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Abstract
This paper presents elastodynamic modeling and analysis for a five-axis lightweight robotic arm. Natural frequencies
are derived and visualized within the dexterous workspace to show the overall performances and compare them to
the frequencies when the robotics is with payload. The comparison shows that the payload has a relatively small
influence to the first- and second-order frequencies. Sensitivity analysis is conducted, and the system’s frequency is
more sensitive to the second joint stiffness than the others. Moreover, observations from the displacement response
analysis reveal that the robotics produces linear elastic displacements of the same level between the loaded and
unloaded workingmodes but larger rotational deflections under the loaded working condition. Themain contribution
of this work lies in that a systematic approach of elastodynamic analysis for serial robotic manipulators is formulated,
where the arm gravity and external load are taken into account to investigate the dynamic behaviors of the robotic
arms, i.e., frequencies, sensitivity analysis, and displacement responses, under the loaded mode.

Keywords: Lightweight robotic arm, elastodynamics, natural frequency, displacement response

1. INTRODUCTION
Lightweight robotic arms and anthropomorphic assistive robots with high payload capacity are desired for
applications of industry and welfare, among other fields, such as assisted daily living [1–3], pick-and-place op-
erations [4], etc. Pick-and-place robots are well suited for a static environment where the task is repeated and
precise tolerances are demanded [5]. As a mechanical system, the dynamic characteristics of the robotic arm
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is of importance to account for the requirements of application, such as high precision, speed, and payload.
Henceforth, higher natural frequencies and low elastic displacements of a roboticmanipulator will allow higher
operational speeds and working cycles for efficient productivity [6]. Natural frequencies indicate the condition
in which a mechanism tends to vibrate [7,8]. Differing from a structure or element, the dynamic behavior of
a mechanism usually heavily depends on its architecture and configurations [9]; thus, it is not a trivial task to
characterize the robot dynamics throughout the workspace, which calls for the kineto-elastodynamic analysis
to provide the fundamentals of the modeling, design and control.

The elastodynamic modeling and analysis of a robotic manipulator have been reported previously [10,11], and
they are roughly grouped into two categories: lumped modeling [12–15] and distributed-flexibilities model-
ing [9,16–19]. In general, with lumped modeling it is simpler to model the elastodynamic equation with accept-
able computational accuracy, while the latter provides a more accurate model but with the high-dimensional
generalized coordinate space and more complex procedure [20]. The commonly used method to study the
elasticity of the robotic manipulators is the virtual joint method (VJM) as it can provide acceptable compu-
tation accuracy that is close to that of finite element analysis (FEA) [21]. Besides, VJM can be time efficient.
VJM is based on pseudo-rigid body models with “virtual joints” [22–25]. Generally, the link flexibilities and
linear/torsional springs take into account the bending contributions to the mechanism [26–29]. The stiffness
formulated in the above approaches is limited to a subspace defined by the degrees of freedom (dofs) of the
manipulator end-effector. Pashkevich et al. [30] overcame this issue by introducing a full-mobility lumped-
parameter model by localizing 6-dof virtual springs to the links’ ends and/or joints. In these models, the
stiffness matrix is calculated in an unloaded equilibrium configuration of a robotic manipulator. On the other
hand, the external loads directly influence the manipulator equilibrium configuration and, consequently, may
modify the static properties. The lightweight design of the robotics accordingly decreases the link structural
stiffness; thus, the robot geometry change due to external loads should be considered [31–33]. Consequently,
elastodynamics of the robotic manipulators is an important concern in their design and applications. Based
on the matrix structural analysis, Cammarata et al. [9,34] proposed an algorithm to assemble the stiffness matrix
to investigate the manipulators with lower kinematic pairs. In this manner, the overall robotic manipulator in-
parallel architecture can be split into substructures for modeling the elastodynamics [35]. Wu et al. [36] analyzed
and compared the stiffness and natural frequencies of a 3-dof parallel manipulator with/without a redundant
leg, where the joint deformations are ignored in the stiffness modeling. The small-amplitude deformations
of the active joints can be considered as parameter uncertainties in terms of small variations to be integrated
into the dynamic model [37]. Briot and Khalil [14] used the Newton–Euler recursive approach to develop a gen-
eral symbolic elastodynamic calculation model for flexible parallel robots. Taghvaeipour et al. [15] derived the
posture-dependent stiffness matrix in the elastodynamic modeling by resorting to the generalized spring con-
cept. The previous models were established in the nominal configurations; hence, the geometry changes of the
manipulator in this work are considered in the elastodynamic modeling and analysis.

In this paper, the elastodynamic characteristics of a lightweight robotic arm are investigated. The arm grav-
ity and external load are taken into account to derive the stiffness matrix. Isocontours of natural frequencies
over the dexterous workspace are formulated and sensitivity analysis is conducted. The frequencies and dis-
placement responses of the robotics with payload are analyzed and compared with the dynamic behaviors of
the unloaded mode. The main contribution of this work lies in that a systematic approach of elastodynamic
analysis for serial robotic manipulators is formulated, where the arm gravity and external load are taken into
account to investigate the dynamic behaviors of the robotic arms, i.e., frequencies, sensitivity analysis, and
displacement responses, under the loaded mode.

http://dx.doi.org/10.20517/ir.2021.11
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Figure 1. The 5-dof lightweight robotic arm and its coordinate systems [38].

Table 1. D–H parameters of the 5-dof robotic arm

Joint 𝑖 𝛼𝑖 𝑎𝑖 [mm] 𝑑𝑖 [mm] 𝜃𝑖

1 𝜋/2 0 250 𝜃1

2 0 600 0 𝜃2

3 𝜋/2 0 0 𝜃3

4 −𝜋/2 0 600 𝜃4

5 𝜋/2 0 150 𝜃5

2. KINEMATICS OF THE LIGHTWEIGHT ROBOTIC ARM
The lightweight robotic arm under study has five degrees of freedom (dof) [38], which adopts a modular design
approach, as shown in Figure 1. The revolute joints are composed of CPU series gearboxes of Harmonic Drive
and Maxon motor with gearhead to enhance the torque capabilities, except Joint 4 with geared motor. The
actuators of joints are controlled by Maxon EPOS controllers. The Controller Area Network (CANopen) bus
is adopted to build the communications between motors and controllers, and A CAN–USB interface is used
to establish the communications between CANopen bus and the PC [38]. In accordance with the Denavit–
Hartenberg (D–H) convention [39], the Cartesian coordinate systems are established accordingly.

2.1. Kinematics of robotic arm
Throughout this work, i, j, and k stand for the unit vectors of the 𝑥-axis, 𝑦-axis, and 𝑧-axis, respectively. The
transformation matrix in forward kinematics of the end-effector in reference frame is expressed as

0A5 =

[
R q
0 1

]
=

5∏
𝑖=1

𝑖−1A𝑖; 𝑖−1A𝑖 =

[
𝑖−1R𝑖

𝑖−1q𝑖
0 1

]
(1)

with

𝑖−1R𝑖 = R(𝑧𝑖−1, 𝜃𝑖)R(𝑥𝑖 , 𝛼𝑖) (2a)
𝑖−1q𝑖 =

[
𝑎𝑖 cos𝛼𝑖 𝑎𝑖 sin𝛼𝑖 𝑑𝑖

]𝑇 (2b)

where D–H parameters are given in Table 1, and the inverse geometry problem for this robotics is well docu-
mented in the literature [8].

2.2. Kinematic jacobian matrix
The velocities between the joints and end-effector are mapped with the Kinematic Jacobian matrix

¤𝜽 = J−1v𝑒 𝑓 (3)

http://dx.doi.org/10.20517/ir.2021.11
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Figure 2. The quarter of the reachable and dexterous workspace (red volume) for the robotic arm.

where ¤𝜽 =
[ ¤𝜃1 ¤𝜃2 ¤𝜃3 ¤𝜃4 ¤𝜃5

]𝑇 denotes the joint angular velocities and v𝑒 𝑓 =
[
𝝎𝑇 ¤q𝑇

]𝑇 is the velocity of
the end-effector. Moreover, J is the kinematic Jacobian matrix of the robotic arm [40], namely,

J =
[
j1 j2 j3 j4 j5

]
where j𝑖 =

[
z𝑖−1

p𝑖−1 × z𝑖−1

]
(4)

with
z𝑖−1 = R𝑖−1k; p𝑖−1 = q𝑖−1 − q (5)

where R𝑖−1 and q𝑖−1 denote the rotation matrix and position vector of the transformation matrix from the
reference coordinate system to the (𝑖 − 1)th coordinate system, respectively, which can be extracted from∏𝑖−1
𝑖=0

𝑖−1A𝑖 in Equation (1).

2.3. Dexterous workspace
The reachable workspace of the robotic arm can be visualized by considering the limitation of the joint dis-
placements and link dimensions. To effectively perform the kinematic performance, a dexterous workspace
is defined, throughout which the inverse of the condition number of the Jacobian matrix is greater than 0.2,
namely 𝜅−1(J) ≥ 0.2. Since the Jacobianmatrix of Equation (4) is not homogeneous, a characteristic length [41]

is introduced to normalize the Jacobian matrix as follows:

j′𝑖 =
[

z𝑖−1
p𝑖−1 × z𝑖−1/𝐿

]
; 𝐿2 =

1
5

5∑
𝑖=1

‖p𝑖−1 × z𝑖−1‖2 (6)

By constraining the condition number of the kinematic Jacobian matrix, a regular dexterous workspace is
quarterly visualized in Figure 2.

3. ELASTODYNAMIC MODEL OF ROBOT
The elastodynamic modeling procedure pertains to the calculation of the stiffness and mass matrices of the
manipulator, which is described in the following sections. Prior to the derivation of the elastodynamic model,
the following assumptions are made:

• The actuator stiffness is considered as an 1-dof torsional spring, while the link is considered as cantilever
with a 6-dof spatial spring located at the end but treated as rigid.

http://dx.doi.org/10.20517/ir.2021.11


Wu. Intell Robot 2021;1(2):99-115 I http://dx.doi.org/10.20517/ir.2021.11 Page 103

Figure 3. Virtual spring model of the 5-dof robotic arm with auxiliary loads, where 𝐴𝑐 stands for the actuator and EE for end-effector.

• The centers of mass of the regular components are coincident with their geometric centers.
• The sum of moments of inertia of the actuators and Harmonic drivers are considered as lumped.

3.1. Stiffness matrix
To derive the elastodynamic equation of the robotic arm, the stiffness matrix is calculated with the virtual
spring approach [42], based on the screw coordinates [43]. Hence, the component masses and external loads are
taken into account to compute the Cartesian stiffness matrix. Figure 3 shows the VJM model of the robotic
arm, where G 𝑗 , 𝑗 = 1, 2, ..., 7, stands for the gravity and F for the external loads.

Let 𝜽 and 𝜽′ be the original and the deformed displacements of the virtual springs, respectively, following the
principle of virtual work, i.e., the work of the auxiliary forces is equal to the work of internal forces 𝝉𝜃 , namely,∑

(G𝑇
𝑗 𝛿t 𝑗 ) + F𝑇𝛿t = 𝝉𝑇𝜃 (𝜽′ − 𝜽) (7)

where the virtual displacements 𝛿t 𝑗 and 𝛿t can be computed from the linearized geometrical model derived
from 𝛿t 𝑗 = J 𝑗 (𝜽′ − 𝜽) and 𝛿t = J𝜃 (𝜽′ − 𝜽), respectively, J 𝑗 and J𝜃 being the Jacobians, namely,

J𝜃 =
[
j1 j2 J𝑢 j3 J𝑙 j4 j5

]
∈ R6×17 (8)

J 𝑗 = J𝜃 (:, 1 : 𝑘) (9)

where J𝜃 (:, 1 : 𝑘) stands for the first 𝑘 columns in J𝜃 and 𝑘 stands for the total degrees of freedom of the
virtual springs from the base to G 𝑗 . Moreover,

J𝑢 =
[

x1 y1 z1 0 0 0
q2 × x1 q2 × y1 q2 × z1 x1 y1 z1

]
(10a)

J𝑙 =
[

z3 x3 y3 0 0 0
q4 × z3 q4 × x3 q4 × y3 z3 x3 y3

]
(10b)

Equation (7) is rewritten as ∑
(G𝑇

𝑗 J 𝑗 (𝜽′ − 𝜽)) + F𝑇J𝜃 (𝜽′ − 𝜽) = 𝝉𝑇𝜃 (𝜽′ − 𝜽) (11)

consequently, the force equilibrium equation is derived as

𝝉𝜃 =
∑

(J𝑇𝑗 G 𝑗 ) + J𝑇𝜃F = J𝑇𝑔G + J𝑇𝜃F (12)

with
J𝑔 =

[
J𝑇1 J𝑇2 ... J𝑇7

]𝑇 ; G =
[
G𝑇

1 G𝑇
2 ... G𝑇

7
]𝑇 (13)

Assuming that K𝜃 is the stiffness matrix in the joint space, with the linearized force–deflection relation, the
equilibrium condition can be written as

J𝑇𝑔G + J𝑇𝜃F = K𝜃 (𝜽′𝑖 − 𝜽𝑖) (14)

http://dx.doi.org/10.20517/ir.2021.11
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with
K𝜃 = diag

[
𝐾act,1 𝐾act,2 K𝑢 𝐾act,3 K𝑙 𝐾act,4 𝐾act,5

]
(15)

where 𝐾act,𝑖 is the actuation stiffness andK𝑢 andK𝑙 are the upper and lower link stiffness matrices, respectively.

To calculate the stiffness matrix of the loaded mode, a neighborhood in the loaded configuration in which the
external loads and the joint location are supposed to be incremented by small values 𝛿F and 𝛿𝜽 , which can
still satisfy the equilibrium conditions, is considered, leading to

(J𝑔 + 𝛿J𝑔)𝑇G + (J𝜃 + 𝛿J𝜃)𝑇 (F + 𝛿F) = K𝜃 (𝜽′ − 𝜽 + 𝛿𝜽) (16)

and the linearized kinematic constraint
𝛿t = J𝜃𝛿𝜽 (17)

Based on Equation (14), expanding Equation (16) yields

H𝑇
𝑔 ⊗ G𝛿𝜽 + J𝑇𝜃 𝛿F + H𝑇

𝜃 ⊗ F𝛿𝜽 = K𝜃𝛿𝜽 (18)

where the symbol ⊗ represents the Kronecker product between matrices and H𝑔 = 𝜕J𝑔/𝜕𝜽 , H𝜃 = 𝜕J𝜃/𝜕𝜽 .
Combining Equations (17) and (18), the stiffness model of the robotic manipulator is reduced to[

0 J𝜃
J𝑇𝜃 K𝐹 − K𝜃

] [
𝛿F
𝛿𝜽

]
=

[
𝛿t
0

]
(19)

with
K𝐹 = H𝑇

𝑔 ⊗ G + H𝑇
𝜃 ⊗ F (20)

From 𝛿F = K𝛿t, the Cartesian stiffness matrix K of the robotic arm is calculated as

K =
(
J𝜃 (K𝜃 − K𝐹)−1 J𝑇𝜃

)−1
(21)

3.2. Mass matrix
The mass matrix can be derived from the expression of the system’s kinetic energy, consisting of energies of
the revolute joints, links, and end-effector. The energy of the five active joints are

𝐸𝐽 =
1
2

( 5∑
𝑖=1

𝐼𝜃,𝑖 ¤𝜃2 +
5∑
𝑖=3

𝑚𝜃,𝑖v𝑇𝜃,𝑖v𝜃,𝑖

)
(22)

with
v𝜃,3 = E3 ¤𝜽; v𝜃,𝑖 = E45 ¤𝜽 , 𝑖 = 4, 5 (23)

and

E3 =
[
z0 × q2 z1 × (q2 − q1) 03

]
(24a)

E45 =
[
z0 × q4 z1 × (q4 − q1) z2 × (q4 − q2) 03×2

]
(24b)

where 𝐼𝜃,𝑖 is the moment of inertia of the 𝑖th joint, 𝑚𝜃,𝑖 is the mass, and v𝜃,𝑖 is the velocity in the Cartesian
space. Let I𝜃 = diag[𝐼𝜃,1, 𝐼𝜃,2, ..., 𝐼𝜃,5]; then, Equation (22) can be written in a compact form, namely,

𝐸𝐽 =
1
2
¤𝜽𝑇M𝐽

¤𝜽 (25)

with
M𝐽 = I𝜃 + 𝑚𝜃,3E𝑇3 E3 + (𝑚𝜃,4 + 𝑚𝜃,5)E𝑇45E45 (26)

http://dx.doi.org/10.20517/ir.2021.11
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The kinetic energy of the upper/lower links and the wrist link can be expressed as

𝐸𝐿 =
1
2

(
v𝑇𝑢M𝑢v𝑢 + v𝑇𝑙 M𝑙v𝑙 + v𝑇𝑤M𝑤v𝑤

)
(27)

with

M𝑢 =

[
R1I𝑢R𝑇

1 0
0 𝑚𝑢13

]
(28a)

M𝑙 =

[
R3I𝑙R𝑇

3 0
0 𝑚𝑙13

]
(28b)

M𝑤 =

[
R4I𝑤R𝑇

4 0
0 𝑚𝑤13

]
(28c)

where the subscripted I, 𝑚, and v stand for the moment of inertia, mass, and velocities in the Cartesian space,
respectively, and

v𝑢 = E𝑢 ¤𝜽; v𝑙 = E𝑙 ¤𝜽; v𝑤 = E𝑤 ¤𝜽 (29)

with

E𝑢 =
[

z0 z1 03
z0 × q𝑢 z1 × (q𝑢 − q1) 03

]
(30a)

E𝑙 =
[

z0 z1 z2 03×2
z0 × q𝑙 z1 × (q𝑙 − q1) z2 × (q𝑙 − q2) 03×2

]
(30b)

E𝑤 =

[
z0 z1 z2 z3 03×1

z0 × q4 z1 × (q4 − q1) z2 × (q4 − q2) z3 × (q4 − q2) 03×1

]
(30c)

where q𝑢 and q𝑙 are the position vector of the centers of the mass of the upper and lower links, respectively.
Equation (27) can be cast in a matrix form as follows:

𝐸𝐿 =
1
2
¤𝜽𝑇M𝐿

¤𝜽 (31)

with
M𝐿 = E𝑇𝑢M𝑢E𝑢 + E𝑇𝑙 M𝑙E𝑙 + E𝑇𝑤M𝑤E𝑤 (32)

Similarly, the kinetic energy of the end-effector can be obtained as

𝐸𝐸 =
1
2

v𝑇𝑒 𝑓M𝐸v𝑒 𝑓 ; M𝐸 =

[
RI𝑒R𝑇 03

03 𝑚𝑒13

]
(33)

where I𝑒 is the moment of inertia of the end-effector and 𝑚𝑒 is the mass.

From the total kinetic energy of the robotic arm 𝐸 = 𝐸𝐽 +𝐸𝐿 +𝐸𝐸 , the mass matrix M for the robotic arm can
be expressed as

M = M𝐸 + J−𝑇 (M𝐽 + M𝐿)J−1 (34)

3.3. Dynamic equation and analysis
The dynamic equation of the robotic arm can be formulated as

M¥u + C ¤u + Ku = f − M¤v𝑒 𝑓 = F (35)

where C is the damping matrix, F is the resultant force, and u and ¥u are the elastic displacement and accelera-
tion, respectively. Since damping can only slightly influence the natural frequency andmode of free vibrations,
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the damp can be ignored to determine the natural frequencies. Simplification of Equation (35) results in the
linearized elastodynamic equation below

M¥u + Ku = 0 (36)

The rigidity of the systemmay be represented by the natural frequency. The higher is the frequency, the higher
is the stiffness. From Equation (36), we get

det(−𝜔2M + K) = 0 (37)

where 𝑓 = 𝜔/2𝜋 denotes the natural frequency.

The displacement response analysis can be carried out from Equation (35) based on the initial conditions

u0 = u(0); ¤u0 = ¤u(0) (38)

Here, the damping ratios are set to 𝜍 = 6% according to the manipulator structure. From Equation (37), the
displacement vector u can be represented in terms of the modal contributions, namely,

u = Q𝜼 (39)

where Q and 𝜼 are the modal matrix and the vector of the displacements in each mode, respectively. Conse-
quently, Equation (35) can be rewritten as

¥𝜼 +𝚽 ¤𝜼 +𝛀𝜼 = f𝑑 (40)

with

𝚽 = Q𝑇CQ = diag
[
2𝜍𝜔1 2𝜍𝜔2 ... 2𝜍𝜔6

]
(41a)

𝛀 = Q𝑇KQ = diag
[
𝜔2

1 𝜔2
2 ... 𝜔2

6
]

(41b)

f𝑑 = Q𝑇F (41c)

Since the mass and stiffness matrices in Equation (35) are time-varying, the common way to solve such a
problem is to divide the motion period into extremely short intervals, where the stiffness and mass matrices
are considered as constant in each interval. Let 𝑇 denote the complete motion period that is divided into 𝑁
intervals, namely, Δ𝑡 = 𝑇/𝑁 . In the 𝑛th time interval 𝜏 ∈ [𝑡𝑛−1, 𝑡𝑛], the equation of motion in the 𝑖th mode is
expressed as

¥𝜂𝑖 + 2𝜍𝜔𝑖 ¤𝜂𝑖 + 𝜔2
𝑖 𝜂𝑖 = 𝑓𝑑𝑖 (42)

Thus, the 𝑖th mode contributes to the displacement response [44] is

𝜂𝑖 (𝑡𝑛) = 𝑒𝜍𝜔𝑖Δ𝑡

(
cos𝜔𝑑𝑖Δ𝑡 +

𝜍√
1 − 𝜍2

sin𝜔𝑑𝑖Δ𝑡

)
𝜂𝑖 (𝑡𝑛−1)

+ 1
𝜔𝑑𝑖

∫ 𝑡𝑛

𝑡𝑛−1

𝑓𝑑𝑖 (𝜏)𝑒−𝜍𝜔𝑖 (𝑡𝑛−𝜏) sin𝜔𝑑𝑖 (𝑡𝑛 − 𝜏)d𝜏

+
(

1
𝜔𝑑𝑖

𝑒𝜍𝜔𝑖Δ𝑡 sin𝜔𝑑𝑖Δ𝑡
)
¤𝜂𝑖 (𝑡𝑛−1) (43)

where
𝜔𝑑𝑖 = 𝜔𝑖

√
1 − 𝜍2 (44)
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Table 2. Mass and moment of inertia of the active joints

Joint i 1 2 3 4 5
𝐼𝜃,𝑖 [kg · mm2 ] 0.0210 0.0002 0.0001 0.0001 0.0002
𝑚𝜃,𝑖 [kg] − 2.2272 1.8196 2.2442 2.0053

Table 3. The properties of the links and end-effector

Links Mass [kg] Moment of inerita [kg · cm2 ]
upper link 𝑚𝑢 = 4.7995 I𝑢 = diag[1.1884, 25.0670, 24.4940]
lower link 𝑚𝑙 = 1.7795 I𝑙 = diag[4.0802, 4.0861, 0.2345]
wrist link − I𝑤 = diag[0.5556, 0.9154, 0.6119]
end-effector 𝑚𝑒 = 1.2961 I𝑒 = diag[0.4563, 0.4382, 0.2347]

Differentiating Equation (43) with respect to time leads to

¤𝜂𝑖 (𝑡𝑛) = ¤𝜂𝑖,1(𝑡𝑛) + ¤𝜂𝑖,2(𝑡𝑛) + ¤𝜂𝑖,3(𝑡𝑛) (45)

with

¤𝜂𝑖,1(𝑡𝑛) = 𝑒𝜍𝜔𝑖Δ𝑡

(
2𝜍2 − 1√

1 − 𝜍2
𝜔𝑖 sin𝜔𝑑𝑖Δ𝑡 +

2𝜍√
1 − 𝜍2

𝜔𝑑𝑖 cos𝜔𝑑𝑖Δ𝑡

)
𝜂𝑖 (𝑡𝑛−1) (46a)

¤𝜂𝑖,2(𝑡𝑛) =
1
𝜔𝑑𝑖

𝑒𝜍𝜔𝑖Δ𝑡 (𝜍𝜔𝑖 sin𝜔𝑑𝑖Δ𝑡 + 𝜔𝑑𝑖 cos𝜔𝑑𝑖Δ𝑡) ¤𝜂𝑖 (𝑡𝑛−1) (46b)

¤𝜂𝑖,3(𝑡𝑛) =
1
𝜔𝑑𝑖

∫ 𝑡𝑛

𝑡𝑛−1

𝑓𝑑𝑖 (𝜏)𝑒−𝜍𝜔𝑖 (𝑡𝑛−𝜏) (𝜍𝜔𝑖 sin𝜔𝑑𝑖 (𝑡𝑛 − 𝜏) − 𝜔𝑑𝑖 cos𝜔𝑑𝑖 (𝑡𝑛 − 𝜏)) d𝜏 (46c)

Hence, 𝜂𝑖 (𝑡𝑛) and ¤𝜂𝑖 (𝑡𝑛) can be solved as long as 𝜂𝑖 (𝑡𝑛−1) and ¤𝜂𝑖 (𝑡𝑛−1) are given, and

𝜂𝑖 (0) = e𝑇𝑖 Mu(0); ¤𝜂𝑖 (0) = e𝑇𝑖 M ¤u(0) (47)

where e𝑖 is the 𝑖th column of the modal matrix. The total displacement response is calculated by the following
addition

u(𝑡𝑛) =
6∑
𝑖=1

𝜂𝑖 (𝑡𝑛)e𝑖 (𝑡𝑛) (48)

Consequently, the natural frequency and displacement response can be obtained with numerical calculations.

