forces, ®𝑮 ( ®𝒒) ∈ 𝑅4 represents gravity, and 𝑰b is the moment of inertia of inner arms. Jacobians 𝑱up
and 𝑱down relate the motion of the upper and lower sub-platforms to the actuated joints, while ¤𝑱up and ¤𝑱down,
respectively, represent their derivatives with respect to time. In addition, 𝑴b, 𝑴p,up, and 𝑴p,down are the mass
matrices of the inner arm and the upper and lower sub-platforms. The detailed modeling procedure can be
found in Ref [24]. The main geometric and dynamic parameters of the parallel robot are listed in Table 1.

3. ITERATIVE LEARNING CONTROLLER DESIGN
Prior to the ILC design for the robot, the following properties generalized to the robotic manipulators are
considered.

Property 1. The inertia matrix is bounded and positive definite, thus ∃𝛿 > 0, 𝜁 > 0 satisfies the following
inequalities:

0 < 𝛿 < ‖𝑴 ( ®𝒒𝑘 , 𝑡)‖ < 𝜁 (5)

Property 2. The inertia matrix satisfies the global Lipschitz condition; therefore, a positive constant 𝐿 exists
that meets:

‖𝑴 ( ®𝒒𝑘 , 𝑡) − 𝑴 ( ®𝒒𝑘−1, 𝑡)‖ ≤ 𝐿‖ ®𝒒𝑘 (𝑡) − ®𝒒𝑘−1(𝑡)‖ (6)

where 𝑘 represents the number of iterations and ®𝒒 is the angular displacement of the joint.

Property 3. Coriolis, centrifugal, and gravitational force matrices meet the equation 𝑪 ( ®𝒒𝑘 , ®¤𝒒𝑘 )®¤𝒒𝑑 + ®𝑮 ( ®𝒒𝑘 ) =
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𝝋( ®𝒒𝑘 , ®¤𝒒𝑘 ) ®𝜸𝑘 (𝑡), where 𝝋( ®𝒒𝑘 , ®¤𝒒𝑘 ) ∈ 𝑅𝑛×𝑚 is a regression matrix and ®𝜸𝑘 (𝑡) ∈ 𝑅𝑚×1 is a vector of unknown
parameters regarding the robot.

Moreover, the following reasonable assumptions are made.

Assumption 1. The system can meet the alignment condition, i.e., ®𝒒𝑘 (0) = ®𝒒𝑑 (0), ®¤𝒒𝑘 (0) = ®¤𝒒𝑑 (0). The desired
joint position trajectory, namely, ®𝒒𝑑 , and its 𝑛th derivatives are bounded, namely, ∀𝑡 ∈ [0, 𝑇], ∀𝑘 ∈ 𝑍+.

Assumption 2. The external disturbance of the robot is bounded and is subject to a positive constant:

sup ‖ ®𝒅𝑘 (𝑡)‖ ≤ 𝑙 (7)

In view of the nonlinear time-varying robotic system with repetitive work over a finite interval time 𝑡 ∈ [0, 𝑇],
an open-closed loop PD-ILC law is designed. This algorithm belongs to the feedback–feedforward control law,
which can make full use of the effective information stored in the system for learning and can ensure that the
output variables converge to the bounded threshold of desired values.

The specific expression is written as follows:

®𝝉𝑘+1(𝑡) = ®𝝉𝑘 (𝑡) + ®𝝉fore + ®𝝉back (8)

where ®𝝉 is the driving torque and 𝑘 is the number of iterations. Moreover, ®𝝉fore is the feedforward control input,
written as:

®𝝉fore = 𝑳𝑝 ®𝒆𝑘 (𝑡) + 𝑳𝑑®¤𝒆𝑘 (𝑡) (9)

where 𝑳𝑝 , 𝑳𝑑 are symmetric positive definite gain matrices for the feedforward control and ®𝒆𝑘 = ®𝒒𝑘 − ®𝒒𝑑 and
®¤𝒆𝑘 = ®¤𝒒𝑘 − ®¤𝒒𝑑 represent the joint errors in terms of angular displacement and angular velocity, respectively, in
the 𝑘th iteration.

The feedback control ®𝝉back takes the following form:

®𝝉back = (1 − 𝛼)𝑳𝑝 ®𝒆𝑘+1(𝑡) + (1 − 𝛽)𝑳𝑑®¤𝒆𝑘+1(𝑡) (10)

where 𝛼 and 𝛽 are gain coefficients of the controller.

The scheme of the proposed controller is displayed in Figure 3. It can be seen that the information obtained
in the 𝑘th iteration can be regarded as the feedforward part. The current joint errors, namely, the information
obtained in the (𝑘 + 1)th iteration, constitute the feedback part of the control law. Under the condition that
the control target and external environment remain unchanged, the target task is repeatedly executed, and the
response of the system is identical to the feedforward information. When the system deviates from the desired
trajectory, the feedback term will compensate the motion errors.

4. CONVERGENCE ANALYSIS OF THE CONTROLLER
To prove the convergence of proposed controller, the following two lemmas are introduced as the fundamen-
tals.

Lemma 1. With∀®𝒙, ®𝒚 ∈ 𝐶𝑟 [0, 𝑇], 𝑡 ∈ [0, 𝑇], assuming that the operator ®𝑸 : 𝐶𝑟 [0, 𝑇] → 𝐶𝑟 [0, 𝑇] meets global
Lipschitz condition, one obtains the following two outcomes.

(1) For ∀®𝒚 ∈ 𝐶𝑟 [0, 𝑇], there is a unique ®𝒙 ∈ 𝐶𝑟 [0, 𝑇] that holds:

®𝒙(𝑡) + ®𝑸( ®𝒙)(𝑡) = ®𝒚(𝑡), ∀𝑡 ∈ [0, 𝑇] (11)

http://dx.doi.org/10.20517/ir.2022.02


Page 94 Li et al. Intell Robot 2022;2(1):89–104 I http://dx.doi.org/10.20517/ir.2022.02

Figure 3. Scheme of open-closed-loop PD-type ILC system.

