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Welcome to the inaugural issue of Intelligence & Robotics. It is my great pleasure and honor to be involved 
as the Editor-in-Chief and founder of the new journal Intelligence & Robotics . We are delighted with and 
highly grateful to the many colleagues and friends with diversified expertise in intelligence and robotics 
worldwide to support the Journal and serve on our editorial board, including advisory board members, 
associate editors, and youth editorial board members. We are also immensely grateful for the tremendous 
support from our publisher OAE Publishing Inc., USA.

Biological inspiration provides the basis for many aspects of robotics. Robot manipulators were first 
developed to approximate the reaching and grasping abilities of the human arm. Walking machines were 
attempts to perform some of the locomotion and gait features of living things. Studies of intelligence have 
made significant progress in understanding the biological intelligence of various species and developing 
innovative artificial and bionic strategies, mechanisms, algorithms, and technologies, with diversified 
applications to various fields, particularly robotics. On the other hand, robotics studies have made 
remarkable progress in theoretical investment and real-world applications to various industries. There is a 
general movement toward service-oriented intelligent robotic systems that require the ability to adapt to 
complex dynamic situations and handle various uncertainties, such as self-driving cars. Intelligence will be 
essential to these robotic systems performing successfully, as living organisms can adapt to changing 
environments that are only partially known and not predictable. Therefore, it is essential to bring experts 
from the fields of intelligence and robotics together to accomplish original and innovative achievements.

https://creativecommons.org/licenses/by/4.0/
https://www.intellrobot.com/
https://dx.doi.org/10.20517/ir.2021.12
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Intelligence & Robotics publishes top-quality unpublished original technical and non-technical application-
focused articles on the general areas of intelligence and robotics, particularly the interdisciplinary area of 
intelligence and robotics. The Journal seeks to publish articles dealing with the theory, design, analysis, 
evaluation, and applications of intelligence and robotics, ranging from system modeling, data analysis, 
algorithms, and software/hardware development of various intelligent and/or robotic systems.

The scope of the Journal includes, but is not limited to, (1) the biological, bio-inspired, and artificial 
intelligence, such as neural networks, fuzzy systems, evolutionary algorithms, genetic algorithms, ant colony 
optimization, particle swarm optimization, artificial immune systems, simulated annealing, smart gambler 
strategy, expert systems, and various other intelligent methodologies; (2) the design, modeling, analysis, 
evaluation, and implementation of various robotic systems, such as mobile, aerial, surface, and underwater 
robotic systems; (3) the real-time information acquisition, multi-sensor fusion, data analysis, localization 
and map building, path planning, tracking, and control for various robotic systems; and (4) the cooperation, 
coordination, communication, teleoperation, and human-machine interactions of multiple robotic systems. 
In addition, the Journal would be interested in distributed development and maintenance of real-world 
intelligent and robotic systems by multidisciplinary teams of scientists and engineers.

This journal aims to provide a platform for all experts, professionals, and scholars with creative 
contributions to get together and share some inspiring ideas and accomplish outstanding achievements in 
the general fields of intelligence and robotics.
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Abstract
The concepts of “Robots” have been of interest to humans from historical times, initially with the desire to create 
“artificial slaves”. Since the technology was not developing to keep up with the “dreams”, initially, Robotics was 
primarily of entertainment value, relegated to plays, movies, stories, etc. The practical applications started in the 
late 1950s and the 1960s with the development of programmable devices for factories and assembly lines as 
flexible automation. However, since the expectations were not adequately realized, the general enthusiasm and 
funding for Robotics subsided to some extent. With subsequent research, developments, and curricular 
enhancement in Engineering and Computer Science and the resurgence of Artificial Intelligence, particularly 
machine learning, Robotics has found numerous practical applications today, in industry, medicine, household, the 
service sector, and the general society. Important developments and practical strides are being made, particularly 
in Soft Robotics, Mobile Robotics (Aerial - drones, Underwater, Ground-based - autonomous vehicles in particular), 
Swarm Robotics, Homecare, Surgery, Assistive Devices, and Active Prosthesis. This perspective paper starts with a 
brief history of Robotics while indicating some associated myths and unfair expectations. Next, it will outline key 
developments in the area. In particular, some important practical applications of Intelligent Robotics, as developed 
by groups worldwide, including the Industrial Automation Laboratory at the University of British Columbia, headed 
by the author, are indicated. Finally, some misconceptions and shortcomings concerning Intelligent Robotics are 
pointed out. The main shortcomings concern the mechanical capabilities and the nature of intelligence. The paper 
concludes by mentioning future trends and key opportunities available in Intelligent Robotics for both developed 
and developing counties.

https://creativecommons.org/licenses/by/4.0/
https://www.intellrobot.com/
https://dx.doi.org/10.20517/ir.2021.01
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1. INTRODUCTION
Commonly, a robot is considered a machine that can perform work or actions normally performed by 
humans, automatically or by remote control - Teleoperation. The key features of this definition are the 
presence of: (1) Mechanical Structure (Machine); (2) Sensors; (3) Actuators (or Effectors); and (4) 
Controller (or Computer), which is the brain or the decision-maker of the robot. Essentially, a digital 
computer serves as this “brain” of the robot, and it has to be programmed to carry out its actions. Therefore, 
the “intelligence” of a robot needs to be incorporated there. As well, there have to be sensors to monitor the 
operation. The sensory data are processed by the computer to determine the underlying situations and the 
suitable robotic actions.

The concepts of “Robots” have been of interest to humans from historical times, initially with the desire to 
create “artificial slaves”. The term “Robot” was introduced in the popular media, well before a physical 
robot became a reality. In 1920, Czech writer Karel Capek first introduced the term in his play “RUR” or 
“Rossum’s Universal Robots”. There, it was just a figment of his imagination. Again, in 1942, the Russian-
born American science-fiction writer and Boston University Professor Isaac Asimov introduced the term in 
his fiction. Notably, Asimov was one of the “Big Three” in science fiction. The other two were the Sri Lanka-
based late Sir Arthur C. Clarke and Robert A. Heinlein. We know that many predictions of Clarke and 
Asimov have come true today. A device resembling a humanoid robot was designed and built by the 
ingenious Leonardo Da Vinci in 1945. It could mechanically move arms, head, and jaw but was not a true 
robot in today’s definition. The first true robot arm, the Unimate, was designed by the American inventor 
George Devol in collaboration with Joseph Engelberger, who is often called the “Father of Robotics”. This 
robot was used in a General Motors (automotive) plant for its manufacturing operations in 1960. It had a 
primitive digital computer as its brain and used motion sensors and also dc motors as the actuators[1].

Many different types of robots have been developed and put into operation since. Some that we see in the 
popular media are, however, computer animations rather than “intelligent” robots. Since the technology was 
not developing to keep up with the “dreams”, initially, Robotics was primarily of entertainment value, 
relegated to plays, movies, stories, etc. The practical applications started in the late 1950s and the 1960s with 
the development of programmable devices for factories and assembly lines as flexible automation. As an 
example of the application of Robotics in flexible automation, consider the welding robots in an automotive 
plant[2]. Here, the vehicle model that is being manufactured can be changed very easily and quickly, simply 
by changing the program. However, the operation itself is not fast, albeit quite complex. However, since the 
expectations were not adequately realized, the general enthusiasm and funding for Robotics subsided to 
some extent. With subsequent research, development, and curricular enhancement in Engineering and 
Computer Science and the resurgence of Artificial Intelligence (AI), particularly machine learning, 
Intelligent Robotics has found numerous practical applications today in industry, medicine, household, and 
the general society. Important developments and practical strides are being made, particularly in Soft 
Robotics, Mobile Robotics (Aerial - drones, Underwater, and Ground-based - autonomous vehicles in 
particular), Swarm Robotics, Homecare, Surgery, Assistive Devices, and Active Prosthesis.

2. THE STATE-OF-THE-ART
Many different types of robots are available today. A robot that has a human-like body structure is called a 
“humanoid”. An example is the Honda Asimo[3]. However, a robot need not look like a human. An 
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Unmanned Naval Vehicle that we developed in Figure 1 in our laboratory (Industrial Automation 
Laboratory or IAL at the University of British Columbia or UBC) is indeed a robot. It has a programmable 
propelling platform with multiple sensors (to measure the pH value, dissolved oxygen, electrical 
conductivity, temperature, and the oxidation-reduction potential of water). It is able to autonomously 
navigate in a water body and map out the quality of the water in a particular region, which can be used to 
provide warnings to the users, determine the source of pollution or contamination, and also suggest to the 
relevant authorities suitable corrective actions[4].

Unmanned aerial vehicles (UAVs) or drones are other types of mobile robots. A UAV that is used in our 
laboratory is shown in Figure 2. A similar UAV is used in our collaborative project in environmental 
monitoring and field mapping[5]. Due to their capabilities of autonomous navigation in extensive and 
traditionally unreachable regions and advanced sensing (such as optical and thermal imaging and laser 
scanning), UAVs are replacing costly, hazardous, and manual ways of inspection and surveillance in various 
applications. For example, when compared with the manual and ground-based approaches, UAVs are able 
to capture more useful and detailed information of petrochemical operations, including wellheads, 
pipelines, boiler systems, tanks, refineries, and furnaces, in a consistent, continuous, accurate, fast, and 
repeated manner, even in environments where human operators find it time-consuming, difficult and 
hazardous to function. The data/information collected in this manner can be further processed in a ground-
based control platform and used to localize faults and malfunctions in the facility. Based on that 
information, a UAV is able to deploy the needed equipment, including robotic devices, to that location for 
detailed diagnosis and possible correction of the problem.

As another example, consider the smart prosthetic limb[6] shown in Figure 3. It is able to adapt to different 
users and conditions of the terrain intelligently. Also, it uses expectational knowledge during walking, for 
example, to decide whether to step over an obstacle or to avoid it.

2.1. Common myths of robotics
There have been many myths, misnomers, and misunderstandings surrounding robots. Some are:

1. Robots have capabilities that equate to or exceed those of humans. This is not true. The intelligence of 
today’s robots does not exceed even that of a dog! It is inconceivable that robot intelligence can reach that of 
human intelligence. 
2. Robots will steal our spouses, and fight wars, and defeat us. This is very unrealistic and will never happen! 
3. Robots will create mass unemployment: people said this concerning the first Industrial Revolution as well. 
However, in the end, the industrial revolution (and industrial automation) gave the workers more free time 
(including the five-day workweek), moved them away from hazardous and difficult work environments, 
improved the general quality of life, and created higher-paying and more challenging employment (for our 
friends and relative, if not for us).

While many positive things can be said about robotization, the reasons for the underlying 
misunderstandings are several. They include fantasy, movies, and popular/social media, unrealistic 
expectations by the robot enthusiasts, slow developments in the field, inadequate expertise and capabilities 
for the necessary developments, the lack of necessary technologies (mechanical, electronic, and computer 
science, etc.) to achieve the goals, weak collaboration in the beginning (mainly among the electrical and 
mechanical engineers, and computer scientists, but this culture has been changed with the establishment of 
leading robotics institutes); and the lack of adequate “robotic intelligence” for various autonomous 
operations. See the related video interview of the author[7].
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Figure 1. An autonomous naval multi-sensor module that monitors and maps the quality of water. (A) Components of the Unmanned 
Naval Vehicle; (B) Multi-module deployment in Vancouver; (C) Deployment in a river in India.

Figure 2. An unmanned aerial vehicle that is used in our laboratory.

3. SHORTCOMINGS AND NEEDS
What the engineers and technologists reasonably expect in Robotics has not been realized yet. The common 
capabilities of the existing robots include navigation with obstacle avoidance (SLAM - Simultaneous 
Localization and Mapping), visual and verbal communication with humans, operation of some appliances, 
grasping and carrying of objects (including conformable grasping and tactile sensing), multi-robot 
cooperation, and haptic teleoperation (with force feedback). However, some obvious shortcomings of 
today’s robots include poor human-like interaction (and poor interaction with humans), slow speed, poor 
dexterity, and the sequential nature in grasping and handling of objects (e.g., the robotic hand slowly moves 
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Figure 3. A smart prosthetic limb.

to the object and subsequently the fingers are closed around the object. Instead, in the case of a human, they 
observe the object to be grasped and simultaneously move the hand and the body in coordination until the 
object is reached and the grasping is completed. Also, a human can easily sense possible slipping of the 
object before it occurs), possible safety problems for humans (due to the shortcomings of the current 
robotic mechanical components and control), sensory limitations (particularly related to smell and taste, or 
chemical and biological sensing; transparency in teleoperation), limited mechanical capability (in dexterity, 
flexibility, adaptability, etc., unlike humans), and limited robotic intelligence. Concerning the safety in 
human-robot interaction, robot-inflicted injuries include accidents involving: sharp objects and tools, large 
forces, fast motions and quick changes of magnitude and direction, and malfunctions in the robotic 
equipment.

The autonomous operation (i.e., operating on its own, without outside help) of robots is essential in 
Intelligent Robotics. Some needs for this autonomy are greater robotic intelligence (better learning; 
operating in dynamic, partially structured, and partially known environments; the capability of enhanced 
characteristics of intelligence); greater accuracy, speed, dexterity, etc.; increased safety (better object 
handling, accident/obstacle avoidance, etc.); more human-friendly and human-like communication and 
operation; and the redesigning of household appliances for easy operation by robots (and humans).

Consider the required basic caregiver tasks (of humans), for example, verbal and visual communication; 
assistance for movement/mobility; identifying, grasping, and handling of needed objects properly and 
safely; safe and quick assistance in the mobility of the care-receiver, in the presence of obstacles (both static 
and dynamic such as furniture, appliances, other humans and pets); monitoring of objects and the 
environment for carrying out the caregiver tasks (under normal and emergencies); operating household 
appliances; and the provision of assistive devices. Similar operational requirements from a robotic caregiver 
include faster yet safe operation; human-friendly and human-like interaction and communication; 
autonomous assistance for 24 h, routine and basic care (mobility, bathing, dressing, toileting, meal 
preparation, providing medicine, etc.); effective monitoring and detection of emergencies; and adequate 
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emergency assistance (possibly incorporating remote monitoring, teleoperation, etc.) until regular help 
arrives. In this context, some needs in haptic teleoperation (teleoperation with feedback from the slave robot 
to the human master) are improvements to autonomous robotics as in non-teleoperation situations; 
improved transparency (better/faster tactile/visual/auditory feedback to the remote human operator, for 
realistic creation of remote presence); stability under (and compensation for) time delays (which are 
common in teleoperation[8]; human-like manipulation; improved design and control (for accuracy, speed, 
robustness, reliability, and safety); and 3D virtual reality for the remote operator (for improved 
transparency).

3.1. Possible directions of advancement
The technology focus may be directed on several aspects to improve the state-of-the-art of Intelligent 
Robotics. They include autonomy, improved learning and intelligence (for autonomous operation); self-
awareness for robots (i.e., knowing the own capabilities of the robot); improved dexterity of handling (e.g., 
compliant grasping, parallel not sequential, and incoordination; providing the adequate degrees of freedom 
for manipulation of the handled object); improved robot-human interaction (in particular, working “with” a 
human rather than working “for” a human); improved speed, stability, robustness, reliability, and safety; 
improved sensing (particularly, chemical and biological sensing; transparency of remote operations; 
dynamic sensor networks; intelligent sensor fusion); and significant improvement of the “mechanical” 
capabilities. Note particularly the capabilities that require “intelligence”, software, mechanical capabilities, 
and instrumentation.

In this context, a question can be posed whether to direct much effort in developing universal robots that 
have unlimited capabilities and functions, which will, of course, be very costly and complex as well. In other 
words, should the focus be directed on the development of very complex and costly multi-purpose robots or 
use existing single-purpose robots cooperatively? In fact, it is not wise to put much effort into the 
development of complex and costly robots with numerous features and multi-function capabilities. As a 
scenario, consider the use of existing low-cost robots that have been developed for just one specific task (
e.g., security, human assistance, and guidance, street cleaning). If an emergency occurs (e.g., an explosion), 
they may be called upon to join (if available) in cooperation, for example, put together simple devices and 
assist in the situation (e.g., evacuation of the injured).