4. NUMERICAL SIMULATION
Elastodynamic characteristics of the robotic arm are investigated in this section. The properties of the robotics
components are listed in Tables 2 and 3, respectively. Moreover, according to the output shaft of the gearbox,
the actuation stiffnesses are calculated and set to 𝐾𝑎𝑐𝑡,𝑖 = 2 · 104 Nm/rad, 𝑖 = 1, ..., 5, and the link stiffness
matrices given in Appendix A are derived by means of FEA with ANSYS [45]. The numerical simulation was
carried out with Matlab.

4.1. Natural frequency
To effectively measure the overall performance of the robotic arm, the distributions of natural frequencies over
the dexterous workspace in Figure 2 are visualized, as displayed in Figures 4 and 5.

Let the end-effector orientation follow the 𝑍𝑋𝑍 Euler convention; the distributions of the first- and second-
order natural frequencies over workspace are displayed in Figures 4 and 5 when the end-effector remains
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Figure 4. The natural frequency with constant-orientation [0, 0, 0] (in unit of rad): (a) first order; (b) second order. (The color bar stands for
the numerical value of the term in the legend, which is applicable to Figs. 5 to 7.)
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Figure 5. The natural frequency with constant-orientation [0, 𝜋/2 0]: (a) first order; and (b) second order.

vertical and horizontal, respectively. It can be observed that the nonsymmetric distributions of the natural
frequencies in Figure 5 are different from the symmetric ones in Figure 4. This is because the robot config-
urations are not axisymmetric about the vertical direction with the vertical end-effector, leading to different
inverse kinematic solutions of such a 5-dof robotic arm, which are different from the axisymmetric robot
configurations with horizontal end-effector. As the mass and stiffness matrices of the robot are configuration
dependent, non-symmetric distributions of natural frequencies in Figure 5 occur. These two figures show that
the first two orders of natural frequencies increase with the increasing 𝑧 coordinates but with decreased 𝑥 and
𝑦 coordinates, namely both the first and second frequencies increases from the workspace boundaries to the
origin of the global coordinate systems. As displayed in Figure 4, when the end-effector remains vertical, the
natural frequencies have the same varying trend in any vertical cross-section of the workspace. By contrast,
the first- and second-order frequencies become smaller counterclockwise within the workspace when the end-
effector is in the horizontal configuration, as shown in Figure 5. Moreover, it is found that the differences
among the frequencies of the manipulator in different configurations are not so large, which means that the
robotic arm has close frequencies inside the overall workspace.
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4.2. Sensitivity analysis
Sensitivity analysis can be used to evaluate the influence of the geometric parameters and design variables to
the manipulator performances. Based on the elastodynamic equation, there exists

(−𝜔2
𝑖 M + K)e𝑖 = 0 (49)

Upon differentiation of Equation (49), the derivative equation with respect to a variable 𝛿 is obtained as follows:

(−2𝜔𝑖
𝜕𝜔𝑖
𝜕𝛿

M − 𝜔2
𝑖

𝜕M
𝜕𝛿

+ 𝜕K
𝜕𝛿

)e𝑖 + (−𝜔2
𝑖 M + K) 𝜕e𝑖

𝜕𝛿
= 0 (50)

Taking the dot-product on both sides of Equation (50) yields

e𝑇𝑖 (−2𝜔𝑖
𝜕𝜔𝑖
𝜕𝛿

M − 𝜔2
𝑖

𝜕M
𝜕𝛿

+ 𝜕K
𝜕𝛿

)e𝑖 + e𝑇𝑖 (−𝜔2
𝑖 M + K) 𝜕e𝑖

𝜕𝛿
= 0 (51)

From
e𝑇𝑖 Me𝑖 = 1; e𝑇𝑖 (−𝜔2

𝑖 M + K) =
(
(−𝜔2

𝑖 M + K)e𝑖
)𝑇

= 0 (52)

we have
− 2𝜔𝑖

𝜕𝜔𝑖
𝜕𝛿

− 𝜔2
𝑖 e
𝑇
𝑖

𝜕M
𝜕𝛿

e𝑖 + e𝑇𝑖
𝜕K
𝜕𝛿

e𝑖 = 0 (53)

or
𝜕𝜔𝑖
𝜕𝛿

= − 1
2𝜔𝑖

(
−𝜔2

𝑖 e
𝑇
𝑖

𝜕M
𝜕𝛿

e𝑖 + e𝑇𝑖
𝜕K
𝜕𝛿

e𝑖
)

(54)

Figure 6 illustrates the sensitivity of the first-order natural frequency to the first two active joints with constant
orientation [0, 𝜋/2, 0]. It is found that the first-order natural frequency is much more sensitive to the second
joint, particularly in the upper and lower workspace regions, which implies that the robot’s dynamic perfor-
mance can be improved by replacing the second joint with a stiffer actuator. It is noted that the distributions
of sensitivity coefficients are not symmetric, which is because the robot configurations are not axisymmetric
about the vertical direction when the robot end-effector moves with some constant orientations, since the
robot under study is a 5-dof robotic arm. Moreover, if a payload with more mass were exerted to the robot, it
could be predicted that the sensitivity coefficients will be increased with very tiny varying trends, compared
to the present results.

4.3. Dynamic analysis of loaded system
With the payload 5 kg applied to the end-effector of the robotic arm, they constitute a new dynamic system
and the solved frequencies with constant-orientation [0, 𝜋/2, 0] are illustrated in Figure 7, from which it is
observed that the frequencies of the loaded robotic system decrease about 20% compared to Figure 5. Table 4
lists the average frequencies [46] within the constant-orientation workspace defined by

𝑓𝑖 =

∫
𝑓𝑖dΩ∫
dΩ

(55)

whereΩ stands for theworkspace volume. Different from the traditional industrial robots with low frequencies,
the high order frequencies have large values tomake themanipulator achieve high-speedmotion. Compared to
the average natural frequencies, the frequencies of the robotics with payload reduce 10%–40% for the six orders
of frequencies. From the view of kineto-elastodynamic characteristics, the difference between the frequency
of the loaded system and its natural frequency could be a consideration in the design of the mechanical system,
where the smaller difference implies higher rigidity and higher payload capability.
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Figure 6. Sensitivities of the first-order natural frequency to the joint stiffness: (a) Joint 1; and (b) Joint 2.
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Figure 7. The frequencies with payload at constant-orientation [0, 𝜋/2, 0]: (a) first order; and (b) second order.

Table 4. The mean frequency (Hz) within the dexterous workspace

𝑓1 𝑓2 𝑓3 𝑓4 𝑓5 𝑓6

Natural frequency 7.9404 8.9579 19.0263 84.9292 136.1418 300.6579
Frequency with payload 5.9538 6.5358 15.2772 55.8998 86.6291 276.5956

Assuming that the motion of the robotic arm follows the trajectory (unit: mm) defined by

𝑥 = 750 + 750(cos 𝜋𝜏 − 1)
𝑦 = 750(1 − cos 𝜋𝜏)
𝑧 = 600(1 − cos 𝜋𝜏)

(56)

where the end-effector keeps constant-orientation [0, 𝜋, 0] and the motion period 𝑇 = 0.5 s is divided into
1024 intervals, Figure 8 shows the displacement responses of the end-effector, from which it is seen that the
linear elastic displacement responses are close, whenever the robotic arm is under loaded and unloaded work-
ing modes. The angular displacements of the end-effector generate relatively large differences. The largest
deformations appear around 0.3 s where the end-effector is located in the middle layer of the workspace, ap-
proximately 𝑧 = 250 mm.

Figure 9 shows the comparison of the joint angular displacements between the numerical simulation and ex-
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Figure 8. Displacement responses of the end-effector: (a) 𝑥 direction; (b) 𝑦 direction; (c) 𝑧 direction; (d) 𝜙𝑥 direction; (e) 𝜙𝑦 direction; and
(f) 𝜙𝑧 direction.

perimental measurements along previous trajectory, where the experimental data are read from the motor
encoders. Due to the frictions and time-varying disturbance in the joints, the experimental curve profiles
have more fluctuations and larger vibration amplitudes than the simulation ones. On the other hand, the com-
parison shows that the differences between these two curves are small, thus, the built analytical model can be
acceptable for dynamic analysis of the robots.
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Figure 9. Comparison of the joint angular displacements under loaded mode.

5. CONCLUSION
This paper presents the elastodynamic characteristics of a 5-dof lightweight robotic arm. The main contribu-
tion is that a systematic approach of elastodynamic analysis for serial roboticmanipulators is formulated, where
the arm gravity and external load are taken into account to investigate the dynamic behaviors of the robotic
arms, i.e., frequencies, sensitivity analysis, and displacement responses, with auxiliary payloads exerted to the
robot. The modeling in this work eases the evaluation of elastodynamics of the manipulator at a large number
of postures as the elastodynamic aspect is usually time-consuming. As the mass and stiffness matrices are pos-
ture dependent, the proposed method can effectively provide a symbolic calculation and achieve the modal
analysis along an operating trajectory. Moreover, such a model can compute the additional mass or evaluate
the influence of an isolator to the system more precisely to eliminate/reduce vibration in the vibration control.
The developed model can be used in either performance evaluation or design optimization.

The frequencies of the loaded robotics are visualized within the representative workspace regions to show the
overall dynamic performance and compare themwith the natural frequencies. The comparison reveals that the
studied robot keeps relatively high rigidity with high payload ratio. It is found from sensitivity analysis that the
natural frequency can effectively increase by improving the second joint stiffness. Based on the displacement
responses analysis, the payload has a slight influence on the translational elastic displacements of this robotic
system, although it leads to reduced frequencies, while the effect on the rotation deflections cannot be ignored.
In the future, the developed model will be integrated into its control system and an optimum redesign of the
robotics will be conducted.
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APPENDIX A: STIFFNESS MATRICES OF ARM LINKS
The stiffness matrices of the upper and lower links K𝑢 and K𝑙 for the 5-dof robotic arm, computed by means
of finite element analysis (FEA) with ANSYS, are given as

K𝑢 =



0.0309 0 0 0 0 0
0 0.2675 0 0 0 0.4176
0 0 0.3574 0 −0.5957 0
0 0 0 15.3676 0 0
0 0 −0.5957 0 1.6919 0
0 0.4176 0 0 0 1.7505


· 106 (A-1a)

K𝑙 =



0.0417 0 0 0 0 0
0 1.0452 0 0 0 2.5493
0 0 1.1631 0 −2.8369 0
0 0 0 17.2304 0 0
0 0 −2.8369 0 8.3105 0
0 2.5493 0 0 0 8.2351


· 106 (A-1b)

where the blocks corresponding to rotation, translation, and coupling terms are given in Nm/rad, N/rad, and
N/m, respectively.
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Abstract
Autonomous mobile robotic agents are increasingly present in highly dynamic environments, thus making the plan-
ning and execution of their tasks challenging. Task planning is vital in directing the actions of a robotic agent in
domains where a causal chain could lock the agent into a dead-end state. This paper proposes a framework that in-
tegrates a domain ontology (home environment ontology) with a task planner (ROSPlan) to translate the objectives
coming from a given agent (robot or human) into executable actions by a robotic agent.

Keywords: Ontologies, autonomous robotics, planning, knowledge representation,semantic maps

1. INTRODUCTION
Robots are increasingly present in environments shared with humans and highly dynamic environments [1,2].
It is therefore imperative to study and develop new techniques so that robots can effectively move, locate
themselves, detect objects, perform tasks, etc. in places that can change rapidly, in an autonomous way. More
complex methodologies require systems capable of deliberating quickly and effectively. Several studies point
to the need for knowledge as way to address this challenges [3,4]. Therefore the formal conceptualization of the
robotics domain is an essential requirement for the future of robotics, to design robots that can autonomously
perform a wide variety of tasks in a wide variety of environments [5].

© The Author(s) 2021. Open Access This article is licensed under a Creative Commons Attribution 4.0
International License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, shar­

ing, adaptation, distribution and reproduction in any medium or format, for any purpose, even commercially, as long as you
give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate
if changes were made.
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Robots need to efficiently create semantic models of their environment (semantic maps). One way that has
proved to have shown great value in representing the information of the environment where robots work, is
through semantic maps. These combine semantic, topological, and geometric information into a compact
representation [6,7]. Existing semantic maps need to evolve from task-specific representations to models that
can be dynamically updated and reused in different tasks. This is one of the major limitations of these ap-
proaches. Moreover, the ontologies developed to date are not reusable, being one of the major limitations in
this strategy. Ontologies should move towards a more homogeneous structure and easy interchangeability
between different structures in order to be reusable [8]. Recently, robots are pouring into home environments,
and thus the need to communicate with humans is increasing. The tasks of robots are not only to navigate in
an accurate geometrical space but also to understand the indoor environment and share common semantic
knowledge with people. Consider the task of fetching a cup of coffee. If a robot had only a representation of
the environment through a metric map, it would have to search in a crude way all over the environment until
it found the cup. If more knowledge were added through semantics to the robot, such as the probability of
the cup being in each room, the search could be guided from locations with high probability to locations with
lower probability. In short, with the evolution of systems and artificial intelligence (AI), ontologies become a
great solution to make domain knowledge explicit and remove ambiguities, enable machines to reason, and
facilitate knowledge sharing between machines and humans, focusing on a new generation of intelligent and
integrated technologies for smart manufacturing.

Currently, in robotics, the most used middleware is the ROS (https://www.ros.org). This is the standard mid-
dleware for the development of robotic software, allowing the design of modular and scalable robotic architec-
tures. There is a framework in ROS called ROSPlan (http://kcl-planning.github.io/ROSPlan/) that provides
a collection of tools for AI planning, namely ROSPlan. It has a variety of nodes which encapsulate planning,
problem generation, and plan execution. It possesses a simple interface and links to common ROS packages.
To date, this framework does not yet have an adequate interface for semantic queries, thus lacking a general
standardized framework for working with ontologies, natively supporting symbolic logic and advanced rea-
soning paradigms. In this sense, the paper proposes a framework that integrates a domain specific home
environment ontology with a task planner (ROSPlan), translating the objectives coming from another agent
(robot or human) into executable actions by the robotic agent. Two reasoning systems for task planning were
developed, which are based on ontologies The first system uses the MongoDB (https://www.mongodb.com/)
database, while the second system uses the domain specific ontology home environment that is proposed in
this paper.

The paper is structured as follows. In the next section, the related work is reviewed. The design methodology
section introduces the reasoning systems presented in this work. In the results section, the structure of the
ontology is presented, along with the results obtained from the different proposed reasoning systems. In the
validation and discussion section, the developed ontology is validated and discussed. Finally, the conclusions
section presents the conclusions of the work and the future way forward.

2. RELATED WORK
Ontologies are a powerful solution for acquiring and sharing common knowledge. Ontologies represent a
common understanding in a given domain, promoting semantic interoperability among stakeholders, because
“sharing a common ontology is equivalent to sharing a common world view” [3]. All concepts in an ontology
must be rigorously specified so that humans and machines can use them unambiguously, empowering robots
to autonomously perform a wide variety of tasks in a wide variety of environments.

Depending on their level of generality, different types of ontologies can be identified [9]; among many types,
we can identify as the main ones:
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• An upper or general ontology (upper ontology or foundation ontology) is a model of the common objects
that are generally applicable to a wide variety of domain ontologies. There are several higher ontologies
standardized for use, such as SUMO (suggested upper merged ontology) [10], Cyc ontology [11], BFO (basic
formal ontology) [12], and DOLCE (descriptive ontology for linguistic and cognitive engineering) [13].

• Domain ontologies (domain ontology or domain-specific ontology) model a specific domain or part of the
world (e.g., robotic [14], electronic, medical, mechanical, or digital domain).

• Task ontologies describe generic tasks or activities [15].
• Application ontologies are strictly related to a specific application and used to describe concepts of a par-
ticular domain and task.

In the next subsections, the related work is reviewed about semantic maps, ontologies for semantic maps, and
some applications of knowledge representation for robotic systems.

2.1. Semantic maps
The daily challenges have drive the research for automated and autonomous solutions to enable mobile robots
to operate in highly dynamic environments. For this purpose, mobile robots need to create and maintain an
internal representation of their environment, commonly referred to as a map. Robotic systems rely on different
types of maps depending on their goals. Different map typology’s have been developed such as metric and
topological maps, which are generally 2D representations of the environment [16], or hybrids (a combination
of the previous two) [17,18]. There are also maps with 3D representation (sparse map, semi-dense map, and
dense map). Metric and topological maps only contain spatial information [19]. A fundamental requirement
for the successful construction of maps is to deal with uncertainty arising, from errors in robot perception
(limited field of view and sensor range, noisy measurements, etc.), from inaccurate models and algorithms, etc.

To get around this limitation, semantic maps were developed to add additional information, such as instances,
categories, and attributes of various constituent elements of the environment (objects, rooms, etc.) [5–7]. These
provide robots with the ability to understand beyond the spatial aspects of the environment, the meaning of
each element, and how humans interact with them (features, events, relationships, etc.). Semantic maps deal
with meta information that models the properties and relationships of relevant concepts in the domain in
question, encoded in a knowledge base (KB).

2.2. Ontologies for semantic maps

One of the tasks to be solved inmobile robot navigation is the acquisition of information from the environment.
In the field of semantic navigation, information includes concepts such as objects, utilities, or room types. The
robot needs to learn the relationships that exist between the concepts included in the knowledge representation
model. Semantic maps add to classical robotic maps spatially grounded object instances anchored in a suitable
way for knowledge representation and reasoning. The classification of instances through the analysis of the
data collected by sensors is one of the biggest challenges in the creation of semantic maps (i.e., to give a richer
semantic meaning to the sensor data) [20,21].

In the last decade, several papers have appeared in the literature contributing different representations of
semantic maps. Kostavelis et al. [5] summarized the significant progress made on a broad range of mapping
approaches and applications for semantic maps, including task planning, localization, navigation, and human–
robot interaction. Semantics has been used in a diverse range of applications. Lim et al. [22] presented an
approach for unified robot knowledge for service robots in indoor environments. Rusu et al. [23] developed a
map called Semantic ObjectMaps (SOM), which encodes spatial information about indoor household environ-
ments, in particular kitchens, but in addition it also enriches the information content with encyclopedic and
common sense knowledge about objects, as well as includes knowledge derived from observations. Galindo
et al. [24] proposed an approach for robotic agents to correct situations in the world that do not conform to
the semantic model by generating appropriate goals for the robot. In short, it combines the use of a semantic
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map with planning techniques in Planning Domain Description Language (PDDL) that converts the goals into
actions (moving the robot, picking and dropping an object, etc.). Wang et al. [25] employed the relationships
among objects to represent the spatial layout. Object recognition and region inference are implemented by us-
ing stereo image data. Vasudevan et al. [26] created a hierarchical probabilistic concept-oriented representation
of space, based on objects. Diab M et al. [27] introduced an interpretation ontology to identify possible failures
which occur during automatic planning and the execution phase; this ontology aims to improve planning and
allow automatic replanning after error. Balakirsky et al. [28] proposed an ontology-based framework that allows
a robotic system to automatically recognize and adapt to changes that occur in its workflow and dynamically
change the details of task assignment, increasing process flexibility by allowing plans to adapt to production
errors and task changes.

In short, semantic maps enable a robot to solve reasoning problems of geometric, topological, ontological,
and logical nature, in addition to localization and path planning [29]. Formal conceptualization of the robotics
domain is an essential requirement for the future of robotics, in order to be able to design robots that can
autonomously perform a wide variety of tasks in a wide variety of environments.

2.3. Applications in robotic systems
Different research groups have used semantic knowledge in the area of robotics. Semantic knowledge allows
a clear dialog between all stakeholders involved in the life cycle of a robotic system and enables the efficient
integration and communication of heterogeneous robotic systems. These facilitate communication and knowl-
edge exchange between groups from different fields, without actually forcing them to align their research with
the particular view of a particular research group [30].

One of the most recent advances in the field of robotics can be denoted by analyzing the KnowRob project,
where researchers aimed to enable a robot to answer different types of questions about possible interactions
with its environment, using semantic knowledge [31,32]. For example, they developed an ontology that allows
the robot to start an assembly activity, with incomplete knowledge. It identifies the missing parts, having
the ability to reason about how the missing information can be obtained [32]. KnowRob employs the DUL
foundational ontology, which is a slim version of the Descriptive Ontology for Linguistic and Cognitive En-
gineering (DOLCE). DUL and DOLCE have a clear cognitive bias, and they are both well established in the
knowledge engineering community as foundational ontologies. However, DUL does not define very specific
concepts such as fork or dish. These concepts are needed for our robots that do everyday activities [8]. There are
also other relevant works that aim at the standardization of knowledge representation in the robotics domain,
such as IEEE-ORA [33], ROSETTA [34], CARESSES [35], RoboEarth [36], RoboBrain [37], RehabRobo-Onto [38],
and OROSU [39].

All of the above work already represents promising advances in the use of semantics in robotic systems; how-
ever, it lacks the ability to perform advanced reasoning and relies heavily on ad hoc reasoning solutions, signif-
icantly limiting its scope. A general standardized framework for working with ontologies is needed, natively
supporting symbolic logic and advanced reasoning paradigms.