(2) Defining the operator ®̄𝑸 yields

®̄𝑸( ®𝒚)(𝑡) = ®𝑸( ®𝒙)(𝑡), ∀®𝒚 ∈ 𝐶𝑟 [0, 𝑇] (12)

where ®𝒙 ∈ 𝐶𝑟 [0, 𝑇] is the only solution to the first outcome, and there exists a constant 𝑀1 > 0 subject to:

‖ ®̄𝑸( ®𝒙) (𝑡)‖ ≤ 𝑀1

(
𝑞 +

∫ 𝑡

0
‖ ®𝒚(𝑠)‖d𝑠

)
(13)

Lemma 2. Assuming that the sequence {𝑏𝑘 }𝑘≥0, 𝑏𝑘 ≥ 0, converges to zero, the operator ®𝑸𝑘 : 𝐶𝑟 [0, 𝑇] →
𝐶𝑟 [0, 𝑇] will meet

‖ ®𝑸𝑘 ( ®𝒙)(𝑡)‖ ≤ 𝑀

(
𝑏𝑘 +

∫ 𝑡

0
‖ ®𝒙(𝑠)‖d𝑠 + 𝜎

)
(14)

where 𝜎 > 0 and 𝑀 ≥ 1 are constants. Assuming that 𝑷(𝑡) is a 𝑟 × 𝑟 continuous function matrix, the operator
®𝑷 : 𝐶𝑟 [0, 𝑇] → 𝐶𝑟 [0, 𝑇] satisfies ®𝑷( ®𝒙) (𝑡) = 𝑷(𝑡) ®𝒙(𝑡). If 𝜌 < 1, 𝜌 being the spectral radius of ®𝑷, for ∀𝑡 ∈ [0, 𝑇],
there exists

lim
𝑛→∞

( ®𝑷 + ®𝑸n) ( ®𝑷 + ®𝑸𝑛−1) · · · ( ®𝑷 + ®𝑸0) ( ®𝒙)(𝑡) = 0

For the parallel robot under study, the state variables ®𝑿 = [ ®𝒙1, ®𝒙2]T
8×1 are defined below:{

®𝒙1 = ®𝒒
®𝒙2 = ®¤𝒒

(15)

Accordingly, the variable ®𝝓(𝑡, ®𝑿)4×1 = −𝑴−1( ®𝒒)(𝑪 ( ®𝒒, ®¤𝒒)®¤𝒒 + ®𝑮 ( ®𝒒)) can be defined; thus, the dynamic model
of the system can be expressed as:

®¤𝑿 =

[
®¤𝒙1
®¤𝒙2

]
=

[
®¤𝒒

®𝝓(𝑡, ®𝑿)

]
+
[

0
𝑴−1( ®𝒒) ®𝝉(𝑡)

]
(16)

As a consequence, the state equation of the robot can be obtained:{ ®¤𝑿 = ®𝚽(𝑡, ®𝑿) + 𝑩( ®𝒒, ®¤𝒒) ®𝝉(𝑡)
®𝒀 = 𝑪 ®𝑿

(17)
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where ®𝚽(𝑡, ®𝑿)8×1 = [®¤𝒒 ®𝝓(𝑡, ®𝑿)]T
8×1, 𝑩( ®𝒒, ®¤𝒒)8×4 = [0,𝑴−1( ®𝒒)]T

8×4, and 𝑪 = [0, 𝑰]T
8×4.

For the nonlinear system of Equation (17), based on the ILC law in Equation (8), if the system can meet the
following condition,

𝝆( [𝑰 + 𝑳𝑑𝑪 (𝑡)𝑩(𝑡)]−1 [𝑰 − 𝑳𝑑𝑪 (𝑡)𝑩(𝑡)]) < 1, 𝑡 ∈ [0, 𝑇] (18)

the trajectory tracking error of the dynamic system converges to a certain small range with the increasing
iterations.

Let the system state, output, and input errors be set as:
𝜹 ®𝑿𝑘 (𝑡) = ®𝑿𝑑 (𝑡) − ®𝑿𝑘 (𝑡)
𝜹 ®𝒀𝑘 (𝑡) = ®𝒀𝑑 (𝑡) − ®𝒀𝑘 (𝑡)
𝜹 ®𝝉𝑘 (𝑡) = ®𝝉𝑑 (𝑡) − ®𝝉𝑘 (𝑡)

(19)

Defining the variable ®𝚽1( ®𝑿 (𝑡), 𝑡) = ®𝚽( ®𝑿𝑑 (𝑡), 𝑡)− ®𝚽( ®𝑿𝑑 (𝑡)− ®𝑿 (𝑡), 𝑡), the following inequalities can be obtained
by Lipschitz condition: {

‖ ®𝚽1( ®𝑿 (𝑡), 𝑡)‖ ≤ 𝐿1

‖ ®𝚽1( ®𝑿1(𝑡), 𝑡) − ®𝚽1( ®𝑿2(𝑡), 𝑡)‖ ≤ 𝐿2‖ ®𝑿1(𝑡) − ®𝑿2(𝑡)‖
(20)

Combining Equations (17) and (19) results in
𝜹 ®¤𝑿𝑘 (𝑡) = ®𝚽1(𝜹 ®𝑿𝑘 (𝑡), 𝑡) + 𝐵(𝑡)𝜹 ®𝝉𝑘 (𝑡)
𝜹 ®𝒀𝑘 (𝑡) = 𝑪 (𝑡)𝜹 ®𝑿𝑘 (𝑡)
𝜹®¤𝒀𝑘 (𝑡) = ¤𝑪 (𝑡)𝜹 ®𝑿𝑘 (𝑡) + 𝑪 (𝑡)𝜹 ®¤𝑿𝑘 (𝑡)

(21)

with

𝜹 ®𝝉𝑘+1(𝑡) = 𝜹 ®𝝉𝑘 (𝑡) − 𝑳𝑝𝜹 ®𝒀𝑘 (𝑡) − 𝑳𝑝𝜹 ®𝒀𝑘+1(𝑡) − 𝑳𝑑 (𝑡)𝜹®¤𝒀𝑘 (𝑡)

− 𝑳𝑑 (𝑡)𝜹®¤𝒀𝑘+1(𝑡) + 𝛼𝑳𝑝𝜹 ®𝒀𝑘+1(𝑡) + 𝛽𝑳𝑑 (𝑡)𝜹®¤𝒀𝑘+1(𝑡) (22)

Substituting Equation (21) into Equation (22) yields

𝜹 ®𝝉𝑘+1(𝑡) = 𝜹 ®𝝉𝑘 (𝑡) − 𝑳𝑝𝑪 (𝑡)𝜹 ®𝑿𝑘 (𝑡) − (1 − 𝛼)𝑳𝑝𝑪 (𝑡)𝜹 ®𝑿𝑘+1(𝑡)
− 𝑳𝑑 ( ¤𝑪 (𝑡)𝜹 ®𝑿𝑘 (𝑡) + 𝑪 (𝑡) ®𝚽1(𝑡, 𝜹 ®𝑿𝑘 (𝑡)) + 𝑪 (𝑡)𝑩(𝑡)𝜹 ®𝝉𝑘 (𝑡))
− (1 − 𝛽)𝑳𝑑 ( ¤𝑪 (𝑡)𝜹 ®𝑿𝑘+1(𝑡) + 𝑪 (𝑡) ®𝚽1(𝑡, 𝜹 ®𝑿𝑘+1(𝑡)) + 𝑪 (𝑡)𝑩(𝑡)𝜹 ®𝝉𝑘+1(𝑡)) (23)