4. ROBOTIC INTELLIGENCE
The importance of intelligence in Robotics is quite clear. In particular, intelligence is essential for the 
autonomous operation of a robot. In fact, the realization of expectations (including some fantasies?) of 
intelligent robotics depends on improved robotic intelligence and similarly improved mechanical capability. 
Today’s robots do not have even “primitive” human intelligence. Without significantly improved 
intelligence, robots cannot achieve human-like capabilities; for example, emotions, common sense, and 
inventiveness are rather farfetched! Improved intelligence renders the robots acquire some characteristics of 
human intelligence. A robot may be “trained” for a specific task (through methodologies of machine 
learning), but this is not the same as developing the robotic brain to reach the nature and capabilities of a 
human brain, at least at a very basic level. It is simply “fear-mongering” to say that the future robots will be 
a danger to humankind because of their high level of intelligence.

Primarily, robots improve their intelligence through learning, and the foundation of AI is indeed machine 
learning. Some claim that since a chess-playing computer has defeated a human champion, it is possible that 
intelligent robots will defeat humans in many human-centered activities. Here we have to realize that the 
capabilities of a robot depend on their mechanical capabilities and the control program (or brain), which is 
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developed by humans. It is true that due to learning, the particular robot intelligence (the decision-making 
ability related to the learned knowledge) improves. Unlike humans, whose level of intelligence can 
depreciate for many reasons (physiology, lack of practice, new knowledge, new and complex environments, 
etc.), machine learning will always improve robotic intelligence. This means a chess-playing robot will 
continuously improve its skills through learning (practice) and can thereby defeat a chess champion. 
However, we have to realize that such intelligence is provided to robots by humans through control 
programs. That program will never be able to acquire all the characteristics of a human brain. For instance, 
we may question whether a chess-playing robot can also perform other tasks (e.g., caring for an elderly, 
carrying out medical surgery) unless specifically developed and trained for such activities and has the 
needed mechanical capabilities. Also, can a robot ever acquire such characteristics as common sense or 
emotions that are possessed by a human, in the same manner as in a human brain?

Humans develop robots, and we program their controllers (brains). We can set limits, checks and balances, 
regulations, and guidelines as we wish. We should collaborate with social scientists and develop proper 
guidelines and regulations for the development and the safety and ethical use of robots. Since a proper 
ethical evaluation and certification are essential for any technology that is used by humans, this should 
properly adhere for robots as well. In medical surgery, for example, a robot will facilitate the surgical 
procedures, but they should be performed under the supervision of a human surgeon, who must have the 
capability to abort the robotic procedure immediately, if necessary.

In fact, those who fear AI simply fear a black box! In order to make a proper determination, we should 
know what methodologies are used exactly in the AI black box and how those methodologies are 
implemented and operated. So, we should explore the black box carefully and in detail (with the help of 
experts who are knowledgeable in the subject) and only then indicate what methodologies in the AI black 
box might be dangerous. Then other experts will be able to respond intelligently and in an informative 
manner.

4.1. Characteristics of intelligence
Before exploring AI itself, let us examine intelligence. No precise definition exists for intelligence. They are 
the external characteristics and capabilities (that we observe from actions) that enable us to claim whether 
an entity (for example, a robot) is “intelligent”. Essentially, the outward characteristics define intelligence.

The characteristics of intelligence include sensory perception; pattern recognition; learning (i.e., knowledge 
acquisition, which is extremely important for intelligence); inference (i.e., making decisions) from 
incomplete information; inference from qualitative or approximate information (this is commonly used in 
“qualitative reasoning” as in fuzzy logic or fuzzy reasoning); ability to deal with unfamiliar situations; 
adaptability to new, yet related situations (through “expectational knowledge”. For example, a human is able 
to expect the nature of an environment, like a classroom, even when encountering that environment for the 
first time); inductive reasoning (people must have done this in high school mathematics when proving a 
mathematical result “by induction”); common sense; display of emotions; inventiveness; and self-awareness 
(i.e., knowing their own capabilities).

A simplified model for the dynamics of intelligence is shown in Figure 4. The intelligent preprocessors are, 
in fact, learning modules. They enable one to gain knowledge by “learning” from information and also 
achieve expertise by further learning through knowledge (including practice). The achieved knowledge and 
expertise can depreciate for various reasons (including environmental and biological) and also can become 
outdated. Even though intelligent preprocessing or learning is vital in this model, it is unlikely that machine 
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Figure 4. A model for the dynamics of intelligence.

learning alone will be able to achieve all forms of human intelligence in a robotic device.

4.2. Artificial intelligence
AI uses formal techniques to acquire some characteristics of intelligence. Models of AI are used for this 
purpose based on one or more of the mentioned characteristics. Such approaches (or models) of AI include 
Machine Learning, a very popular approach to AI. The conventional models of AI include knowledge-based 
systems, soft computing (consisting of neural networks - NN, fuzzy systems, and evolutionary computing; 
see[9] for instance), and swarm intelligence. A knowledge-based system typically consists of a knowledge 
base (or a rule base), a database, and an inference engine (the decision-maker). The decisions are made as 
follows: some data in the database (including what is acquired recently through sensors) is matched with the 
(context of the) rules in the knowledge base by the inference engine, and the inferences (or actions) are 
determined accordingly (i.e., rules are fired). Popular “Expert Systems” are based on this model. Of course, 
the knowledge base will be improved and enhanced continuously through “learning” and experience (so 
machine learning is used here as well).

Deep learning is a popular approach to machine learning. It incorporates an intelligent and intensive 
method of learning and sophisticated computing power that is available with such advancements as graphic 
processing units and tensor processing units to process massive quantities of data efficiently. Deep learning 
need not be limited to the use of deep NN but is the current trend. Deep NN includes Convolutional NN or 
convolutional neural network (CNN)[4,10] (see Figure 5). They have a structure of multiple layers 
(convolution layers) incorporating the “dynamic” learning ability and ending with a “Softmax” layer, which 
is the classification layer. First, the NN is trained using “labeled data” (i.e., input data whose proper 
outcomes are known a priori). Then, after the network is trained properly, unlabeled data (or new data) may 
be used for actual decision-making. Thus, massive amounts of data, including sensed data (a mixture of 
labeled and unlabeled data), may be effectively used in a deep NN.

Reinforcement learning relies on rewarding the correct decisions and penalizing the wrong decisions to 
learn the proper decision strategies. AI agents are capable of providing explanations for their decisions 
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Figure 5. The architecture of a convolutional neural network.

(similar to what Expert Systems provide). In Edge AI, AI algorithms are processed locally on a hardware 
device. The algorithm uses data created on the device (e.g., data generated by the algorithm) and other data 
(external data, including those from sensors and through the system interface). Hence, Edge AI functions at 
the “edge of the system network”. Fuzzy logic attempts to be similar to human decision-making by 
incorporating “fuzzy” or “qualitative” or “approximate” data, such as those that use qualifiers like fast, small, 
better, and close. Qualitative or fuzzy reasoning is used in the decision-making (inference) process. Swarm 
Intelligence behaves like a swarm of animals or insects. They are distributed (not hierarchical) and interact 
with each other to learn and make decisions. The members in a swarm use very simple rules, yet leading to 
“intelligent” global behavior, even though an individual member is not quite intelligent, which will improve 
with time. Evolutionary computing relies on genetic algorithms or genetic computing to realize “optimized” 
behavior through learning. The basis of this methodology is biological evolution (or survival of the fittest).

Within AI, apart from “learning”, other characteristics of intelligence need to be investigated and 
incorporated (e.g., decision making with partial, approximate or qualitative information, use of 
“expectational knowledge”, various approaches of reasoning such as inductive reasoning, ability to deal with 
unfamiliar situations, common sense, inventiveness, self-awareness, attention representation, and 
classification). Under machine learning itself, many methods exist, such as CNN, dynamic or recurrent 
neural networks (RNN), reinforcement learning, support vector machines, and entropy-based approaches. 
The rationalization of why a particular learning method is chosen (justification) should be a requirement in 
any application. Comparative evaluations of different methods should be carried out, with a proper 
reference (basis) for comparison. In this manner, comparative advantages and disadvantages of different 
methods should be determined, the rationale for choosing a particular approach for the application. When 
machine learning is applied in a particular situation, domain transformation or domain adaptability needs 
consideration because the domain of learning is typically not the same as the domain of application[11].

5. ROBOTIC CONTROL
It should be clear that proper control techniques are crucial for the effective operation of a robotic system. 
Typically, different types of multiple robots are used in practical applications. Then, networked and 
automated or autonomous operation of multiple robots, in a common, self-adaptive, and intelligent system 
architecture, implemented on a common platform, with resource sharing, has to be implemented.

The networked operation of multiple robots and other agents (sensors, actuators, controllers, and other 
devices) is not new. Furthermore, system optimization, intelligent systems, and adaptive control have been 
extensively investigated and applied by us and others. In this backdrop and the strong foundation of prior 
work, the networked implementation of multiple robots (and other agents) may focus on the following 
aspects:
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1. Some networked agents (e.g., robots, unmanned aerial vehicles or UAVs, and sensor nodes containing 
sensors, actuators, effectors, controllers, etc.) may be dynamic or mobile. 
2. The operating system environment may be dynamic, unstructured, and unknown. 
3. The system should be self-adaptive to optimize its performance, particularly by utilizing the dynamic 
components in addition to parameter adjustment or tuning and structural reorganization. 
4. The system may be further optimized by sharing resources among the applications. 
5. Dynamic or mobile sensors may receive “feedback” from themselves to improve their sensing 
effectiveness (e.g., data/information quality, the relevance of their data, speed, and confidence). 
6. The networked agents should possess “intelligence” to facilitate autonomous and desired performance. 
7. The system should be able to predict, detect, and diagnose malfunctions and faults in it and accommodate 
or self-repair.

The underlying activities of system development and implementation will pertain to sensor/data fusion and 
adaptive sensing; multi-agent cooperation; multi-objective and parameter/structure optimization; fault 
prediction, detection, diagnosis, and resolution; self-organization/adaptation; and distributed/networked 
intelligent control. Suitable system architecture and an application platform of this type are schematically 
shown in Figure 6. In this system development process, one may have to determine and quantify the design 
constraints, performance limits, trade-offs, and development/operation guidelines and benchmarks for the 
pertinent applications. That will lead to significant improvements in performance, developmental and 
operational costs, productivity, resource requirements, energy efficiency, safety, fault tolerance, reliability, 
autonomy, and sustainability of the robotic system.

It is clear that both individual and network control are relevant in the present context, and furthermore, 
both conventional control and “intelligent” control are also relevant. The present paper has devoted much 
focus to the aspect of robotic intelligence. Hence, in the present section, particular attention is given to the 
conventional control of robots.

5.1. Conventional control
The development and application of conventional control have been extended wide effort by many. The 
relevant techniques include the following.

Feedback control and particularly servo-control of robotic joints had been the main focus in the early 
developments of robotic control. Here, the robot motions are measured (sensed) and used by the controller 
in feedback to move the robot in the desired manner. Thus, a robot is “servoed” along a specified motion 
trajectory through feedback control of the motion error using servo control. Notably, the subject of design 
and compensation or tuning of proportional-integral-derivative control has received adequate attention.

An image of an object is indeed a valuable source of information about that object. In this context, the 
imaging device is the sensor, and the image is the sensed data. Depending on the imaging device, an image 
can be many varieties such as optical, thermal or infrared, X-ray, ultraviolet, acoustic, ultrasound, etc. The 
image processing methods are rather similar among these imaging devices. For example, the digital camera 
is a very popular optical imaging device used in various engineering applications such as vision-guided 
robotics. Such operations as object recognition, pattern recognition and classification, abstraction, and 
knowledge-based decision making can be carried out using the information extracted through image 
processing. Visual servoing[12,13], in particular, has received much attention and is commonly implemented 
in robotics. Here, the robot motion, including the actual position of the end effector (gripper, hand, tool, 
etc.) and the relative position of the targeted object, is measured using camera images and compared with 
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Figure 6. A multi-robot system layout. UAV: Unmanned aerial vehicle; GUI: graphical user interface; GSM: global system for mobile 
communication.

the desired or reference values. This difference (error) is used to generate a motion command (feedback 
control) for the robot so that the end effector would follow the desired trajectory and carry out the robotic 
task.

A robotic system may have inputs that do not participate in feedback control. These inputs are not 
compared with feedback (measurement) signals to generate control signals. Some of these inputs might be 
important variables, while others might be undesirable, such as external disturbances and noise. Generally, 
the performance of a robotic system can be improved by measuring these (unknown) inputs and using the 
information to generate the control actions. In feedforward control, unknown “inputs” are measured, and 
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that information, along with desired inputs, is used to generate control signals that can reduce errors due to 
these unknown inputs or variations in them. The reason for calling this method feedforward control stems 
from the fact that the associated measurement and control (and compensation) take place in the forward 
path of the control system. Both feedback and feedforward schemes may be used in the same control 
system. In some robotic applications, control inputs are computed using the desired outputs and accurate 
dynamic models for the robots, and the computed inputs are used for control purposes. This is the “inverse 
model” (or “inverse dynamics”) approach because the input is computed using the output and a model 
(inverse model). In some literature, this method is also known as feedforward control. To avoid confusion, 
however, it is appropriate to denote this method as computed-input control.

Since the overall response of a plant (e.g., a robot) depends on its individual modes, it should be possible to 
control a robot by controlling its modes. This is the basis of modal control. A mode is determined by the 
corresponding eigenvalue and eigenvector. In view of this, a popular approach of modal control is the pole 
placement or pole assignment. In this method of controller design, the objective is to select a feedback 
controller that will make the poles of the closed-loop system take up a set of desired values. This approach 
uses a “linearized” model of the robot.

As we saw, a robot can be controlled using a feedback control law so as to satisfy some performance 
requirements. In optimal control, the objective is to optimize a suitable objective function (e.g., maximize a 
performance index or minimize a cost function) by using an appropriate feedback control law[14]. A 
particularly favorite performance index is the infinite-time quadratic integral of the state variables and input 
variables, and popular control law is linear constant-gain feedback of the system states. The associated 
controller is known as the linear quadratic regulator (LQR). Linear Quadratic Gaussian (LQG) Control is an 
optimal control technique that is intended for a linear system with random input disturbances and output 
(measurement) noise. An LQR controller together with a Kalman filter is used in this approach.

For servo control to be effective, nonlinearities and dynamic coupling of the robot must be compensated 
faster than the control bandwidth at the servo level. One way of accomplishing this is by implementing a 
linearizing and decoupling controller inside the servo loops. This technique is termed feedback linearization 
technique.

An adaptive control system is a feedback control system in which the values of some or all of the controller 
parameters are modified (adapted) during the system operation (in real-time) on the basis of some 
performance measure when the response (output) requirements are not satisfied. Many criteria can be 
employed for modifying the parameter values of a controller. Self-tuning control falls into the same 
category. Model identification or estimation may be required for adaptive control, which may be considered 
to be a preliminary step of “learning”. A neural network may be used for this purpose. In a learning system, 
control decisions are made using the cumulative experience and knowledge gained over a period of time. 
Furthermore, the definition of learning implies that a learning controller will “remember” and improve its 
performance with time. This is an evolutionary process that is true for intelligent controllers but not 
generally for adaptive controllers. In model-referenced adaptive control, the same reference input that is 
applied to the physical system is applied to a reference model as well. The difference between the response 
of the physical system and the output from the reference model is the error. The ideal objective is to make 
this error zero at all times. Then the system will perform just like the reference model. The error signal is 
used by the adaptation mechanism to determine the necessary modifications to the values of the controller 
parameters in order to achieve this objective.
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Sliding mode control[15], variable structure control, and suction control fall within the same class of control 
techniques and are somewhat synonymous. The control law in this class is generally a switching controller. 
A variety of switching criteria may be employed. Sliding mode control may be treated as an adaptive control 
technique. Because the switching surface is not fixed, its variability is somewhat analogous to an adaptation 
criterion. Specifically, the error of the plant response is zero when the control falls on the sliding surface.

H∞ (H-infinity) control is an optimal control approach, which is different from the LQG method. This 
frequency-domain technique assumes a linear plant with constant parameters, which may be modeled by a 
transfer function (matrix in the general case). The underlying design problem is to select a suitable 
controller that will result in the required performance of the system. In other words, the closed-loop 
transfer matrix must be properly “shaped” through an appropriate choice of the controller. Specifically, the 
controller that minimizes the “H∞ norm” of the closed-loop transfer matrix, which is the maximum value 
of the largest singular value of this matrix, is used.