The next sections present the reasoning frameworks, with particular emphasis on the domain specific ontology,
home environment. The proposed ontology is designed to be easily reusable in different environments of a
house, as well as by different robotic agents.

3. DESIGN METHODOLOGY
The focus of the developed ontology is to enable robotic agents to interact with elderly people within a home
environment. The robots are to assist the elderly people to manage and better perform their daily lives, and
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thus to longer live an independent life in their known surroundings. They are also there to help better maintain
social contacts, which is known to have a very positive influence on the mental and physical health of elderly
people. An initial and extensible list of tasks that these robots are eventually supposed to perform includes the
following activities:

• Help elderly people out of bed and or the couch.
• Serve the breakfast.
• Supply elderly people medicine.
• Bring books or operate media (entertainment).
• Make up the bedroom.
• Play games.
• Adjust settings: shades, light, and heat.
• Serve drinks.
• Assist during bathing.
• Clean the rooms.

When developing the ontology, several concepts were searched in databases such as dictionaries on the web.
The search was carried out on specific sections on the different concepts of a house (https://www.enchantedlea
rning.com/wordlist/house.shtml, https://dictionary.cambridge.org/pt/topics/buildings/houses-and-homes/).
It was also extracted from the documentation of the project RoCKIn@Home challenge (http://rockinrobotcha
llenge.eu/home.php, http://rockinrobotchallenge.eu/RoCKIn_D2.1.1.pdf), concepts and typical tasks for a do-
mestic robot. The concepts were chosen in order to characterize the simplified environment of a house, based
on a smart-home environment, built on the robotics laboratory of Instituto Politécnico de Castelo Branco. A
challenge arose in the choice of concepts due to the great complexity of objects that can be found in a given
room. To simplify the process, the concepts were defined for characterizing the simplified environment that
is found in the laboratory.

3.1. Knowledge Engine
Figure 1 depicts the global knowledge engine conceptual framework, designed to achieve the main objective
of the paper: the integration of a domain specific home environment ontology, with a task planner (ROSPlan),
transforming the goals coming from the reasoning into executable actions by the robotic agent. The framework
have three main parts: reasoning (which includes the ontologies), planning, and the robot. These parts are
presented in the remainder of the paper.

A domain specific home environment ontology, aligned with a MongoDB database, encapsulate the important
concepts of the domain to be considered (space of a house, objects, etc.). Indeed, the main benefit of a domain
ontology is to set standard definitions of shared concepts identified in the requirement phase and to define
appropriate relations between the concepts and their properties [40]. The ontology contain concepts of Core
Ontology for Robotics and Automation (CORA), with the representation of fundamental concepts of robotics
and automation [41].

The ontologymodel is based on the concepts and relationships between different entities, and then alignedwith
the MongoDB database. The basic concept of the reasoning process is based on the premises that: a relational
database contains both the entities of the conceptual hierarchy and the instances of the physical hierarchy, this
information is stored in lists, and these lists are related to each other, as in the entity–relationship model of the
environment [42,43].

The domain specific ontology home environment is defined with the Protégé software. Protégé version 5.5.0
was used [44]. The the domain ontology was verified through version 1.4.3 of HermiT Reasoner to ensure that
it is free of inconsistencies [45]. Protégé is a free, open-source editor for developing the ontologies produced by
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Figure 1. Global System, containing a Reasoning section that is based on an ontology, a Planning section that is based on the Planning
DomainDefinition Language (PDDL), a relational database (MongoDB) that is queried using the ontology and ROSPlan, and a Robot section
that is based on robot controller, as well as its sensing and acting devices.

Stanford university. It is a java-based application (multi-platform), with plugins such as ontoViz to visualize
the ontologies. The backbone of protégé is that it supports the tool builders, domain specialists, and knowledge
engineers.

3.1.1. Domain specific ontology home environment
Figure 2 shows the main relationships of the developed domain-specific home environment ontology, which
was designed for an agent to interpret and interact with its surrounding environment. In this case, the envi-
ronment is a house, with special focus on the internal environment.

The developed model is subdivided into three main classes: Home_lab, Information, and Objects. The class
Home_lab is subdivided into class Environment, which is subdivided into internal and external environment.
The Indoor_environment is further subdivided into Hall, Corridor, and Rooms. The class Rooms is subdivided
into the possible rooms types of an house (bathroom, bedroom, kitchen, etc.). The class Information is sub-
divided into Information_Object. The Objects class is subdivided into Types_Devices that are subdivided into
Sensors and Actuators. The main class Objects is further subdivided into internal and external objects that
contemplate the objects that can be found in a home environment. Finally, the Objects class is subdivided into
PhysicalAgent, which is subdivided into the agents that can appear in the environment as human or robot, the
latter further subdivided into the different types of robots.

Figure 2 presents the hierarchical class where the main concepts defined in the ontology are visible as:

• Environment: The surroundings or conditions in which an agent, person, animal, or plant lives or operates.
• Indoor environment: Environment situated inside of a house or other building.
• Corridor: A long passage in a building from which doors lead into rooms.
• Hall: The room or space just inside the front entrance of a house or flat.
• Rooms: Space that can be occupied or where something can be done (kitchen, bedroom, etc).
• Outdoor Objects: Used to describe objects that exist or appear outside a home.
• Objects: Any physical, social, or mental object, or a substance. Following DOLCE, objects are always
participating in some event (at least their own life), and are spatially located (defined by: http://www.onto
logydesignpatterns.org/ont/dul/DUL.owl).

• Outdoor environment: Environment situated outside of a house or other building.
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Figure 2. Snapshot of the main ontology (relations is-a).

• Information: Facts provided or learned about something or someone.
• Information_Object: They are messages performed by some entity [46]. They are ordered (expressed in ac-
cordance with) by some information encoding system (e.g., sensors present in the agent). They can express
a description (the ontological equivalent of a meaning/conceptualization), they can be about any entity, and
they can be interpreted by an agent.

• Indoor Objects: Used to describe objects that exist or appear inside a home.
• Outdoor Objects: Used to describe objects that exist or appear outside a home.
• Physical Agent: Any agentive Object, either physical (e.g., a whale, a robot, or an oak tree) or social (e.g., a
corporation, an institution, or a community) (defined by: http://www.ontologydesignpatterns.org/ont/dul
/DUL.owl).

• Mobile robot: Robot that is able to move in the surrounding (locomotion) (i.e., autonomous mobile robot
and autonomous mobile and manipulator robot).
• Not mobile robot: Robot that is not able to move in its surroundings (i.e., robot arm).
• Types Devices: A collection of properties that define different components and behaviors of a type of device
(actuators, sensors, etc.).

The properties of objects and the spatial relationships between them represent the characteristics of the envi-
ronment and the spatial arrangement, respectively. SeveralObject propertieswere created to relate the different
concepts, so that an agent can characterize its surrounding environment:

• ObjectProperty:
– belowOf ;
– isMember;
– isObjectOf ;
– isPartOf ;
– LeftOf ;
– onTopOf ;
– RightOf.

• LocationProperty:
– isConnectedTo.

• AgentProperty:
– isGoingTo;
– isIn.

The object properties were defined to make explicit the relationships between concepts. The properties be-
lowOf, LeftOf, onTopOf, and RightOf were created to define the relationships between the different concepts of
Indoor_Objects and Outdoor_Objects. Through these, the agent can identify the disposition of objects in the
environment, creating relationships about them (e.g., based on Figure 3, if an agent has to guide an elderly per-
son to the chair that is in the room, it knows that it is on the right side of the bed). The property isConnectedTo
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is a transitive and symmetric property, which correlates the different concepts of the Environment according
to the environment in which the agent is inserted. The object properties isGoingTo and isIn are defined in
order to correlate the AgentProperty concept with the Environment. (e.g., the robot isIn the living room, but
it isGoingTo the bedroom). The object property isPartOf is a symmetric property that is used for the agent to
link a given instance of the Objects class with an Environment. This allows the agent to know which objects
are in a room. It differs from the object property isObjectOf because in this property the agent is sure that the
object exists in the environment. Finally, the isObjectOf concept was defined to relate the concepts: Objects
to the Environment. Through this, the objects that can be found in each zone of the environment are defined.
(i.e., in a room there can be an object of the type bed, chair, television, carpet, etc.). Thus, an agent can search
for an object by the place with the highest probability of it being found (i.e., if the agent has to find a frying
pan, it knows that this object is commonly in a kitchen).

3.2. PDDL Planning Agent
The Planning Domain Definition Language (PDDL) describes problems through the use of predicates and
actions. The problems in PDDL are defined in two parts, a domain and a problem file. This language has
undergone different modifications in order to make it capable of dealing with more complex tasks [47–49]. The
ROSPlan framework was used to perform the planning tasks [50]. ROSPlan is a high-level tool that provides
planning in the ROS environment; it generates the PDDLproblem, the plan, the action dispatch, the replanning,
etc. Different action interfaces have been written in C++ to control the AutonomousManipulatorMobile Robot
(AMMR) (i.e., base, arm, and gripper). These interfaces are constantly listening for action PDDL messages.
In addition, the MongoDB database was used for semantic memory storage (locations, robots, home objects,
goal parameters, etc.).

The POPF planner (https://nms.kcl.ac.uk/planning/software/popf.html), a forwards-chaining temporal plan-
ner, was used. After the plan was generated, the interface actions interconnect the plan with the lower level
control actions, allowing the robotic agent (AMMR) to complete the plan. During execution, if an action fails
due to changes in the environment, the planning agent reformulates the PDDL problem by re-planning.

4. RESULTS
This section discusses the main results obtained by applying the proposed framework. For a better under-
standing, the results are divided into two subsections: The first subsection refers to the validation results of the
home environment ontology, where the main reasoning techniques were presented and how they can be used.
In the second subsection, the results of the reasoning system through MongoDB are presented. The way the
robot performs a set of tasks, in a real environment, is also presented.

4.1. Validation home environment ontology
The home environment ontology contains a vast number of concepts regarding the home environment as well
as the different objects that may be present in a given room. For example, if a given agent is in a room for
the first time, based on the objects it observes, through its sensors, it can categorize the space based on the
knowledge represented on the ontology. Based on the ontology, if the agent sees objects such as knives, pots,
and pans, then it infers that it must be in a kitchen. In this situation, the agent will identify the room and create
all the relations of the objects it detects in the environment.

Knowledge reasoning techniques can infer new conclusions and thus help to plan dynamically in a non-
deterministic environment. In the presented application, spatial reasoning and reasoning based on relations
are used [51]. Spatial reasoning is mostly used, when it is done through reasoning on the ontology hierarchy
and spatial relations therein, allowing to predict the exact spatial location of an object in the environment. This
prediction is obtained using a set of asserted facts and axioms on the ontology. Reasoning over the ontology
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Figure 3. Example of the ontology being used to instantiate the house objects belonging to the instance “Bedroom”, present in the home
environment.

Figure 4. Example of the knowledge representation of an object in the environment of a house that has been instantiated.

relations is used to help with inferring new conclusions (e.g., If B is a subclass of A and C is a subclass of B,
then C is a subclass of A can be inferred as transitivity holds for the subclass property).

The object property hierarchy view displays the asserted and inferred object property hierarchies. From the
knowledge base built, all existing components from the environment are instantiated. That is, the individuals
are based on their type (Figure 3). This allowed testing the functionality of the ontology. Figure 3 depicts
that each room was instantiated to the corresponding Rooms subclass (e.g., the BedRoom instance is related to
the Bedroom class). Several relations can be drawn from the instances that represent the environment, such
as which objects belong to the BedRoom instance. Although the relations of the BathRoom and LivingRoom
instances do not appear in Figure 3, these can be obtained, based on the created instances present in the
ontology, in order to represent both rooms.

As previously stated, having the environment of a house in an ontological knowledge oriented database is of
special interest, for example, to know where each object belongs. In fact, as depicted in Figure 4, the informa-
tion about the BedsideTable is completely available to the user, using a simple logic description. A query to
the ontology will retrieve useful information, for example where the object is attached. This issue is further
discussed in the next subsection.

Performing logical description reasoning actions to obtain valuable data for the robot’s reasoning can be done,
as presented in Figure 5, namely information about objects, rooms, and their relations defined in the ontology.
For example, what type of object is instantiated as Bed? In which rooms is it present? What is on its left? What
is on its right? Using the ontology and description logic queries, it is straightforward to obtain the following
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Figure 5. Reasoning using the ontology. (a) Query about the classes of objects that can be found in a class Hall. (b) Query about the
instance(s) connected to instance of class Bathroom. (c) Query on the instance(s) that are part of the class Bedroom. (d) Query about
the instance(s) that are part of class BedRoom and that are on the left of instances of class Chair. (e) Query to discover the location (room
where the agent is in) based on what the agent observes.

information:

• Classes of Objects that can be found in a certain instance of room (e.g., in the Hall in Figure 5a).
• Connectivity relationship between instances of the Rooms class referring to an environment (Figure 5b).
• Instance of objects present in an instance of room (Figure 5c).
• Recognize which instance(s) of the Objects class belong to a particular instance of a Rooms class and are to
the left of an instance of the Chair class (Figure 5d).

• Recognize which instance of the Rooms class belong to a particular instance(s) of a Objects class (e.g., the
robotic agent can locate itself (know in which room it is), based on the objects it observes) (Figure 5e).

Through the ontology developed, one or more agents are able to locate themselves more efficiently in the
environment. When the agent is lost, it can identify the room where it is, based on the objects it observes
(Figure 5e). Observing Figure 3, if the robot recognizes a Bed, a BedsideTable, and a Chair_1, it knows that it
is in a Bedroom. The robotic agent will be able to perform a search in an optimized way for an object. It does
not need to perform a massive search for all the rooms; e.g., it knows which are the rooms in which there is a
higher probability of finding a fridge, teapot, etc.

4.2. Validation the reasoning system with MongoDB
To test the system based on the MongoDB database, a problem was outlined, for the agent to execute/solve
(Figure 6). An AMMR is used, composed of a mobile base and a robotic arm of the Universal Robotics UR3,
equipped with a RobotIQ 2f-140 gripper, the whole system runs with the middleware: ROS (Figure 7a). Fig-
ure 7b depicts the layout of a simple home environment, an apartment for elderly people, created under the
EUROAGE project [52], which is in the robotics laboratory of the Polytechnic Institute of Castelo Branco.

Initial conditions were established, such as the location of the AMMR (dock), the world coordinate at which
the robot arm is located (p0), and the location of the object in the environment (LivingRoom), as well as its
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Figure 6. Task definition in PDDL.

(a) Robotic agent (AMMR) (b) Environment

Figure 7. Robotic agent (AMMR) and simplified environment of a house, created in the framework of the EUROAGE project.

world coordinate (p3). The AMMR aims to leave the dock and pick up an object (obj1) that is in the living
room, at the coordinates of world (p3). After the object is grabbed, the AMMR should take it to the bedroom
and drop the object at the coordinates of world (p2). After the pick and place tasks are completed, the AMMR
should return to the dock. This task definition is depicted in Figure 6.

Using ROSPlan, the generated plan is visible in Table 1. The right column presents the time of each durative
action.

Figure 8, presents an excerpt of the global view of the ROS nodes and topics used by the system. It is possible
to verify how the connections between them occur. It is visible in Figure 8a that, when the planner (ROSPlan)
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Table 1. Example: generated plan

Global Time Action and respective objects used Time of action
0.000 (undock robot_base dock) [5.000]
5.001 (localise robot_base) [10.000]
15.002 (open robotiq robot_base) [2.000]
17.002 (move_base dock LivingRoom robot_base) [5.000]
22.003 (move_ur3 p0 p3 LivingRoom robot_base) [5.000]
27.003 (pick obj1 p3 robotiq robot_base LivingRoom) [2.000]
29.003 (move_base LivingRoom BedRoom robot_base) [5.000]
34.003 (move_ur3 p3 p2 BedRoom robot_base) [5.000]
39.003 (drop obj1 p2 robotiq robot_base BedRoom) [2.000]
41.003 (dock robot_base dock) [5.000]

(a) Execution of the action undock

(b) Execution of the action move_base and consult
MongoDB database

Figure 8. Execution of a plan by the robotic agent (AMMR).

requests that the agent should leave the dock, the action responsible for the task, /rosplan_interface_undock, is
triggered. This action in turn communicates with the action /move_base that communicates with the actuators
(motors) to move the robot. Figure 8b shows that, when the robot is requested to move to a certain room,
/rosplan_interface_move_base is activated, which in turn consults the MongoDB database to know where the
room is located in the map. Then, the robot moves in the environment, after calling /move_base action.

5. CONCLUSION AND FUTURE WORK
The use of ontologies has become a great solution, and one of the paths to follow in the future to make domain
knowledge explicit and eliminate ambiguities, allow machines to reason, and facilitate knowledge sharing be-
tween machines and humans. In this work, a structured ontology is presented to be used by robotic agents
in order to assist them in their deliberation tasks (interaction with the environment and robot movement).
It is imperative to endow robotic agents with semantic knowledge. Several approaches in the literature show
advantages in systems using databases such as MongoDB, pointing to their speed of response compared to
ontology-based systems. This paper introduces a framework that combines both, in terms of concepts and
their implementation in real robotic systems.
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The proposed framework improves the problem specification in PDDL based on the updated information
coming from the ontology, making the generated plan more efficient. For example, if an external agent (robot
or human) launches a task for the robotic agent to collect a certain object and transport it to a specific location,
the ontology will be queried. As such, the problem in PDDL is written with specific information, such as the
relations between objects, relations between objects and the environment, the current location of the robot,
and so on.

The developed home environment ontology was validated by performing successful queries to it, using a stan-
dard reasoner in Protégé. The concepts within the home environment ontology, used to define the MongoDB
database, were experimentally validated, for semantic reasoning in the the home environment of the labora-
tory. Moreover, the ROSPlan, together with the developed interface actions, was shown to be a very efficient
approach, in interfacing the low-level control with the semantic reasoning of the robot agent.

In future work, the developed domain ontology will be aligned with upper ontologies, e.g., DOLCE. Further
developments will be pursued to speed up the ontology-based approach, by exploring ways to make querying
more efficient by solving the limitation presented in other works [43], where it is pointed out that these solutions
are slower than the pure database approaches.
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Abstract
In this paper, sliding mode control is combined with the classical simultaneous localization and mapping (SLAM)
method. This combination can overcome the problem of bounded uncertainties in SLAM. With the help of genetic
algorithm, our novel path planning method shows many advantages compared with other popular methods.

Keywords: Autonomous navigation, sliding mode, SLAM, genetic algorithm

1. INTRODUCTION
1.1. Autonomous navigation in unknown environment
Autonomous navigation (AN) has three jobs [1].

(1) Perception: Mapping from signal to information is the perception of AN [2]. Its algorithms can use human
thought [3], intelligent methods [4], optimization [5], probability methods [6], and genetic algorithms [7].

(2) Motion planning: It has three classes, namely graph methods such as a roadmap [8], random sampling [9],
and grid [10].

(3) Localization and mapping: In unknown environments, sensors, actuators, and maps may have big uncer-
tainties.
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Path planning (PP) can be performed under the following conditions:

(1) The environment is known. PP is an optimization problem [11–13].

(2) The environment is partially known. PP can find new objects during navigation [14,15].

(3) The environment is totally unknown. PP depends on the navigation and has a recursive solution [16–18].

Simultaneous localization and mapping (SLAM) can be used in unknown environments [19] or in partially
unknown environments [20]. SLAM [21] uses the current position to construct a map, and it can be classified
into feature-based [22], pose-based [23], appearance-based [24], and variants [25].

The most popular SLAM uses Kalman filter [21] for Gaussian noise. Nonlinear SLAM uses extended Kalman
filter (EKF) [26], where the noise assumptions are not satisfied [27]. EKF-SLAM applies linearization [28].

1.2. Related work
Few AN uses SLAM. Visual SLAM uses several cameras [29]. AN can use both SLAM and GPS signals [30].
Robots can avoid moving obstacles using neural networks [31]. Swarm optimization helps robots follow an
object [32]. Neural networks help robots construct the navigation path [33]. The optimal path is considered in
the sense of trajectory length, execution time, or energy consumption.

Genetic algorithms (GA) have been developed recently [34,35]. They are easy to use for optimization in non-
deterministic cases [36], uncertaintymodels [37], and robust cases [38]. GA can be in form of ant-based GA [39,40],
cell decomposition GA [41], potential field GA [42], ant colony [43], and particle swarm optimization [44]. Finite
Markov chain is a theory tool for GA [45,46].

1.3. Our work
In this paper, we try to design AN in an unknown environment in real time. The contributions are as follows:

(1) Sliding mode SLAM: The robustness of this SLAM is better than other SLAM models in bounded noise.

(2) GA SLAM: We use roadmap PP and GA to generate the local optimal map.

(3) Comparisons and simulations with other SLAM models were made by using a mobile robot [47].

2. SLIDING MODE SLAM

SLAMgives the robot position and environment map at the same time. At time 𝑘, the state isx𝑟𝑘 = (𝑥𝑘 , 𝑦𝑘 , 𝜃𝑘 ),
where (𝑥𝑘 , 𝑦𝑘 ) is the position and 𝜃𝑘 is the orientation of the robot. x𝑚𝑘 =

(m1
𝑘 ,m2

𝑘 , ...,m𝐿
𝑘

)𝑇 are landmarks,
with m𝑖

𝑘 = (𝑥𝑖𝑘 , 𝑦
𝑖
𝑘 )
𝑇 the 𝑖th landmark. We assume the true location is time-invariant.

x𝑘 has two parts: the robot x𝑟𝑘 and the landmarks x𝑚𝑘 .The state equation is

x𝑘+1 =

(x𝑟𝑘+1
x𝑚𝑘+1

)
=

(f (x𝑟𝑘 ,u𝑘 ) + w𝑘

x𝑚𝑘

)
= F(x𝑘 ,u𝑘 ) + [w𝑘 , 0]𝑇 (1)

where f () is the robot dynamics, w𝑘 is the noise, and u𝑘 is the robot control. Since x𝑚𝑘 is not influenced by
motion noise, the noise is [w𝑘 , 0]𝑇 .
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z𝑘 is defined as the position between the robot and the landmark, whose model is

z𝑖𝑘 = h(x𝑟𝑘 ,m𝑖
𝑘 ) + v𝑖𝑘 (2)

where h() is the geometry and v𝑖𝑘 is the noise. Here, w𝑘 and v𝑖𝑘 are not Gaussian noises. We assume w𝑘 and
v𝑖𝑘 are bounded.

To estimate x𝑘 in Equations (1) and (2), EKF is needed. We linearize the state model in Equation (1) and the
observation model in Equation (2) as

x𝑘+1 = F(x̂𝑘 ,u𝑘 ) + ∇F𝑘 ·
(
x𝑘 − x̂𝑘

)
+𝑂1

[
(x𝑘 − x̂𝑘 )2] + [w𝑘 , 0]𝑇

z𝑖𝑘 = h(x̂𝑘 ) + ∇h𝑘 ·
(
x𝑘 − x̂𝑘

)
+𝑂2

[
(x𝑘 − x̂𝑘 )2] + v𝑖𝑘

(3)

where ∇F𝑘 = 𝜕F
𝜕x𝑘

|x𝑘=x̂𝑘
, ∇h𝑘 = 𝜕h

𝜕x𝑘
|x𝑘=x̂𝑘

, 𝑂1
[
(x𝑘 − x̂𝑘 )2] , x̂𝑘 is the estimation of x𝑘 .