Let us define the operator ®𝑸𝑘 , ®𝑮𝑘 , ®𝑷𝑘 : 𝐶𝑟 [0, 𝑇] → 𝐶𝑟 [0, 𝑇] as follows:
®𝑸𝑘 ( ®𝝉) (𝑡) = 𝑳𝑝𝑪 (𝑡) ®𝑿 (𝑡) + 𝑳𝑑 ¤𝑪 (𝑡) ®𝑿 (𝑡) + 𝑳𝑑𝑪 (𝑡) ®𝚽1( ®𝑿 (𝑡), 𝑡)
®𝑮𝑘+1( ®𝝉)(𝑡) = [𝑰 + (1 − 𝜷)𝑳𝑑𝑪 (𝑡)𝑩(𝑡)]−1(1 − 𝜷) ®𝑸𝑘+1( ®𝝉)(𝑡)
®𝑷𝑘 ( ®𝝉) (𝑡) = −[𝑰 + (1 − 𝜷)𝑳𝑑𝑪 (𝑡)𝑩(𝑡)]−1𝜶 ®𝑸𝑘 ( ®𝝉) (𝑡)

(24)
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According to the authors of Ref [23], ®𝑸𝑘 , ®𝑮𝑘 , ®𝑷𝑘 should meet the conditions of Lemma 1:
‖ ®𝑸𝑘 ( ®𝝉)(𝑡)‖ ≤ 𝑀𝑄 (‖𝒙(0)‖ +

∫ 𝑡
0 ‖ ®𝝉(𝑠)‖d𝑠)

‖ ®𝑮𝑘+1( ®𝝉)(𝑡)‖ ≤ 𝑀G(‖𝒙(0)‖ +
∫ 𝑡
0 ‖ ®𝝉(𝑠)‖d𝑠)

‖ ®𝑷𝑘 ( ®𝝉)(𝑡)‖ ≤ 𝑀𝑃 (‖𝒙(0)‖ +
∫ 𝑡
0 ‖ ®𝝉(𝑠)‖d𝑠)

(25)

Let us define the operator ®𝑺, ®𝑾𝑘 : 𝐶𝑟 [0, 𝑇] → 𝐶𝑟 [0, 𝑇] below:{
®𝑺( ®𝝉)(𝑡) = [𝑰 + (1 − 𝛽)𝑳𝑑𝑪 (𝑡)𝑩(𝑡)]−1 [𝐼 − 𝛼𝑳𝑑𝑪 (𝑡)𝑩(𝑡)] ®𝝉(𝑡)
®𝑾𝑘 ( ®𝝉) (𝑡) = ( ®𝑷𝑘 + ®𝑺)( ®𝝉) (𝑡)

(26)

Equation (23) can be rewritten as:

𝜹 ®𝝉𝑘+1(𝑡) + ®𝑮𝑘+1(𝜹 ®𝝉𝑘+1(𝑡)) (𝑡) = ®𝑾𝑘 (𝜹 ®𝝉𝑘 (𝑡)) (𝑡) (27)

Since ®𝑮𝑘+1( ®𝝉)(𝑡) can meet Lemma 1, the following operators can be defined:{ ®̄𝑮𝑘+1( ®𝒀)(𝑡) = ®𝑮𝑘+1( ®𝝉)(𝑡)
®𝒁𝑘+1( ®𝒀)(𝑡) = ®̄𝑮𝑘+1( ®𝒀)(𝑡)

(28)

where ®𝝉(𝑡) + ®𝑮𝑘+1( ®𝝉)(𝑡) = ®𝒀 (𝑡), ∀®𝒀 (𝑡) ∈ 𝐶𝑟 [0, 𝑇]. Comparing with Equation (27), the following relationship
can be obtained: {

®𝒁𝑘+1(𝜹 ®𝝉𝑘 )(𝑡) = − ®̄𝑮𝑘+1( ®𝑾𝑘 (𝜹 ®𝝉𝑘 )) (𝑡)
®̄𝑮𝑘+1( ®𝑾𝑘 (𝜹 ®𝝉𝑘 )) (𝑡) = ®𝑮𝑘+1(𝜹 ®𝝉𝑘+1)(𝑡)

(29)

From Lemma 1, one obtains

‖ ®̄𝑮𝑘+1( ®𝑾𝑘 (𝜹 ®𝝉𝑘 )) (𝑡)‖ ≤ 𝑀𝐺̄ (‖𝜹 ®𝑿𝑘+1(0)‖ +
∫ 𝑡

0
‖ ®𝑾𝑘 (𝜹 ®𝝉𝑘 )(𝑠)‖d𝑠 (30)

From Equations (24), (26), and (30), the following equation can be derived

‖ ®𝒁𝑘+1(𝜹 ®𝝉𝑘 )(𝑡)‖ ≤ 𝑀𝑍 (‖𝜹 ®𝑿𝑘+1(0)‖ + ‖𝜹 ®𝑿𝑘 (0)‖ +
∫ 𝑡

0
‖𝜹 ®𝝉𝑘 (𝑠)‖d𝑠 (31)

where 𝑀𝑍 = 𝑀𝐺̄ · max(𝑀𝑉 , 1).

Let us define the operator ®𝑱𝑘 : 𝐶𝑟 [0, 𝑇] → 𝐶𝑟 [0, 𝑇] as follows:

®𝑱𝑘 ( ®𝝉)(𝑡) = ( ®𝑷𝑘 + ®𝒁𝑘+1)( ®𝝉)(𝑡) (32)

Equation (27) can be expressed accordingly as:

𝜹 ®𝝉𝑘+1(𝑡) = ®𝒁𝑘+1(𝜹 ®𝝉𝑘 (𝑡)) (𝑡) + ®𝑾𝑘 (𝜹 ®𝝉𝑘 (𝑡)) (𝑡) = ( ®𝒁𝑘+1 + ®𝑷𝑘 + ®𝑺) (𝜹 ®𝝉𝑘 ) (𝑡) (33)

Taking the norm on both sides of Equation (32) and substituting the inequalities in Equations (25) and (31)
into Equation (32) leads to

‖ ®𝑱𝑘 (𝜹 ®𝝉𝑘 )(𝑡)‖ ≤ ‖ ®𝑷𝑘 (𝜹 ®𝝉𝑘 ) (𝑡)‖ + ‖ ®𝒁𝑘+1(𝜹 ®𝝉𝑘 )(𝑡)‖
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Figure 4. Test trajectory of the pick-and-place operation.

≤ 𝑀𝑃 (‖𝜹 ®𝑿 (0)‖ +
∫ 𝑡

0
‖𝜹 ®𝝉(𝑠)‖d𝑠) + 𝑀𝑍 (‖𝜹 ®𝑿𝑘+1(0)‖ + ‖𝜹 ®𝑿𝑘 (0)‖ +

∫ 𝑡

0
‖𝜹 ®𝝉𝑘 (𝑠)‖d𝑠

≤ max(1, 𝑀𝑃 + 𝑀𝑍 )
(
‖𝜹 ®𝑿𝑘+1(0)‖ + ‖𝜹 ®𝑿𝑘 (0)‖ +

∫ 𝑡

0
‖𝜹 ®𝝉𝑘 (𝑠)‖d𝑠

)
(34)

Finally, Equation (33) can be expressed as:

𝜹 ®𝝉𝑘+1(𝑡) = ( ®𝑺 + ®𝑱𝑘 ) (𝜹 ®𝝉𝑘 ) (𝑡) = ( ®𝑺 + ®𝑱𝑘 )( ®𝑺 + ®𝑱𝑘−1) · · · ( ®𝑺 + ®𝑱0)(𝜹 ®𝝉0)(𝑡) (35)

In accordance with Lemma 2, if 𝜌 < 1, 𝜌 being the spectral radius of ®𝑺, for a finite interval time 𝑡 ∈ [0, 𝑇],
lim𝑘→∞ 𝜹 ®𝝉𝑘+1(𝑡) = 0 exists.