For complex multi-robot systems having various and stringent operating requirements, distributed and 
networked control is appropriate. It may consist of many programmable logic controllers and a supervisory 
controller, which will supervise, manage, coordinate and control the overall system. In hierarchical control, 
the distribution of control is provided both geographically and functionally. The management decisions, 
supervisory control, and coordination between robots may be provided by the supervisory controller, which 
is at the highest level of the hierarchy. The next lower level may generate control settings (or reference 
inputs) for each control region (subsystem). Finally, setpoints and reference signals are inputs to the direct 
controllers of the robots. In master-slave distributed control, only downloading of information is available.

5.2. Intelligent control
In intelligent control, an “intelligent” method of decision-making is used to make the control decision (i.e., 
to generate the control action). Soft computing, consisting of neural networks, fuzzy systems, evolutionary 
computing, and even probabilistic methods, has been popularly used in intelligent control. The topic of soft 
computing has already been addressed under the general theme of the present paper and is not repeated 
here. However, it is adequate to mention that, since learning control is used in robotic control, any 
approach of machine learning such as deep learning and deep neural networks, as discussed earlier in the 
paper, maybe incorporated into intelligent control of robots.

6. OPPORTUNITIES OF ROBOTICS
The commercial applications of Intelligent Robotics (with AI) include: autonomous agents such as self-
driving vehicles (encompassing aerial, ground-based, and underwater vehicles), which are indeed mobile 
robots; assistive devices (active and adaptive prostheses, wearables, and hand-held smart devices); advisory 
systems (or, expert systems, which are used in such areas as medical, legal, business, service, and social); 
monitoring/security systems (they are applicable in such areas as machine fault detection, prediction and 
diagnosis; and for human health monitoring, in telemedicine, homecare, etc.; video analysis; cyber security; 
human-machine interaction (including natural language processing, facial expression detection, speech 
recognition, communication, and intelligent connectivity; industrial application (including manufacturing 
and the assessment of production quality, cost, and efficiency); consumer, service, and entertainment 
sectors (retail, domestic, social, etc.); agriculture (growing, fertilizing, weed removal, and harvesting); smart 
buildings (heating ventilation, and air conditioning - HVAC; smart metering, safety, smart appliances, 
automated lighting, and achieving energy efficiency); education (“intelligent” learning management system 
or LMS, collaboration among students and with teachers - this approach may be quite beneficial in the 
current epidemic situation of Covid-19); and energy and environment (distribution, exploration, 
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monitoring, planning, and utilization of energy). Some of these applications have been implemented today. 
However, some will provide diverse future opportunities.

6.1. Opportunities for developing countries
Here, opportunities exist in all the areas that were mentioned before. However, developing countries should 
not blindly decide on the considered robotics activities just for the sake of being involved in Robotics or AI. 
It is important to explore and determine what is in the “black box”. Otherwise, one can be dissuaded 
through fear-mongering or make wrong choices for robotic activities. One must first question whether 
Robotics is needed for a specific local application. Then they must explore which robotic approaches are 
relevant for the considered task. Very importantly, they must examine what is in the existing Black Box 
before implementing it.

Developing countries should primarily concentrate on “robot development”, not their application for the 
automation of local industries. They will be able to market these robots to other countries. Since the 
developing countries typically have an excessive and smart labor force, using robots for such applications as 
agriculture and industrial automation is not generally suitable in those countries. Nevertheless, they may 
consider the development of simple and low-cost robots for local use (e.g., for service and household 
applications). They may focus on the development of advanced software, in particular, to incorporate other 
forms of intelligence into robots and efficient software, and the use of advanced platforms like Flexible 
Cloud, Real-time Internet of Things, and Edge AI. Software development can be carried out without much 
capital investment, as it is done in India particularly because these countries normally have an educated and 
vast group of professionals. Also, they should focus on advancing the “mechanical capabilities” of robots, 
which are essential but may not necessarily be for the local market. As well, they should consider the needs 
that result from a particular situation (e.g., Covid-19). Very importantly, they should develop their own 
guidelines and regulations for robotic ethics and safety, which can be done by modifying the existing 
guidelines and regulations in the highly developed jurisdictions.

7. CONCLUSIONS
Robotics has found numerous practical applications today in industry, medicine, the service sector, 
household, and the general society. Important developments and practical strides are being made, 
particularly in Soft Robotics, Mobile Robotics (Aerial - drones, Underwater, Ground-based - autonomous 
vehicles in particular), Swarm Robotics, Homecare, Surgery, Assistive Devices, and Active Prosthesis. This 
perspective paper presented a brief history of Robotics while indicating some associated myths and unfair 
expectations. Next, it presented some important practical applications of Robotics, as developed by groups 
worldwide, including the Industrial Automation Laboratory at the University of British Columbia, headed 
by the author. The main shortcomings of Intelligent Robotics included those of the mechanical capabilities 
and the nature of the available level of intelligence. Concerning robotic intelligence, apart from the current 
focus of “learning”, other characteristics should be further explored and incorporated. They included 
sensory perception, pattern recognition, decision making from incomplete information, inference from 
qualitative or approximate information (qualitative reasoning), ability to deal with unfamiliar situations, 
adaptability to new, yet related situations (through “expectational knowledge”), inductive reasoning, 
common sense, display of emotions, inventiveness, and self-awareness. Finally, the future trends and key 
opportunities available in Intelligent Robotics for both developed and developing counties were indicated.
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Abstract
This paper presents a comprehensive survey of federated reinforcement learning (FRL), an emerging and promising
field in reinforcement learning (RL). Starting with a tutorial of federated learning (FL) and RL, we then focus on the
introduction of FRL as a newmethodwith great potential by leveraging the basic idea of FL to improve the performance
of RL while preserving data-privacy. According to the distribution characteristics of the agents in the framework, FRL
algorithms can be divided into two categories, i.e., horizontal federated reinforcement learning and vertical federated
reinforcement learning (VFRL). We provide the detailed definitions of each category by formulas, investigate the
evolution of FRL from a technical perspective, and highlight its advantages over previous RL algorithms. In addition,
the existing works on FRL are summarized by application fields, including edge computing, communication, control
optimization, and attack detection. Finally, we describe and discuss several key research directions that are crucial to
solving the open problems within FRL.

Keywords: Federated learning, reinforcement learning, federated reinforcement learning

1. INTRODUCTION
As machine learning (ML) develops, it becomes capable of solving increasingly complex problems, such as
image recognition, speech recognition, and semantic understanding. Despite the effectiveness of traditional
machine learning algorithms in several areas, the researchers found that scenes involving many parties are still
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difficult to resolve, especially when privacy is concerned. Federated learning (FL), in these cases, has attracted
increasing interest among ML researchers. Technically, the FL is a decentralized collaborative approach that
allows multiple partners to train data respectively and build a shared model while maintaining privacy. With
its innovative learning architecture and concepts, FL provides safer experience exchange services and enhances
capabilities of ML in distributed scenarios.

InML, reinforcement learning (RL) is one of the branches that focuses on how individuals, i.e., agents, interact
with their environment and maximize some portion of the cumulative reward. The process allows agents to
learn to improve their behavior in a trial and error manner. Through a set of policies, they take actions to
explore the environment and expect to be rewarded. Research on RL has been hot in recent years, and it has
shown great potential in various applications, including games, robotics, communication, and so on.

However, there are still many problems in the implementation of RL in practical scenarios. For example,
considering that in the case of large action space and state space, the performance of agents is vulnerable to
collected samples since it is nearly impossible to explore all sampling spaces. In addition, many RL algorithms
have the problem of learning efficiency caused by low sample efficiency. Therefore, through information ex-
change between agents, learning speed can be greatly accelerated. Although distributed RL and parallel RL
algorithms [1–3] can be used to address the above problems, they usually need to collect all the data, parame-
ters, or gradients from each agent in a central server for model training. However, one of the important issues
is that some tasks need to prevent agent information leakage and protect agent privacy during the application
of RL. Agents’ distrust of the central server and the risk of eavesdropping on the transmission of raw data has
become a major bottleneck for such RL applications. FL can not only complete information exchange while
avoiding privacy disclosure, but also adapt various agents to their different environments. Another problem
of RL is how to bridge the simulation-reality gap. Many RL algorithms require pre-training in simulated en-
vironments as a prerequisite for application deployment, but one problem is that the simulated environments
cannot accurately reflect the environments of the real world. FL can aggregate information from both environ-
ments and thus bridge the gap between them. Finally, in some cases, only partial features can be observed by
each agent in RL. However, these features, no matter observations or rewards, are not enough to obtain suffi-
cient information required to make decisions. At this time, FL makes it possible to integrate this information
through aggregation.

Thus, the above challenges give rise to the idea of federated reinforcement learning (FRL). As FRL can be con-
sidered as an integration of FL and RL under privacy protection, several elements of RL can be presented in FL
frameworks to deals with sequential decision-making tasks. For example, these three dimensions of sample,
feature and label in FL can be replaced by environment, state and action respectively in FRL. Since FL can be
divided into several categories according to the distribution characteristics of data, including horizontal fed-
erated learning (HFL) and vertical federated learning (VFL), we can similarly categorize FRL algorithms into
horizontal federated reinforcement learning (HFRL) and vertical federated reinforcement learning (VFRL).

Though a few survey papers on FL [4–6] have been published, to the best of our knowledge, there are currently no
relevant survey papers focused on FRL. Due to the fact that FRL is a relatively new technique, most researchers
may be unfamiliar with it to some extent. We hope to identify achievements from current studies and serve as
a stepping stone to further research. In summary, this paper sheds light on the following aspects.

1. Systematic tutorial on FRL methodology. As a review focusing on FRL, this paper tries to explain the knowl-
edge about FRL to researchers systematically and in detail. The definition and categories of FRL are intro-
duced firstly, including system model, algorithm process, etc. In order to explain the framework of HFRL
and VFRL and the difference between them clearly, two specific cases are introduced, i.e., autonomous
driving and smart grid. Moreover, we comprehensively introduce the existing research on FRL’s algorithm
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design.
2. Comprehensive summary for FRL applications. This paper collects a large number of references in the field

of FRL, and provides a comprehensive and detailed investigation of the FRL applications in various areas,
including edge computing, communications, control optimization, attack detection, and some other appli-
cations. For each reference, we discuss the authors’ research ideas and methods, and summarize how the
researchers combine the FRL algorithm with the specific practical problems.

3. Open issues for future research. This paper identifies several open issues for FRL as a guide for further
research. The scope covers communication, privacy and security, join and exit mechanisms design, learning
convergence and some other issues. We hope that they can broaden the thinking of interested researchers
and provide help for further research on FRL.

The organization of this paper is as follows. To quickly gain a comprehensive understanding of FRL, the paper
starts with FL and RL in Section 2 and Section 3, respectively, and extends the discussion further to FRL in
Section 4. The existing applications of FRL are summarized in Section 5. In addition, a few open issues and
future research directions for FRL are highlighted in Section 6. Finally, the conclusion is given in Section 7.

2. FEDERATED LEARNING
2.1. Federated learning definition and basics
In general, FL is a ML algorithmic framework that allows multiple parties to perform ML under the require-
ments of privacy protection, data security, and regulations [7]. In FL architecture, model construction includes
two processes: model training and model inference. It is possible to exchange information about the model
between parties during training, but not the data itself, so that data privacy will not be compromised in any
way. An individual party or multiple parties can possess and maintain the trained model. In the process of
model aggregation, more data instances collected from various parties contribute to updating the model. As
the last step, a fair value-distribution mechanism should be used to share the profits obtained by the collabora-
tive model [8]. The well-designed mechanism enables the federation sustainability. Aiming to build a joint ML
model without sharing local data, FL involves technologies from different research fields such as distributed
systems, information communication, ML and cryptography [9]. FL has the following characteristics as a result
of these techniques, i.e.,

• Distribution. There are two or more parties that hope to jointly build a model to tackle similar tasks. Each
party holds independent data and would like to use it for model training.

• Data protection. The data held by each party does not need to be sent to the other during the training of
the model. The learned profits or experiences are conveyed through model parameters that do not involve
privacy.

• Secure communication. The model is able to be transmitted between parties with the support of an encryp-
tion scheme. The original data cannot be inferred even if it is eavesdropped during transmission.

• Generality. It is possible to apply FL to different data structures and institutions without regard to domains
or algorithms.

• Guaranteed performance. The performance of the resulting model is very close to that of the ideal model
established with all data transferred to one centralized party.

• Status equality. To ensure the fairness of cooperation, all participating parties are on an equal footing. The
shared model can be used by each party to improve its local models when needed.

A formal definition of FL is presented as follows. Consider that there are 𝑁 parties {F𝑖}𝑁𝑖=1 interested in es-
tablishing and training a cooperative ML model. Each party has their respective datasets D𝑖 . Traditional ML
approaches consist of collecting all data {D𝑖}𝑁𝑖=1 together to form a centralized dataset R at one data server.
The expected modelM𝑆𝑈𝑀 is trained by using the dataset R. On the other hand, FL is a reform of ML process
in which the participants F𝑖 with data D𝑖 jointly train a target modelM𝐹𝐸𝐷 without aggregating their data.
Respective data D𝑖 is stored on the owner F𝑖 and not exposed to others. In addition, the performance mea-
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sure of the federated modelM𝐹𝐸𝐷 is denoted as V𝐹𝐸𝐷 , including accuracy, recall, and F1-score, etc, which
should be a good approximation of the performance of the expected modelM𝑆𝑈𝑀 , i.e., V𝑆𝑈𝑀 . In order to
quantify differences in performance, let 𝛿 be a non-negative real number and define the federated learning
modelM𝐹𝐸𝐷 has 𝛿 performance loss if

|V𝑆𝑈𝑀 −V𝐹𝐸𝐷 | < 𝛿.

Specifically, the FL model hold by each party is basically the same as theMLmodel, and it also includes a set of
parameters 𝑤𝑖 which is learned based on the respective training dataset D𝑖 [10]. A training sample 𝑗 typically
contains both the input of FL model and the expected output. For example, in the case of image recognition,
the input is the pixel of the image, and the expected output is the correct label. The learning process is facilitated
by defining a loss function on parameter vector 𝑤 for every data sample 𝑗 . The loss function represents the
error of the model in relation to the training data. For each dataset D𝑖 at party F𝑖 , the loss function on the
collection of training samples can be defined as follow [11],

𝐹𝑖 (𝑤) =
1
|D𝑖 |

∑
𝑗∈D𝑖

𝑓 𝑗 (𝑤),

where 𝑓 𝑗 (𝑤) denotes the loss function of the sample 𝑗 with the given model parameter vector 𝑤 and | · |
represents the size of the set. In FL, it is important to define the global loss function since multiple parties are
jointly training a global statistical model without sharing a dataset. The common global loss function on all
the distributed datasets is given by,

𝐹𝑔 (𝑤) =
𝑁∑
𝑖=1

𝜂𝑖𝐹𝑖 (𝑤),

where 𝜂𝑖 indicates the relative impact of each party on the global model. In addition, 𝜂𝑖 > 0 and
∑𝑁
𝑖=1 𝜂𝑖 = 1.

This term 𝜂 can be flexibly defined to improve training efficiency. The natural setting is averaging between
parties, i.e., 𝜂 = 1/𝑁 . The goal of the learning problem is to find the optimal parameter that minimizes the
global loss function 𝐹𝑔 (𝑤). It is presented in formula form,

𝑤∗ = arg min
𝑤

𝐹𝑔 (𝑤) .

Considering that FL is designed to adapt to various scenarios, the objective function may be appropriate de-
pending on the application. However, a closed-form solution is almost impossible to find withmost FLmodels
due to their inherent complexity. A canonical federated averaging algorithm (FedAvg) based on gradient-
descent techniques is presented in the study from McMahan et al. [12], which is widely used in FL systems. In
general, the coordinator has the initial FL model and is responsible for aggregation. Distributed participants
know the optimizer settings and can upload information that does not affect privacy. The specific architecture
of FL will be discussed in the next subsection. Each participant uses their local data to perform one step (or
multiple steps) of gradient descent on the current model parameter �̄� (𝑡) according to the following formula,

∀𝑖, 𝑤𝑖 (𝑡 + 1) = �̄� (𝑡) − 𝛾∇𝐹𝑖 (�̄�𝑖 (𝑡)) ,

where 𝛾 denotes a fixed learning rate of each gradient descent. After receiving the local parameters from
participants, the central coordinator updates the global model using a weighted average, i.e.,

�̄�𝑔 (𝑡 + 1) =
𝑁∑
𝑖=1

𝑛𝑖
𝑛
𝑤𝑖 (𝑡 + 1),
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where 𝑛𝑖 indicates the number of training data samples of the 𝑖-th participant has and 𝑛 denotes the total
number of samples contained in all the datasets. Finally, the coordinator sends the aggregated model weights
�̄�𝑔 (𝑡 + 1) back to the participants. The aggregation process is performed at a predetermined interval or iter-
ation round. Additionally, FL leverages privacy-preserving techniques to prevent the leakage of gradients or
model weights. For example, the existing encryption algorithms are added on top of the original FedAvg to
provide secure FL [13,14].