Prediction. The estimation x̂𝑘+1 is based on past states, control, and landmarks:

x̂𝑘+1 = F(x̂𝑘 ,u𝑘 )
P𝑘+1 = ∇F𝑘P𝑘∇F𝑇

𝑘 + 𝑅1
(4)

where 𝑅1 is the covariance of w𝑘 , 𝑅1 = 𝐸
{
[w𝑘 − 𝐸 (w𝑘 )] [w𝑘 − 𝐸 (w𝑘 )]𝑇

}
.

Correction. The new state is based on predicted states, landmarks, and current observations:

x̂𝑘+2 = x̂𝑘+1 + K𝑘+1
[z𝑖𝑘+1 − h(x̂𝑘+1)

]
K𝑘+1 = P𝑘+1∇h𝑘+1

[
∇h𝑘+1P𝑘+1∇h𝑇

𝑘+1 + 𝑅2
]−1

P𝑘+2 =
[
𝐼 − K𝑘+1∇h𝑘+1

] P𝑘+1

(5)

The motivations of using sliding mode modification to the EKF bases SLAM based are the following:

(1) The noises w𝑘 and v𝑖𝑘 in Equations (1) and (2) are not Gaussian.

(2) There are linearization error terms, 𝑂1
[
(x𝑘 − x̂𝑘 )2] and 𝑂2

[
(x𝑘 − x̂𝑘 )2] , in Equation (3), and the tradi-

tional EKF-based methods do not work well for these errors.

We use the sliding mode method to estimate the robot state x𝑟𝑘 and the landmark x𝑚𝑘 .

Sliding modes have a number of attractive features, and thus have long been in use for solving various control
problems. The basic idea behind design of system with sliding mode is the following two steps: (1) a sliding
motion in a certain sense is obtained by an appropriate choice of discontinuity surfaces; and (2) a control is
chosen so that the sliding modes on the intersection of those discontinuity surface would be stable. A general
class of discontinuous control 𝑢 (𝑥, 𝑡) is defined by the following relationships:

𝑢 (𝑥, 𝑡) =
{
𝑢+ (𝑥, 𝑡) with s (x) > 0
𝑢− (𝑥, 𝑡) with s (x) < 0

(6)

where the functions 𝑢+ (𝑥, 𝑡) and 𝑢− (𝑥, 𝑡) are continuous.

The function s (x) is the discontinuity surface (subspace). The objective of the sliding mode control is to
design some switching strategy of the continuous control 𝑢+ (𝑥, 𝑡) and 𝑢− (𝑥, 𝑡) , such that

s (x) = 0 (7)
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Figure 1. Sliding mode simultaneous localization and mapping.

In this paper, the sliding surface is defined by the SLAM estimation error as

𝑒 (𝑘) = x𝑘 − x̂𝑘 (8)

Here, the discontinuity surface is 𝑒 (𝑘) = [𝑒1 · · · 𝑒𝑛]. We consider the following positive definite function,

𝑉 =
1
2
𝑒𝑇 (𝑘) 𝑃𝑒 (𝑘) (9)

where 𝑃 is diagonal positive definite matrix, 𝑃 = 𝑃𝑇 > 0. The derivative of 𝑉 is

¤𝑉 = 𝑒𝑇 (𝑘) 𝑃 ¤𝑒 (𝑘) (10)

The motion 𝑒 (𝑘) satisfies
¤𝑒 (𝑘) = −𝜌 × 𝑠𝑔𝑛 [𝑒 (𝑘)] , 𝜌 > 0 (11)

where 𝑠𝑔𝑛 [𝑒 (𝑘)] = [𝑠𝑔𝑛 (𝑒1) , . . . , 𝑠𝑖𝑔𝑛 (𝑒𝑛)]𝑇 , 𝑠𝑔𝑛 (𝑒𝑖) =
{

1 with 𝑒𝑖 (𝑥) > 0
−1 with 𝑒𝑖 (𝑥) < 0

, 𝑠𝑔𝑛 (0) = 0, then (10) is

¤𝑉 = 𝑒𝑇 (𝑘) 𝑃 {−𝜌 × 𝑠𝑔𝑛 [𝑒 (𝑘)]} = −𝜌𝑒𝑇 (𝑘) 𝑃𝑠𝑔𝑛 [𝑒 (𝑘)]

because 𝑃 = 𝑑𝑖𝑎𝑔 {𝑝𝑖} , 𝑝𝑖 > 0, and 𝑒𝑖 × 𝑠𝑔𝑛 (𝑒𝑖) = |𝑒𝑖 |

·
𝑉 = −𝜌

𝑛∑
𝑖=1

𝑝𝑖 |𝑒𝑖 | (12)

Thus, ¤𝑉 ≤ 0. By Barbalat’s lemma [48], the estimation error is 𝑒 (𝑘) → 0.

The classical SLAM in Equations (4) and (5) is modified by the sliding surface in Equation (11). The sliding
mode control can be regarded as a compensator for Equation (4):

x̂𝑘+1 = F(x̂𝑘 ,u𝑘 ) − 𝜌 × 𝑠𝑔𝑛 [𝑒 (𝑘)] (13)

where 𝜌 is a positive constant. The correction step is the same as EKF in Equation (5). The sliding mode
SLAM is shown in Figure 1. Here, the estimation error, 𝑒 (𝑘), is applied to the sliding surface to enhance the
robustness in the prediction step with respect to the noise and disturbances.

It is the discrete-time version of Equation (6). We give the stability analysis of this discrete-time sliding mode
SLAM at the end of this section.

For the mobile robot, the sliding mode SLAM can be specified as follows. We define a critical distance 𝑑min to
limit the maximal landmark density. It can reduce false positives in data association and avoid overload with
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useless landmarks. If the new landmark is far from the other landmarks on the map, then the landmark is
added; otherwise, it is ignored. If the distance between the new landmark x𝑘+1 = [𝑥𝑚+1, 𝑦𝑚+1] and the
others is bigger than 𝑑min, it should be added into x𝑘 , i.𝑒.,

x𝑘+1 = 𝑔(x𝑟𝑘 , z𝑘 ) (14)

It can be transformed into an absolute framework as

x𝑘+1 =

( x𝑘
𝑔(x𝑟𝑘 , z𝑘 )

)
= T(x𝑘 , z𝑘 ) (15)

The nonlinear transformation functionT also applies to the uncertainties. We approximate the transformation
T by the linearization. P𝑘 can be expressed as

P𝑘 =
©­­­«

P𝑟
𝑘 P𝑟𝑚

𝑘 0(
P𝑟𝑚
𝑘

)𝑇
P𝑚
𝑘 0

0 0 V𝑘

ª®®®¬ (16)

where
P𝑘 = ∇TP𝑘∇T𝑇

with ∇T =
©­­«

I𝑟 0 0
0 I𝑚 0

∇g𝑥 0 ∇g𝑧

ª®®¬ , ∇g𝑥 := 𝜕g
𝜕x𝑟

𝑘
(x𝑘 , z𝑘 ),∇g𝑧 := 𝜕g

𝜕z (x𝑘 , z𝑘 ).

For the motion part, we use the Ackerman vehicle model [49]

©­­«
𝑥𝑟𝑘
𝑦𝑟𝑘
𝜃𝑟𝑘

ª®®¬ =
©­­«
𝑥𝑟𝑘−1 + 𝑇𝑘−1𝑣𝑘−1 cos 𝜃𝑟𝑘−1
𝑦𝑟𝑘−1 + 𝑇𝑘−1𝑣𝑘−1 sin 𝜃𝑟𝑘−1
𝜃𝑟𝑘−1 + 𝑇𝑘−1

𝑣𝑘−1
𝑏𝑎

tan𝛼𝑘−1

ª®®¬ + w𝑘 (17)

where w𝑘 is the process noise, 𝑣𝑘 is the linear velocity, 𝛼𝑘 is the steering angle, 𝑇𝑘 is the sample time, and 𝑏𝑎
is the distance between the front and the rear wheels.

At the beginning of map building, the vector x̂𝑘 only contains the robot states without landmarks. As explo-
ration increases, the robot detects landmarks and decides if it should add these new landmarks to the state.

x𝑘+1 = T(x𝑘 , z𝑘 )
(

x𝑟𝑘,𝑥
x𝑟𝑘,𝑦

)
+ 𝑟 𝑗𝑘

(
cos(𝜃𝑖𝑘 + x𝑟𝑘,𝜙)
sin(𝜃𝑖𝑘 + x𝑟𝑘,𝜙)

)

z𝑘 =
©­­­«

√
(𝑚𝑖𝑥 − 𝑥𝑘 )2 + (𝑚𝑖𝑦 − 𝑦𝑘 )2

arctan

(
𝑚𝑖𝑦 − 𝑦𝑘
𝑚𝑖𝑥 − 𝑥𝑘 )

)
− 𝜙𝑘

ª®®®¬𝑖
+ V𝑘

(18)

where x, 𝑦, z, and 𝑚 are defined in Equations (1) and (2),

We exploit the same property in the sliding SLAM. The landmarks with fewer corrections are removed from
the state vector.

x̂𝑘+1 = x̂𝑘 + 𝐺𝑇𝑥

𝑢𝑘,𝑣𝛿𝑡 cos(x𝑟𝑘,𝜙)
𝑢𝑘,𝑣𝛿𝑡 sin(x𝑟𝑘,𝜙)

𝑢𝑘,𝛾𝛿𝑡

 + 𝜎𝑘 (19)
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where 𝐺𝑥 =

©­­­­­«
1 0 0 0 · · · 0
0 1 0 0 · · · 0
0 0 1 0 · · · 0︸ ︷︷ ︸

2𝑁

ª®®®®®¬
, 𝜎𝑘 is the compensator, and

𝜎𝑘 = −𝜌 × 𝑠𝑔𝑛
(
x𝑘 − x̂𝑘

)
(20)

This sliding SLAM algorithm is given in the following algorithm.

Sliding mode SLAM. 𝑥1 = 0, 𝑃1|1 = 𝛼𝐼, 𝑘 = 1, 𝛼 � 1 𝑢1 =get_controls, 𝑧1 =get_observations; 𝑘𝑧 =

1
[x̂1,P1

]
=add_features

(
x̂1,P1, z1

)
(1) While not_stop if controls_are_available[x̂𝑘+1,P𝑘+1

]
=prediction

(
x̂𝑘 ,P𝑘 ,u𝑘

)
(2) 𝑢𝑘 =get_controls end if if observations_are_available

get_observations 𝑧𝑘 data_association
(
z𝑘 , x̂𝑘+1,P𝑘+1

) [x̂𝑘+2,P𝑘+2, c𝑘
]

=
(
x̂𝑘+1,P𝑘+1, z𝑘

)
(5)

[x̂𝑘+2,P𝑘+2
]

=
(
x̂𝑘+2,P𝑘+2, z𝑘

)
(1) 𝑘𝑧 = 𝑘𝑧 + 1 end if if mod(𝑘𝑧, 𝐾𝑧) = 0[x̂𝑘+2,P𝑘+2

]
=pruning

(
x̂𝑘+2,P𝑘+2, c𝑘 ,a𝑘

)
end if 𝑘 = 𝑘 + 1 end While

The discrete-time sliding mode SLAM in Equation (19) can be written as

x̂𝑘+1 = x̂𝑘 + 𝐹̂ (x̂𝑘 ,u𝑘 ) + 𝜎𝑘

where 𝐹̂ = 𝐺𝑇𝑥


𝑢𝑘,𝑣𝛿𝑡 cos(x𝑟𝑘,𝜙)
𝑢𝑘,𝑣𝛿𝑡 sin(x𝑟𝑘,𝜙)

𝑢𝑘,𝛾𝛿𝑡

 , 𝑒 (𝑘) = x𝑘 − x̂𝑘 , 𝜎𝑘 = 𝜌 × 𝑠𝑔𝑛 [𝑒 (𝑘)]

The correction step for x̂𝑘+2 is the same as EKF:

x̂𝑘+2 = x̂𝑘+1 + K𝑘+1
[z𝑖𝑘+1 − h(x̂𝑘+1)

]
K𝑘+1 = P𝑘+2𝐶𝑘+1

[
𝐶𝑘+1P𝑘+2𝐶

𝑇
𝑘+1 + 𝑅2

]−1

P𝑘+2 =
[
𝐼 − K𝑘+1𝐶𝑘+1

] P𝑘+2

(21)

where 𝐶𝑘 = ∇h𝑘 = 𝜕h
𝜕x𝑘

|x𝑘=x̂𝑘
.

The error dynamic of this discrete-time sliding mode observer is

𝑒 (𝑘 + 1) = 𝐴𝑘𝑒(𝑘) − 𝐴𝑘K𝑘𝐶𝑘𝑒(𝑘) + 𝜎𝑘 + 𝑑𝑘 (22)

where 𝑑𝑘 = 𝐹̂ (x̂𝑘 ,u𝑘 ) + 𝜉𝑘 is bounded uncertainty, ‖𝑑𝑘 ‖2 ≤ 𝑑, 𝐴𝑘 = ∇F𝑘 = 𝜕F
𝜕x𝑘

|x𝑘=x̂𝑘
, and K𝑘 is the gain of

EKF in Equation (21).

The next theorem gives the stability of the discrete-time sliding mode SLAM.

Theorem 1 If the gain of the sliding mode SLAM is positive, then the estimation error is stable, and the estimation
error converges to

‖𝑒 (𝑘)‖2 ≤
𝜆max

[P−1
𝑘+1

]
( 𝜌̄ + 𝑠) + 𝜌̄

𝛼𝜆min
[P−1

𝑘+2
] (23)

where ‖𝜎𝑘 ‖2 ≤ 𝜌̄, 𝜎𝑘 ‖𝑑𝑘 ‖2 ≤ 𝑠, P𝑘+2 is the gain of EKF in Equation (21), 0 < 𝛼 = 1
(1+𝑝𝑎̄2/𝑞)(1+𝑘̄𝑐+𝜆) < 1,

𝑝𝐼 ≤ P𝑘+2 ≤ 𝑝𝐼, and 𝑞𝐼 ≤ 𝑅1.
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Proof 1 Consider the Lyapunov function as

𝑉𝑘 = 𝑒 (𝑘) P−1
𝑘 𝑒 (𝑘) (24)

where P𝑘+2 is the prior covariance matrix in Equation (21), and P𝑘+2 > 0. From Equation (22),

𝑉𝑘+1 = 𝑒 (𝑘 + 1) P−1
𝑘+1𝑒 (𝑘 + 1)

= 𝑒 (𝑘) (𝐼 − K𝑘𝐶𝑘 )𝑇 𝐴𝑇𝑘
(P𝑘+1

)−1
𝐴𝑘 (𝐼 − K𝑘𝐶𝑘 )𝑒 (𝑘)

+2(𝑑𝑘 + 𝜎𝑇𝑘 )P−1
𝑘+1

[
𝐴𝑘 (𝐼 − K𝑘𝐶𝑘 )𝑒 (𝑘)

]
+(𝑑𝑘 + 𝜎𝑇𝑘 )P−1

𝑘+1(𝑑𝑘 + 𝜎𝑘 )

(25)

Because ‖𝜎𝑘 ‖2 ≤ 𝜌̄, ‖𝑑𝑘 ‖2 ≤ 𝑠, the last term on the right side of Equation (25) is

(𝑑𝑘 + 𝜎𝑇𝑘 )P−1
𝑘+1(𝑑𝑘 + 𝜎𝑘 ) ≤ 𝜆max

[P−1
𝑘+1

]
( 𝜌̄ + 𝑠) (26)

where 𝜆max
[P−1

𝑘+1
]
is the maximum eigenvalue of P−1

𝑘+1.

The second term of Equation (25) is

2(𝑑𝑘 + 𝜎𝑇𝑘 )P−1
𝑘+1

[
𝐴𝑘 (𝐼 − K𝑘𝐶𝑘 )𝑒 (𝑘)

]
= 2(𝑑𝑘+)P−1

𝑘+1
[
𝐴𝑘 (𝐼 − K𝑘𝐶𝑘 )𝑒 (𝑘)

]
+𝜎𝑇𝑘 P−1

𝑘+1
[
𝐴𝑘 (𝐼 − K𝑘𝐶𝑘 )𝑒 (𝑘)

] (27)

where K𝑘 is the gain of EKF in Equation (5). In view of the matrix inequality

𝑋𝑇𝑌 +
(
𝑋𝑇𝑌

)𝑇
≤ 𝑋𝑇Λ−1𝑋 + 𝑌𝑇Λ𝑌 (28)

which is valid for any 𝑋,𝑌 ∈ <𝑛×𝑘 and for any positive definite matrix 0 < Λ = Λ𝑇 ∈ <𝑛×𝑛, the first term of
Equation (27) is

2𝑑𝑘P−1
𝑘+1

[
𝐴𝑘 (𝐼 − K𝑘𝐶𝑘 )𝑒 (𝑘)

]
≤ 𝑑𝑘Λ(𝑑𝑘+) + 𝑒 (𝑘) P−1

𝑘+1
[
𝐴𝑘 (𝐼 − K𝑘𝐶𝑘 )

]
Λ−1𝑒 (𝑘)

≤ 𝑠𝜆max [Λ] +



(P𝑘+1

)−1 [
𝐴𝑘 (𝐼 − K𝑘𝐶𝑘 )

]
Λ−1




 ‖𝑒 (𝑘)‖2

≤ 𝑠𝜆max [Λ] + 𝑒 (𝑘)
[P−1

𝑘+1
[
𝐴𝑘 (𝐼 − K𝑘𝐶𝑘 )

]
Λ−1] 𝑒 (𝑘)

(29)

We apply the sliding mode compensation in Equation (20) to the second term of Equation (27):

𝜌 × 𝑠𝑔𝑛 [𝑒 (𝑘)]𝑇𝑘 Υ𝑘𝑒 (𝑘)

= −𝜌
𝑚∑
𝑘=1

|𝑒 (𝑘) |
(
𝑙𝑘𝑘 +

𝑚∑
𝑖=1,𝑖≠𝑘

𝑙𝑘𝑖𝑠𝑖𝑔𝑛 ( [𝑒 (𝑘)] 𝑒𝑖 (𝑘))
)

(30)

where 𝑙𝑖 𝑗 are the elements of the matrix Υ, Υ𝑘 = P−1
𝑘+1

[
𝐴𝑘 (𝐼 − K𝑘𝐶𝑘 )

]
.When the the orientation 𝜃𝑘 is not big,

sin 𝜃𝑘 ≈ 0, cos 𝜃𝑘 ≈ 0,

𝑙𝑘𝑘 �
𝑚∑

𝑖=1,𝑖≠𝑘
|𝑙𝑘𝑖 | , 𝑙𝑘𝑘 > 0, 𝑘 = 1, . . . 𝑚, (31)

Thus, the second term of Equation (27) is negative.

The first term on the right side of Equation (25) has the following properties:

P𝑘+2 ≥ (𝐼 − K𝑘𝐶𝑘 )P𝑘+2(𝐼 − K𝑘𝐶𝑘 )𝑇
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(𝐼 − K𝑘𝐶𝑘 ) is invertible, and we have(P𝑘+2
)−1 ≤ (𝐼 − K𝑘𝐶𝑘 )−𝑇𝑘

(P𝑘+2
)−1 (𝐼 − K𝑘𝐶𝑘 )−1 (32)

According to EKF,
P𝑘+1 = 𝐴𝑘P𝑘+2𝐴

𝑇
𝑘 + 𝑅1 = 𝐴𝑘 (P𝑘+2 + 𝐴−1

𝑘 𝑅1𝐴
−𝑇
𝑘 )𝐴𝑇𝑘

Thus, (P𝑘+1
)−1

= 𝐴−𝑇
𝑘 (P𝑘+2 + 𝐴−1

𝑘 𝑅1𝐴
−𝑇
𝑘 )−1𝐴−1

𝑘

By the following matrix inversion lemma,

(Γ−1 +Ω)−1 = Γ − Γ(Γ +Ω−1)−1Γ

where Γ and Ω are two non-singular. matrices,

P−1
𝑘+1 = 𝐴−𝑇

𝑘 [P−1
𝑘+2 − P−1

𝑘+2(P−1
𝑘+2 + 𝐴𝑇𝑘𝑄−1𝐴𝑘 )−1P−1

𝑘+2]𝐴−1
𝑘

Using Equation (32) and defining 𝐿 = (𝐼 − K𝑘𝐶𝑘 ),

P−1
𝑘+1 ≤ 𝐴−𝑇

𝑘 𝐿−𝑇 [P−1
𝑘+2

−
(P𝑘+2

)−1
𝐿−1(P−1

𝑘+2 + 𝐴𝑇𝑘 𝑅−1
1 𝐴𝑘 )−1𝐿−𝑇P−1

𝑘+2]𝐿−1𝐴−1
𝑘

(33)

Now,
P−1
𝑘+2 = P−1

𝑘+2(𝐼 − K𝑘𝐶𝑘 )−1 = P−1
𝑘+2𝐿

−1

Hence,
𝐿𝑇 𝐴𝑇𝑘P−1

𝑘+1𝐴𝑘𝐿 ≤ (𝐼 − (𝐼 + P−1
𝑘+2𝐴

𝑇
𝑘𝑄

−1𝐴𝑘 )−1𝐿−𝑇 )P−1
𝑘+2

Combining the last term of Equation (29) with the first term on the right side of Equation (25),

𝑒 (𝑘) (𝐼 − K𝑘𝐶𝑘 )𝑇 𝐴𝑇𝑘P−1
𝑘+1𝐴𝑘 (𝐼 − K𝑘𝐶𝑘 )𝑒 (𝑘)

≤ 𝑒 (𝑘) (1 − (1 + 𝑝𝑎̄2/𝑞)−1(1 + 𝑘̄𝑐 + 𝜆)−1)P−1
𝑘+2𝑒 (𝑘)

≤ (1 − 𝛼)


P−1

𝑘+2



 ‖𝑒 (𝑘)‖2
(34)

where ‖𝐴𝑘 ‖ =
√
𝑡𝑟 (𝐴𝑘𝐴𝑘 ) ≤ 𝑎̄, ‖𝐶𝑘 ‖ =

√
𝑡𝑟 (𝐶𝑘𝐶𝑘 ) ≤ 𝑐, ‖K𝑘 ‖ =

√
𝑡𝑟 (K𝑘K𝑘 ) ≤ 𝑘̄ , 𝜆 =



Λ−1


, 𝑝𝐼 ≤ P𝑘+2 ≤

𝑝𝐼, 𝑞𝐼 ≤ 𝑅1, and

𝛼 =
1

(1 + 𝑝𝑎̄2/𝑞) (1 + 𝑘̄𝑐 + 𝜆)
< 1

Combining Equation (26), the first term of Equation (29), and Equation (34),

𝑉𝑘+1 = (1 − 𝛼)


P−1

𝑘+2



 ‖𝑒 (𝑘)‖2

+𝜆max [Λ] 𝜌̄ + 𝜆max
[P−1

𝑘+1
]
( 𝜌̄ + 𝑠)

≤ (1 − 𝛼)𝑒 (𝑘) P−1
𝑘+2𝑒 (𝑘)

+𝜆max [Λ] 𝜌̄ + 𝜆max
[P−1

𝑘+1
]
( 𝜌̄ + 𝑠)

(35)
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Thus,
𝑉𝑘+1 −𝑉𝑘 ≤ −𝛼𝑉𝑘 + 𝜅

where 𝜅 = 𝜆max
[P−1

𝑘+1
]
( 𝜌̄ + 𝑠) + 𝜆max [Λ] 𝜌̄. If

𝛼𝜆min
[P−1

𝑘+2
]
‖𝑒 (𝑘)‖2 ≥ 𝜅

then 𝑉𝑘+1 −𝑉𝑘 ≤ 0, ‖𝑒 (𝑘)‖ decreases. Thus, ‖𝑒 (𝑘)‖ converges to Equation (23).