5. EVALUATION OF CONTROLLER DESIGN
5.1. Controller performance analysis
For the parallel robots designed for PPOs, the controller is evaluated along with an industrial gate-shaped
trajectory of 25 × 305 × 25 mm [6], as shown in Figure 4, and the working frequency is set to 2 Hz, i.e., 0.25 s
per single journey. To evaluate the performance of the proposed control law, the classical D-ILC is used as a
comparison method, and the following three indices, i.e., maximum absolute error (𝑀𝑎𝑥𝐸), absolute mean
error (𝑀𝐴𝐸), and root-mean-squared error (𝑅𝑀𝑆𝐸), are defined:

𝑀𝑎𝑥𝐸 = max( |𝑞𝑖 − 𝑞𝑖𝑑 |)
𝑀𝐴𝐸 = 1

𝑚

∑𝑚
𝑖=1 |𝑞𝑖 − 𝑞𝑖𝑑 |

𝑅𝑀𝑆𝐸 =
√

1
𝑚

∑𝑚
𝑖=1 (𝑞𝑖 − 𝑞𝑖𝑑)2

(36)

where 𝑚 stands for the number of samples collected from one iteration, 𝑞𝑖 is the actual angular displacement
of the 𝑖th joint, and 𝑞𝑖𝑑 is the expected angular displacement.

For the nonlinear time-varying system of the robot described by Equation (17), the controller parameters 𝛼 =
1.1, 𝛽 = 1.22, 𝑳𝑝 = diag([1000 1000 1000 1000] and 𝑳𝑑 = diag( [230 230 230 230]) are selected after
multiple tunings. Upon the implementation of the two ILC laws, the comparison of the actual and expected
joint displacements are shown in Figure 5, together with the trajectory tracking results displayed in Figure 6.
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Figure 5. Comparison of the actual and expected joint displacements: (A-D) Joints 1–4.

Figure 6. The trajectory tracking under D-ILC and PD-ILC.

It is observed that both ILC laws can realize trajectory tracking control, and the proposed law is superior to
the D-ILC law.

Figure 7 shows the varying tracking errors of each joint. The maximum and mean tracking errors of the two
controllers are given in Table 2. As shown in Figure 7, the two controllers have similar error trends. The errors
of Joints 1 and 3 increase rapidly from the beginning of the rotational motion and reach the maximum values
after the complete rotation, of which the maximum values are 0.94◦ and 0.81◦ for D-ILC and 0.71◦ and 0.61◦

for PD-ILC, respectively. The other two joints can achieve good performances after iterative learning, with the
maximum errors approximating to zero, as shown in Table 2.
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Figure 7. Trajectory tracking errors of actuated joints with D-ILC and PD-ILC laws after learning iterations: (A-D) Joints 1–4.

Table 2. The tracking errors of joints under D-ILC and PD-ILC law

Max Error (deg) Mean Error (deg)

Joint 𝑖 Controller 1 2 3 4 1 2 3 4
D-ILC 0.94 0.0035 0.81 0.0026 0.33 0.0018 0.30 0.0016
PD-ILC 0.71 0.0021 0.61 0.0016 0.27 0.0004 0.24 0.0003

Although the proposed control law presents superior performance compared to D-ILC, especially for Joints 2
and 4, the convergence errors of the others are still quite large. The reason lies in two aspects. On the one hand,
the rotation of the robot end-effector is generated through the relative movement of the upper platform by
Limbs 1 and 3, while the remaining limbs keep static. Simultaneously, the rotational motion is not continuous
with the previous; therefore, the learned information cannot compensate for the errors well. On the other
hand, the ILC algorithm is equivalent to an integrator along the iterative axis. It cannot guarantee that the
learned information is all useful, which will lead to large errors.

Figure 8 shows the error convergence curves, where the system errors gradually converge with the increasing
iterations. It can be seen that the angular displacement errors have significantly reduced after the first learning.
The joint errors will become constant after the fourth iteration under the PD-ILC controller. On the contrary,
there is an increase under the D-ILC law in the process of convergence.

The RMSEs for Joints 2 and 4 tend to zero from 0.0556◦ and 0.0952◦ under the PD-ILC law, while the errors
under the D-ILC control law converge from 0.0874◦ and 0.1850◦ to 0.0021◦ and 0.0013◦, respectively. The
RMSEs for Joints 1 and 3 eventually converge to 0.3963◦ and 0.3473◦ for PD-ILC and 0.5180◦ and 0.4597◦ for
D-ILC, respectively. It can be clearly seen that PD-ILC presents superior performance compared to the D-ILC
controller.

5.2. Robustness analysis
In the real robotic application, the changes of the external environment and the existence of uncertain param-
eters make it difficult for the system to achieve the ideal state. For instance, the uncertain parameters of the
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Figure 8. The varying RMSEs along with the iterations: (A) Joints 1 and 3; and (B) joints 2 and 4.

Figure 9. Repetitive (A) and non-repetitive (B) disturbance torques.

robot and the joint friction in the movement will cause interference. In view of the external environment of
such a robotic system, unpredictable and random disturbances may occur; therefore, the following two forms
of disturbance are defined: {

®𝝉dis = 2 sin( ®𝒒𝑑) − sin(®¤𝒒𝑑)
®𝝉dis_re = 𝜆 sin(𝛼𝑡 + 𝜑)

(37)

where ®𝝉dis_re represents the repetitive disturbance torque and ®𝝉dis is non-repetitive disturbance torque, 𝜆 being
the repetitive disturbance gain. Moreover, 𝛼 and 𝜑 stand for the angular frequency and phase, respectively.
Figure 9 shows the corresponding repetitive and non-repetitive disturbance torques of each joint.

Figure 10 depicts the error convergences with the increasing iterations when considering the disturbance.
Compared to Figure 8, the finally converged errors of the proposed ILC are larger, compared to the error
convergences without disturbance, which shows that the influence of the disturbance onto the motion accu-
racies of the joints cannot be ignored. The maximum and mean tracking errors with disturbance and without
disturbance are given in Table 3. It is noteworthy that, when the system has external disturbances, the joint
errors of the robot can still converge to a certain range after iterative learning, which indicates the robustness
of the proposed control law.
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Figure 10. The varying RMSE with the increasing iterations: (A) Joints 1 and 3; and (B) joints 2 and 4.

Table 3. The tracking errors under non-disturbance and disturbance

Max Error (deg) Mean Error (deg)

Joint 𝑖 1 2 3 4 1 2 3 4
Non-disturbance 0.71 0.0021 0.61 0.0016 0.27 0.0004 0.24 0.0003
Disturbance 0.76 0.087 0.68 0.089 0.32 0.039 0.30 0.057

Figure 11. Different pick-and-place trajectories within the workspace.