2.2. Architecture of federated learning
According to the application characteristics, the architecture of FL can be divided into two types [7], i.e., client-
server model and peer-to-peer model.

As shown in Figure 1, there are two major components in the client-server model, i.e., participants and coor-
dinators. The participants are the data owners and can perform local model training and updates. In different
scenarios, the participants are made up of different devices, the vehicles in the internet of vehicles (IoV), or
the smart devices in the IoT. In addition, participants usually possess at least two characteristics. Firstly, each
participant has a certain level of hardware performance, including computation power, communication and
storage. The hardware capabilities ensure that the FL algorithm operates normally. Secondly, participants are
independent of one another and located in a wide geographic area. In the client-server model, coordinator can
be considered as a central aggregation server, which can initialize a model and aggregate model updates from
participants [12]. As participants train both based on local data sets concurrently and share their experience
through the coordinator with the model aggregation mechanism, it will greatly enhance the efficiency of the
training and enhance the performance of the model. However, since participants won’t be able to communi-
cate directly, the coordinator must perform well to train the global model and maintain communication with
all participants. Therefore, the model has security challenges such as a single point of failure. If the coordinator
fails to complete the model aggregation task, the local model of participant has difficulty meeting target per-
formance. The basic workflow of the client-server model can be summarized in the following five steps. The
process continues to repeat the steps from 2 to 5 until the model converges, or until the maximum number of
iterations is reached.

• Step 1: In the process of setting up a client-server-based learning system, the coordinator creates an initial
model and sends it to each participant. Those participants who join later can access the latest global model.

• Step 2: Each participant trains a local model based on their respective dataset.
• Step 3: Updates of model parameters are sent to the central coordinator.
• Step 4: The coordinator combines the model updates using specific aggregation algorithms.
• Step 5: The combined model is sent back to the corresponding participant.

The peer-to-peer based FL architecture does not require a coordinator as illustrated in Figure 2. Participants
can directly communicate with each other without relying on a third party. Therefore, each participant in the
architecture is equal and can initiate a model exchange request with anyone else. As there is no central server,
participantsmust agree in advance on the order in whichmodel should be sent and received. Common transfer
modes are cyclic transfer and random transfer. The peer-to-peer model is suitable and important for specific
scenarios. For example, multiple banks jointly develop an ML-based attack detection model. With FL, there
is no need to establish a central authority between banks to manage and store all attack patterns. The attack
record is only held at the server of the attacked bank, but the detection experience can be shared with other
participants through model parameters. The FL procedure of the peer-to-peer model is simpler than that of
the client-server model.

• Step 1: Each participant initializes their local model depending on its needs.
• Step 2: Train the local model based on the respective dataset.
• Step 3: Create a model exchange request to other participants and send local model parameters.
• Step 4: Aggregate the model received from other participants into the local model.
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Figure 1. An example of federated learning architecture: Client-Server Model.
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Figure 2. An example of federated learning architecture: Peer-to-Peer Model.

The termination conditions of the process can be designed by participants according to their needs. This
architecture further guarantees security since there is no centralized server. However, it requires more com-
munication resources and potentially increased computation for more messages.
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Figure 3. Illustration of horizontal federated learning.

2.3. Categories of federated learning
Based on the way data is partitioned within a feature and sample space, FL may be classified as HFL, VFL, or
federated transfer learning (FTL) [8]. In Figure 3, Figure 4, and Figure 5, these three federated learning cate-
gories for a two-party scenario are illustrated. In order to define each category more clearly, some parameters
are formalized. We suppose that the 𝑖-th participant has its own dataset D𝑖 . The dataset includes three types
of data, i.e., the feature space X𝑖 , the label space Y𝑖 and the sample ID space I𝑖 . In particular, the feature space
X𝑖 is a high-dimensional abstraction of the variables within each pattern sample. Various features are used
to characterize data held by the participant. All categories of association between input and task target are
collected in the label space Y𝑖 . The sample ID space I𝑖 is added in consideration of actual application require-
ments. The identification can facilitate the discovery of possible connections among different features of the
same individual.

HFL indicates the case in which participants have their dataset with a small sample overlap, while most of
the data features are aligned. The word ”horizontal” is derived from the term ”horizontal partition”. This is
similar to the situation where data is horizontally partitioned inside the traditional tabular view of a database.
As shown in Figure 3, the training data of two participants with the aligned features is horizontally partitioned
for HFL. A cuboid with a red border represents the training data required in learning. Especially, a row corre-
sponds to complete data features collected from a sampling ID. Columns correspond to different sampling IDs.
The overlapping part means there can be more than one participant sampling the same ID. In addition, HFL is
also known as feature-aligned FL, sample-partitioned FL, or example-partitioned FL. Formally, the conditions
for HFL can be summarized as

X𝑖 = X𝑗 ,Y𝑖 = Y𝑗 ,I𝑖 ≠ I𝑗 ,∀D𝑖 ,D 𝑗 , 𝑖 ≠ 𝑗 ,

where D𝑖 and D 𝑗 denote the datasets of participant 𝑖 and participant 𝑗 respectively. In both datasets, the
feature space X and label space Y are assumed to be the same, but the sampling ID space I is assumed to
be different. The objective of HFL is to increase the amount of data with similar features, while keeping the
original data from being transmitted, thus improving the performance of the training model. Participants can
still perform feature extraction and classification if new samples appear. HFL can be applied in various fields
because it benefits from privacy protection and experience sharing [15]. For example, regional hospitals may
receive different patients, and the clinical manifestations of patients with the same disease are similar. It is
imperative to protect the patient’s privacy, so data about patients cannot be shared. HFL provides a good way
to jointly build a ML model for identifying diseases between hospitals.

VFL refers to the case where different participants with various targets usually have datasets that have different
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feature spaces, but those participants may serve a large number of common users. The heterogeneous feature
spaces of distributed datasets can be used to build more general and accurate models without releasing the
private data. The word “vertical” derives from the term “vertical partition”, which is also widely used in ref-
erence to the traditional tabular view. Different from HFL, the training data of each participant are divided
vertically. Figure 4 shows an example of VFL in a two-party scenario. The important step in VFL is to align
samples, i.e., determine which samples are common to the participants. Although the features of the data are
different, the sampled identity can be verified with the same ID. Therefore, VFL is also called sample-aligned
FL or feature-partitioned FL. Multiple features are vertically divided into one or more columns. The common
samples exposed to different participants can be marked by different labels. The formal definition of VFL’s
applicable scenario is given.

X𝑖 ≠ X𝑗 ,Y𝑖 ≠ Y𝑗 ,I𝑖 = I𝑗 ,∀D𝑖 ,D 𝑗 , 𝑖 ≠ 𝑗 ,

where D𝑖 and D𝑖 represent the dataset held by different participants, and the data feature space pair
(
X𝑖 ,X𝑗

)
and label space pair

(
Y𝑖 ,Y𝑗

)
are assumed to be different. The sample ID space I𝑖 and I𝑗 are assumed to be the

same. It is the objective of VFL to collaborate in building a sharedMLmodel by exploiting all features collected
by each participant. The fusion and analysis of existing features can even infer new features. An example of
the application of VFL is the evaluation of trust. Banks and e-commerce companies can create a ML model
for trust evaluation for users. The credit card record held at the bank and the purchasing history held at the
e-commerce company for the set of same users can be used as training data to improve the evaluation model.

FTL applies to amore general case where the datasets of participants are not aligned with each other in terms of
samples or features. FTL involves finding the invariant between a resource-rich source domain and a resource-
scarce target domain, and exploiting that invariant to transfer knowledge. In comparisonwith traditional trans-
fer learning [16], FTL focuses on privacy-preserving issues and addresses distributed challenges. An example
of FTL is shown in Figure 5. The training data required by FTL may include all data owned by multiply parties
for comprehensive information extraction. In order to predict labels for unlabeled new samples, a prediction
model is built using additional feature representations for mixed samples from participants A and B. More
formally, FTL is applicable for the following scenarios:

X𝑖 ≠ X𝑗 ,Y𝑖 ≠ Y𝑗 ,I𝑖 ≠ I𝑗 ,∀D𝑖 ,D 𝑗 , 𝑖 ≠ 𝑗 ,

In datasets D𝑖 and D 𝑗 , there is no duplication or similarity in terms of features, labels and samples. The ob-
jective of FTL is to generate as accurate a label prediction as possible for newly incoming samples or unlabeled
samples already present. Another benefit of FTL is that it is capable of overcoming the absence of data or labels.

http://dx.doi.org/10.20517/ir.2021.02


Qi et al. Intell Robot 2021;1(1):18-57 I http://dx.doi.org/10.20517/ir.2021.02 Page 26

Federated Transfer Learning

L
a
b

el
s

L
a
b

els

Features

Features

Training Data

New Features

L
ab

el
s

Figure 5. Illustration of federated transfer learning.

For example, a bank and an e-commerce company in two different countries want to build a shared MLmodel
for user risk assessment. In light of geographical restrictions, the user groups of these two organizations have
limited overlap. Due to the fact that businesses are different, only a small number of data features are the same.
It is important in this case to introduce FTL to solve the problem of small unilateral data and fewer sample
labels, and improve the model performance.

3. REINFORCEMENT LEARNING
3.1. Reinforcement learning definition and basics
Generally, the field of ML includes supervised learning, unsupervised learning, RL, etc [17]. While supervised
and unsupervised learning attempt to make the agent copy the data set, i.e., learning from the pre-provided
samples, RL is to make the agent gradually stronger in the interaction with the environment, i.e., generating
samples to learn by itself [18]. RL is a very hot research direction in the field of ML in recent years, which has
made great progress in many applications, such as IoT [19–22], autonomous driving [23,24], and game design [25].
For example, the AlphaGo program developed by DeepMind is a good example to reflect the thinking of
RL [26]. The agent gradually accumulates the intelligent judgment on the sub-environment of each move by
playing game by game with different opponents, so as to continuously improve its level.

TheRL problem can be defined as amodel of the agent-environment interaction, which is represented in Figure
6. The basic model of RL contains several important concepts, i.e.,

• Environment and agent: Agents are a part of a RLmodel that exists in an external environment, such as the
player in the environment of chess. Agents can improve their behavior by interacting with the environment.
Specifically, they take a series of actions to the environment through a set of policies and expect to get a
high payoff or achieve a certain goal.

• Time step: The whole process of RL can be discretized into different time steps. At every time step, the
environment and the agent interact accordingly.

• State: The state reflects agents’ observations of the environment. When agents take action, the state will
also change. In other words, the environment will move to the next state.

• Actions: Agents can assess the environment, make decisions and finally take certain actions. These actions
are imposed on the environment.

• Reward: After receiving the action of the agent, the environment will give the agent the state of the current
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Figure 6. The agent-environment interaction of the basic reinforcement learning model.

environment and the reward due to the previous action. Reward represents an assessment of the action
taken by agents.

More formally, we assume that there are a series of time steps 𝑡 = 0,1,2,... in a basic RL model. At a certain
time step 𝑡, the agent will receive a state signal 𝑆𝑡 of the environment. In each step, the agent will select one
of the actions allowed by the state to take an action 𝐴𝑡 . After the environment receives the action signal 𝐴𝑡 ,
the environment will feed back to the agent the corresponding status signal 𝑆𝑡+1 at the next step 𝑡 + 1 and the
immediate reward 𝑅𝑡+1. The set of all possible states, i.e., the state space, is denoted as S. Similarly, the action
space is denoted asA. Since our goal is to maximize the total reward, we can quantify this total reward, usually
referred to as return with

𝐺 𝑡 = 𝑅𝑡+1 + 𝑅𝑡+2 + ... + 𝑅𝑇 ,

where 𝑇 is the last step, i.e., 𝑆𝑇 as the termination state. An episode is completed when the agent completes
the termination action.

In addition to this type of episodic task, there is another type of task that does not have a termination state,
in other words, it can in principle run forever. This type of task is called a continuing task. For continuous
tasks, since there is no termination state, the above definition of return may be divergent. Thus, another way
to calculate return is introduced, which is called discounted return, i.e.,

𝐺 𝑡 = 𝑅𝑡+1 + 𝛾𝑅𝑡+2 + 𝛾2𝑅𝑡+3 + ... =
∞∑
𝑘=0

𝛾𝑘𝑅𝑡+𝑘+1,

where the discount factor 𝛾 satisfies 0 ⩽ 𝛾 ⩽ 1. When 𝛾 = 1, the agent can obtain the full value of all future
steps, while when 𝛾 = 0, the agent can only see the current reward. As 𝛾 changes from 0 to 1, the agent will
gradually become forward-looking, looking not only at current interests, but also for its own future.

The value function is the agent’s prediction of future rewards, which is used to evaluate the quality of the
state and select actions. The difference between the value function and rewards is that the latter is defined as
evaluating an immediate sense for interaction while the former is defined as the average return of actions over
a long period of time. In other words, the value function of the current state 𝑆𝑡 = 𝑠 is its long-term expected
return. There are two significant value functions in the field of RL, i.e., state value function 𝑉𝜋 (𝑠) and action
value function 𝑄𝜋 (𝑠, 𝑎). The function 𝑉𝜋 (𝑠) represents the expected return obtained if the agent continues
to follow strategy 𝜋 all the time after reaching a certain state 𝑆𝑡 , while the function 𝑄𝜋 (𝑠, 𝑎) represents the
expected return obtained if action 𝐴𝑡 = 𝑎 is taken after reaching the current state 𝑆𝑡 = 𝑠 and the following
actions are taken according to the strategy 𝜋. The two functions are specifically defined as follows, i.e.,
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Figure 7. The categories and representative algorithms of reinforcement learning.

𝑉𝜋 (𝑠) = E𝜋 [𝐺 𝑡 |𝑆𝑡 = 𝑠] ,∀𝑠 ∈ S

𝑄𝜋 (𝑠, 𝑎) = E𝜋 [𝐺 𝑡 |𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎] ,∀𝑠 ∈ S, 𝑎 ∈ A.

The results of RL are action decisions, called as the policy. The policy gives agents the action 𝑎 that should
be taken for each state 𝑠. It is noted as =𝜋 (𝐴𝑡 = 𝑎 |𝑆𝑡 = 𝑠), which represents the probability of taking action
𝐴𝑡 = 𝑎 in state 𝑆𝑡 = 𝑠. The goal of RL is to learn the optimal policy that can maximize the value function by
interacting with the environment. Our purpose is not to get the maximum reward after a single action in the
short term, but to get more reward in the long term. Therefore, the policy can be figured out as,

𝜋∗ = 𝑎𝑟𝑔max
𝜋
𝑉𝜋 (𝑠) ,∀𝑠 ∈ S.

3.2. Categories of reinforcement learning
In RL, there are several categories of algorithms. One is value-based and the other is policy-based. In addition,
there is also an actor-critic algorithm that can be obtained by combining the two, as shown in Figure 7.

3.2.1. Value-based methods
Recursively expand the formulas of the action value function, the corresponding Bellman equation is obtained,
which describes the recursive relationship between the value function of the current state and subsequent state.
The recursive expansion formula of the action value function 𝑄𝜋 (𝑠, 𝑎) is

𝑄𝜋 (𝑠, 𝑎) =
∑
𝑠′,𝑟

𝑝
(
𝑠
′
, 𝑟 |𝑠, 𝑎

) [
𝑟 + 𝛾

∑
𝑎′
𝜋

(
𝑎
′ |𝑠′

)
𝑄𝜋

(
𝑠
′
, 𝑎
′
)]
,

where the function 𝑝
(
𝑠
′
, 𝑟 |𝑠, 𝑎

)
= 𝑃𝑟 {𝑆𝑡 = 𝑠′, 𝑅𝑡 = 𝑟 |𝑆𝑡−1 = 𝑠, 𝐴𝑡−1 = 𝑎} defines the trajectory probability to

characterize the environment’s dynamics. 𝑅𝑡 = 𝑟 indicates the reward obtained by the agent taking action
𝐴𝑡−1 = 𝑎 in state 𝑆𝑡−1 = 𝑠. Besides, 𝑆𝑡 = 𝑠′ and 𝐴𝑡 = 𝑎′ respectively represent the state and the action taken by
the agent at the next moment 𝑡.