3. GENETIC ALGORITHM AND SLAM FOR PATH PLANNING

Path planning is one key problem of autonomous robots. Here, the map is built by the sliding mode SLAM:

• The obstacle set is defined by 𝐵𝑜𝑏𝑠 (𝑡).
• The position is 𝑥𝑟 (𝑡), 𝐵 𝑓 𝑟𝑒𝑒 (𝑡) = 𝐵\𝐵𝑜𝑏𝑠 (𝑡).
• The path planning is 𝑓 (𝑥(𝑡), 𝑥𝑆, 𝑥𝑇 ), 𝑥𝑆 = 𝑥𝑟 (𝑡).

The previous map is 𝐵 𝑓 𝑟𝑒𝑒 (𝑡), which requires the path 𝑓 (𝑥(𝑡), 𝑥𝑆, 𝑥𝑇 ).

We assume the previous map is obstacle-free, the initial point is 𝑥𝑆 , the target point is 𝑥𝑇 ∈ 𝐵,

𝐵 𝑓 𝑟𝑒𝑒 = {𝑧𝑟 ∈ 𝐵 | 𝐴(𝑧𝑟 ) ∩ 𝐵𝑜𝑏𝑠 = ∅}

the obstacle is 𝐵𝑜𝑏𝑠 = 𝐵 𝑓

𝐵
𝑒
, 𝑧𝑟 is the shape of the robot, and 𝐴(𝑧𝑟 ) is the area of the robot. The objective of the

path planning is to find a path 𝑓 (𝑥, 𝑥𝑆, 𝑥𝑇 ) ∈ 𝐵 𝑓 𝑟𝑒𝑒 that allows the robot to navigate.

𝐷 is defined as the search space. We use the GA to find an optimal trajectory 𝑓 (𝑥, 𝑥𝑆, 𝑥𝑇 ), such that

min
𝑥∈𝐷

𝑓 (𝑥, 𝑥𝑆, 𝑥𝑇 ), where 𝑓 : 𝐷 → 𝑅 (36)

Here, we use stochastic search for GA, and each iteration includes: reproduction or selection, crossing or
combination, and mutation. The population is 𝑃(𝑘) = {𝑆𝑘1 , 𝑆

𝑘
2 , .., 𝑆

𝑘
𝑚} with 𝑚 being the size of the population

that represents the possible solutions:

(1) Every chromosome 𝑆𝑡𝑖 has a solution in 𝐷

𝑆𝑘𝑖 = [𝜍𝑙 , 𝜍𝑙−1, . . . , 𝜍2, 𝜍1] with 𝜍𝑖 ∈ 𝐷 ∀𝑖 = 1, 2, . . . , 𝑙

(2) Crossing the chromosomes. An intersection in 𝑆𝑘𝑎 = [𝜍𝑎𝑙 , 𝜍
𝑎
𝑙−1, . . . , 𝜍

𝑎
2 , 𝜍

𝑎
1 ] and 𝑆

𝑘
𝑏 = [𝜍𝑏𝑙 , 𝜍

𝑏
𝑙−1, . . . , 𝜍

𝑏
2 , 𝜍

𝑏
1 ]

belongs to 𝐷, such that 𝑆𝑡𝑎 ∩ 𝑆𝑡𝑏 ≠ ∅; then,

𝑆𝑘𝑎′ = [𝜍𝑎𝑙 , 𝜍
𝑎
𝑙−1, . . . 𝜍

𝑎𝑏
𝑖 , . . . , 𝜍

𝑏
2 , 𝜍

𝑏
1 ]

𝑆𝑘𝑏′ = [𝜍𝑏𝑙 , 𝜍
𝑏
𝑙−1, . . . 𝜍

𝑎𝑏
𝑗 , . . . , 𝜍

𝑎
2 , 𝜍

𝑎
1 ]

where 𝑆𝑡𝑎′ and 𝑆
𝑡
𝑏′ are the next generation from two compatible chromosomes by crossing.

(3) Mutation. It replace a number of chromosomes by chromosomes in 𝐷.

The mutation operation is calculated by the fitness of each chromosome,
𝑃(𝑀𝑢𝑡) = [ 𝑓 𝑖𝑡 (𝑆𝑀𝑢𝑡1 ), 𝑓 𝑖𝑡 (𝑆𝑀𝑢𝑡2 ), . . . , 𝑓 𝑖𝑡 (𝑆𝑀𝑢𝑡𝑛 )], where 𝑛 is the number of mutations and 𝑓 𝑖𝑡 uses the
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Figure 2. Roadmap genetic algorithm model as a finite Markov chain.

Euclidean distance. The total fitness is 𝐹𝑖𝑡 =
𝑛∑
𝑖=1
𝑓 𝑖𝑡 (𝑆𝑀𝑢𝑡𝑖 ). Therefore, the probability of selection 𝑝𝑖 of a

chromosome 𝑆𝑖 for 𝑖 = 1, 2, . . . , 𝑛 is

𝑝𝑖 =
𝑓 𝑖𝑡 (𝑆𝑀𝑢𝑡𝑖 )
𝐹𝑖𝑡

(37)

An optimal solution 𝑝𝑀 in 𝐷 is mutated by

𝑝𝑀 = lim
𝑛→∞

(1 − 𝑝𝑖) = lim
𝑛→∞

©­­­«1 −
𝑓 𝑖𝑡 (𝑆𝑀𝑖 )
𝑛∑
𝑖=1
𝑓 𝑖𝑡 (𝑆𝑀𝑖 )

ª®®®¬ = 1 (38)

In the mutation operation, an optimal solution with 𝑝𝑀 = 1 is a global solution if 𝑛 → ∞. To prove the
convergence, we use a Markov chain, as shown in Figure 2. Each chromosome can move from 𝑄𝑖 𝑗 to the state
𝑄𝑖( 𝑗+1) . The moving probability is 𝜌 𝑗𝑖,𝑖𝑘 > 0, 𝑖 = 1, 2, . . . , 𝑛, 𝑘, 𝑗 = 1, 2, . . . , 𝑚.

The operators, selection, crossing, and mutation create 𝑃(𝑘) with 𝑝𝑘 . It preserves the best chromosomes of
𝑃(𝑘 − 1). 𝑃(𝑘 + 1) in the population 𝑃(𝑘) can be regarded as the Markov transition:

𝐻{𝑄𝑘+1 = 𝑝𝑘+1 |𝑄𝑘 = 𝑝
𝑘 } = 𝐻 (𝑝𝑘+1, 𝑝𝑘 ) (39)

Theorem 2 If GA for the roadmap is an elitist process, then the probability of 𝑝∗in 𝐷 is exponential.

Proof 2 The iteration 𝑄1 is changed with the chromosomes when genetic process is elitist,

𝐻 (𝑄1 = 𝑝∗∀0 < 𝜏 ≤ 𝑛) =
𝑛∑
𝑖=2
𝜌𝑖1,11 =

𝑛 − 1
𝑛

(40)

where 𝑛 is the size of the population. If for all 𝛼, 𝛽 ∈ 𝐷, there is 0 < 𝜏 ≤ 𝑚 such that 𝐻𝜏 (𝛼, 𝛽) ≥ 𝜖 > 0, then

𝜖 = min {𝐻𝜏 (𝛼, 𝛽)∀0 < 𝜏 ≤ 𝑛} ≤ 1 (41)

This implies that, given certain state 𝑄𝑡 , the probability of transition in time 𝑡 between 𝑡 and 𝑡 + 𝑚 is at least 𝜖 ,

𝐻 (𝑄𝑡 ≠ 𝑝∗∀𝑡 < 𝜏 ≤ 𝑡 + 𝑛) ≥ 1 − 𝜖 (42)

Without loss of generality, the transition in the iteration 𝑘 + 1 is

𝐻 (𝑄𝑘+1) = 𝐻 (𝑄𝑡 ≠ 𝑝∗∀0 < 𝑡 ≤ (𝑘 + 1)𝑛)
𝐻 (𝑄𝑡 ≠ 𝑝∗∀0 < 𝑡 ≤ 𝑘𝑚𝑛)𝐻 (𝑄𝑡 ≠ 𝑝∗∀𝑘𝑛 < 𝑡 ≤ (𝑘 + 1)𝑛)
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Using Equation (42), we have

𝐻 (𝑄𝑘+1) ≤ 𝐻 (𝑄𝑡 ≠ 𝑓 ∗∀0 < 𝑡 ≤ 𝑘𝑚)(1 − 𝜖)
≤ 𝐻 (𝑄𝑡 ≠ 𝑓 ∗∀0 < 𝑡 ≤ (𝑘 − 1)𝑚)(1 − 𝜖)2

≤ 𝐻 (𝑄𝑡 ≠ 𝑓 ∗∀0 < 𝑡 ≤ 0)𝐻 (𝑄𝑡 ≠ 𝑓 ∗∀0 < 𝑡 ≤ 𝑚)(1 − 𝜖)𝑘
= 1

𝑚 (1 − 𝜖)𝑘

where 𝐻 (𝑃𝑡 ≠ 𝑝∗∀0 < 𝑡 ≤ 0) = 1, then

lim
𝑘→∞

𝐻 (𝑄𝑘+1) ≤ lim
𝑘→∞

1
𝑛 (1 − 𝜖)𝑘

= 1
𝑛 lim
𝑘→∞

(1 − 𝜖)𝑘 = 0

Since 0 < 𝜖 ≤ 1, the algorithm converges exponentially to 𝑝∗ in: population size 𝑛 and iteration number 𝑘 .

The algorithm of the SLAM-based roadmap GA for the path planning is as follows.

SLAM based roadmap GA. (1) Initiate population randomly 𝑃(𝑘) of size 𝑛 that belong in set 𝐷. (2) The
fitness value is 𝑓 𝑖𝑡 with Euclidean distance for each chromosome 𝑆𝑖 . (3) The population is from lower to
higher fitness: 𝑓 𝑖𝑡 (𝑆1) ≥ 𝑓 𝑖𝑡 (𝑆2) ≥ · · · ≥ 𝑓 𝑖𝑡 (𝑆𝑀 ). (4) Crossing set in the chromosomes, 𝑆𝑖 ∩ 𝑆 𝑗 → 𝑆𝑖 𝑗 , 𝑆 𝑗𝑖 .
(5) Next population 𝑃(𝑘 + 1) is replaced by the chromosomes with poor skills. (6) Random mutation with
poor skills. (7) Go to Step (2)

4. AUTONOMOUS NAVIGATION

Our AN uses both sliding mode SLAM (Algorithm 1) and the roadmap GA method (Algorithm 2). The
autonomous navigation algorithm is:

Autonomous navigation. The initial state 𝑆𝐼 , the target 𝑆𝑇 𝑃− = 𝑐𝑜𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒(𝑅1), 𝑃+ = 𝑐𝑜𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒(𝑅2) 𝜌 =
gain sliding mode, 𝑟𝑂 = search radius 𝑀𝑎𝑝 =search_obstacles(𝑆𝐼 , 𝑟𝑂) 𝑆𝑛 = Path_Planning(𝑀𝑎𝑝, 𝑆𝐼 , 𝑆𝑇 ) 𝑈0 =
Controller(𝑆𝐼 , 𝑆𝑛) while 𝑆𝑛 ≠ 𝑆𝑇[

𝑀𝑎𝑝𝑘 , 𝑋̂𝑘
]
= 𝑆𝑀_𝑆𝐿𝐴𝑀

(
𝑆𝑘 , 𝑆𝑛,𝑈𝑘 , 𝑃

−
𝑘 , 𝑃

+
𝑘 , 𝜌, 𝑧𝑘

)
𝑆𝑖 = 𝑋̂𝑘 (end state) 𝑀𝑎𝑝 (𝑒𝑛𝑑 : 𝑙𝑒𝑛𝑔𝑡ℎ(𝑀𝑎𝑝𝑘 )) = 𝑀𝑎𝑝𝑘 [𝑆𝑛

𝜃𝑖] =Path_Planning(𝑀𝑎𝑝, 𝑆𝑖 , 𝑆𝑇 ) if 𝜃𝑖 > 𝜋 𝑆𝑛 = 𝐶𝑜𝑚𝑝𝑢𝑡𝑒𝑂𝑢𝑡𝑠𝑖𝑑𝑒𝐿𝑜𝑐𝑎𝑙 (𝑀𝑎𝑝, 𝑆𝑖 , 𝑆𝑇 , 𝜃𝑖)
end if; 𝑈𝑘+1 = Controller(𝑆𝑖 , 𝑆𝑛) end while return 𝑆𝑛, 𝑋̂𝑘

The PP needs the map, robot position, and target. This information is given by the sliding mode SLAM algo-
rithm. When the algorithm falls into a local solution, we use the 𝐶𝑜𝑚𝑝𝑢𝑡𝑒𝑂𝑢𝑡𝑠𝑖𝑑𝑒𝐿𝑜𝑐𝑎𝑙 function to provide
another 𝑆𝑛 which is outside the local zone.

5. COMPARISONS

In this section, we use several examples to compare ourmethod with the three other recent methods: the polar
histogram method for path planning [50], the grid method for path planning [51], and SLAM with extended
Kalman filter [52].
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Figure 3. Sliding mode simultaneous localization and mapping.
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Figure 4. Autonomous navigation using sliding mode simultaneous localization and mapping and genetic algorithm method.

5.1. Simulations
The following simulations were implemented in partially unknown and completely unknown environments.
The size of the environments was 100 m × 100 m, in which a solution was sought to find a trajectory from the
initial point 𝑥𝑆 to the target point 𝑥𝑇 . The sliding mode gains were selected as 𝜌 = 𝑑𝑖𝑎𝑔([0.1, · · · , 0.1]).

In the partially unknown environments, 𝐵𝑜𝑏𝑠 (0) ≠ ∅. The path planning solution 𝑝∗ was partial because
the environment 𝐵𝑜𝑏𝑠 (𝑡) was variant in time. Figure 3 shows a partial solution 𝑝∗ from an initial point 𝑥𝑆 to
the objective point 𝑥𝑇 for the partially unknown environment. Figure 4 shows the overall result of the robot
navigation from point 𝑥𝑆 to point 𝑥𝑇 with the robust SLAM algorithm combined with the GA.

Here, the SLAM algorithm was used to construct the environment and find the position of the robot. At the
beginning of navigation in the partially unknown environment, there was a planned trajectory of navigation
through the GA algorithm; however, if an obstacle was found in the planned trajectory, the GA algorithm
needed to be used to search for a new trajectory within the built environment by the SLAM, 𝐵𝑆𝐿𝐴𝑀 . The
planned trajectory belonged to the set of obstacles that prevent reaching the goal, 𝑝∗ ⊂ 𝐵𝑜𝑏𝑠 (𝑡); therefore, it
was necessary to look for a new trajectory using RGA that allowed reaching the goal.

For the completely unknown environments, 𝐵𝑜𝑏𝑠 (0) = ∅. In these environments, the SLAM algorithm was
required to know the environment 𝐵𝑆𝐿𝐴𝑀 and the position of the robot; in this way, when an obstacle was
found that contained the planned trajectory, a new trajectory with the GA algorithm was searched on the map
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Figure 5. Sliding mode simultaneous localization and mapping and genetic algorithm in complete unknown environment.
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Figure 6. Polar histogram method in complete unknown environments.

𝐵𝑆𝐿𝐴𝑀 until the target point was reached the results obtained are shown in Figure 5. When we used the polar
histogram method for path planning [50], only the local solutions could be found [Figure 6].

Now, we compare the path lengths with the polar histogram method. The following density of the obstacles
give the navigation complexity. The environment is free of obstacles when 𝑑𝑜𝑏𝑠 = 0.The whole environment
is occupied by the obstacles when 𝑑𝑜𝑏𝑠 = 1. The index for the trajectory error is

𝐸𝑃𝑃 =
𝑒 𝑓 𝑓 𝑒𝑐𝑡𝑖𝑣𝑒 𝑝𝑎𝑡ℎ − 𝑜𝑝𝑡𝑖𝑚𝑎𝑙 𝑝𝑎𝑡ℎ

100
(43)

We use the averages of the path length. The obstacles density is defined as

𝑑𝑜𝑏𝑠 =

∑
𝑛∈𝐺𝑂

𝑆𝑜𝑏𝑠 (𝑛)
‖𝐺𝐸 ‖

(44)

The path length is defined as

𝑙𝑠𝑢𝑏 =
𝑒 𝑓 𝑓 𝑒𝑐𝑡𝑖𝑣𝑒 𝑝𝑎𝑡ℎ

𝑜𝑝𝑡𝑖𝑚𝑎𝑙 𝑝𝑎𝑡ℎ
(45)

The averages of the path lengths of our RA and the polar histogram are shown in Figure 7. When the density
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Figure 8. Sliding mode simultaneous localization and mapping (gray) and grid method (black)

of obstacles was bigger, the path length of the polar histogram grew more quickly than that of ours. When the
obstacle density 𝑑𝑜𝑏𝑠 was 0.3, 𝐸 [𝑙𝑠𝑢𝑏 , 𝑁𝑎𝑣𝑖𝑔𝑎𝑡𝑖𝑜𝑛1] = 1.053, 𝐸 [𝑙𝑠𝑢𝑏 , 𝑁𝑎𝑣𝑖𝑔𝑎𝑡𝑖𝑜𝑛2] = 1.152.

Next, we compare our method with the grid method [51]. The comparison results are shown in Figure 8. For
the task of navigating the robot or system in partially unknown or completely unknown environments, the
SLAM algorithm was used to construct the environment and know the position of the robot. At the beginning
of navigation in the partially unknown environment, there was a planned trajectory of navigation through the
GA algorithm; however, if an obstacle were found in the planned trajectory, the GA algorithm needed to be
used to search for a new trajectory within the built environment by the SLAM, 𝐵𝑆𝐿𝐴𝑀 .

The size of the environments was 100 m × 100 m, in which a solution was sought to find a trajectory from the
initial point 𝑥𝑆 to the target point 𝑥𝑇 . Figure 9 shows a path planning based on the proposed methods to find
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Figure 10. Performance of the genetic algorithm.

a solution 𝑓 ∗. Here, 60 local targets were generated 𝑥𝑖 with the search space 𝐷 generated by the trajectories of
the local targets that do not intersect with the set of obstacles; thus, it became an optimization problem to find
an optimal path.

In an environment with previously generated obstacles of 100 m × 100 m, 120 possible targets were randomly
generated 𝑥𝑖 ; therefore, the search space D would be all trajectories 𝑔(𝑥𝑖 ,𝑋 𝑗 ) that do not intersect with the set
of obstacles, where the roadmap genetic algorithm solved the problem of optimization to find a solution to the
problem of path planning. For the problem presented above, we found that the proposed algorithm converged
in 40 iterations. For these results, 100 tests were performed for each number of iterations and, as shown in
Figure 10, the roadmap genetic algorithm converged with greater probability within 40 iterations.

5.2. Application
TheKoalamobile robot byK-teamCorporation 2013 was used to validate our slidingmode SLAM.Thismobile
robot has encoders and one laser range finder. The position precision is less than 0.1 m.
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Figure 11. The environment of the autonomous navigation.
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Figure 12. Results of extended Kalman filter simultaneous localization and mapping and sliding mode simultaneous localization and map-
ping with small noises.

The objective of this autonomous navigation is to force the robot to return to the starting point. The sliding
mode SLAM was compared with SLAM with extended Kalman filter (EKF-SLAM) [52].

The initial covariance matrices are zero. The parameters of the algorithm are

𝜌 = 𝑑𝑖𝑎𝑔( [1𝑒−3, 1𝑒−3, 4𝑒−3, 2𝑒−4, · · · , 2𝑒−4])
𝑅1 = 𝑑𝑖𝑎𝑔([0.05, 0.05, 0.005]), 𝑅2 = 𝑑𝑖𝑎𝑔([6𝑒−4, 1𝑒−5])

Since the robot moves in the environment with bounded noise (see Figure 11), the noises are not Gaussian.
Two different conditions are considered: (1) Koala robot pre-processes off-line the sensors data to reduce 90%
noises; and (2) the computer uses sliding mode SLAM on-line.

For the first case, Figure 12 shows that sliding mode SLAM and EKF-SLAM are similar. Both sliding mode
SLAM and EKF-SLAM work well for the case with less noise. The robot can return to the starting point, and
the map is constructed correctly.

For the second case, Figure 13 gives the results of EKF-SLAM. As can be seen, the robot cannot return to the
starting point and the map is not exactly the same as the real one with EKF-SLAM because EKF-SLAM is
sensitive to non-Gaussian noises.
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Figure 13. Results of extended Kalman filter simultaneous localization and mapping with noises.
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Figure 14. Results of sliding mode simultaneous localization and mapping with noise.

Figure 14 shows the results with SM-SLAM. Under the same bounded noises, SM-SLAM works very well,
because of the sliding mode technique.

To compare the errors, we define the average of the Euclidean errors as

𝐸𝑑 =
1
𝑁𝑇

𝑁𝑇∑
𝑘=1

√
(𝑥𝑘 − 𝑥∗𝑘 )2 + (𝑦𝑘 − 𝑦∗𝑘 )2, 𝐸𝑎 =

1
𝑁𝑇

𝑁𝑇∑
𝑘=1

��𝜙𝑘 − 𝜙∗𝑘 �� (46)

where 𝑁𝑇 is the data number; 𝑥∗𝑘 , 𝑦
∗
𝑘 , and 𝜙

∗
𝑘 are real values for robot position and orientation; and 𝑥𝑘 , 𝑦𝑘 , and

𝜙𝑘 are estimations of them. Figure 15 shows the errors of EKF-SLAM and sliding mode SLAM. Obviously,
the errors of EKF-SLAM increase quickly. Robots have better estimation in long distances with sliding mode
SLAM.
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Figure 15. Direction estimation errors of sliding mode simultaneous localization and mapping (SLAM) and EKF-SLAM. EKF: Extended
Kalman filter.

6. CONCLUSION

Navigation in unknown environments is a big challenge. In this paper, we propose sliding mode SLAM with
genetic algorithm for path planning. Both slidingmode andGA can work in unknown environments. Conver-
gence analysis is given. Two examples were applied to compare our model with other models, and the results
show that our algorithm is much better in unknown environments.
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Abstract
Rail track is a critical component of rail systems. Accidents or interruptions caused by rail track anomalies usually 
possess severe outcomes. Therefore, rail track condition monitoring is an important task. Over the past decade, 
deep learning techniques have been rapidly developed and deployed. In the paper, we review the existing literature 
on applying deep learning to rail track condition monitoring. Potential challenges and opportunities are discussed 
for the research community to decide on possible directions. Two application cases are presented to illustrate the 
implementation of deep learning to rail track condition monitoring in practice before we conclude the paper.