Table 4. The tracking errors along with different paths within the workspace

Max Error (deg) Mean Error (deg)

Joint 𝑖 Path 𝑖 1 2 3 4 1 2 3 4
Path 1 0.71 0.0021 0.61 0.0016 0.27 0.0004 0.24 0.0003
Path 2 0.62 0.0001 0.67 0.0001 0.22 0.00003 0.24 0.00004
Path 3 0.27 0.0023 0.76 0.0015 0.069 0.0006 0.19 0.0003
Path 4 0.53 0.0009 0.33 0.0017 0.16 0.0002 0.10 0.0004

5.3. Overall performance analysis
To evaluate the overall performance of ILC in the workspace, multiple pick-and-place trajectories are selected,
as displayed in Figure 11. Table 4 shows the maximum and mean tracking errors of the joints along with
different paths, from which it can be seen that all the joint errors along with the selected trajectories can
converge to a value after iterative learning, and the converged magnitudes are quite close.

http://dx.doi.org/10.20517/ir.2022.02


Page 102 Li et al. Intell Robot 2022;2(1):89–104 I http://dx.doi.org/10.20517/ir.2022.02

Table 5. Results of different working frequencies with the proposed controller

Max. Error (deg) Mean Error (deg)

Joint 𝑖 Time 𝑖 1 2 3 4 1 2 3 4
0.25 0.71 0.0021 0.61 0.0016 0.27 0.0004 0.24 0.0003
0.15 0.78 0.0039 0.68 0.0021 0.37 0.0013 0.33 0.0007
0.50 0.58 0.0004 0.50 0.00025 0.23 0.0001 0.20 0.00008

Table 6. Results by tracking different PPO trajectories

Error Type Joint 𝑖 4–5-6-7 th polynomial 5 th polynomial
Max. Error (deg) Joint 1 0.7113 0.6854

Joint 2 0.0021 0.0032
Joint 3 0.6116 0.5875
Joint 4 0.0016 0.0020

Mean Error (deg) Joint 1 0.2697 0.2707
Joint 2 0.0004 0.0013
Joint 3 0.2404 0.2447
Joint 4 0.0003 0.0009

Figure 12. The varying RMSEs for different trajectories: (A) Joints 1 and 3; and (B) joints 2 and 4.

Moreover, different working frequencies and trajectories are selected to evaluate the generalization ability of
the controller. The results are listed in Tables 5 and 6, respectively. Figure 12 shows the varying RMSE for
different trajectories.

From the results, it can be seen that the proposed controller shows good performance under different operating
frequencies and different trajectories, meaning that the proposed control law can work effectively to track
different task trajectories and have good generalization capabilities.

6. CONCLUSIONS
In this work, an open-closed loop PD type iterative learning control method is proposed for parallel robots to
track repetitive work trajectories, thanks to its advantages of simple implementation and practicability in in-
dustrial engineering. According to the complexity and uncertainties of the working environment, two external
disturbances, i.e., repetitive and non-repetitive ones, are taken into account for the model-based control de-
sign. The designed controller is compared with the D-ILC law and evaluated along with a 4-dof parallel robot,
and the results show the better performance of the PD-ILC law compared with the classical D-ILC law. The
test results with and without disturbances also show the robustness in terms of the trajectory tracking errors.
In addition, different working frequencies and trajectories are adopted to evaluate the generalization capabili-
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ties of the controller, and the results show that the proposed PD-ILC controller has good overall performance.
The developed controller can effectively work with acceptable motion errors and computation burden from
the perspective of industrial engineering, which is applicable to other high-speed parallel robots of this family.
In the future, the control variables will be optimized for performance improvement.
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The graphical abstract should be submitted as a separate document in the online submission system. Please provide an 
image with a minimum of 531 × 1328 pixels (h × w) or proportionally more. The image should be readable at a size of 5 cm 
× 13 cm using a regular screen resolution of 96 dpi. Preferred file types: TIFF, PSD, AI, JPEG, and EPS files.
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2.3.1.5 Keywords
Three to eight keywords should be provided, which are specific to the article, yet reasonably common within the subject 
discipline.

2.3.2 Main Text
Manuscripts of different types are structured with different sections of content. Please refer to Types of Manuscripts to 
make sure which sections should be included in the manuscripts.

2.3.2.1 Introduction
The introduction should contain background that puts the manuscript into context, allow readers to understand why the 
study is important, include a brief review of key literature, and conclude with a brief statement of the overall aim of the 
work and a comment about whether that aim was achieved. Relevant controversies or disagreements in the field should be 
introduced as well.

2.3.2.2 Methods
The methods should contain sufficient details to allow others to fully replicate the study. New methods and protocols should 
be described in detail while well-established methods can be briefly described or appropriately cited. Statistical terms, 
abbreviations, and all symbols used should be defined clearly. Protocol documents for clinical trials, observational studies, 
and other non-laboratory investigations may be uploaded as supplementary materials.

2.3.2.3 Results
This section contains the findings of the study. Results of statistical analysis should also be included either as text or as 
tables or figures if appropriate. Authors should emphasize and summarize only the most important observations. Data on 
all primary and secondary outcomes identified in the section Methods should also be provided. Extra or supplementary 
materials and technical details can be placed in supplementary documents.

2.3.2.4 Discussion
This section should discuss the implications of the findings in context of existing research and highlight limitations of the 
study. Future research directions may also be mentioned.

2.3.2.5 Conclusion
It should state clearly the main conclusions and include the explanation of their relevance or importance to the field.

2.3.3 Back Matter
2.3.3.1 Acknowledgments
Anyone who contributed towards the article but does not meet the criteria for authorship, including those who provided 
professional writing services or materials, should be acknowledged. Authors should obtain permission to acknowledge 
from all those mentioned in the Acknowledgments section. This section is not added if the author does not have anyone to 
acknowledge.

2.3.3.2 Authors’ Contributions
Each author is expected to have made substantial contributions to the conception or design of the work, or the acquisition, 
analysis, or interpretation of data, or the creation of new software used in the work, or have drafted the work or substantively 
revised it.
Please use Surname and Initial of Forename to refer to an author’s contribution. For example: made substantial contributions 
to conception and design of the study and performed data analysis and interpretation: Salas H, Castaneda WV; performed 
data acquisition, as well as providing administrative, technical, and material support: Castillo N, Young V.
If an article is single-authored, please include “The author contributed solely to the article.” in this section.

2.3.3.3 Availability of Data and Materials
In order to maintain the integrity, transparency and reproducibility of research records, authors should include this section 
in their manuscripts, detailing where the data supporting their findings can be found. Data can be deposited into data 
repositories or published as supplementary information in the journal. Authors who cannot share their data should state 
that the data will not be shared and explain it. If a manuscript does not involve such issues, please state “Not applicable.” 
in this section.