In the value-based algorithms, the above value function 𝑄𝜋 (𝑠, 𝑎) is calculated iteratively, and the strategy is
then improved based on this value function. If the value of every action in a given state is known, the agent can
select an action to perform. In this way, if the optimal𝑄𝜋 (𝑠, 𝑎 = 𝑎∗) can be figured out, the best action 𝑎∗ will
be found. There are many classical value-based algorithms, including Q-learning [27], state–action–reward–
state–action (SARSA) [28], etc.

Q-learning is a typical widely-used value-based RL algorithm. It is also a model-free algorithm, which means
that it does not need to know the model of the environment but directly estimates the Q value of each executed
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action in each encountered state through interacting with the environment [27]. Then, the optimal strategy is
formulated by selecting the action with the highest Q value in each state. This strategy maximizes the expected
return for all subsequent actions from the current state. The most important part of Q-learning is the update
of Q value. It uses a table, i.e., Q-table, to store all Q value functions. Q-table uses state as row and action as
column. Each (𝑠, 𝑎) pair corresponds to a Q value, i.e., 𝑄(𝑠, 𝑎), in the Q-table, which is updated as follows,

𝑄 (𝑠, 𝑎) ← 𝑄 (𝑠, 𝑎) + 𝛼
[
𝑟 + 𝛾max

𝑎′
𝑄

(
𝑠
′
, 𝑎
′
)
−𝑄 (𝑠, 𝑎)

]
where 𝑟 is the reward given by taking action 𝑎 under state 𝑠 at the current time step. 𝑠′ and 𝑎′ indicate the state
and the action taken by the agent at the next time step respectively. 𝛼 is the learning rate to determine how
much error needs to be learned, and 𝛾 is the attenuation of future reward. If the agent continuously accesses
all state-action pairs, the Q-learning algorithm will converge to the optimal Q function. Q-learning is suitable
for simple problems, i.e., small state space, or a small number of actions. It has high data utilization and stable
convergence.

3.2.2. Policy-based methods
The above value-based method is an indirect approach to policy selection, and has trouble handling an infinite
number of actions. Therefore, we want to be able to model the policy directly. Different from the value-based
method, the policy-based algorithm does not need to estimate the value function, but directly fits the policy
function, updates the policy parameters through training, and directly generates the best policy. In policy-
based methods, we input a state and output the corresponding action directly, rather than the value 𝑉 (𝑠) or
Q value 𝑄 (𝑠, 𝑎) of the state. One of the most representative algorithms is strategy gradient, which is also the
most basic policy-based algorithm.

Policy gradient chooses to optimize the policy directly and update the parameters of the policy network by
calculating the gradient of expected reward [29]. Therefore, its objective function 𝐽 (𝜃) is directly designed as
expected cumulative rewards, i.e.,

𝐽 (𝜃) = E𝜏 _𝜃 (𝜏) [𝑟 (𝜏)] =
∫
𝜏 𝜋(𝜏)

𝑟 (𝜏) 𝜋𝜃 (𝜏) 𝑑𝜏 .

By taking the derivative of 𝐽 (𝜃), we get

∇𝜃𝐽 (𝜃) = E𝜏 𝜋𝜃 (𝜏)

[
𝑇∑
𝑡=1
∇𝜃 log 𝜋𝜃 (𝐴𝑡 |𝑆𝑡)

𝑇∑
𝑡=1

𝑟 (𝑆𝑡 , 𝐴𝑡)
]
.

The above formula consists of two parts. One is
∑𝑇
𝑡=1 ∇𝜃 log 𝜋𝜃 (𝐴𝑡 |𝑆𝑡) which denotes the probability of the

gradient in the current trace. The other is
∑𝑇
𝑡=1 𝑟 (𝑆𝑡 , 𝐴𝑡) which represents the return of the current trace. Since

the return is total rewards and can only be obtained after one episode, the policy gradient algorithm can only
be updated for each episode, not for each time step.

The expected value can be expressed in a variety of ways, corresponding to different ways of calculating the loss
function. The advantage of the strategy gradient algorithm is that it can be applied in the continuous action
space. In addition, the change of the action probability is smoother, and the convergence is better guaranteed.

REINFORCE algorithm is a classic policy gradient algorithm [30]. Since the expected value of the cumulative
reward cannot be calculated directly, the Monte Carlo method is applied to approximate the average value of
multiple samples. REINFORCE updates the unbiased estimate of the gradient by using Monte Carlo sampling.
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Each sampling generates a trajectory, which runs iteratively. After obtaining a large number of trajectories,
the cumulative reward can be calculated by using certain transformations and approximations as the loss func-
tion for gradient update. However, the variance of this algorithm is large since it needs to interact with the
environment until the terminate state. The reward for each interaction is a random variable, so each variance
will add up when the variance is calculated. In particular, the REINFORCE algorithm has three steps:

• Step 1: sample 𝜏𝑖 from 𝜋𝜃 (𝐴𝑡 |𝑆𝑡)
• Step 2: ∇𝜃𝐽 (𝜃) ≈

∑
𝑖

[∑𝑇
𝑡=1 ∇𝜃 log 𝜋𝜃

(
𝐴𝑖𝑡 |𝑆𝑖𝑡

) ∑𝑇
𝑡=1 𝑟

(
𝑆𝑖𝑡 , 𝐴

𝑖
𝑡

) ]
• Step 3: 𝑡ℎ𝑒𝑡𝑎 ← 𝜃 + 𝛼∇𝜃𝐽 (𝜃)

The two algorithms, value-based and policy-based methods, both have their own characteristics and disad-
vantages. Firstly, the disadvantages of the value-based methods are that the output of the action cannot be
obtained directly, and it is difficult to extend to the continuous action space. The value-based methods can
also lead to the problem of high bias, i.e., it is difficult to eliminate the error between the estimated value
function and the actual value function. For the policy-based methods, a large number of trajectories must be
sampled, and the difference between each trajectory may be huge. As a result, high variance and large gradient
noise are introduced. It leads to the instability of training and the difficulty of policy convergence.

3.2.3. Actor-critic methods
The actor-critic architecture combines the characteristics of the value-based and policy-based algorithms, and
to a certain extent solves their respective weaknesses, as well as the contradictions between high variance and
high bias. The constructed agent can not only directly output policies, but also evaluate the performance of the
current policies through the value function. Specifically, the actor-critic architecture consists of an actor which
is responsible for generating the policy and a critic to evaluate this policy. When the actor is performing, the
critic should evaluate its performance, both of which are constantly being updated [31]. This complementary
training is generally more effective than a policy-based method or value-based method.

In specific, the input of actor is state 𝑆𝑡 , and the output is action 𝐴𝑡 . The role of actor is to approximate the
policy model 𝜋𝜃 (𝐴𝑡 |𝑆𝑡). Critic uses the value function 𝑄 as the output to evaluate the value of the policy,
and this Q value 𝑄 (𝑆𝑡 , 𝐴𝑡) can be directly applied to calculate the loss function of actor. The gradient of the
expected revenue function 𝐽 (𝜃) in the action-critic framework is developed from the basic policy gradient
algorithm. The policy gradient algorithm can only implement the update of each episode, and it is difficult to
accurately feedback the reward. Therefore, it has poor training efficiency. Instead, the actor-critic algorithm
replaces

∑𝑇
𝑡=1 𝑟

(
𝑆𝑖𝑡 , 𝐴

𝑖
𝑡

)
with 𝑄 (𝑆𝑡 , 𝐴𝑡) to evaluate the expected returns of state-action tuple {𝑆𝑡 , 𝐴𝑡} in the

current time step 𝑡. The gradient of 𝐽 (𝜃) can be expressed as

∇𝜃𝐽 (𝜃) = E𝜏 𝜋𝜃 (𝜏)

[
𝑇∑
𝑡=1
∇𝜃 log 𝜋𝜃 (𝐴𝑡 |𝑆𝑡)𝑄 (𝑆𝑡 , 𝐴𝑡)

]
.

3.3. Deep reinforcement learning
With the continuous expansion of the application of deep learning, its wave also swept into the RL field, result-
ing in deep reinforcement learning (DRL), i.e., using a multi-layer deep neural network to approximate value
function or policy function in the RL algorithm [32,33]. DRLmainly solves the curse-of-dimensionality problem
in real-world RL applications with large or continuous state and/or action space, where the traditional tabular
RL algorithms cannot store and extract a large amount of feature information [17,34].

Q-learning, as a very classical algorithm in RL, is a good example to understand the purpose of DRL. The big
issue with Q-learning falls into the tabular method, which means that when state and action spaces are very
large, it cannot build a very large Q table to store a large number of Q values [35]. Besides, it counts and iterates
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Table 1. Taxonomy of representative algorithms for DRL.

Types Representative algorithms

Value-based
Deep Q-Network (DQN) [37] , Double Deep Q-Network (DDQN) [39] ,
DDQN with proportional prioritization [40]

Policy-based REINFORCE [30] , Q-prop [41]

Actor-critic

Soft Actor-Critic (SAC) [42] , Asynchronous Advantage Actor Critic (A3C) [43] ,
Deep Deterministic Policy Gradient (DDPG) [44] ,
Distributed Distributional Deep Deterministic Policy Radients (D4PG) [45] ,
Twin Delayed Deep Deterministic (TD3) [46] ,
Trust Region Policy Optimization (TRPO) [47] ,
Proximal Policy Optimization (PPO) [48]

Advanced

POMDP
Deep Belief Q-Network (DBQN) [49] ,
Deep Recurrent Q-Network (DRQN) [50] ,
Recurrent Deterministic Policy Gradients (RDPG) [51]

Multi-agents

Multi-Agent Importance Sampling (MAIS) [52] ,
Coordinated Multi-agent DQN [53] ,
Multi-agent Fingerprints (MAF) [52] ,
Counterfactual Multiagent Policy Gradient (COMAPG) [54] ,
Multi-Agent DDPG (MADDPG) [55]

Q values based on past states. Therefore, on the one hand, the applicable state and action space of Q-learning
is very small. On the other hand, if a state never appears, Q-learning cannot deal with it [36]. In other words,
Q-learning has no prediction ability and generalization ability at this point.

In order to make Q-learning with prediction ability, considering that neural network can extract feature in-
formation well, deep Q network (DQN) is proposed by applying deep neural network to simulate Q value
function. In specific, DQN is the continuation of Q-learning algorithm in continuous or large state space to
approximate Q value function by replacing Q table with neural networks [37].

In addition to the value-based DRL algorithm such as DQN, we summarize a variety of classical DRL algo-
rithms according to algorithm types by referring to some DRL related surveys [38] in Table 1, including not
only the policy-based and actor-critic DRL algorithms, but also the advanced DRL algorithms of partially
observable markov decision process (POMDP) and multi-agents.

4. FEDERATED REINFORCEMENT LEARNING
In this section, the detailed background and categories of FRL will be discussed.

4.1. Federated reinforcement learning background
Despite the excellent performance that RL and DRL have achieved in many areas, they still face several im-
portant technical and non-technical challenges in solving real-world problems. The successful application
of FL in supervised learning tasks arouses interest in exploiting similar ideas in RL, i.e., FRL. On the other
hand, although FL is useful in some specific situations, it fails to deal with cooperative control and optimal
decision-making in dynamic environments [10]. FRL not only provides the experience for agents to learn to
make good decisions in an unknown environment, but also ensures that the privately collected data during
the agent’s exploration does not have to be shared with others. A forward-looking and interesting research
direction is how to conduct RL under the premise of protecting privacy. Therefore, it is proposed to use FL
framework to enhance the security of RL and define FRL as a security-enhanced distributed RL framework to
accelerate the learning process, protect agent privacy and handle not independent and identically distributed
(Non-IID) data [8]. Apart from improving the security and privacy of RL, we believe that FRL has a wider and
larger potential in helping RL to achieve better performance in various aspects, which will be elaborated in the
following subsections.
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Figure 8. Comparison of horizontal federated reinforcement learning and vertical federated reinforcement learning.

In order to facilitate understanding and maintain consistency with FL, FRL is divided into two categories
depending on environment partition [7], i.e., HFRL and VFRL. Figure 8 gives the comparison between HFRL
and VFRL. In HFRL, the environment that each agent interacts with is independent of the others, while the
state space and action space of different agents are aligned to solve similar problems. The action of each agent
only affects its own environment and results in corresponding rewards. As an agent can hardly explore all states
of its environment, multiple agents interacting with their own copy of the environment can accelerate training
and improve model performance by sharing experience. Therefore, horizontal agents use server-client model
or peer-to-peer model to transmit and exchange the gradients or parameters of their policy models (actors)
and/or value function models (critics). In VFRL, multiple agents interact with the same global environment,
but each can only observe limited state information in the scope of its view. Agents can perform different
actions depending on the observed environment and receive local reward or even no reward. Based on the
actual scenario, there may be some observation overlap between agents. In addition, all agents’ actions affect
the global environment dynamics and total rewards. As opposed to the horizontal arrangement of independent
environments in HFRL, the vertical arrangement of observations in VFRL poses a more complex problem and
is less studied in the existing literature.

4.2. Horizontal federated reinforcement learning
HFRL can be applied in scenarios in which the agents may be distributed geographically, but they face similar
decision-making tasks and have very little interaction with each other in the observed environments. Each
participating agent independently executes decision-making actions based on the current state of environment
and obtains positive or negative rewards for evaluation. Since the environment explored by one agent is limited
and each agent is unwilling to share the collected data, multiple agents try to train the policy and/or value
model together to improve model performance and increase learning efficiency. The purpose of HFRL is to
alleviate the sample-efficiency problem in RL, and help each agent quickly obtain the optimal policy which can
maximize the expected cumulative reward for specific tasks, while considering privacy protection.

In the HFRL problem, the environment, state space, and action space can replace the data set, feature space,
and label space of basic FL. More formally, we assume that 𝑁 agents {F𝑖}𝑁𝑖=1 can observe the environment
{E𝑖}𝑁𝑖=1 within their field of vision. G denotes the collection of all environments. The environment E𝑖 where
the 𝑖-th agent is located has a similar model, i.e., state transition probability and reward function compared to
other environments. Note that the environment E𝑖 is independent of the other environments, in that the state
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Figure 9. Illustration of horizontal federated reinforcement learning.

transition and reward model of E𝑖 do not depend on the states and actions of the other environments. Each
agent F𝑖 interacts with its own environment E𝑖 to learn an optimal policy. Therefore, the conditions for HFRL
are presented as follows, i.e.,

S𝑖 = S 𝑗 ,A𝑖 = A 𝑗 , E𝑖 ≠ E 𝑗 ,∀𝑖, 𝑗 ∈ {1,2,...,𝑁} , E𝑖 , E 𝑗 ∈ G, 𝑖 ≠ 𝑗 ,

where S𝑖 and S 𝑗 denote the similar state space encountered by the 𝑖-th agent and 𝑗-th agent, respectively. A𝑖

andA 𝑗 denote the similar action space of the 𝑖-th agent and 𝑗-th agent, respectivelyThe observed environment
E𝑖 and E𝑖 are two different environments that are assumed to be independent and ideally identically distributed.

Figure 9 shows theHFRL in graphic form. Each agent is represented by a cuboid. The axes of the cuboid denote
three dimensions of information, i.e., the environment, state space, and action space. We can intuitively see
that all environments are arranged horizontally, and multiple agents have aligned state and action spaces. In
other words, each agent explores independently in its respective environment, and needs to obtain optimal
strategies for similar tasks. In HFRL, agents share their experiences by exchanging masked models to enhance
sample efficiency and accelerate the learning process.

A typical example of HFRL is the autonomous driving system in IoV. As vehicles drive on roads throughout
the city and country, they can collect various environmental information and train the autonomous driving
models locally. Due to driving regulations, weather conditions, driving routes, and other factors, one vehicle
cannot be exposed to every possible situation in the environment. Moreover, the vehicles have basically the
same operations, including braking, acceleration, steering, etc. Therefore, vehicles driving on different roads,
different cities, or even different countries could share their learned experience with each other by FRLwithout
revealing their driving data according to the premise of privacy protection. In this case, even if other vehicles
have never encountered a situation, they can still perform the best action by using the shared model. The
exploration of multiple vehicles together also creates an increased chance of learning rare cases to ensure the
reliability of the model.
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Figure 10. An example of horizontal federated reinforcement learning architecture.