Keywords: Rail track maintenance, condition monitoring, anomaly detection and classification, deep learning

1. INTRODUCTION
The rail industry plays an important role in a nation’s economy and development and directly affects the 
lifestyle of the residents. Hence, there is a low tolerance level by the public to any accidents or negative 
events happening to the rail operations as the economy, the livelihood, and the country’s reputation would 
be brought down and the social and political risk level will rise. The rail systems around the world operate 
under different environments with their most critical infrastructure, the steel rail track, including rails, 
sleepers, ballast, fastener, and subgrade. Undesirable consequences such as derailment, death, injury, 
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economic burden and loss of public confidence could be caused by the defects on the rail track and the 
failure of rail tracks[1]. It was also reported that rail maintenance workers were injured or lost life during rail 
inspection and maintenance operations. Thus, safe railway operations demand effective maintenances 
which rely heavily on inspection and monitoring of rail track conditions. The condition monitoring is 
fundamentally critical to the safety, reliability and cost-efficiency of the rail operations[2]. There are also 
regulations by governments on the frequency of regular track inspections which traditionally requires a 
large amount of personnel and equipment resources. Therefore, the rail track condition monitoring is of 
great importance due to the safety, economic and regulatory factors.

Rail defects are normally initiated by loads and stresses applied to rails in longitudinal, transverse, or vertical 
directions. The vehicle wheels can apply vertical, lateral, and creep loads to the rails, while bulk stress such 
as bending stress, thermal stress, and residual stresses can be applied to the rails as well. Different rail 
defects such as rail corrugations, rolling contact fatigue defects, squat defects, shatter cracking, split head, 
and wheel burns have their own causes and characteristics, lead to different effects, and thus require 
corresponding treatments[3]. Therefore, proper detection and classification of rail defects play an important 
role in effective rail maintenance operations. In practice and research, some common rail defects may be 
selected and targeted according to Pareto’s principle as some types of rail track defects are commonly found 
such as rail corrugation, transverse cracks, shelling, and wheel burns. The train wheels contact with the rail 
track and frictions in between will gradually cause rail corrugation over a period of time where crests, 
troughs, and waves remain on the track and will become worse and worse. The rail tracks will have concave 
deform on the top due to the corrugations, which also cause the rail track lifespan to shorten and, therefore, 
a replacement will be needed. Around the faulty weld joint areas, which could be caused by the difference in 
weld material or a manufacturing flaw in the rail, transverse cracks may form. Another cause could be the 
welding processes, such as arc welding, pores, inclusions, and misalignments. Around the gauge corners of 
the rail tracks, there could be subsurface fatigue, which causes the loss of materials and then shelling defects. 
Later on, shelling cracks will develop inside the area which can usually be seen as dark spots on the outside 
of the gauge corners. However, in the beginning, the cracks may grow so fast that unforeseen failures appear 
before the crack defects are detected. The train wheels may slide quite often on the railway tracks, which will 
raise the rail surface temperature to be very high and therefore cause the wheel burn defects, which are 
usually found in pairs, opposite of one another on the two rail tracks. The high temperature will drop down 
quickly, which makes the rail track in the brittle martensite phase according to material science. Wheel 
burns could be found on the surface of rail tracks and might appear similar to squat defects. Wheel burns 
are usually found in pairs, opposite of one another on two rails.

Defects and deteriorated conditions on the rail track can normally be seen by human eyes; therefore, 
manual inspection by patrollers can identify and locate the defects and monitor the condition. However, 
such inspections are labor-intensive and can only be arranged during non-operating hours in order not to 
disrupt the regular service operations. Ultrasound testing, magnetic particle testing, radiographic testing, 
eddy current testing, and penetrating testing are the common non-destructive testing (NDT) methods to 
measure the surface and internal parameters or performance of the tested object without destroying it. 
Among these testing methods, ultrasound testing and eddy current testing are more suitable for the train 
tracks. The ultrasound testing method is the most effective rail track NDT inspection method. It utilizes the 
propagation and attenuation characteristics of sound waves in the medium and the reflection and refraction 
characteristics on the interface. It can detect the internal defects and find cracks on bolt holes, head, and 
web and the longitudinal crack at the bottom of the rail. Due to rail steel being ferromagnetic, the eddy 
currents do not penetrate into the material. Therefore, they flow along the crack side so that the pocket 
length of the cracks can be determined in the railhead by eddy current testing. The eddy current testing 
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method is particularly suitable to inspect steel rails even under high temperatures[4]. Due to the harsh 
environment, late hours, and tired patrollers, the inspection accuracy might be affected[5]. Rail inspection 
vehicle and sensor technologies are being deployed as an efficient and cost-effective data collection 
technology solution to support rail maintenance operations and can capture vast amounts of data. Data-
driven automatic condition monitoring and detection and classification of rail track anomalies have been 
attracting attention from researchers at universities and railway institutes.

Deep learning methods are producing successes in various applications with the recent advances of the 
techniques. Deep learning has neural networks as its functional unit to mimic how the human brain solves 
complex problems based on data. Methods such as long-short-term memory (LSTM) as a type of recurrent 
neural network (RNN) and convolutional neural network (CNN) propelled the development of deep 
learning and the field of artificial intelligence and have been reported with convincing performances in 
monitoring conditions for tools, machines, and turbines. The performances in prediction and learning of 
these methods are improving with the increasing amount of data available[6-8]. Deep learning methods have 
been adopted for rail track condition monitoring and anomaly detection and classification.

Some research questions are formulated to guide our review with clear purposes. Subsequently, we select the 
publications for the detailed review.

• What types of deep learning models are available for rail track condition monitoring?

• What deep learning techniques can be useful for applications in rail track condition monitoring?

• What types of rail track anomalies are more commonly chosen to identify?

• What types of data are collated for the deep learning applications?

• Where are the specific objectives of applying deep learning models to rail track condition monitoring?

• What are the deep learning data pre-processing methods adopted?

• What are the challenges that researchers face?

• How does the application in rail track condition monitoring correspond to the evolution of deep learning 
techniques?

• What are the trend and insights for future directions of research and practice?

Figure 1 shows the review framework that is proposed by this paper to address the list of research questions. 
The importance, the types of defects, and the existing manual inspection techniques of rail track monitoring 
are presented to give the context and introduction of this study. The shortcomings of manual inspection 
techniques partially provide the need to adopt deep learning methods. We then review the deep learning 
methods available and their relevance by briefly discussing the evolution of the deep learning field and 
describing the deep learning models for the ease of selecting suitable models for tasks. The studies applying 
deep learning methods to rail track condition monitoring are then reviewed where summaries are made 
according to the trend over time, the region of study, the raw data type, the pre-processing data, the purpose 
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Figure 1. Review framework.

of applications, and the deep learning models adopted. How to apply these deep learning techniques for 
applications and the advantage and limitations of deep learning methods are discussed before some possible 
further research areas are outlined as well. Illustrative case studies are also included to show the practical 
considerations of applying deep learning methods to rail track condition monitoring. This review 
framework provides a balance between deep learning methods and their application to rail track condition 
monitoring. The scope is only about condition monitoring of rail tracks; we do not review other rail 
components such as rolling stocks or pantographs. Our studies also focus on the deep learning methods 
instead of more broadly artificial intelligence or machine learning approaches. The review framework caters 
to the needs of both practitioners who need to solve operational issues and researchers who might have 
more interests in the methodologies.
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Through this paper, the authors intend to provide a useful guide to researchers and practitioners who are 
interested in applying deep learning methods to rail track condition monitoring tasks. There are three major 
contributions of this paper. First, the evolution of deep learning and a collection of relevant deep learning 
methods provide clear coverage of the relevance, usefulness, and applicability of deep learning methods, 
which enable fellow researchers to navigate through the usually rather daunting deep learning domain with 
confidence. Second, a systematic search and review of the application publications proves the relevance of 
deep learning methods to rail track condition monitoring tasks and provides insights into how such 
research works are carried out and what potential further studies can be followed up. Third, two illustrative 
case studies demonstrate practical considerations and aim to motivate wider and more creative adoption of 
deep learning methods to rail industries. This paper is organized as follows. Section 2 describes a historical 
overview of deep learning and briefly introduces common deep learning models. Section 3 reviews research 
adopting deep learning methods for rail track condition monitoring and anomaly detection. Section 4 
discusses challenges and opportunities. Section 5 presents case studies applying deep learning to rail 
anomaly detection and classification while Section 6 concludes the paper.

2. DEEP LEARNING MODELS
2.1. Historical overview of deep learning
We provide a simplified timeline for deep learning and its evolution. Important issues and development at 
critical junctures are highlighted. A modern definition of deep learning describes a current understanding of 
the topic. Multiple layers of a deep learning model learn to represent the data with abstractions at multiple 
levels. The intricate structure of the large input data is discovered through the computations at each layer. 
Each layer computes its own representation from the representation of its previous layer according to the 
deep learning model’s internal parameters which are updated using the backpropagation algorithm. Images, 
video, speech, and audio data can be processed by deep convolutional nets while sequential data such as text 
and speech by recurrent nets[9]. In the following paragraphs, we examine the journey of deep learning from a 
single neuron to the current status and hence determine the scope of the following review work.

The McCulloch-Pitts (MCP) neuron proposed in 1943 was the first computational model mimicking the 
functionality of a biological neuron which marks the start of the era of artificial neural networks. An 
aggregation of Boolean inputs determines the output through a threshold parameter[10]. The classical 
perceptron model[11] proposed in 1958 was further refined and analyzed[12] in 1969. The perceptron model 
brought in the concept of numerical weights to measure the importance of inputs and a mechanism for 
learning those weights. The model is similar to but more generalized than the MCP neuron as it takes 
weighted real inputs and the threshold value is learnable. As a single artificial neuron is incapable of 
implementing some functions such as the XOR logical function, larger networks also have similar 
limitations which cooled down the artificial neural network development.

The multi-layer perceptron (MLP) was proposed in 1986 where node outputs of hidden layers are calculated 
using sigmoid function and biogeography based optimization is used to find the weights of the network 
model[13]. The universal approximation theorem of MLP, proved in 1989, states that, for any given function 
f(x), there is a backpropagation neural network that can approximately approach the result[14]. The LeNet 
network was proposed in 1989 to recognize handwritten digits with good performances[15]. In 1991, with the 
backpropagation neural network, the vanishing gradient problem was discovered, that is back-propagated 
error signals either shrink rapidly or grow out of bounds in typical deep or recurrent networks because 
certain activation functions, such as the sigmoid function, take a large input space but have a small output 
space between 0 and 1[16]. The LSTM model was proposed in 1997[17] and performs well in predicting 
sequential data. However, since then, neural networks had not been progressing well until 2006. It is worth 
mentioning that statistical learning theory, a framework for machine learning, blossomed between 1986 and 
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2006. Methods and models such as decision trees[18], support vector machines (SVM)[19], AdaBoost[20], kernel 
SVM[21], and random forests[22] were proposed. Graphical models were proposed in 2001 to provide a 
description framework for various machine learning methods such as SVM, naïve Bayes, and hidden 
Markov model[23].

Complementary priors were introduced in 2006 to eliminate the vanishing gradient problem that makes 
inference difficult in densely connected belief nets that have many hidden layers[24]. The rectified linear 
activation function (ReLU) was introduced in 2011 and became the default activation function of many 
neural networks. ReLU outputs the input directly if it is positive; otherwise, it is zero. ReLU is effective in 
tackling the vanishing gradient problems[25].

In 2012, AlexNet, a large deep convolutional neural network, was developed and trained to participate in the 
ImageNet large scale visual recognition challenge (ILSVRC) for the first time and delivered state-of-the-art 
results which drew attention from researchers[26]. AlexNet was the pioneer of using the graphics processing 
unit (GPU) to train the neural network. In the following years, deep learning became more and more 
popular, the architecture and training methods were improved rapidly, and the hardware advanced quickly 
and became more powerful. Deep learning has since been adopted by more industries including the railway 
industry and delivered more meaningful results. This paper focuses on reviewing research works of deep 
learning applications to rail track condition monitoring since 2013.

2.2. Common deep learning models
Artificial intelligence, machine learning, and deep learning have developed rapidly in recent years. There are 
many more deep learning networks than one can practically remember. As the resources to learn a 
particular deep learning method are abundant, we only list some deep learning methods in this section to 
provide an overview of the techniques available for practitioners and researchers to select and provide brief 
introductions about the methods. More detailed guides on implementations can be found from the 
abundance of references available.

The most commonly heard neural network names are probably CNN and RNN. CNN might be noted as 
ConvNet. The architecture of a CNN was inspired by the organization of the visual cortex and is analogous 
to that of the connectivity pattern of neurons in the human brain. Individual neurons respond to stimuli 
only in a restricted region of the visual field known as the receptive field. A collection of such fields overlaps 
to cover the entire visual area. CNN takes in an input image, assigns importance (learnable weights and 
biases) to various aspects/objects in the image, and can differentiate one from the other. In RNN, which was 
derived from feedforward neural networks, nodes are connected to form a directed graph along a temporal 
sequence to exhibit temporal dynamic behavior. RNN’s internal states (memory) are utilized to process 
variable-length sequences of inputs. A typical RNN architecture is LSTM which has feedback connections 
and can process both single data points (such as images) and entire sequences of data (such as speech or 
video). Applications of CNN and RNN to rail maintenance operations are commonly available, but CNN 
has been more widely adopted.

There are also some neural network architectures based on CNN with a novel configuration and supporting 
specific functions and tasks which might give inspirations for the rail maintenance operations. A Siamese 
neural network, also called a twin neural network, is an artificial neural network that uses the same weights 
while working in tandem on two different input vectors to calculate similarity scores of output vectors[27]. 
Figure 2 shows how the CNN layers are positioned to form the architecture of the Siamese neural network.
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Figure 2. Siamese neural network. CNN: Convolutional neural network

U-Net is a CNN that was developed for biomedical image segmentation. It supplements the usual 
contracting network by successive layers to increase the output resolutions, where up-sampling operators 
replace pooling operations[28]. Figure 3 shows how the CNN layers are positioned to form the architecture of 
the U-Net.

Transfer learning and generative adversarial networks (GANs) are exciting and rapidly changing fields that 
have been drawing attention from researchers and practitioners in and out of the rail industry. The idea of 
transfer learning [Figure 4] is that a model developed for a task can be reused as the starting point for a 
model on another task[29]. Pre-trained models are used as the starting point as transfer learning on both 
computer vision and natural language processing tasks so that computing and human resources can be 
preserved and provide a big jump for new deep learning tasks.

Generative modeling is performed to auto-learn and discover the regularities or patterns in input data, and 
then the model can generate new examples that are plausibly the same as the original dataset[30]. GANs 
frame the problem with two sub-models: the generator model that is trained to generate new examples, and 
the discriminator model that tries to classify examples as either real (from the domain) or fake (generated). 
The two models are adversarially trained together with an objective that the discriminator model cannot 
distinguish between real and generated inputs. Figure 5 illustrates the main ideas of transfer learning and 
GANs.

There are different deep learning methods suitable for different tasks. The most important problems that 
humans have been interested in solving with computer vision are image classification, object detection, and 
segmentation in the increasing order of their difficulty. Rail track anomalies might need to be classified so 
that appropriate actions can be taken, thus it is an image classification task. A foreign object might need to 
be located from a rail track image taken, thus it is an object detection task. Sometimes both the types of 
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Figure 3. A sample U-Net architecture.

Figure 4. Transfer learning.

anomalies and the location of the anomalies need to be identified. It means classification tasks and 
localization tasks need to be performed concurrently, which is semantic segmentation. Classification 
networks are created to be invariant to translation and rotation, thus giving no importance to location 
information, whereas localization involves getting accurate details with respect to the location. Thus, these 
two tasks are inherently contradictory. Most segmentation algorithms give more importance to localization 
and thus lose sight of the global context.
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Figure 5. Generative adversarial networks.

For image classification tasks, the following deep learning methods could be adopted:

• LeNet is the earliest pre-trained model used for recognizing handwritten and machine-printed characters 
and has a simple and straightforward architecture.

• AlexNet consists of eight layers, five convolutional layers and three fully connected layers, features ReLU 
and overlapping techniques, and allows multiple GPU. The dropout technique is used to prevent overfitting 
problems while suffering from longer training time. The dropout technique is that, at every training step, 
the number of interconnecting neurons of a neural network is randomly reduced by a percentage. ZFNet is 
a classic CNN and was motivated by visualizing intermediate feature layers and the operation of the 
classifier[31]. It has smaller filters and convolution stride than AlexNet.

• Inception network differs from the CNN classifiers in that it has filters with multiple sizes operating on the 
same level and concatenated outputs are sent to the next inception module which makes the neural network 
wider[32].

• GoogLeNet is a 27-layer architecture including nine inception modules that reduce the input images while 
retaining important spatial information to achieve efficiency. Users can utilize a GoogLeNet network 
trained on Imagenet with transfer learning instead of implementing or training the network from the 
scratch.

• ResNet introduces, as shown in Figure 6, an identity shortcut connection that skips one or more layers. 
The identity mapping layers do nothing to avoid producing higher training error[33]. Pre-activation ResNet 
makes the optimization easier and reduces the overfitting. RiR (ResNet in ResNet) makes the input with 
residual stream and transient stream for better accuracy attempts in order to generalize the ResNet block for 
residual network[34]. Residual networks of residual networks (RoR) proposes to have shortcut connections 
across a group of residual blocks[35]. On top of this, another level of shortcut connection can exist across a 
group of “groups of residual blocks”. Wide residual network (WRN) reduces training time but has more 
parameters as the network widens and it tests plenty of parameters such as the design of the ResNet block 
including the depth and the widening factor[36].
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Figure 6. A residual block.

• ResNeXt is a variant to ResNet and looks similar to the inception network as they both follow the split-
transform-merge paradigm, but the outputs of different paths are merged by adding them together for 
ResNeXt instead of depth-concatenated for inception network[37]. ResNeXt architecture’s paths share the 
same topology. The number of independent paths is introduced as a hyper-parameter cardinality to provide 
a new way of adjusting the model capacity.

• DenseNet further connects all layers directly with each other for the benefit of shortcut connections[38]. All 
earlier layers’ feature maps are aggregated with depth-concatenation and passed to subsequent layers. 
DenseNet is highly parameter-efficient due to feature reuse.

• Network with stochastic depth randomly drops layers during training but uses the full network during 
testing. The ResNet neural network takes less time in training and is thus more useful for real-world 
applications[39]. Each layer is randomly dropped with a survival probability during training, and all layers are 
active and recalibrated according to their survival probabilities during testing time. During training, the 
input of a residual block flows through both the identity shortcut and the weight layers when it is enabled; 
otherwise, only it only flows through the identity shortcut.

• VGGNet is a standard deep CNN architecture with 16 and 19 convolutional layers for VGG-16 and VGG-
19[40]. The VGG architecture is a well-performing image recognition architecture on many tasks and datasets 
beyond ImageNet.

• SPPNet is a type of CNN that employs spatial pyramid pooling to remove the fixed-size constraint of the 
network[41]. An SPP layer is added on top of the last convolutional layer to pool the features and generate 
fixed-length outputs which are then fed into the fully connected layers or other classifiers with the aim to 
avoid the need for cropping or warping at the beginning.

• PReLU-Net is a kind of CNN using parameterized ReLUs for activation function and a robust Kaiming 
initialization scheme to account for non-linear activation functions[42].
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• Xception is a 71-layer CNN with an input image size of 299 × 299[43]. The network was trained on more 
than a million images from the ImageNet database and learned rich feature representations for a wide range 
of images. Users can load a pre-trained version of the network that can classify images into 1000 object 
categories.

• MobileNet is a lightweight deep neural network designed for mobile applications of computer vision 
tasks[44]. As a filter’s depth and spatial dimension can be separated, MobileNet uses depthwise separable 
convolutions to significantly reduce the number of parameters A depthwise separable convolution is made 
from depthwise convolution, the channel-wise DK × DK spatial convolution, and pointwise, the 1 × 1 
convolution to change the dimension.

• FractalNet is a type of CNN that uses a fractal design instead of residual connections[45]. A simple 
expansion rule is repeatedly applied to generate deep networks. These networks have structures of truncated 
fractals and contain interacting subpaths of different lengths. There are no pass-through or residual 
connections, and every internal signal is transformed before flowing to subsequent layers.

• Both Trimps-Soushen and PolyNet performed very well in the ILSVRC image classification competition. 
Trimps-Soushen uses the pre-trained models from Inception-v3, Inception-v4, Inception-ResNet-v2, Pre-
Activation ResNet-200, and Wide ResNet (WRN-68-2) for classification. PolyNet introduced a building 
block called PolyInception module formed by adding a polynomial second-order term to increase the 
accuracy. Then, a very deep PolyNet is composed based on the PolyInception module.

For object detection tasks, the following deep learning methods can be deployed:

• OverFeat is a classic type of CNN architecture, employing convolution, pooling, and fully connected 
layers[46].

• R-CNN extracts only 2000 regions from the image as region proposals to work with using the selective 
search algorithm[47]. The CNN extracts the features from the image. The extracted features at the output 
dense layer are fed into an SVM to classify the presence of the object within that candidate region proposal. 
For Fast R-CNN, the region proposals are identified from the convolutional feature map generated by the 
CNN with the input image[48]. The region proposals are then warped into squares and reshaped into a fixed 
size using a RoI pooling layer before being fed into a fully connected layer. From the RoI feature vector, the 
class of the proposed region and the offset values for the bounding box are predicted with a softmax layer. 
Fast R-CNN is faster than R-CNN because the convolution operation is performed only once per image to 
generate a feature map. Faster R-CNN is similar to Fast R-CNN but much faster. It uses a separate network 
to predict the region proposals instead of using a selective search algorithm to identify the region proposals 
on the feature map generated by CNN[49]. An RoI pooling layer then reshapes the predicted region proposals 
for classifying the image within the proposed region and predicting the offset values for the bounding boxes. 
Real-time object detection tasks can adopt faster R-CNN.

• DeepID-Net introduces a deformable part-based CNN[50]. A new deformable constrained pooling layer 
models the deformation of the object parts with geometric constraint and penalty. Besides directly detecting 
the entire object, it is also crucial to detect object parts which can then support detecting the entire object.
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• R-FCN is similar to the logic of R-CNN-based detectors but reduces the amount of work needed for each 
region proposal to increase the speed[51]. The region-based feature maps can be computed outside each 
region proposal and are independent of region proposals.

• You only look once (YOLO) algorithm detects objects in real-time using a neural network[52]. Its 
architecture passes the nxn image once through the fully convolutional neural network and outputs mxm 
prediction. The YOLO architecture splits the input image into an mxm grid and generates two bounding 
boxes and associated class probabilities of the boxes for each grid. The bounding boxes could be larger than 
the grid itself. Differential weights of confidence predictions are adopted for boxes with or without objects 
during training. The square root of width and height are predicted differently for bounding boxes 
containing small or large objects. These changes to the loss function enable YOLO to produce better results. 
YOLOv3 (You Only Look Once, Version 3) was commonly adopted by the studies reviewed here.

• Single Shot multibox Detector (SSD) builds on the VGG-16 architecture while discarding its fully 
connected layers [Figure 7][53]. The original VGG fully connected layers are replaced with a set of auxiliary 
convolutional layers (from conv6 onwards) to extract features at multiple scales and progressively decrease 
the size of the input to each subsequent layer.