2.3.3.4 Financial Support and Sponsorship
All sources of funding for the study reported should be declared. The role of the funding body in the experiment design, 
collection, analysis and interpretation of data, and writing of the manuscript should be declared. Any relevant grant numbers 
and the link of funder’s website should be provided if any. If the study is not involved with this issue, state “None.” in this 
section.
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2.3.3.5 Conflicts of Interest
Authors must declare any potential conflicts of interest that may be perceived as inappropriately influencing the 
representation or interpretation of reported research results. If there are no conflicts of interest, please state “All authors 
declared that there are no conflicts of interest.” in this section. Some authors may be bound by confidentiality agreements. 
In such cases, in place of itemized disclosures, we will require authors to state “All authors declared that they are bound by 
confidentiality agreements that prevent them from disclosing their conflicts of interest in this work.”. If authors are unsure 
whether conflicts of interest exist, please refer to the “Conflicts of Interest” of IR Editorial Policies for a full explanation.

2.3.3.6 Ethical Approval and Consent to Participate
Research involving human subjects, human material or human data must be performed in accordance with the Declaration 
of Helsinki and approved by an appropriate ethics committee. An informed consent to participate in the study should also 
be obtained from participants, or their parents or legal guardians for children under 16. A statement detailing the name of 
the ethics committee (including the reference number where appropriate) and the informed consent obtained must appear 
in the manuscripts reporting such research.
Studies involving animals and cell lines must include a statement on ethical approval. More information is available at 
Editorial Policies.
If the manuscript does not involve such issue, please state “Not applicable.” in this section.

2.3.3.7 Consent for Publication
Manuscripts containing individual details, images or videos, must obtain consent for publication from that person, or in 
the case of children, their parents or legal guardians. If the person has died, consent for publication must be obtained from 
the next of kin of the participant. Manuscripts must include a statement that written informed consent for publication was 
obtained. Authors do not have to submit such content accompanying the manuscript. However, these documents must be 
available if requested. If the manuscript does not involve this issue, state “Not applicable.” in this section.

2.3.3.8 Copyright
Authors retain copyright of their works through a Creative Commons Attribution 4.0 International License that clearly 
states how readers can copy, distribute, and use their attributed research, free of charge. A declaration “© The Author(s) 
2022.” will be added to each article. Authors are required to sign License to Publish before formal publication.

2.3.3.9 References
References should be numbered in order of appearance at the end of manuscripts. In the text, reference numbers should be 
placed in square brackets and the corresponding references are cited thereafter. If the number of authors is less than or equal 
to six, we require to list all authors’ names. If the number of authors is more than six, only the first three authors’ names are 
required to be listed in the references, other authors’ names should be omitted and replaced with “et al.”. Abbreviations of 
the journals should be provided on the basis of Index Medicus. Information from manuscripts accepted but not published 
should be cited in the text as “Unpublished material” with written permission from the source.

References should be described as follows, depending on the types of works:
Types Examples
Journal articles by 
individual authors

Weaver DL, Ashikaga T, Krag DN, et al. Effect of occult metastases on survival in node-negative 
breast cancer. N Engl J Med 2011;364:412-21. [PMID: 21247310 DOI: 10.1056/NEJMoa1008108]

Organization as author Diabetes Prevention Program Research Group. Hypertension, insulin, and proinsulin in 
participants with impaired glucose tolerance. Hypertension 2002;40:679-86. [DOI: 10.1161/01.
HYP.0000035706.28494.09]

Both personal authors and 
organization as author

Vallancien G, Emberton M, Harving N, van Moorselaar RJ; Alf-One Study Group. Sexual dysfunction 
in 1,274 European men suffering from lower urinary tract symptoms. J Urol 2003;169:2257-61. [PMID: 
12771764 DOI: 10.1097/01.ju.0000067940.76090.73]

Journal articles not in 
English

Zhang X, Xiong H, Ji TY, Zhang YH, Wang Y. Case report of anti-N-methyl-D-aspartate receptor 
encephalitis in child. J Appl Clin Pediatr 2012;27:1903-7. (in Chinese)

Journal articles ahead of 
print

Odibo AO. Falling stillbirth and neonatal mortality rates in twin gestation: not a reason for 
complacency. BJOG 2018; Epub ahead of print [PMID: 30461178 DOI: 10.1111/1471-0528.15541]

Books Sherlock S, Dooley J. Diseases of the liver and billiary system. 9th ed. Oxford: Blackwell Sci Pub; 
1993. pp. 258-96.

Book chapters Meltzer PS, Kallioniemi A, Trent JM. Chromosome alterations in human solid tumors. In: Vogelstein 
B, Kinzler KW, editors. The genetic basis of human cancer. New York: McGraw-Hill; 2002. pp. 93-
113.

Online resource FDA News Release. FDA approval brings first gene therapy to the United States. Available from: 
https://www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/ucm574058.htm. [Last accessed 
on 30 Oct 2017]
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Conference proceedings Harnden P, Joffe JK, Jones WG, Editors. Germ cell tumours V. Proceedings of the 5th Germ Cell 
Tumour Conference; 2001 Sep 13-15; Leeds, UK. New York: Springer; 2002.

Conference paper Christensen S, Oppacher F. An analysis of Koza's computational effort statistic for genetic 
programming. In: Foster JA, Lutton E, Miller J, Ryan C, Tettamanzi AG, editors. Genetic 
programming. EuroGP 2002: Proceedings of the 5th European Conference on Genetic Programming; 
2002 Apr 3-5; Kinsdale, Ireland. Berlin: Springer; 2002. pp. 182-91.

Unpublished material Tian D, Araki H, Stahl E, Bergelson J, Kreitman M. Signature of balancing selection in Arabidopsis. 
Proc Natl Acad Sci U S A. Forthcoming 2002.

The journal also recommends that authors prepare references with a bibliography software package, such as EndNote to 
avoid typing mistakes and duplicated references.

2.3.3.10 Supplementary Materials
Additional data and information can be uploaded as Supplementary Materials to accompany the manuscripts. The 
supplementary materials will also be available to the referees as part of the peer-review process. Any file format is 
acceptable, such as data sheet (word, excel, csv, cdx, fasta, pdf or zip files), presentation (powerpoint, pdf or zip files), image 
(cdx, eps, jpeg, pdf, png or tiff), table (word, excel, csv or pdf), audio (mp3, wav or wma) or video (avi, divx, flv, mov, mp4, 
mpeg, mpg or wmv). All information should be clearly presented. Supplementary materials should be cited in the main text 
in numeric order (e.g., Supplementary Figure 1, Supplementary Figure 2, Supplementary Table 1, Supplementary Table 2, 
etc.). The style of supplementary figures or tables complies with the same requirements on figures or tables in main text. 
Videos and audios should be prepared in English, and limited to a size of 500 MB.

2.4 Manuscript Format
2.4.1 File Format
Manuscript files can be in DOC and DOCX formats and should not be locked or protected.
Manuscript prepared in LaTex must be collated into one ZIP folder (including all source files and images, so that the 
Editorial Office can recompile the submitted PDF).
When preparing manuscripts in different file formats, please use the corresponding Manuscript Templates.