For a better understanding of HFRL, Figure 10 shows an example of HFRL architecture using the server-client
model. The coordinator is responsible for establishing encrypted communication with agents and implement-
ing aggregation of shared models. The multiple parallel agents may be composed of heterogeneous equipment
(e.g., IoT devices, smart phone and computers, etc.) and distributed geographically. It is worth noting that
there is no specific requirement for the number of agents, and agents are free to choose to join or leave. The
basic procedure for conducting HFRL can be summarized as follows.

• Step 1: The initialization/join process can be divided into two cases, one is when the agent has no model
locally, and the other is when the agent has amodel locally. For the first case, the agent can directly download
the shared global model from a coordinator. For the second case, the agent needs to confirm the model
type and parameters with the central coordinator.

• Step 2: Each agent independently observes the state of the environment and determines the private strategy
based on the local model. The selected action is evaluated by the next state and received reward. All agents
train respective models in state-action-reward-state (SARS) cycles.

• Step 3: Local model parameters are encrypted and transmitted to the coordinator. Agents may submit local
models at any time as long as the trigger conditions are met.

• Step 4: The coordinator conducts the specific aggregation algorithm to evolve the global federated model.
Actually, there is no need to wait for submissions from all agents, and appropriate aggregation conditions
can be formulated depending on communication resources.

• Step 5: The coordinator sends back the aggregated model to the agents.
• Step 6: The agents improve their respective models by fusing the federated model.

Following the above architecture and process, applications suitable for HFRL should meet the following char-
acteristics. First, agents have similar tasks to make decisions under dynamic environments. Different from
the FL setting, the goal of the HFRL-based application is to find the optimal strategy to maximize reward in
the future. For the agent to accomplish the task requirements, the optimal strategy directs them to perform
certain actions, such as control, scheduling, navigation, etc. Second, distributed agents maintain independent
observations. Each agent can only observe the environment within its field of view, but does not ensure that the
collected data follows the same distribution. Third, it is important to protect the data that each agent collects
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and explores. Agents are presumed to be honest but curious, i.e., they honestly follow the learning mechanism
but are curious about private information held by other agents. Due to this, the data used for training is only
stored at the owner and is not transferred to the coordinator. HFRL provides an implementation method for
sharing experiences under the constraints of privacy protection. Additionally, various reasons limit the agent’s
ability to explore the environment in a balanced manner. Participating agents may include heterogeneous
devices. The amount of data collected by each agent is unbalanced due to mobility, observation, energy and
other factors. However, all participants have sufficient computing, storage, and communication capabilities.
These capabilities assist the agent in completing model training, merging, and other basic processes. Finally,
the environment observed by a agent may change dynamically, causing differences in data distribution. The
participating agents need to update themodel in time to quickly adapt to environmental changes and construct
a personalized local model.

In existing RL studies, some applications that meet the above characteristics can be classified as HFRL. Nadiger
et al. [56] presents a typical HFRL architecture, which includes the grouping policy, the learning policy, and the
federation policy. In this work, RL is used to show the applicability of granular personalization and FL is used
to reduce training time. To demonstrate the effectiveness of the proposed architecture, a non-player character
in the Atari game Pong is implemented and evaluated. In the study from Liu et al. [57], the authors propose
the lifelong federated reinforcement learning (LFRL) for navigation in cloud robotic systems. It enables the
robot to learn efficiently in a new environment and use prior knowledge to quickly adapt to the changes in
the environment. Each robot trains a local model according to its own navigation task, and the centralized
cloud server implements a knowledge fusion algorithm for upgrading a shared model. In considering that
the local model and the shared model might have different network structures, this paper proposes to apply
transfer learning to improve the performance and efficiency of the shared model. Further, researchers also
focus on HFRL-based applications in the IoT due to the high demand for privacy protection. Ren et al. [58]
suggest deploying the FL architecture between edge nodes and IoT devices for computation offloading tasks.
IoT devices can download RL model from edge nodes and train the local model using own data, including the
remained energy resources and the workload of IoT device, etc. The edge node aggregates the updated private
model into the shared model. Although this method considers privacy protection issues, it requires further
evaluation regarding the cost of communication resources by the model exchange. In addition, the work [59]

proposes a federated deep-reinforcement-learning-based framework (FADE) for edge caching. Edge devices,
including base stations (BSs), can cooperatively learn a predictive model using the first round of training pa-
rameters for local learning, and then upload the local parameters tuned to the next round of global training.
By keeping the training on local devices, the FADE can enable fast training and decouple the learning process
between the cloud and data owner in a distributed-centralized manner. More HFRL-based applications will
be classified and summarized in the next section.

Prior to HFRL, a variety of distributed RL algorithms have been extensively investigated, which are closely
related to HFRL. In general, distributed RL algorithms can be divided into two types: synchronized and
asynchronous. In synchronous RL algorithms, such as Sync-Opt synchronous stochastic optimization (Sync-
Opt) [60] and parallel advantage actor critic (PAAC) [3], the agents explore their own environments separately,
and after a number of samples are collected, the global parameters are updated synchronously. On the contrary,
the coordinator will update the global model immediately after receiving the gradient from an arbitrary agent
in asynchronous RL algorithms, rather than waiting for other agents. Several asynchronous RL algorithms
are presented, including A3C [61], Impala [62], Ape-X [63] and general reinforcement learning architecture (Go-
rila) [1]. From the perspective of technology development, HFRL can also be considered security-enhanced
parallel RL. In parallel RL, multiple agents interact with a stochastic environment to seek the optimal policy
for the same task [1,2]. By building a closed loop of data and knowledge in parallel systems, parallel RL helps
determine the next course of action for each agent. The state and action representations are fed into a de-
signed neural network to approximate the action value function [64]. However, parallel RL typically transfers
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the experience of agent without considering privacy protection issues [7]. In the implementation of HFRL, fur-
ther restrictions accompany privacy protection and communication consumption to adapt to special scenarios,
such as IoT applications [59]. In addition, another point to consider is Non-IID data. In order to ensure con-
vergence of the RL model, it is generally assumed in parallel RL that the states transitions in the environment
follow the same distribution, i.e., the environments of different agents are IID. But in actual scenarios, the
situation faced by agents may differ slightly, so that the models of environments for different agents are not
identically distributed. Therefore, HFRL needs to improve the generalization ability of the model compared
with parallel RL to meet the challenges posed by Non-IID data.

Based on the potential issues faced by the current RL technology, the advantages of HFRL can be summarized
as follows.

• Enhancing training speed. In the case of a similar target task, multiple agents sharing training experiences
gained from different environments can expedite the learning process. The local model rapidly evolves
through aggregation and update algorithms to assess the unexplored environment. Moreover, the data ob-
tained by different agents are independent, reducing correlations between the observed data. Furthermore,
this also helps to solve the issue of unbalanced data caused by various restrictions.

• Improving the reliability of model. When the dimensions of the state of the environment are enormous or
even uncountable, it is difficult for a single agent to train an optimal strategy for situations with extremely
low occurrence probabilities. Horizontal agents are exploring independently while building a cooperative
model to improve the local model’s performance on rare states.

• Mitigating the problems of devices heterogeneity. Different devices deploying RL agents in the HFRL ar-
chitecture may have different computational and communication capabilities. Some devices may not meet
the basic requirements for training, but strategies are needed to guide actions. HFRL makes it possible for
all agents to obtain the shared model equally for the target task.

• Addressing the issue of non-identical environment. Considering the differences in the environment dy-
namics for the different agents, the assumption of IID data may be broken. Under the HFRL architecture,
agents in not identically-distributed environment models can still cooperate to learn a federated model. In
order to address the difference in environment dynamics, a personalized update algorithm of local model
could be designed to minimize the impact of this issue.

• Increasing the flexibility of the system. The agent can decide when to participate in the cooperative system
at any time, because HFRL allows asynchronous requests and aggregation of shared models. In the existing
HFRL-based application, new agents also can apply for membership and benefit from downloading the
shared model.

4.3. Vertical federated reinforcement learning
In VFL, samples of multiple data sets have different feature spaces but these samples may belong to the same
groups or common users. The training data of each participant are divided vertically according to their features.
More general and accurate models can be generated by building heterogeneous feature spaces without releas-
ing private information. VFRL applies the methodology of VFL to RL and is suitable for POMDP scenarios
where different RL agents are in the same environment but have different interactions with the environment.
Specifically, different agents could have different observations that are only part of the global state. They could
take actions from different action spaces and observe different rewards, or some agents even take no actions
or cannot observe any rewards. Since the observation range of a single agent to the environment is limited,
multiple agents cooperate to collect enough knowledge needed for decision making. The role of FL in VFRL
is to aggregate the partial features observed by various agents. Especially for those agents without rewards, the
aggregation effect of FL greatly enhances the value of such agents in their interactions with the environment,
and ultimately helps with the strategy optimization. It is worth noting that in VFRL the issue of privacy pro-
tection needs to be considered, i.e., private data collected by some agents do not have to be shared with others.
Instead, agents can transmit encrypted model parameters, gradients, or direct mid-product to each other. In
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Figure 11. Illustration of vertical federated reinforcement learning.

short, the goal of VFRL is for agents interacting with the same environment to improve the performance of
their policies and the effectiveness in learning them by sharing experiences without compromising the privacy.

More formally, we denote {F𝑖}𝑁𝑖=1 as 𝑁 agents in VFRL, which interact with a global environment E. The 𝑖-th
agent F𝑖 is located in the environment E𝑖 = E, obtains the local partial observation O𝑖 , and can perform the set
of actions A𝑖 . Different from HFRL, the state/observation and action spaces of two agents F𝑖 and F𝑗 may be
not identical, but the aggregation of the state/observation spaces and action spaces of all the agents constitutes
the global state and action spaces of the global environment E. The conditions for VFRL can be defined as i.e.,

O𝑖 ≠ O 𝑗 ,A𝑖 ≠ A 𝑗 , E𝑖 = E 𝑗 = E,
𝑁∪
𝑖=1
O𝑖 =S,

𝑁∪
𝑖=1
A𝑖 =A,∀𝑖, 𝑗 ∈ {1,2,...,𝑁} , 𝑖 ≠ 𝑗 ,

where S and A denote the global state space and action space of all participant agents respectively. It can be
seen that all the observations of the 𝑁 agents together constitute the global state space S of the environment
E. Besides, the environments E𝑖 and E 𝑗 are the same environment E. In most cases, there is a great difference
between the observations of two agents F𝑖 and F𝑗 .

Figure 11 shows the architecture of VFRL. The dataset and feature space in VFL are converted to the envi-
ronment and state space respectively. VFL divides the dataset vertically according to the features of samples,
and VFRL divides agents based on the state spaces observed from the global environment. Generally speak-
ing, every agent has its local state which can be different from that of the other agents and the aggregation of
these local partial states corresponds to the entire environment state [65]. In addition, after interacting with the
environment, agents may generate their local actions which correspond to the labels in VFL.

Two types of agents can be defined forVFRL, i.e., decision-oriented agents and support-oriented agents. Decision-
oriented agents {F𝑖}𝐾𝑖=1 can interact with the environment E based on their local state {S𝑖}𝐾𝑖=1 and action
{A𝑖}𝐾𝑖=1. Meanwhile, support-oriented agents {F𝑖}𝑁𝑖=𝐾+1 take no actions and receive no rewards but only the
observations of the environment, i.e., their local states {S𝑖}𝑁𝑖=𝐾+1. In general, the following six steps, as shown
in Figure 12, are the basic procedure for VFRL, i.e.,
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Figure 12. An example of vertical federated reinforcement learning architecture.

• Step 1: Initialization is performed for all agent models.
• Step 2: Agents obtain states from the environment. For decision-oriented agents, actions are obtained based
on the local models, and feedbacks are obtained through interactions with the environment, i.e., the states
of the next time step and rewards. The data tuple of state-action-reward-state (SARS) is used to train the
local models.

• Step 3: All agents calculate the mid-products of the local models and then transmit the encrypted mid-
products to the federated model.

• Step 4: The federatedmodel performs the aggregation calculation for mid-products and trains the federated
model based on the aggregation results.

• Step 5: Federated model encrypts model parameters such as weight and gradient and passes them back to
other agents.

• Step 6: All agents update their local models based on the received encrypted parameters.

As an example of VFRL, consider a microgrid (MG) system including household users, the power company,
and the photovoltaic (PV) management company as the agents. All the agents observe the same MG environ-
ment while their local state spaces are quite different. The global states of the MG system generally consist of
several dimensions/features, i.e., state-of-charge (SOC) of the batteries, load consumption of the household
users, power generation from PV, etc. The household agents can obtain the SOC of their own batteries and
their own load consumption, the power company can know the load consumption of all the users, and PV
management company can know the power generation of PV. As to the action, the power company needs
to make decisions on the power dispatch of the diesel generators (DG), and the household users can make
decisions to manage their electrical utilities with demand response. Finally, the power company can observe
rewards such as the cost of DG power generation, the balance between power generation and consumption,
and the household users can observe rewards such as their electricity bill that is related to their power con-
sumption. In order to learn the optimal policies, these agents need to communicate with each other to share
their observations. However, PV managers do not want to expose their data to other companies, and house-
hold users also want to keep their consumption data private. In this way, VFRL is suitable to achieve this goal
and can help improve policy decisions without exposing specific data.

Compared with HFRL, there are currently few works on VFRL. Zhuo et al. [65] present the federated deep
reinforcement learning (FedRL) framework. The purpose of this paper is to solve the challenge where the
feature space of states is small and the training data are limited. Transfer learning approaches in DRL are
also solutions for this case. However, when considering the privacy-aware applications, directly transferring
data or models should not be used. Hence, FedRL combines the advantage of FL with RL, which is suitable
for the case when agents need to consider their privacy. FedRL framework assumes agents cannot share their
partial observations of the environment and some agents are unable to receive rewards. It builds a shared value
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network, i.e., multiLayer perceptron (MLP), and takes its ownQ-network output and encryption value as input
to calculate a global Q-network output. Based on the output of global Q-network, the shared value network
and self Q-network are updated. Two agents are used in the FedRL algorithm, i.e., agent 𝛼 and 𝛽, which
interact with the same environment. However, agent 𝛽 cannot build its own policies and rewards. Finally,
FedRL is applied in two different games, i.e., Grid-World and Text2Action, and achieves better results than the
other baselines. Although the VFRL model in this paper only contains two agents, and the structure of the
aggregated neural network model is relatively simple, we believe that it is a great attempt to first implement
VFRL and verify its effectiveness.

Multi-agent RL (MARL) is very closely related to VFRL. As the name implies, MARL takes into account the
existence of multiple agents in the RL system. However, the empirical evaluation shows that applying the
simple single-agent RL algorithms directly to scenarios of multiple agents cannot converge to the optimal
solution, since the environment is no longer static from the perspective of each agent [66]. In specific, the
action of each agent will affect the next state, thus affecting all agents in the future time step [67]. Besides, the
actions performed by one certain agent will yield different rewards depending on the actions taken by other
agents. This means that agents in MARL correlate with each other, rather than being independent of each
other. This challenge, called as the non-stationarity of the environment, is the main problem to be solved in
the development of an efficient MARL algorithm [68].

MARL and VFRL both study the problem of multiple agents learning concurrently how to solve a task by
interacting with the same environment [69]. Since MARL and VFRL have a large range of similarities, the
review of MARL’s related works is a very useful guide to help researchers summarize the research focus and
better understand VFRL. There is abundant literature related to MARL. However, most MARL research [70–73]

is based on a fully observed markov decision process (MDP), where each agent is assumed to have the global
observation of the system state [68]. These MARL algorithms are not applicable to the case of POMDP where
the observations of individual agents are often only a part of the overall environment [74]. Partial observability
is a crucial consideration for the development of algorithms that can be applied to real-world problems [75].
Since VFRL is mainly oriented towards POMDP scenarios, it is more important to analyze the related works
of MARL based on POMDP as the guidance of VFRL.