For semantic segmentation tasks, the following deep learning methods can be adopted:

• FCN uses a CNN to transform image pixels to pixel classes[54]. Instead of image classification or object 
detection, FCN transforms the height and width of intermediate feature maps back to those of the input 
image by using the transposed convolutional layer. Thus, the classification output and the input image have 
a one-to-one correspondence at the pixel level. Therefore, the classification results for the input pixel are 
held by the channel dimension at its output pixel at the same spatial position.

• DeconvNet gradually deconvolutes and un-pools to obtain its output label map, different from the 
conventional FCN with possible rough segmentation output label map[55].

• DeepLab applies atrous convolution for up-sampling[56]. Atrous convolution is a shorthand for convolution 
with up-sampled filters. Filter up-sampling amounts to inserting holes between nonzero filter taps. Atrous 
convolution allows effectively enlarging the field of view of filters without increasing the number of 
parameters or the amount of computation. Up-sampling the output of the last convolution layer and 
computing pixel-wise loss produce the dense prediction.

• ParseNet aggregates the values of each channel feature map’s activations to declare contextual 
information[57]. These aggregations are then merged to be appended to the final features of the network. This 
approach is less tiresome than the proposal cum classification approach and avoids unrelated predictions 
for different pixels under FCN approach.

• DilatedNet uses dilated convolutions, filters with holes, to avoid losing resolution altogether[58]. In this way, 
the receptive field can grow exponentially while the number of parameters only grows linearly. The front 
end is based on VGG-16 by replacing the last two pooling layers with dilated convolutions. A context 
module and a plug-and-play structure are introduced for multi-scale reasoning using a stack of dilated 
convolutions on a feature map.
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Figure 7. Single Shot multibox Detector architecture.

• PSPNet utilizes a pyramid parsing module to exploit global context information by aggregating different 
region-based contexts[59]. A pre-trained CNN with the dilated network strategy is used to extract the feature 
map, on top of which the pyramid pooling module gathers context information. The final feature map size 
is one-eighth of the input image. Using a four-level pyramid, the pooling kernels cover the whole, half of, 
and small portions of the image. They are fused as the global prior, which is then concatenated with the 
original feature map in the final part. It is followed by a convolution layer to generate the final prediction 
map. The local and global clues together make the final prediction more reliable.

3. REVIEW OF RAIL TRACK CONDITION MONITORING WITH DEEP LEARNING
The authors systematically searched published peer-reviewed journal articles and papers found in Google 
Scholar. Combinations of keywords such as “rail”, “surface”, “rail track”, “defect”, and “deep learning” were 
used as search keys to find research works published in the application of deep learning techniques to rail 
track condition monitoring and anomaly detection and classification. The review covers work from 2013 to 
2021. In total, we identified 62 relevant research publications to review.

The trend over time: a clear increasing trend can be observed of the popularity of deep learning approaches 
in rail track condition monitoring applications. Table 1 summarizes the findings. The number of papers 
surged in 2018. Before 2018, machine learning techniques other than deep learning approaches were more 
widely adopted. The rail industries are adopting deep learning methods with growing interests. An upwards 
trend of publication number is observed. There is also a gap of a few years from the invention of a deep 
learning model to its adoption by the rail industry.

Regions of study: fourteen regions are represented by the papers identified. Among them, China has the 
highest number of papers, which indicates the popularity of rail-related research work corresponding to the 
expanding rail networks across the country. Papers from China surged in 2018 and kept a high number in 
the following years. Table 2 summarizes the distribution of papers over regions.

Raw data type: it is observed that 70% of studies used image-type raw data for the deep learning models. 
Nevertheless, acoustic emission signals[65,71,100,103,108], defectogram[96,109], speed accelerations[98], concatenated 
vector of curve and numbers[101], current signal[89], maintenance records[80,99], synthetic data from generative 
model[63], time-frequency measurement data[82], time-series[60], geometry data[87], and vibration signal[119] 
could all be possible input data sources as well.
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Table 1. Number of papers over time

Year Total number of papers Ref.

2014 1 [60]

2015 1 [61]

2016 3 [62-64]

2017 5 [65-69]

2018 13 [70-82]

2019 16 [83-98]

2020 13 [99-111]

2021 10 [112-121]

Table 2. Paper distribution over regions

Region Total number of papers Ref.

Australia 1 [70]

Canada 1 [83]

China 35 [65,71-78,84-92,99-107,112-119]

Germany 1 [93]

Hong Kong 2 [94,108]

India 2 [66,67]

Korea 1 [95]

Netherlands 4 [62,63,78,80]

Russia 2 [96,109]

Singapore 3 [81,97,110]

Swiss 1 [60]

Turkey 3 [68,69,111]

UK 1 [120]

USA 5 [61,64,82,98,121]

Purpose of study: it is observed that detection, classification, and/or localizing rail surface defects including 
various components (rail, insulator, valves, fasteners, switches, track intrusions, etc.) are the most common 
purpose of the studies. There are also papers on predicting maintenance time[99] and detecting track 
geometry elevations[98]. Detection and classification tasks are more common than prediction tasks[60,80,87,99,119].

Adoption of deep learning models: many deep learning models are adopted by researchers. Table 3 
summarizes the distribution of deep learning models. CNN is the most popular deep learning model being 
adopted; however, many researchers created their own structure or divided their tasks into a few stages. 
CNN has been popular for extracting features and RNN/LSTM has been used for the sequential data type.

From the summary in Table 3, there are various deep learning methods being adopted in different forms. 
The effectiveness and the results differ from each other depending on the tasks. It is observed that image is 
the most popular input data type used for deep learning applications. However, there is a consistent process 
flow for how to apply the deep learning methods to rail track condition monitoring. First, the image 
acquisition subsystem (cameras/recording devices) is usually installed on rail engineering maintenance 
vehicles to capture raw input data. Second, the raw input data are transferred to the image processing 
subsystem where optional data pre-processing could be performed. Images could be resized, enhanced, have 
noise removed, or cropped for target areas with image processing techniques. Third, the input data are 
prepared for the training and testing of deep learning models. Data are labeled accordingly and then 



Ji et al. Intell Robot 2021;1(2):151-75 https://dx.doi.org/10.20517/ir.2021.14  Page 165

Table 3. Adoption of deep learning models

Deep learning model Ref.

AlexNet, ResNet [76]

Autoencoder [89,101]

CNN [61,62,65,68,69,74,75,79,85,94,95,102,108,109]

CNN (object detection), RNN (distance estimation) [93]

CNN + YOLOv3 [117]

CNN based self-proposed DFF-Net [118]

CNN based self-proposed FR-Net [72]

CNN to extract feature, only 1 class [82]

CNN, transfer learning [64]

CNN, transfer learning, Bayesian optimization to tune hyperparameters [100]

CNN-LSTM [87,103,107]

Faster R-CNN [78,88]

Faster R-CNN + CNN [73]

FastNet, convolutional network-based [120]

Fine-grained bilinear CNNs model [70]

FCN [119]

GAN for CNN [115]

Inception-ResNet-v2 & CNN [113]

LSTM-RNN [63,71,99]

Mask R-CNN [121]

ML Tree based methods [80]

MobileNetV2, YOLOv3 [84]

Multilayer feedforward neural networks based on multi-valued neurons (MLMVN) [60]

neural network [96]

Point Cloud deep learning [92]

ResNet classifier, DenseNet classifier [81]

ResNet, FCN [83]

Resnet50, transfer learning, Inception, Faster R-CNN [67]

Self-proposed, 2 stage FaultyNet, CNN based [97]

Self-proposed, segment U-Net (CNN based) then detect, progressive [116]

Self-proposed, ShuffleNet-v2 extracts features from the track image, RPN predicts [86]

Siamese convolutional neural network [66,91]

Single Shot multibox Detector (SSD) [90]

SqueezeNet, MobileNetV2 [111]

U-Net to segment [105]

Variational autoencoder [98]

YOLO V3 [77,104,106,110,114]

YOLOv5 detect object; mast R-CNN detect surface defect; ResNet classify fastener state [112]

CNN: Convolutional neural network; RNN: recurrent neural network; YOLOv3: You Only Look Once, Version 3; LSTM: long-short-term memory; 
DFF-net: differential feature fusion convolution neural network; FR-net: feature fusion refine neural network; FCN: fully convolutional networks; 
RPN: region proposal network.

randomly assigned for training and testing purposes. Fourth, the selected deep learning model is trained 
with the training data and validated by the testing data. Depending on the purposes, the deep learning 
model could perform classification or localization tasks. It is also possible to perform classification and 
localization concurrently, which is the most common type of task. The feature representations of the input 
data are always extracted; however, the next steps to deal with the feature vectors differ. It is noted that 
researchers also proposed their own neural network architectures to replace or complement the existing 
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architectures[72,86,97,116,118]. Fifth, the trained deep learning model is put in production with the trained 
parameters for real-world applications. Due to the criticality of rail track condition monitoring, redundancy 
of inspections by human operators could be provided to double confirm the accuracy. Finally, the efficiency 
and effectiveness of the deep learning models are reviewed and enhanced for improved performances.

Various deep learning methods are reported to produce promising results. With more data available from 
the rail industry, breakthroughs of deep learning methods, and more advanced and cheaper hardware, deep 
learning methods will only become more popular and useful for rail track condition monitoring. Deep 
learning models performed well for feature extraction and data classification tasks. The image processing 
requirements and the man-made feature extraction efforts are low for deep learning methods, which make 
the application economical. However, the nature of rail operations causes the distribution of rail track image 
data to be uneven and extremely disproportional, which could cause class imbalance problems in deep 
learning applications. The extremely high safety requirement of rail operations and the considerably black-
box nature of deep learning models contradict each other and might cause some trust issues, which is 
demonstrated by the redundancies applied to rail track inspections.

Data pre-processing: removing outliers, normalizing data, and applying image process techniques to 
enhance the images are common pre-processing techniques. Fourier transforms such as Fast Fourier 
Transforms and Short Time Fourier Transform have been applied to transform sequential data (e.g., 
acoustic emission) to 2D spectrograms, which can then be applied to CNN models[65,82,108].

4. DISCUSSIONS
Condition monitoring and anomaly detection and classification are important to a productive rail 
maintenance operation. There are four main types of maintenance strategies: corrective maintenance, 
preventive maintenance, proactive maintenance, and predictive maintenance. Deep learning methods can 
support the maintenance strategies depending on the tasks it performs. For example, detection of a certain 
type of defect will normally trigger corrective maintenance actions to rectify the rail track. The prediction 
tasks supported by deep learning methods can be used for predictive maintenance strategies, and they are 
becoming more and more popular.

Internet of Things (IoT) technologies can be implemented to support rail maintenance operations. Sensor, 
networking, and application layers in IoT can collect big data, which can then be analyzed by deep learning 
techniques for application services. In rail track condition monitoring, various types of sensors are being 
deployed across the rail network to collect data that need enablers such as deep learning techniques to 
unleash their full potential.

Deep learning methods can be more effective when they can be used in real time in the field by the 
technicians. Integration of deep learning, IoT, mobile technologies, and edge computing has the potential to 
develop useful applications that support the daily rail track maintenance operations.

Deep learning models are normally trained with high computing powers. In order for the deep learning 
models to be used in the field, light deep learning models need to be developed so that less powerful but 
more accessible devices such as mobile phones can be used with deep learning techniques to support the rail 
maintenance operations.
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Image data have been widely used with useful results. However, they tend to be used in detection and 
classification, which normally correspond to corrective or preventive maintenance strategies. In order for 
the industry to advance to predictive maintenance, the causes of defects need to be investigated and 
corresponding signals can be used for deep learning models’ training and testing. Thus, deep learning 
application in rail track condition monitoring need to cater to more varieties of data types; for example, the 
vibration signal is normally a sequential signal and vibration tends to cause wear on the rails over time.

The performance of deep learning models such as accuracy, response time, and precision tend to be 
influenced by the data used. Therefore, a common dataset of rail tracks will be helpful for researchers to use 
and validate the performance of deep learning models developed around the world. True performance 
comparisons could be made as well.

There are always more sections of normal rail tracks than defective sections; therefore, the number of 
normal track images tend to be much more than the defective ones. When considering the different classes 
of defects, the number of defect images will be even lower, which can cause class imbalance issues. GAN is a 
deep learning-based generative model. With the application of GAN to generate more images of defects, the 
training of deep learning models for detecting and classifying rail defects could be more efficient and 
accurate.

Transfer learning focuses on storing knowledge gained while solving one problem and applying it to a 
different but related problem. As rail track condition monitoring task is shared by researchers around the 
world, a “more” related problem and the knowledge gained will be more useful when it is transferred to 
another problem but in the same industry. This could be a promising research area for future work.

Reinforcement learning is the training of machine learning models to make a sequence of decisions. The 
agent learns to achieve a goal in an uncertain, potentially complex environment. This trial-and-error 
approach suits well the complex situation of deciding when it is the right time to perform the maintenance 
operations. This research area could generate meaningful results for the industry.

5. ILLUSTRATIVE CASE STUDIES
In this section, we use two application examples to illustrate the implementation of deep learning models to 
support rail track condition monitoring and rail defect detection and classification.

5.1. Data acquisition and preparations
Data acquisition equipment or devices could be installed on the rail inspection vehicles or passenger trains 
at different positions. We use rail vision systems here to record videos of the rail tracks for both head and 
rail checks. Lights are usually required to further enhance the quality of images taken; we use halogen 
floodlights to support visibility. The train speed might affect the image quality; therefore, a maximum speed 
may be set. For us, it is 100 km/h. Figure 8 illustrates a typical setup.

Various types of input data (image, sound, vibration, etc.) could be adopted for deep learning tasks. For 
image data, different formats and sizes might be used. Original greyscale images are captured from the rail 
track videos and then used without segmenting the tracks from the ballast, the sleepers, or other 
background textures around the rail tracks so as to minimize the image pre-processing efforts and maximize 
the utility of deep learning models. Pre-processing of input images is optional. Figure 9 shows a sample 
image that was used for training and test purpose.
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Figure 8. Image acquisition setup.

Figure 9. A sample image for training.

We worked with rail maintenance operations staff to describe and label the images according to their 
properties. Figure 10 shows some sample patterns of “normal”, “corrugation”, “insulated rail joint”, and 
“weld” images.

5.2. Deep learning environment configurations
The deep learning experiments were performed on a platform with OS (Windows or Linux) and GPU. Our 
configurations include Intel Core i7-8700 CPU, Nvidia GeForce RTX 2080 Ti GPU, and 64 GB RAM. 
Software packages such as Python 3.6, Nvidia CUDA Toolkit, cuDNN, and TensorFlow with GPU support 
were installed on Windows 10 operating system for our experiments.

5.3. Application 1: CNN
We conducted training and prediction experiments for both anomaly detection and classification purpose. 
The input images were categorized by the neural network into two output classes for detection tasks and ten 
output classes for classification tasks. For both tasks, 90% of the image samples were randomly reserved for 
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Figure 10. Sample patterns of different classes.

training while the remaining 10% for testing for every class. In anomaly detection, the distribution of images 
is comprised of 57% normal images and 43% images with various types of defects. In anomaly classification, 
there are ten classes in total that are to be classified; their distributions are: 57%, 7%, 2%, 4%, 1%, 1%, 7%, 2%, 
17%, and 2%. Input greyscale images were resized to 186 × 256 pixels before being fed into the neural 
network for training and prediction.

Four convolutional layers, two max-pooling layers, and four fully connected layers were connected for the 
deep convolutional neural network, and the convolutional kernel size was set as 3 × 3 pixels. We used max-
pooling units of size 2 × 2 pixels. ReLU was used as an activation function for convolutional layers. We 
added a dropout layer as an effective regularization method after max-pooling to reduce overfitting by 
randomly dropping out nodes during training. After the convolutional and max-pooling layers, we used 
fully connected layers to perform high-level reasoning in a convolution neural network.

We ran the deep convolutional neural network model for detection and classification tasks separately while 
keeping the training and testing images the same and only adjusting the number of output classes for the 
network classifiers at the end of the network. The learning rate of the Adam optimizer was set as 0.001 for 
training the model. For both the binary classification of detection tasks and the multi-class classification of 
classification tasks, we counted the number of true positives, true negatives, false positives, and false 
negatives. The binary classification accuracy was calculated as 87.45% and F1-score as 88.33%. The 
performance is acceptable and substantially improves the performance of the existing auto-detect method 
based on image process techniques and man-made feature representations in operation.

5.4. Application 2: Siamese neural network
We conducted training and prediction experiments for classification tasks with four classes of data which 
comprise normal images and three common types of defects. We used an equal number of images for each 
class. We created the training data samples for Siamese neural network, which is much easier than the 
classic convolutional neural network datasets that require images to be labeled. Image samples were 
randomly chosen from this dataset to form anchor-positive-negative trios. While sampling an image pair, 
the two images were chosen from the same category with a probability of 0.5 with a corresponding label of y 
= 0. Similarly, the images were chosen from two different categories with the remaining probability of 0.5 
with the label y = 1.

Two identical four-layer convolutional neural networks were used to form the twin structure of the Siamese 
neural network to perform the identification of rail surface defects. The batch size was 128. The number of 
epochs was 50. The number of steps per epoch was 5. ReLU was used as an activation function. The neural 
network optimizer used was Adam. During testing, data of matching pairs and non-matching pairs were 
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formed by randomly selecting images from each of the categories. All combinations, for example, “Normal 
vs. Defect_1” or “Defect_2 vs. Defect_3”, were tested with 10 pairs and the mean, minimum, and maximum 
values of test output distance were summarized for analysis. During the testing phase, the images were 
chosen randomly. These images belonged to a different set of classes that were never shown to the network 
during training. As described, all combinations of pairwise comparisons were tested with 10 different 
sample image pairs. The mean Euclidean (L2) distance was computed as the similarity score.

Our experiment results show that, when two test images belong to the same class, their dissimilarity score is 
smaller than those of images from two different classes. A threshold value can be chosen to determine 
whether two images are from the same or different classes based on the test similarity scores. We also notice 
that the threshold value has a decent margin to vary. From our experiments, 82.5% of test images actually 
from the same class were predicted to be “from the same class”, while 80.8% of test images actually from 
different classes were predicted to be “from different classes”. The binary classification accuracy was 
calculated as 81.67% and F1-score as 81.82%. The accuracy level is acceptable to the current rail 
maintenance operations with the potentials for further improvement.

Both cases can perform rail track condition monitoring and anomaly detection and classifications tasks with 
deep learning methods with the same dataset. The case studies deal with them in different ways with 
different deep learning models. Datasets generated from the maintenance operations are put into good use 
with the deep learning models to improve the rail track maintenance operations. Training of Siamese 
convolutional neural network was observed to take a shorter time than the classic convolutional neural 
network approach. The existing hardware setup in the rail operations did not require significant 
modification. The features extracted by the deep learning models performed better than the approaches of 
selected man-made features.

6. CONCLUSIONS
This paper presents the importance and criticality of rail track condition monitoring to safe rail operations. 
We give a brief overview of the historical development of deep learning and list common deep learning 
models. Deep learning came into the rapid development phase after 2012; therefore, we review the deep 
learning applications to rail track condition monitoring from 2013 to 2021. The applications are reviewed 
according to the temporal evolutions, the regional adoptions, the data type, and the deep learning models. 
We then discuss the potential challenges and research opportunities for applying deep learning to rail track 
condition monitoring. Two application case studies are shared to illustrate the implementation of deep 
learning methods in rail track condition monitoring.
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4.0 International License. Copyright is retained by authors. Please make sure that you are well aware of these policies.

1.3 Publication Fees
Before December 31, 2024, there are no article processing charges for papers accepted for publication after peer review. 
OAE subsidizes and helps authors publish their manuscripts totally free. For more details, please refer to OAE Publication 
Fees.

1.4 Language Editing
All submissions are required to be presented clearly and cohesively in good English. Authors whose first language is not 
English are advised to have their manuscripts checked or edited by a native English speaker before submission to ensure 
the high quality of expression. A well-organized manuscript in good English would make the peer review even the whole 
Editorial handling more smoothly and efficiently.
If needed, authors are recommended to consider the language editing services provided by Charlesworth to ensure that 
the manuscript is written in correct scientific English before submission. Authors who publish with OAE journals enjoy a 
special discount for the services of Charlesworth via the following two ways.
Submit your manuscripts directly at http://www.charlesworthauthorservices.com/~OAE;
Open the link http://www.charlesworthauthorservices.com/, and enter Promotion Code “OAE” when you submit.

1.5 Work Funded by the National Institutes of Health
If an accepted manuscript was funded by National Institutes of Health (NIH), the author may inform editors of the 
NIH funding number. The editors are able to deposit the paper to the NIH Manuscript Submission System on behalf 
of the author.

2. Submission Preparation
2.1 Cover Letter
A cover letter is required to be submitted accompanying each manuscript. Here is a guideline of a cover letter for authors’ 
consideration:
List the highlights of the current manuscript and no more than 5 short sentences;
All authors have read the final manuscript, have approved the submission to the journal, and have accepted full responsibilities 
pertaining to the manuscript’s delivery and contents;
Clearly state that the manuscript is an original work on its own merit, that it has not been previously published in whole or 
in part, and that it is not being considered for publication elsewhere;
No materials are reproduced from another source (if there is material in your manuscript that has been reproduced from 
another source, please state whether you have obtained permission from the copyright holder to use them);
Conflicts of interest statement;
If the manuscript is contributed to a Special Issue, please also mention it in the cover letter;
If the manuscript was presented partly or entirely in a conference, the author should clearly state the background information 
of the event, including the conference name, time, and place in the cover letter.

2.2 Types of Manuscripts
There is no restriction on the length of manuscripts, number of figures, tables and references, provided that the manuscript 
is concise and comprehensive. The journal publishes Research Article, Review, Technical Note, etc. For more details about 
paper type, please refer to the following table.
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Manuscript 
Type Definition Abstract Keywords Main Text Structure

Research 
Article

A Research Article is a seminal and 
insightful research study and showcases 
that often involves modern techniques or 
methodologies. Authors should justify 
that their work is of novel findings.

The abstract should 
state briefly the 
purpose of the 
research, the principal 
results and major 
conclusions. No more 
than 250 words.

3-8 keywords The main content should include 
four sections: Introduction, 
Methods, Results and 
Discussion.

Review A Review should be an authoritative, 
well balanced, and critical survey of 
recent progress in an attractive or a 
fundamental research field.

Unstructured abstract. 
No more than 250 
words.

3-8 keywords The main text may consist of 
several sections with unfixed 
section titles. We suggest that the 
author include an "Introduction" 
section at the beginning, several 
sections with unfixed titles in the 
middle part, and a "Conclusions" 
section at the end.

Technical 
Note

A Technical Note is a short article 
giving a brief description of a specific 
development, technique, or procedure, 
or it may describe a modification of an 
existing technique, procedure or device 
applied in research.

Unstructured abstract. 
No more than 250 
words.

3-8 keywords /

Editorial An Editorial is a short article describing 
news about the journal or opinions of 
senior Editors or the publisher.

None required None required /

Commentary A Commentary is to provide comments 
on a newly published article or an 
alternative viewpoint on a certain topic.

Unstructured abstract. 
No more than 250 
words.

3-8 keywords /

Perspective A Perspective provides personal points 
of view on the state-of-the-art of a 
specific area of knowledge and its future 
prospects.