2.4.2 Length
There are no restrictions on paper length, number of figures, or number of supporting documents. Authors are encouraged 
to present and discuss their findings concisely.

2.4.3 Language
Manuscripts must be written in English.

2.4.4 Multimedia Files
The journal supports manuscripts with multimedia files. The requirements are listed as follows:
Video or audio files are only acceptable in English. The presentation and introduction should be easy to understand. The 
frames should be clear, and the speech speed should be moderate;
A brief overview of the video or audio files should be given in the manuscript text;
The video or audio files should be limited to a size of up to 500 MB;
Please use professional software to produce high-quality video files, to facilitate acceptance and publication along with the 
submitted article. Upload the videos in mp4, wmv, or rm format (preferably mp4) and audio files in mp3 or wav format.

2.4.5 Figures
Figures should be cited in numeric order (e.g., Figure 1, Figure 2) and placed after the paragraph where it is first cited;
Figures can be submitted in format of TIFF, PSD, AI, EPS or JPEG, with resolution of 300-600 dpi;
Figure caption is placed under the Figure;
Diagrams with describing words (including, flow chart, coordinate diagram, bar chart, line chart, and scatter diagram, etc.) 
should be editable in word, excel or powerpoint format. Non-English information should be avoided;
Labels, numbers, letters, arrows, and symbols in figure should be clear, of uniform size, and contrast with the background;
Symbols, arrows, numbers, or letters used to identify parts of the illustrations must be identified and explained in the 
legend;
Internal scale (magnification) should be explained and the staining method in photomicrographs should be identified;
All non-standard abbreviations should be explained in the legend;
Permission for use of copyrighted materials from other sources, including re-published, adapted, modified, or partial 
figures and images from the internet, must be obtained. It is authors’ responsibility to acquire the licenses, to follow any 
citation instruction requested by third-party rights holders, and cover any supplementary charges.
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2.4.6 Tables
Tables should be cited in numeric order and placed after the paragraph where it is first cited;
The table caption should be placed above the table and labeled sequentially (e.g., Table 1, Table 2);
Tables should be provided in editable form like DOC or DOCX format (picture is not allowed);
Abbreviations and symbols used in table should be explained in footnote;
Explanatory matter should also be placed in footnotes;
Permission for use of copyrighted materials from other sources, including re-published, adapted, modified, or partial tables 
from the internet, must be obtained. It is authors’ responsibility to acquire the licenses, to follow any citation instruction 
requested by third-party rights holders, and cover any supplementary charges.

2.4.7 Abbreviations
Abbreviations should be defined upon first appearance in the abstract, main text, and in figure or table captions and used 
consistently thereafter. Non-standard abbreviations are not allowed unless they appear at least three times in the text. 
Commonly-used abbreviations, such as DNA, RNA, ATP, etc., can be used directly without definition. Abbreviations in 
titles and keywords should be avoided, except for the ones which are widely used.

2.4.8 Italics
General italic words like vs., et al., etc., in vivo, in vitro; t test, F test, U test; related coefficient as r, sample number as n, 
and probability as P; names of genes; names of bacteria and biology species in Latin.

2.4.9 Units
SI Units should be used. Imperial, US customary and other units should be converted to SI units whenever possible. There 
is a space between the number and the unit (i.e., 23 mL). Hour, minute, second should be written as h, min, s.

2.4.10 Numbers
Numbers appearing at the beginning of sentences should be expressed in English. When there are two or more numbers 
in a paragraph, they should be expressed as Arabic numerals; when there is only one number in a paragraph, number < 10 
should be expressed in English and number > 10 should be expressed as Arabic numerals. 12345678 should be written as 
12,345,678.

2.4.11 Equations
Equations should be editable and not appear in a picture format. Authors are advised to use either the Microsoft Equation 
Editor or the MathType for display and inline equations.
Display equations should be numbered consecutively, using Arabic numbers in parentheses;
Inline equations should not be numbered, with the same/similar size font used for the main text.

2.4.12 Headings
In the main body of the paper, three different levels of headings may be used.
Level one headings: they should be in bold, and numbered using Arabic numbers, such as 1. INTRODUCTION, and 2. 
METHODS, with all letters capitalized;
Level two headings: they should be in bold and numbered after the level one heading, such as 2.1 Statistical analyses, 2.2 
..., 2.3..., etc., with the first letter capitalized;
Level three headings: they should be italicized, and numbered after the level two heading, such as 2.1.1 Data distributions,and 
2.1.2 outliers and linear regression, with the first letter capitalized.

2.4.13 Text Layout
As the electronic submission will provide the basic material for typesetting, it is important to prepare papers in the general 
editorial style of the journal.
The font is Times New Roman;
The font size is 12pt;
Single column, 1.5× line spacing;
Insert one line break (one Return) before the heading and paragraph, if the heading and paragraph are adjacent, insert a line 
break before the heading only;
No special indentation;
Alignment is left end;
Insert consecutive line numbers;
For other details please refer to the Manuscript Templates.

2.5 Submission Link 
Submit an article via https://oaemesas.com/login?JournalId=ir.
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3. Publication Ethics Statement
OAE is a member of the Committee on Publication Ethics (COPE). We fully adhere to its Code of Conduct and to its Best 
Practice Guidelines.

The Editors of this journal enforce a rigorous peer-review process together with strict ethical policies and standards to 
guarantee to add high-quality scientific works to the field of scholarly publication. Unfortunately, cases of plagiarism, 
data falsification, image manipulation, inappropriate authorship credit, and the like, do arise. The Editors of IR take such 
publishing ethics issues very seriously and are trained to proceed in such cases with zero tolerance policy.

Authors wishing to publish their papers in IR must abide by the following:

The author(s) must disclose any possibility of a conflict of interest in the paper prior to submission;
The authors should declare that there is no academic misconduct in their manuscript in the cover letter;
Authors should accurately present their research findings and include an objective discussion of the significance of their 
findings;
Data and methods used in the research need to be presented in sufficient detail in the manuscript so that other researchers 
can replicate the work;
Authors should provide raw data if referees and the Editors of the journal request;
Simultaneous submission of manuscripts to more than one journal is not tolerated;
Republishing content that is not novel is not tolerated (for example, an English translation of a paper that is already published 
in another language will not be accepted);
The manuscript should not contain any information that has already been published. If you include already published 
figures or images, please get the necessary permission from the copyright holder to publish under the CC-BY license;
Plagiarism, data fabrication and image manipulation are not tolerated;
Plagiarism is not acceptable in OAE journals.

Plagiarism involves the inclusion of large sections of unaltered or minimally altered text from an existing source without 
appropriate and unambiguous attribution, and/or an attempt to misattribute original authorship regarding ideas or results, 
and copying text, images, or data from another source, even from your own publications, without giving credit to the source.

As to reusing the text that is copied from another source, it must be between quotation marks and the source must be cited. 
If a study’s design or the manuscript’s structure or language has been inspired by previous studies, these studies must be 
cited explicitly.

If plagiarism is detected during the peer-review process, the manuscript may be rejected. If plagiarism is detected after 
publication, we may publish a Correction or retract the paper.