Agents in the above scenarios partially observe the system state and make decisions at each step to maximize
the overall rewards for all agents, which can be formalized as a decentralized partially observable markov de-
cision process (Dec-POMDP) [76]. Optimally addressing a Dec-POMDP model is well known to be a very
challenging problem. In the early works, Omidshafiei et al. [77] proposes a two-phase MT-MARL approach
that concludes the methods of cautiously-optimistic learners for action-value approximation and concurrent
experience replay trajectories (CERTs) as the experience replay targeting sample-efficient and stable MARL.
The authors also apply the recursive neural network (RNN) to estimate the non-observed state and hysteretic
Q-learning to address the problem of non-stationarity in Dec-POMDP. Han et al. [78] designs a neural net-
work architecture, IPOMDP-net, which extends QMDP-net planning algorithm [79] to MARL settings under
POMDP. Besides, Mao et al. [80] introduces the concept of information state embedding to compress agents’
histories and proposes an RNN model combining the state embedding. Their method, i.e., embed-then-learn
pipeline, is universal since the embedding can be fed into any existing partially observable MARL algorithm as
the black-box. In the study from Mao et al. [81], the proposed Attention MADDPG (ATT-MADDPG) has sev-
eral critic networks for various agents under POMDP. A centralized critic is adopted to collect the observations
and actions of the teammate agents. Specifically, the attentionmechanism is applied to enhance the centralized
critic. The final introduced work is from Lee et al. [82]. They present an augmentingMARL algorithm based on
pretraining to address the challenge in disaster response. It is interesting that they use behavioral cloning (BC),
a supervised learning method where agents learn their policy from demonstration samples, as the approach
to pretrain the neural network. BC can generate a feasible Dec-POMDP policy from demonstration samples,
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which offers advantages over plain MARL in terms of solution quality and computation time.

SomeMARL algorithms also concentrate on the communication issue of POMDP. In the study fromSukhbaatar
et al. [83], communication between the agents is performed for a number of rounds before their action is se-
lected. The communication protocol is learned concurrently with the optimal policy. Foerster et al. [84] pro-
poses a deep recursive network architecture, i.e., deep distributed recurrent Q-network (DDRQN), to address
the communication problem in a multi-agent partially-observable setting. This work makes three fundamen-
tal modifications to previous algorithms. The first one is last-action inputs, which let each agent access its
previous action as an input for the next time-step. Besides, inter-agent weight sharing allows diverse behavior
between agents, as the agents receive different observations and thus evolve in different hidden states. The
final one is disabling experience replay, which is because the non-stationarity of the environment renders old
experiences obsolete or misleading. Foerster et al. [84] considers the communication task of fully cooperative,
partially observable, sequential multi-agent decision-making problems. In their systemmodel, each agent can
receive a private observation and take actions that affect the environment. In addition, the agent can also
communicate with its fellow agents via a discrete limited-bandwidth channel. Despite the partial observability
and limited channel capacity, authors achieved the task that the two agents could discover a communication
protocol that enables them to coordinate their behavior based on the approach of deep recurrent Q-networks.

While there are some similarities between MARL and VFRL, several important differences have to be paid
attention to, i.e.,

• VFRL and some MARL algorithms are able to address similar problems, e.g., the issues of POMDP. How-
ever, there are differences between the solution ideas between two algorithms. Since VFRL is the product
of applying VFL to RL, the FL component of VFRL focuses more on the aggregation of partial features, in-
cluding states and rewards, observed by different agents since VFRL inception. Security is also an essential
issue in VFRL. On the contrary, MARL may arise as the most natural way of adding more than one agent
in a RL system [85]. In MARL, agents not only interact with the environment, but also have complex inter-
active relationships with other agents, which creates a great obstacle to the solution of policy optimization.
Therefore, the original intentions of two algorithms are different.

• Two algorithms are slightly different in terms of the structure. The agents in MARL must surely have the
reward even some of them may not have their own local actions. However, in some cases, the agents in
VFRL are not able to generate a corresponding operation policy, so in these cases, some agents have no
actions and rewards [65]. Therefore, VFRL can solve more extensive problems that MARL is not capable of
solving.

• Both two algorithms involve the communication problem between agents. In MARL, information such
as the states of other agents and model parameters can be directly and freely propagated among agents.
During communication, some MARL methods such as DDRQN in the work of Foerster et al. [84] consider
the previous action as an input for the next time-step state. Weight sharing is also allowed between agents.
However, VFRL assumes states cannot be shared among agents. Since these agents do not exchange ex-
perience and data directly, VFRL focuses more on security and privacy issues of communication between
agents, as well as how to process mid-products transferred by other agents and aggregate federated models.

In summary, as a potential and notable algorithm, VFRL has several advantages as follows, i.e.,

• Excellent privacy protection. VFRL inherits the FL algorithm’s idea of data privacy protection, so for the
task of multiple agents cooperation in the same environment, information interaction can be carried out
confidently to enhance the learning efficiency of RL model. In this process, each participant does not have
to worry about any leakage of raw real-time data.

• Wide application scenarios. With appropriate knowledge extraction methods, including algorithm design
and system modeling, VFRL can solve more real-world problems compared with MARL algorithms. This
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is because VFRL can consider some agents that cannot generate rewards into the system model, so as to
integrate their partial observation information of the environment based on FL while protecting privacy,
train a more robust RL agent, and further improve learning efficiency.

4.4. Other types of FRL
The above HFRL or VFRL algorithms borrow ideas from FL for federation between RL agents. Meanwhile,
there are also some existing works on FRL that are less affected by FL. Hence, they do not belong to either
HFRL or VFRL, but federation between agents is also implemented.

The study from Hu et al. [86] is a typical example, which proposes a reward shaping based general FRL algo-
rithm, called federated reward shaping (FRS). It uses reward shaping to share federated information to improve
policy quality and training speed. FRS adopts the server-client architecture. The server includes the federated
model, while each client completes its own tasks based on the local model. This algorithm can be combined
with different kinds of RL algorithms. However, it should be noted that FRS focuses on reward shaping, this
algorithm cannot be used when there is no reward in some agents in VFRL. In addition, FRS performs knowl-
edge aggregation by sharing high-level information such as reward shaping value or embedding between client
and server instead of sharing experience or policy directly. The convergence of FRS is also guaranteed since
onlyminor changes are made during the learning process, which is themodification of the reward in the replay
buffer.

As another example, Anwar et al. [87] achieves federation between agents by smoothing the average weight.
This work analyzes the Multi-task FRL algorithms (MT-FedRL) with adversaries. Agents only interact and
make observations in their environment, which can be featured by different MDPs. Different from HFRL, the
state and action spaces do not need to be the same in these environments. The goal of MT-FedRL is to learn
a unified policy, which is jointly optimized across all of the environments. MT-FedRL adopts policy gradient
methods for RL. In other words, policy parameter is needed to learn the optimal policy. The server-client
architecture is also applied and all agents should share their own information with a centralized server. The
role of non-negative smoothing average weights is to achieve a consensus among the agents’ parameters. As a
result, they can help to incorporate the knowledge from other agents as the process of federation.

5. APPLICATIONS OF FRL
In this section, we provide an extensive discussion of the application of FRL in a variety of tasks, such as edge
computing, communications, control optimization, attack detection, etc. This section is aimed at enabling
readers to understand the applicable scenarios and research status of FRL.

5.1. FRL for edge computing
In recent years, edge equipment, such as BSs and road side units (RSUs), has been equipped with increasingly
advanced communication, computing and storage capabilities. As a result, edge computing is proposed to
delegating more tasks to edge equipment in order to reduce the communication load and reduce the corre-
sponding delay. However, the issue of privacy protection remains challenging since it may be untrustworthy
for the data owner to hand off their private information to a third-party edge server [4]. FRL offers a poten-
tial solution for achieving privacy-protected intelligent edge computing, especially in decision-making tasks
like caching and offloading. Additionally, the multi-layer processing architecture of edge computing is also
suitable for implementing FRL through the server-client model. Therefore, many researchers have focused on
applying FRL to edge computing.

The distributed data of large-scale edge computing architecturemakes it possible for FRL to provide distributed
intelligent solutions to achieve resource optimization at the edge. For mobile edge networks, a potential FRL
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framework is presented for edge system [88], named as “In-Edge AI”, to address optimization of mobile edge
computing, caching, and communication problems. The authors also propose some ideas and paradigms for
solving these problems by using DRL and Distributed DRL. To carry out dynamic system-level optimization
and reduce the unnecessary transmission load, “In-Edge AI” framework takes advantage of the collaboration
among edge nodes to exchange learning parameters for better training and inference of models. It has been
evaluated that the framework has high performance and relatively low learning overhead, while the mobile
communication system is cognitive and adaptive to the environment. The paper provides good prospects
for the application of FRL to edge computing, but there are still many challenges to overcome, including the
adaptive improvement of the algorithm, and the training time of the model from scratch etc.

Edge caching has been considered a promising technique for edge computing to meet the growing demands
for next-generation mobile networks and beyond. Addressing the adaptability and collaboration challenges of
the dynamic network environment, Wang et al. [89] proposes a device-to-device (D2D)-assisted heterogeneous
collaborative edge caching framework. User equipment (UE) in a mobile network uses the local DQN model
to make node selection and cache replacement decisions based on network status and historical information.
In other words, UE decides where to fetch content and which content should be replaced in its cache list. The
BS calculates aggregation weights based on the training evaluation indicators from UE. To solve the long-term
mixed-integer linear programming problem, the attention-weighted federated deep reinforcement learning
(AWFDRL) is presented, which optimizes the aggregation weights to avoid the imbalance of the local model
quality and improve the learning efficiency of the DQN.The convergence of the proposed algorithm is verified
and simulation results show that the AWFDRL framework can perform well on average delay, hit rate, and
offload traffic.

A federated solution for cooperative edge caching management in fog radio access networks (F-RANs) is pro-
posed [90]. Both edge computing and fog computing involve bringing intelligence and processing to the origins
of data. The key difference between the two architectures is where the computing node is positioned. A du-
eling deep Q-network based cooperative edge caching method is proposed to overcome the dimensionality
curse of RL problem and improve caching performance. Agents are developed in fog access points (F-APs)
and allowed to build a local caching model for optimal caching decisions based on the user content request
and the popularity of content. HFRL is applied to aggregate the local models into a global model in the cloud
server. The proposed method outperforms three classical content caching methods and two RL algorithms in
terms of reducing content request delays and increasing cache hit rates.

For edge-enabled IoT, Majidi et al. [91] proposes a dynamic cooperative caching method based on hierarchical
federated deep reinforcement learning (HFDRL), which is used to determine which content should be cached
or evicted by predicting future user requests. Edge devices that have a strong relationship are grouped into
a cluster and one head is selected for this cluster. The BS trains the Q-value based local model by using BS
states, content states, and request states. The head has enough processing and caching capabilities to deal with
model aggregation in the cluster. By categorizing edge devices hierarchically, HFDRL improves the response
time delay to keeps both small and large clusters from experiencing the disadvantages they could encounter.
Storage partitioning allows content to be stored in clusters at different levels using the storage space of each
device. The simulation results show the proposed method using MovieLens datasets improves the average
content access delay and the hit rate.

Considering the low latency requirements and privacy protection issue of IoV, the study of efficient and secure
caching methods has attracted many researchers. An FRL-empowered task caching problem with IoV has
been analyzed by Zhao et al. [92]. The work proposes a novel cooperative caching algorithm (CoCaRL) for
vehicular networks with multi-level FRL to dynamically determine which contents should be replaced and
where the content requests should be served. This paper develops a two-level aggregation mechanism for
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federated learning to speed up the convergence rate and reduces communication overhead, while DRL task is
employed to optimize the cooperative caching policy between RSUs of vehicular networks. Simulation results
show that the proposed algorithm can achieve a high hit rate, good adaptability and fast convergence in a
complex environment.

Apart from caching services, FRL has demonstrated its strong ability to facilitate resource allocation in edge
computing. In the study fromZhu et al. [93], the authors specifically focus on the data offloading task formobile
edge computing (MEC) systems. To achieve joint collaboration, the heterogeneousmulti-agent actor-critic (H-
MAAC) framework is proposed, in which edge devices independently learn the interactive strategies through
their own observations. The problem is formulated as a multi-agent MDP for modeling edge devices’ data
allocation strategies, i.e., moving the data, locally executing or offloading to a cloud server. The corresponding
joint cooperation algorithm that combines the edge federatedmodel with themulti-agent actor-critic RL is also
presented. Dual lightweight neural networks are built, comprising original actor/critic networks and target
actor/critic networks.

Blockchain technology has also attracted lot attention from researchers in edge computing fields since it is able
to provide reliable data management within the massive distributed edge nodes. In the study from Yu et al. [94],
the intelligent ultra-dense edge computing (I-UDEC) framework is proposed, integrating with blockchain and
RL technologies into 5G ultra-dense edge computing networks. In order to achieve low overhead computation
offloading decisions and resource allocation strategies, authors design a two-timescale deep reinforcement
learning (2Ts-DRL) approach, which consists of a fast-timescale and a slow-timescale learning process. The
target model can be trained in a distributed manner via FL architecture, protecting the privacy of edge devices.

Additionally, to deal with the different types of optimization tasks, variants of FRL are being studied. Zhu et
al. [95] presents a resource allocation method for edge computing systems, called concurrent federated rein-
forcement learning (CFRL). The edge node continuously receives tasks from serviced IoT devices and stores
those tasks in a queue. Depending on its own resource allocation status, the node determines the scheduling
strategy so that all tasks are completed as soon as possible. In case the edge host does not have enough available
resources for the task, the task can be offloaded to the server. Contrary to the definition of the central server
in the basic FRL, the aim of central server in CFRL is to complete the tasks that the edge nodes cannot handle
instead of aggregating local models. Therefore, the server needs to train a special resource allocation model
based on its own resource status, forwarded tasks and unique rewards. The main idea of CFRL is that edge
nodes and the server cooperatively participate in all task processing in order to reduce total computing time
and provide a degree of privacy protection.

5.2. FRL for communication networks
In parallel with the continuous evolution of communication technology, a number of heterogeneous commu-
nication systems are also being developed to adapt to different scenarios. Many researchers are also working
toward intelligent management of communication systems. The traditional ML-based management methods
are often inefficient due to their centralized data processing architecture and the risk of privacy leakage [5]. FRL
can play an important role in services slicing and access controlling to replace centralized ML methods.

In communication network services, network function virtualization (NFV) is a critical component of achiev-
ing scalability and flexibility. Huang et al. [96] proposes a novel scalable service function chains orchestration
(SSCO) scheme for NFV-enabled networks via FRL. In the work, a federated-learning-based framework for
training global learning, along with a time-variant local model exploration, is designed for scalable SFC orches-
tration. It prevents data sharing among stakeholders and enables quick convergence of the global model. To
reduce communication costs, SSCO allows the parameters of local models to be updated just at the beginning
and end of each episode through distributed clients and the cloud server. A DRL approach is used to map
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virtual network functions (VNFs) into networks with local knowledge of resources and instantiation cost. In
addition, the authors also propose a loss-weight-based mechanism for generation and exploitation of refer-
ence samples for training in replay buffers, avoiding the strong relevance of each sample. Simulation results
demonstrate that SSCO can significantly reduce placement errors and improve resource utilization ratios to
place time-variant VNFs, as well as achieving desirable scalability.

Network slicing (NS) is also a form of virtual network architecture to support divergent requirements sustain-
ably. The work from Liu et al. [97] proposes a device association scheme (such as access control and handover
management) for radio access network (RAN) slicing by exploiting a hybrid federated deep reinforcement
learning (HDRL) framework. In view of the large state-action space and variety of services, HDRL is designed
with two layers of model aggregations. Horizontal aggregation deployed on BSs is used for the same type of
service. Generally, data samples collected by different devices within the same service have similar features.
The discrete-action DRL algorithm, i.e., DDQN, is employed to train the local model on individual smart
devices. BS is able to aggregate model parameters and establish a cooperative global model. Vertical aggre-
gation developed on the third encrypted party is responsible for the services of different types. In order to
promote collaboration between devices with different tasks, authors aggregate local access features to form a
global access feature, in which the data from different flows is strongly correlated since different data flows
are competing for radio resources with each other. Furthermore, the Shapley value [98], which represents the
average marginal contribution of a specific feature across all possible feature combinations, is used to reduce
communication cost in vertical aggregation based on the global access feature. Simulation results show that
HDRL can improve network throughput and communication efficiency.

The open radio access network (O-RAN) has emerged as a paradigm for supporting multi-class wireless ser-
vices in 5G and beyond networks. To deal with the two critical issues of load balance and handover control,
Cao et al. [99] proposes a federated DRL-based scheme to train the model for user access control in the O-RAN.
Due to the mobility of UEs and the high cost of the handover between BSs, it is necessary for each UE to
access the appropriate BS to optimize its throughput performance. As independent agents, UEs make access
decisions with assistance from a global model server, which updates global DQN parameters by averaging
DQN parameters of selected UEs. Further, the scheme proposes only partially exchanging DQN parameters
to reduce communication overheads, and using the dueling structure to allow convergence for independent
agents. Simulation results demonstrate that the scheme increases long-term throughput while avoiding fre-
quent handovers of users with limited signaling overheads.