Unstructured abstract. 
No more than 250 
words.

3-8 keywords /

2.3 Manuscript Structure
2.3.1 Front Matter
2.3.1.1 Title
The title of the manuscript should be concise, specific and relevant, with no more than 16 words if possible.

2.3.1.2 Authors and Affiliations
Authors’ full names should be listed. The initials of middle names can be provided. The affiliations and email addresses for 
all authors should be listed. At least one author should be designated as the corresponding author. In addition, corresponding 
authors are suggested to provide their Open Researcher and Contributor ID upon submission. Please note that any change 
to authorship is not allowed after manuscript acceptance. The authors’ affiliations should be provided in this format: 
department, institution, city, postcode, country.

2.3.1.3 Abstract
The abstract should be a single paragraph with word limitation and specific structure requirements (for more details please 
refer to Types of Manuscripts). It usually describes the main objective(s) of the study, explains how the study was done, 
including any model organisms used, without methodological detail, and summarizes the most important results and their 
significance. The abstract must be an objective representation of the study: it is not allowed to contain results that are not 
presented and substantiated in the manuscript, or exaggerate the main conclusions. Citations should not be included in the 
abstract.

2.3.1.4 Graphical Abstract
The graphical abstract is essential as this can catch first view of your publication by readers. We recommend you submit an 
eye-catching figure. It should summarize the content of the article in a concise graphical form. It is recommended to use it 
because this can make online articles get more attention.
The graphical abstract should be submitted as a separate document in the online submission system. Please provide an 
image with a minimum of 531 × 1328 pixels (h × w) or proportionally more. The image should be readable at a size of 5 cm 
× 13 cm using a regular screen resolution of 96 dpi. Preferred file types: TIFF, PSD, AI, JPEG, and EPS files.
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2.3.1.5 Keywords
Three to eight keywords should be provided, which are specific to the article, yet reasonably common within the subject
discipline.

2.3.2 Main Text
Manuscripts of different types are structured with different sections of content. Please refer to Types of Manuscripts to
make sure which sections should be included in the manuscripts.

2.3.2.1 Introduction
The introduction should contain background that puts the manuscript into context, allow readers to understand why the
study is important, include a brief review of key literature, and conclude with a brief statement of the overall aim of the
work and a comment about whether that aim was achieved. Relevant controversies or disagreements in the field should be
introduced as well.

2.3.2.2 Methods
The methods should contain sufficient details to allow others to fully replicate the study. New methods and protocols should
be described in detail while well-established methods can be briefly described or appropriately cited. Statistical terms,
abbreviations, and all symbols used should be defined clearly. Protocol documents for clinical trials, observational studies,
and other non-laboratory investigations may be uploaded as supplementary materials.

2.3.2.3 Results
This section contains the findings of the study. Results of statistical analysis should also be included either as text or as
tables or figures if appropriate. Authors should emphasize and summarize only the most important observations. Data on
all primary and secondary outcomes identified in the section Methods should also be provided. Extra or supplementary
materials and technical details can be placed in supplementary documents.

2.3.2.4 Discussion
This section should discuss the implications of the findings in context of existing research and highlight limitations of the
study. Future research directions may also be mentioned.

2.3.2.5 Conclusion
It should state clearly the main conclusions and include the explanation of their relevance or importance to the field.

2.3.3 Back Matter
2.3.3.1 Acknowledgments
Anyone who contributed towards the article but does not meet the criteria for authorship, including those who provided
professional writing services or materials, should be acknowledged. Authors should obtain permission to acknowledge
from all those mentioned in the Acknowledgments section. This section is not added if the author does not have anyone to
acknowledge.

2.3.3.2 Authors’ Contributions
Each author is expected to have made substantial contributions to the conception or design of the work, or the acquisition,
analysis, or interpretation of data, or the creation of new software used in the work, or have drafted the work or substantively
revised it.
Please use Surname and Initial of Forename to refer to an author’s contribution. For example: made substantial contributions
to conception and design of the study and performed data analysis and interpretation: Salas H, Castaneda WV; performed
data acquisition, as well as providing administrative, technical, and material support: Castillo N, Young V.
If an article is single-authored, please include “The author contributed solely to the article.” in this section.

2.3.3.3 Availability of Data and Materials
In order to maintain the integrity, transparency and reproducibility of research records, authors should include this section
in their manuscripts, detailing where the data supporting their findings can be found. Data can be deposited into data
repositories or published as supplementary information in the journal. Authors who cannot share their data should state
that the data will not be shared and explain it. If a manuscript does not involve such issues, please state “Not applicable.”
in this section.

2.3.3.4 Financial Support and Sponsorship
All sources of funding for the study reported should be declared. The role of the funding body in the experiment design,
collection, analysis and interpretation of data, and writing of the manuscript should be declared. Any relevant grant numbers
and the link of funder’s website should be provided if any. If the study is not involved with this issue, state “None.” in this
section.
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2.3.3.5 Conflicts of Interest
Authors must declare any potential conflicts of interest that may be perceived as inappropriately influencing the 
representation or interpretation of reported research results. If there are no conflicts of interest, please state “All authors 
declared that there are no conflicts of interest.” in this section. Some authors may be bound by confidentiality agreements. 
In such cases, in place of itemized disclosures, we will require authors to state “All authors declared that they are bound by 
confidentiality agreements that prevent them from disclosing their conflicts of interest in this work.”. If authors are unsure 
whether conflicts of interest exist, please refer to the “Conflicts of Interest” of IR Editorial Policies for a full explanation.

2.3.3.6 Ethical Approval and Consent to Participate
Research involving human subjects, human material or human data must be performed in accordance with the Declaration 
of Helsinki and approved by an appropriate ethics committee. An informed consent to participate in the study should also 
be obtained from participants, or their parents or legal guardians for children under 16. A statement detailing the name of 
the ethics committee (including the reference number where appropriate) and the informed consent obtained must appear 
in the manuscripts reporting such research.
Studies involving animals and cell lines must include a statement on ethical approval. More information is available at 
Editorial Policies.
If the manuscript does not involve such issue, please state “Not applicable.” in this section.

2.3.3.7 Consent for Publication
Manuscripts containing individual details, images or videos, must obtain consent for publication from that person, or in 
the case of children, their parents or legal guardians. If the person has died, consent for publication must be obtained from 
the next of kin of the participant. Manuscripts must include a statement that written informed consent for publication was 
obtained. Authors do not have to submit such content accompanying the manuscript. However, these documents must be 
available if requested. If the manuscript does not involve this issue, state “Not applicable.” in this section.

2.3.3.8 Copyright
Authors retain copyright of their works through a Creative Commons Attribution 4.0 International License that clearly 
states how readers can copy, distribute, and use their attributed research, free of charge. A declaration “© The Author(s) 
2021.” will be added to each article. Authors are required to sign License to Publish before formal publication.

2.3.3.9 References
References should be numbered in order of appearance at the end of manuscripts. In the text, reference numbers should be 
placed in square brackets and the corresponding references are cited thereafter. If the number of authors is less than or equal 
to six, we require to list all authors’ names. If the number of authors is more than six, only the first three authors’ names are 
required to be listed in the references, other authors’ names should be omitted and replaced with “et al.”. Abbreviations of 
the journals should be provided on the basis of Index Medicus. Information from manuscripts accepted but not published 
should be cited in the text as “Unpublished material” with written permission from the source.

References should be described as follows, depending on the types of works:
Types Examples
Journal articles by 
individual authors

Weaver DL, Ashikaga T, Krag DN, et al. Effect of occult metastases on survival in node-negative 
breast cancer. N Engl J Med 2011;364:412-21. [PMID: 21247310 DOI: 10.1056/NEJMoa1008108]

Organization as author Diabetes Prevention Program Research Group. Hypertension, insulin, and proinsulin in 
participants with impaired glucose tolerance. Hypertension 2002;40:679-86. [DOI: 10.1161/01.
HYP.0000035706.28494.09]

Both personal authors and 
organization as author

Vallancien G, Emberton M, Harving N, van Moorselaar RJ; Alf-One Study Group. Sexual dysfunction 
in 1,274 European men suffering from lower urinary tract symptoms. J Urol 2003;169:2257-61. [PMID: 
12771764 DOI: 10.1097/01.ju.0000067940.76090.73]

Journal articles not in 
English

Zhang X, Xiong H, Ji TY, Zhang YH, Wang Y. Case report of anti-N-methyl-D-aspartate receptor 
encephalitis in child. J Appl Clin Pediatr 2012;27:1903-7. (in Chinese)

Journal articles ahead of 
print

Odibo AO. Falling stillbirth and neonatal mortality rates in twin gestation: not a reason for 
complacency. BJOG 2018; Epub ahead of print [PMID: 30461178 DOI: 10.1111/1471-0528.15541]

Books Sherlock S, Dooley J. Diseases of the liver and billiary system. 9th ed. Oxford: Blackwell Sci Pub; 
1993. pp. 258-96.

Book chapters Meltzer PS, Kallioniemi A, Trent JM. Chromosome alterations in human solid tumors. In: Vogelstein 
B, Kinzler KW, editors. The genetic basis of human cancer. New York: McGraw-Hill; 2002. pp. 93-
113.

Online resource FDA News Release. FDA approval brings first gene therapy to the United States. Available from: 
https://www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/ucm574058.htm. [Last accessed 
on 30 Oct 2017]
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Conference proceedings Harnden P, Joffe JK, Jones WG, Editors. Germ cell tumours V. Proceedings of the 5th Germ Cell 
Tumour Conference; 2001 Sep 13-15; Leeds, UK. New York: Springer; 2002.

Conference paper Christensen S, Oppacher F. An analysis of Koza's computational effort statistic for genetic 
programming. In: Foster JA, Lutton E, Miller J, Ryan C, Tettamanzi AG, editors. Genetic 
programming. EuroGP 2002: Proceedings of the 5th European Conference on Genetic Programming; 
2002 Apr 3-5; Kinsdale, Ireland. Berlin: Springer; 2002. pp. 182-91.

Unpublished material Tian D, Araki H, Stahl E, Bergelson J, Kreitman M. Signature of balancing selection in Arabidopsis. 
Proc Natl Acad Sci U S A. Forthcoming 2002.

The journal also recommends that authors prepare references with a bibliography software package, such as EndNote to 
avoid typing mistakes and duplicated references.

2.3.3.10 Supplementary Materials
Additional data and information can be uploaded as Supplementary Materials to accompany the manuscripts. The 
supplementary materials will also be available to the referees as part of the peer-review process. Any file format is 
acceptable, such as data sheet (word, excel, csv, cdx, fasta, pdf or zip files), presentation (powerpoint, pdf or zip files), image 
(cdx, eps, jpeg, pdf, png or tiff), table (word, excel, csv or pdf), audio (mp3, wav or wma) or video (avi, divx, flv, mov, mp4, 
mpeg, mpg or wmv). All information should be clearly presented. Supplementary materials should be cited in the main text 
in numeric order (e.g., Supplementary Figure 1, Supplementary Figure 2, Supplementary Table 1, Supplementary Table 2, 
etc.). The style of supplementary figures or tables complies with the same requirements on figures or tables in main text. 
Videos and audios should be prepared in English, and limited to a size of 500 MB.

2.4 Manuscript Format
2.4.1 File Format
Manuscript files can be in DOC and DOCX formats and should not be locked or protected.
Manuscript prepared in LaTex must be collated into one ZIP folder (including all source files and images, so that the 
Editorial Office can recompile the submitted PDF).
When preparing manuscripts in different file formats, please use the corresponding Manuscript Templates.

2.4.2 Length
There are no restrictions on paper length, number of figures, or number of supporting documents. Authors are encouraged 
to present and discuss their findings concisely.

2.4.3 Language
Manuscripts must be written in English.

2.4.4 Multimedia Files
The journal supports manuscripts with multimedia files. The requirements are listed as follows:
Video or audio files are only acceptable in English. The presentation and introduction should be easy to understand. The 
frames should be clear, and the speech speed should be moderate;
A brief overview of the video or audio files should be given in the manuscript text;
The video or audio files should be limited to a size of up to 500 MB;
Please use professional software to produce high-quality video files, to facilitate acceptance and publication along with the 
submitted article. Upload the videos in mp4, wmv, or rm format (preferably mp4) and audio files in mp3 or wav format.

2.4.5 Figures
Figures should be cited in numeric order (e.g., Figure 1, Figure 2) and placed after the paragraph where it is first cited;
Figures can be submitted in format of TIFF, PSD, AI, EPS or JPEG, with resolution of 300-600 dpi;
Figure caption is placed under the Figure;
Diagrams with describing words (including, flow chart, coordinate diagram, bar chart, line chart, and scatter diagram, etc.) 
should be editable in word, excel or powerpoint format. Non-English information should be avoided;
Labels, numbers, letters, arrows, and symbols in figure should be clear, of uniform size, and contrast with the background;
Symbols, arrows, numbers, or letters used to identify parts of the illustrations must be identified and explained in the 
legend;
Internal scale (magnification) should be explained and the staining method in photomicrographs should be identified;
All non-standard abbreviations should be explained in the legend;
Permission for use of copyrighted materials from other sources, including re-published, adapted, modified, or partial 
figures and images from the internet, must be obtained. It is authors’ responsibility to acquire the licenses, to follow any 
citation instruction requested by third-party rights holders, and cover any supplementary charges.
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2.4.6 Tables
Tables should be cited in numeric order and placed after the paragraph where it is first cited;
The table caption should be placed above the table and labeled sequentially (e.g., Table 1, Table 2);
Tables should be provided in editable form like DOC or DOCX format (picture is not allowed);
Abbreviations and symbols used in table should be explained in footnote;
Explanatory matter should also be placed in footnotes;
Permission for use of copyrighted materials from other sources, including re-published, adapted, modified, or partial tables 
from the internet, must be obtained. It is authors’ responsibility to acquire the licenses, to follow any citation instruction 
requested by third-party rights holders, and cover any supplementary charges.

2.4.7 Abbreviations
Abbreviations should be defined upon first appearance in the abstract, main text, and in figure or table captions and used 
consistently thereafter. Non-standard abbreviations are not allowed unless they appear at least three times in the text. 
Commonly-used abbreviations, such as DNA, RNA, ATP, etc., can be used directly without definition. Abbreviations in 
titles and keywords should be avoided, except for the ones which are widely used.

2.4.8 Italics
General italic words like vs., et al., etc., in vivo, in vitro; t test, F test, U test; related coefficient as r, sample number as n, 
and probability as P; names of genes; names of bacteria and biology species in Latin.

2.4.9 Units
SI Units should be used. Imperial, US customary and other units should be converted to SI units whenever possible. There 
is a space between the number and the unit (i.e., 23 mL). Hour, minute, second should be written as h, min, s.

2.4.10 Numbers
Numbers appearing at the beginning of sentences should be expressed in English. When there are two or more numbers 
in a paragraph, they should be expressed as Arabic numerals; when there is only one number in a paragraph, number < 10 
should be expressed in English and number > 10 should be expressed as Arabic numerals. 12345678 should be written as 
12,345,678.

2.4.11 Equations
Equations should be editable and not appear in a picture format. Authors are advised to use either the Microsoft Equation 
Editor or the MathType for display and inline equations.
Display equations should be numbered consecutively, using Arabic numbers in parentheses;
Inline equations should not be numbered, with the same/similar size font used for the main text.

2.4.12 Headings
In the main body of the paper, three different levels of headings may be used.
Level one headings: they should be in bold, and numbered using Arabic numbers, such as 1. INTRODUCTION, and 2. 
METHODS, with all letters capitalized;
Level two headings: they should be in bold and numbered after the level one heading, such as 2.1 Statistical analyses, 2.2 
..., 2.3..., etc., with the first letter capitalized;
Level three headings: they should be italicized, and numbered after the level two heading, such as 2.1.1 Data distributions,and 
2.1.2 outliers and linear regression, with the first letter capitalized.

2.4.13 Text Layout
As the electronic submission will provide the basic material for typesetting, it is important to prepare papers in the general 
editorial style of the journal.
The font is Times New Roman;
The font size is 12pt;
Single column, 1.5× line spacing;
Insert one line break (one Return) before the heading and paragraph, if the heading and paragraph are adjacent, insert a line 
break before the heading only;
No special indentation;
Alignment is left end;
Insert consecutive line numbers;
For other details please refer to the Manuscript Templates.

2.5 Submission Link 
Submit an article via https://oaemesas.com/login?JournalId=ir.
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3. Publication Ethics Statement
OAE is a member of the Committee on Publication Ethics (COPE). We fully adhere to its Code of Conduct and to its Best
Practice Guidelines.

The Editors of this journal enforce a rigorous peer-review process together with strict ethical policies and standards to
guarantee to add high-quality scientific works to the field of scholarly publication. Unfortunately, cases of plagiarism,
data falsification, image manipulation, inappropriate authorship credit, and the like, do arise. The Editors of IR take such
publishing ethics issues very seriously and are trained to proceed in such cases with zero tolerance policy.

Authors wishing to publish their papers in IR must abide by the following:

The author(s) must disclose any possibility of a conflict of interest in the paper prior to submission;
The authors should declare that there is no academic misconduct in their manuscript in the cover letter;
Authors should accurately present their research findings and include an objective discussion of the significance of their
findings;
Data and methods used in the research need to be presented in sufficient detail in the manuscript so that other researchers
can replicate the work;
Authors should provide raw data if referees and the Editors of the journal request;
Simultaneous submission of manuscripts to more than one journal is not tolerated;
Republishing content that is not novel is not tolerated (for example, an English translation of a paper that is already published
in another language will not be accepted);
The manuscript should not contain any information that has already been published. If you include already published
figures or images, please get the necessary permission from the copyright holder to publish under the CC-BY license;
Plagiarism, data fabrication and image manipulation are not tolerated;
Plagiarism is not acceptable in OAE journals.

Plagiarism involves the inclusion of large sections of unaltered or minimally altered text from an existing source without
appropriate and unambiguous attribution, and/or an attempt to misattribute original authorship regarding ideas or results,
and copying text, images, or data from another source, even from your own publications, without giving credit to the source.

As to reusing the text that is copied from another source, it must be between quotation marks and the source must be cited.
If a study’s design or the manuscript’s structure or language has been inspired by previous studies, these studies must be
cited explicitly.

If plagiarism is detected during the peer-review process, the manuscript may be rejected. If plagiarism is detected after
publication, we may publish a Correction or retract the paper.

Falsification is manipulating research materials, equipment, or processes, or changing or omitting data or results so that the
findings are not accurately represented in the research record.

Image files must not be manipulated or adjusted in any way that could lead to misinterpretation of the information provided
by the original image.

Irregular manipulation includes: introduction, enhancement, moving, or removing features from the original image; the
grouping of images that should be presented separately, or modifying the contrast, brightness, or color balance to obscure,
eliminate, or enhance some information.

If irregular image manipulation is identified and confirmed during the peer-review process, we may reject the manuscript.
If irregular image manipulation is identified and confirmed after publication, we may publish a Correction or retract the
paper.

OAE reserves the right to contact the authors’ institution(s) to investigate possible publication misconduct if the Editors find
conclusive evidence of misconduct before or after publication. OAE has a partnership with iThenticate, which is the most
trusted similarity checker. It is used to analyze received manuscripts to avoid plagiarism to the greatest extent possible.
When plagiarism becomes evident after publication, we will retract the original publication or require modifications,
depending on the degree of plagiarism, context within the published article, and its impact on the overall integrity of the
published study. Journal Editors will act under the relevant COPE guidelines.

4. Authorship
Authorship credit of IR should be solely based on substantial contributions to a published study, as specified in the
following four criteria:
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1. Substantial contributions to the conception or design of the work, or the acquisition, analysis, or interpretation of data 
for the work;
2. Drafting the work or revising it critically for important intellectual content;
3. Final approval of the version to be published;
4. Agreement to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity 
of any part of the work are appropriately investigated and resolved.

All those who meet these criteria should be identified as authors. Authors must specify their contributions in the section 
Authors’ Contributions of their manuscripts. Contributors who do not meet all the four criteria (like only involved in 
acquisition of funding, general supervision of a research group, general administrative support, writing assistance, 
technical editing, language editing, proofreading, etc.) should be acknowledged in the section of Acknowledgement in the 
manuscript rather than being listed as authors.

If a large multiple-author group has conducted the work, the group ideally should decide who will be authors before the 
work starts and confirm authors before submission. All authors of the group named as authors must meet all the four 
criteria for authorship.

5. Reviewers Exclusions
You are welcome to exclude a limited number of researchers as potential Editors or reviewers of your manuscript. To 
ensure a fair and rigorous peer review process, we ask that you keep your exclusions to a maximum of three people. If you 
wish to exclude additional referees, please explain or justify your concerns—this information will be helpful for Editors 
when deciding whether to honor your request.

6. Editors and Journal Staff as Authors
Editorial independence is extremely important and OAE does not interfere with Editorial decisions. Editorial staff or 
Editors shall not be involved in processing their own academic work. Submissions authored by Editorial staff/Editors 
will be assigned to at least two independent outside reviewers. Decisions will be made by the Editor-in-Chief, including 
Special Issue papers. Journal staff are not involved in the processing of their own work submitted to any OAE journals.

7. Conflict of Interests
OAE journals require authors to declare any possible financial and/or non-financial conflicts of interest at the end of 
their manuscript and in the cover letter, as well as confirm this point when submitting their manuscript in the submission 
system. If no conflicts of interest exist, authors need to state “All authors declared that there are no conflicts of interest”. 
We also recognize that some authors may be bound by confidentiality agreements, in which cases authors need to state “All 
authors declared that they are bound by confidentiality agreements that prevent them from disclosing their competing 
interests in this work”.

8. Editorial Process
8.1. Pre-Check
New submissions are initially checked by the Managing Editor from the perspectives of originality, suitability, structure 
and formatting, conflicts of interest, background of authors, etc. Poorly prepared manuscripts may be rejected at this stage. 
If your manuscript does not meet one or more of these requirements, we will return it for further revisions.

Once your manuscript has passed the initial check, it will be assigned to the Assistant Editor, and then the Editor-in-Chief, 
or an Associate Editor in the case of a conflict of interest, will be notified of the submission and invited to review. Regarding 
Special Issue paper, after passing the initial check, the manuscript will be successively assigned to the Assistant Editor, and 
then to the Editor-in-Chief, or an Associate Editor in the case of conflict of interest for the Editor-in-Chief to review. The 
Editor-in-Chief, or the Associate Editor may reject manuscripts that they deem highly unlikely to pass peer review without 
further consultation. Once your manuscript has passed the Editorial assessment, the Associate Editor will start to organize 
peer-review.

All manuscripts submitted to IR are screened using CrossCheck powered by iThenticate to identify any plagiarized content. 
Your study must also meet all ethical requirements as outlined in our Editorial Policies. If the manuscript does not pass any 
of these checks, we may return it to you for further revisions or decline to consider your study for publication.

8.2. Peer Review
IR operates a single-blind review process, which means that reviewers know the names of authors, but the names of the 
reviewers are hidden from the authors. The scientific quality of the research described in the manuscript is assessed 
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by a minimum of two independent expert reviewers. The Editor-in-Chief is responsible for the final decision regarding 
acceptance or rejection of the manuscript.

All information contained in your manuscript and acquired during the review process will be held in the strictest 
confidence.

8.3. Decisions
Your research will be judged on scientific soundness only, not on its perceived impact as judged by Editors or referees. 
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