Falsification is manipulating research materials, equipment, or processes, or changing or omitting data or results so that the 
findings are not accurately represented in the research record.

Image files must not be manipulated or adjusted in any way that could lead to misinterpretation of the information provided 
by the original image.

Irregular manipulation includes: introduction, enhancement, moving, or removing features from the original image; the 
grouping of images that should be presented separately, or modifying the contrast, brightness, or color balance to obscure, 
eliminate, or enhance some information.

If irregular image manipulation is identified and confirmed during the peer-review process, we may reject the manuscript. 
If irregular image manipulation is identified and confirmed after publication, we may publish a Correction or retract the 
paper.

OAE reserves the right to contact the authors’ institution(s) to investigate possible publication misconduct if the Editors find 
conclusive evidence of misconduct before or after publication. OAE has a partnership with iThenticate, which is the most 
trusted similarity checker. It is used to analyze received manuscripts to avoid plagiarism to the greatest extent possible. 
When plagiarism becomes evident after publication, we will retract the original publication or require modifications, 
depending on the degree of plagiarism, context within the published article, and its impact on the overall integrity of the 
published study. Journal Editors will act under the relevant COPE guidelines.

4. Authorship
Authorship credit of IR should be solely based on substantial contributions to a published study, as specified in the 
following four criteria:
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1. Substantial contributions to the conception or design of the work, or the acquisition, analysis, or interpretation of data 
for the work;
2. Drafting the work or revising it critically for important intellectual content;
3. Final approval of the version to be published;
4. Agreement to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity 
of any part of the work are appropriately investigated and resolved.

All those who meet these criteria should be identified as authors. Authors must specify their contributions in the section 
Authors’ Contributions of their manuscripts. Contributors who do not meet all the four criteria (like only involved in 
acquisition of funding, general supervision of a research group, general administrative support, writing assistance, 
technical editing, language editing, proofreading, etc.) should be acknowledged in the section of Acknowledgement in the 
manuscript rather than being listed as authors.

If a large multiple-author group has conducted the work, the group ideally should decide who will be authors before the 
work starts and confirm authors before submission. All authors of the group named as authors must meet all the four 
criteria for authorship.

5. Reviewers Exclusions
You are welcome to exclude a limited number of researchers as potential Editors or reviewers of your manuscript. To 
ensure a fair and rigorous peer review process, we ask that you keep your exclusions to a maximum of three people. If you 
wish to exclude additional referees, please explain or justify your concerns—this information will be helpful for Editors 
when deciding whether to honor your request.

6. Editors and Journal Staff as Authors
Editorial independence is extremely important and OAE does not interfere with Editorial decisions. Editorial staff or 
Editors shall not be involved in processing their own academic work. Submissions authored by Editorial staff/Editors 
will be assigned to at least two independent outside reviewers. Decisions will be made by the Editor-in-Chief, including 
Special Issue papers. Journal staff are not involved in the processing of their own work submitted to any OAE journals.

7. Conflict of Interests
OAE journals require authors to declare any possible financial and/or non-financial conflicts of interest at the end of 
their manuscript and in the cover letter, as well as confirm this point when submitting their manuscript in the submission 
system. If no conflicts of interest exist, authors need to state “All authors declared that there are no conflicts of interest”. 
We also recognize that some authors may be bound by confidentiality agreements, in which cases authors need to state “All 
authors declared that they are bound by confidentiality agreements that prevent them from disclosing their competing 
interests in this work”.

8. Editorial Process
8.1. Pre-Check
New submissions are initially checked by the Managing Editor from the perspectives of originality, suitability, structure 
and formatting, conflicts of interest, background of authors, etc. Poorly prepared manuscripts may be rejected at this stage. 
If your manuscript does not meet one or more of these requirements, we will return it for further revisions.

Once your manuscript has passed the initial check, it will be assigned to the Assistant Editor, and then the Editor-in-Chief, 
or an Associate Editor in the case of a conflict of interest, will be notified of the submission and invited to review. Regarding 
Special Issue paper, after passing the initial check, the manuscript will be successively assigned to the Assistant Editor, and 
then to the Editor-in-Chief, or an Associate Editor in the case of conflict of interest for the Editor-in-Chief to review. The 
Editor-in-Chief, or the Associate Editor may reject manuscripts that they deem highly unlikely to pass peer review without 
further consultation. Once your manuscript has passed the Editorial assessment, the Associate Editor will start to organize 
peer-review.

All manuscripts submitted to IR are screened using CrossCheck powered by iThenticate to identify any plagiarized content. 
Your study must also meet all ethical requirements as outlined in our Editorial Policies. If the manuscript does not pass any 
of these checks, we may return it to you for further revisions or decline to consider your study for publication.

8.2. Peer Review
IR operates a single-blind review process, which means that reviewers know the names of authors, but the names of the 
reviewers are hidden from the authors. The scientific quality of the research described in the manuscript is assessed 
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by a minimum of two independent expert reviewers. The Editor-in-Chief is responsible for the final decision regarding 
acceptance or rejection of the manuscript.

All information contained in your manuscript and acquired during the review process will be held in the strictest 
confidence.

8.3. Decisions
Your research will be judged on scientific soundness only, not on its perceived impact as judged by Editors or referees. 
There are three possible decisions: Accept (your study satisfies all publication criteria), Invitation to Revise (more work 
is required to satisfy all criteria), and Reject (your study fails to satisfy key criteria and it is highly unlikely that further 
work can address its shortcomings). All of the following publication criteria must be fulfilled to enable your manuscript 
to be accepted for publication:

Originality
The study reports original research and conclusions.
Data availability
All data to support the conclusions either have been provided or are otherwise publicly available.
Statistics
All data have been analyzed through appropriate statistical tests and these are clearly defined.
Methods
The methods are described in sufficient detail to be replicated.
Citations
Previous work has been appropriately acknowledged.
Interpretation
The conclusions are a reasonable extension of the results.
Ethics
The study design, data presentation, and writing style comply with our Editorial Policies.

8.4. Revisions
Authors are required to submit the revised manuscript within one week if minor revision is recommended while two 
weeks if major revision recommended or one month if additional experiments are needed. If authors need more than one 
month to revise their manuscript, we usually require the authors to resubmit their paper. We request that a document of 
point-to-point response to all comments of reviewers and the Editor-in-Chief or the Associate Editor should be supplied 
along with the revised manuscript to allow quick assessment of your revised manuscript. This document should outline 
in detail how each of the comments was addressed in the revised manuscript or should provide a rebuttal to the criticism. 
Manuscripts may or may not be sent to reviewers after revision, dependent on whether the reviewer requested to see the 
revised version. Apart from in exceptional circumstances, IR only supports a round of major revision per manuscript.

9. Contact Us
Journal Contact
Intelligence & Robotics Editorial Office
Suite 1504, Plaza A, Xi’an National Digital Publishing Base,
No. 996 Tiangu 7th Road, Gaoxin District, Xi’an 710077, Shaanxi, China.

Managing Editor
Lijun Jin
Email: editorial@intellrobot.com
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