The issue of optimizing user access is important in wireless communication systems. FRL can provide inter-
esting solutions for enabling efficient and privacy-enhanced management of access control. Zhang et al. [100]
studies the problem of multi-user access in WIFI networks. In order to mitigate collision events on channel
access, an enhancedmultiple accessmechanism based on FRL is proposed for user-dense scenarios. In particu-
lar, distributed stations train their local q-learning networks through channel state, access history and feedback
from central access point (AP). AP uses the central aggregation algorithm to update the global model every
period of time and broadcast it to all stations. In addition, a monte carlo (MC) reward estimation method for
the training phase of local model is introduced, which allocates more weight to the reward of that current state
by reducing the previous cumulative reward.

FRL is also studied for intelligent cyber-physical systems (ICPS), which aims to meet the requirements of intel-
ligent applications for high-precision, low-latency analysis of big data. In light of the heterogeneity brought by
multiple agents, the central RL-based resource allocation scheme has non-stationary issues and does not con-
sider privacy issues. Therefore, the work fromXu et al. [101] proposes a multi-agent FRL (MA-FRL)mechanism
which synthesizes a good inferential global policy from encrypted local policies of agents without revealing
private information. The data resource allocation and secure communication problems are formulated as a
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Stackelberg game with multiple participants, including near devices (NDs), far devices (FDs) and relay devices
(RDs). Take into account the limited scope of the heterogeneous devices, the authors model this multi-agent
system as a POMDP. Furthermore, it is proved that MA-FRL is 𝜇-strongly convex and 𝛽-smooth and derives
its convergence speed in expectation.

Zhang et al. [102] pays attention to the challenges in cellular vehicle-to-everything (V2X) communication for
future vehicular applications. A joint optimization problem of selecting the transmission mode and allocating
the resources is presented. This paper proposes a decentralized DRL algorithm for maximizing the amount of
available vehicle-to-infrastructure capacity while meeting the latency and reliability requirements of vehicle-
to-vehicle (V2V) pairs. Considering limited local training data at vehicles, the federated learning algorithm
is conducted on a small timescale. On the other hand, the graph theory-based vehicle clustering algorithm is
conducted on a large timescale.

The development of communication technologies in extreme environments is important, including deep un-
derwater exploration. The architecture and philosophy of FRL are applied to smart ocean applications in the
study of Kwon [103]. To deal with the nonstationary environment and unreliable channels of underwater wire-
less networks, the authors propose a multi-agent DRL-based algorithm that can realize FL computation with
internet-of-underwater-things (IoUT) devices in the ocean environment. The cooperative model is trained by
MADDPG for cell association and resource allocation problems. As for downlink throughput, it is found that
the proposed MADDPG-based algorithm performed 80% and 41% better than the standard actor-critic and
DDPG algorithms, respectively.

5.3. FRL for control optimization
Reinforcement learning based control schemes are considered as one of the most effective ways to learn a
nonlinear control strategy in complex scenarios, such as robotics. Individual agent’s exploration of the envi-
ronment is limited by its own field of vision and usually needs a great deal of training to obtain the optimal
strategy. The FRL-based approach has emerged as an appealing way to realize control optimization without
exposing agent data or compromising privacy.

Automated control of robots is a typical example of control optimization problems. Liu et al. [57] discusses
robot navigation scenarios and focuses on how to make robots transfer their experience so that they can make
use of prior knowledge and quickly adapt to changing environments. As a solution, a cooperative learning
architecture, called LFRL, is proposed for navigation in cloud robotic systems. Under the FRL-based architec-
ture, the authors propose a corresponding knowledge fusion algorithm to upgrade the shared model deployed
on the cloud. In addition, the paper also discusses the problems and feasibility of applying transfer learning
algorithms to different tasks and network structures between the shared model and the local model.

FRL is combined with autonomous driving of robotic vehicles in the study of Liang et al. [104]. To reach rapid
training from a simulation environment to a real-world environment, Liang et al. [104] presents a federated
transfer reinforcement learning (FTRL) framework for knowledge extraction where all the vehicles make cor-
responding actions with the knowledge learned by others. The framework can potentially be used to trainmore
powerful tasks by pooling the resources of multiple entities without revealing raw data information in real-life
scenarios. To evaluate the feasibility of the proposed framework, authors perform real-life experiments on
steering control tasks for collision avoidance of autonomous driving robotic cars and it is demonstrated that
the framework has superior performance to the non-federated local training process. Note that the framework
can be considered an extension of HFRL, because the target tasks to be accomplished are highly-relative and
all observation data are pre-aligned.

FRL also appears as an attractive approach for enabling intelligent control of IoT devices without revealing
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private information. Lim et al. [105] proposes a FRL architecture which allows agents working on independent
IoT devices to share their learning experiences with each other, and transfer the policy model parameters to
other agents. The aim is to effectively control multiple IoT devices of the same type but with slightly different
dynamics. Whenever an agent meets the predefined criteria, its mature model will be shared by the server
with all other agents in training. The agents continue training based on the shared model until the local model
converges in the respective environment. The actor-critical proximal policy optimization (Actor-Critic PPO)
algorithm is integrated into the control of multiple rotary inverted pendulum (RIP) devices. The results show
that the proposed architecture facilitates the learning process and if more agents participate the learning speed
can be improved. In addition, Lim et al. [106] uses FRL architecture based on a multi-agent environment to
solve the problems and limitations of RL for applications to the real-world problems. The proposed federation
policy allows multiple agents to share their learning experiences to get better learning efficacy. The proposed
scheme adopts Actor-Critic PPO algorithm for four types of RL simulation environments from OpenAI Gym
as well as RIP in real control systems. Compared to a previous real-environment study, the scheme enhances
learning performance by approximately 1.2 times.

5.4. FRL for attack detection
With the heterogeneity of services and the sophistication of threats, it is challenging to detect these attacks
using traditional methods or centralized ML-based methods, which have a high false alarm rate and do not
take privacy into account. FRL offers a powerful alternative to detecting attacks and provides support for
network defense in different scenarios.

Because of various constraints, IoT applications have become a primary target for malicious adversaries that
can disrupt normal operations or steal confidential information. In order to address the security issues in flying
ad-hoc network (FANET), Mowla et al. [107] proposes an adaptive FRL-based jamming attack defense strategy
for unmanned aerial vehicles (UAVs). A model-free Q-learning mechanism is developed and deployed on
distributed UAVs to cooperatively learn detection models for jamming attacks. According to the results, the
average accuracy of the federated jamming detection mechanism, employed in the proposed defense strategy,
is 39.9% higher than the distributed mechanism when verified with the CRAWDAD standard and the ns-3
simulated FANET jamming attack dataset.

An efficient traffic monitoring framework, known as DeepMonitor, is presented in the study of Nguyen et
al. [108] to provide fine-grained traffic analysis capability at the edge of software defined network (SDN) based
IoT networks. The agents deployed in edge nodes consider the different granularity-level requirements and
their maximum flow-table capacity to achieve the optimal flow rule match-field strategy. The control optimiza-
tion problem is formulated as the MDP and a federated DDQN algorithm is developed to improve the learning
performance of agents. The results show that the proposed monitoring framework can produce reliable traffic
granularity at all levels of traffic granularity and substantially mitigate the issue of flow-table overflows. In ad-
dition, the distributed denial of service (DDoS) attack detection performance of an intrusion detection system
can be enhanced by up to 22.83% by using DeepMonitor instead of FlowStat.

In order to reduce manufacturing costs and improve production efficiency, the industrial internet of things
(IIoT) is proposed as a potentially promising research direction. It is a challenge to implement anomaly de-
tection mechanisms in IIoT applications with data privacy protection. Wang et al. [109] proposes a reliable
anomaly detection strategy for IIoT using FRL techniques. In the system framework, there are four entities
involved in establishing the detection model, i.e., the Global Anomaly Detection Center (GADC), the Local
Anomaly Detection Center (LADC), the Regional Anomaly Detection Center (RADC), and the users. The
anomaly detection is suggested to be implemented in two phases, including anomaly detection for RADC and
users. Especially, the GADC can build global RADC anomaly detection models based on local models trained
by LADCs. Different from RADC anomaly detection based on action deviations, user anomaly detection is
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mainly concerned with privacy leakage and is employed by RADC and GADC. Note that the DDPG algorithm
is applied for local anomaly detection model training.

5.5. FRL for other applications
Due to the outstanding performance of training efficiency and privacy protection, many researchers are ex-
ploring the possible applications of FRL.

FL has been applied to realize distributed energy management in IoT applications. In the revolution of smart
home, smart meters are deployed in the advanced metering infrastructure (AMI) to monitor and analyze the
energy consumption of users in real-time. As an example [110], the FRL-based approach is proposed for the
energy management of multiple smart homes with solar PVs, home appliances, and energy storage. Multiple
local home energy management systems (LHEMSs) and a global server (GS) make up FRL architecture of
the smart home. DRL agents for LHEMSs construct and upload local models to the GS by using energy
consumption data. The GS updates the global model based on local models of LHEMSs using the federated
stochastic gradient descent (FedSGD) algorithm. Under heterogeneous home environments, simulation results
indicate that the proposed approach outperforms others when it comes to convergence speed, appliance energy
consumption, and the number of agents.

Moreover, FRL offers an alternative to share information with low latency and privacy preservation. The col-
laborative perception of vehicles provided by IoV can greatly enhance the ability to sense things beyond their
line of sight, which is important for autonomous driving. Region quadtrees have been proposed as a storage
and communication resource-saving solution for sharing perception information [111]. It is challenging to tai-
lor the number and resolution of transmitted quadtree blocks to bandwidth availability. In the framework of
FRL, Mohamed et al. [112] presents a quadtree-based point cloud compression mechanism to select coopera-
tive perception messages. Specifically, over a period of time, each vehicle covered by an RSU transfers its latest
network weights with the RSU, which then averages all of the received model parameters and broadcasts the
result back to the vehicles. Optimal sensory information transmission (i.e., quadtree blocks) and appropri-
ate resolution levels for a given vehicle pair are the main objectives of a vehicle. The dueling and branching
concepts are also applied to overcome the vast action space inherent in the formulation of the RL problem.
Simulation results show that the learned policies achieve higher vehicular satisfaction and the training process
is enhanced by FRL.

5.6. Lessons Learned
In the following, we summarize themajor lessons learned from this survey in order to provide a comprehensive
understanding of current research on FRL applications.

5.6.1. Lessons learned from the aggregation algorithms
The existing FRL literature usually uses classical DRL algorithms, such as DQN and DDPG, at the participants,
while the gradients or parameters of the critic and/or actor networks are periodically reported synchronously
or asynchronously by the participants to the coordinator. The coordinator then aggregates the parameters
or gradients and sends the updated values to the participants. In order to meet the challenges presented by
different scenarios, the aggregation algorithms have been designed as a key feature of FRL. In the original
FedAvg algorithm [12], the number of samples in a participant’s dataset determines its influence on the global
model. In accordance with this idea, several papers propose different methods to calculate the weights in the
aggregation algorithms according to the requirement of application. In the study from Lim et al. [106], the aggre-
gation weight is derived from the average of the cumulative rewards of the last ten episodes. Greater weights
are placed on the models of those participants with higher rewards. In contrast to the positive correlation
of reward, Huang et al. [96] takes the error rate of action as an essential factor to assign weights for participat-
ing in the global model training. In D2D -assisted edge caching, Wang et al. [89] uses the reward and some
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device-related indicators as the measurement to evaluate the local model’s contribution to the global model.
Moreover, the existing FRL methods based on offline DRL algorithms, such DQN and DDPG, usually use ex-
perience replay. Sampling random batch from replay memory can break correlations of continuous transition
tuples and accelerate the training process. To arrive at an accurate evaluation of the participants, the paper [102]

calculates the aggregation weight based on the size of the training batch in each iteration.

The above aggregation methods can effectively deal with the issue of data imbalance and performance dis-
crepancy between participants, but it is hard for participants to cope with subtle environmental differences.
According to the paper [105], as soon as a participant reaches the predefined criteria in its own environment, it
should stop learning and send its model parameters as a reference to the remaining individuals. Exchanging
mature network models (satisfying terminal conditions) can help other participants complete their training
quickly. Participants in other similar environments can continue to use FRL for further updating their param-
eters to achieve the desired model performance according to their individual environments. Liu et al. [57] also
suggests that the sharing global model in the cloud is not the final policy model for local participants. An
effective transfer learning should be applied to resolve the structural difference between the shared network
and private network.

5.6.2. Lessons learned from the relationship between FL and RL
Inmost of the literature on FRL, FL is used to improve the performance of RL.With FL, the learning experience
can be shared among decentralized multiple parties while ensuring privacy and scalability without requiring
direct data offloading to servers or third parties. Therefore, FL can expand the scope and enhance the security
of RL. Among the applications of FRL,most researchers focus on the communication network system due to its
robust security requirements, advanced distributed architecture, and a variety of decision-making tasks. Data
offloading [93] and caching [89] solutions powered by distributed AI are available from FRL. In addition, with
the ability to detect a wide range of attacks and support defense solutions, FRL has emerged as a strong alter-
native for performing distributed learning for security-sensitive scenarios. Enabled by the privacy-enhancing
and cooperative features, detection and defense solutions can be learned quickly where multiple participants
join to build a federated model [107,109]. FRL can also provide viable solutions to realize intelligence for control
systems with many applied domains such as robotics [57] and autonomous driving [104] without data exchange
and privacy leakage. The data owners (robot or vehicle) may not trust the third-party server and therefore hes-
itate to upload their private information to potentially insecure learning systems. Each participant of FRL runs
a separate RLmodel for determining its own control policy and gains experience by sharing model parameters,
gradients or losses.

Meanwhile, RL may have the potential to optimize FL schemes and improve the efficiency of training. Due
to the unstable network connectivity, it is not practical for FL to update and aggregate models simultaneously
across all participants. Therefore, Wang et al. [113] proposes a RL-based control framework that intelligently
chooses the participants to participate in each round of FL with the aim to speed up convergence. Similarly,
Zhang et al. [114] applies RL to pre-select a set of candidate edge participants, and then determine reliable edge
participants through social attribute perception. In IoT or IoV scenarios, due to the heterogeneous nature
of participating devices, different computing and communication resources are available to them. RL can
speed up training by coordinating the allocation of resources between participants. Zhan et al. [115] defines
the L4L (Learning for Learning) concept, i.e., use RL to improve FL. Using the heterogeneity of participants
and dynamic network connections, this paper investigates a computational resource control problem for FL
that simultaneously considers learning time and energy efficiency. An experience-driven resource control
approach based on RL is presented to derive the near-optimal strategy with only the participants’ bandwidth
information in the previous training rounds. In addition, as with any other ML algorithm, FL algorithms are
vulnerable to malicious attacks. RL has been studied to defend against attacks in various scenarios, and it
can also enhance the security of FL. The paper [116] proposes a reputation-aware RL (RA-RL) based selection
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method to ensure that FL is not disrupted. The participating devices’ attributes, including computing resources
and trust values, etc, are used as part of the environment in RL. In the aggregation of the global model, devices
with high reputation levels will have a greater chance of being considered to reduce the effects of malicious
devices mixed into FL.

5.6.3. Lessons learned from categories of FRL
As discussed above, FRL can be divided into two main categories, i.e., HFRL and VFRL. Currently, most of
the existing research is focused on HFRL, while little attention is devoted to VFRL. The reason for this is
that HFRL has obvious application scenarios, where multiple participants have similar decision-making tasks
with individual environments, such as caching allocation [59], offloading optimization [58], and attack monitor-
ing [108]. The participants and coordinator only need to train a similar model with the same state and action
spaces. Consequently, the algorithm design can be implemented and the training convergence can be veri-
fied relatively easily. On the other hand, even though VFRL has a higher degree of technical difficulty at the
algorithm design level, it also has a wide range of possible applications. In a multi-agent scenario, for exam-
ple, a single agent is limited by its ability to observe only part of the environment, whereas the transition of
the environment is determined by the behavior of all the agents. Zhuo et al. [65] assumes agents cannot share
their partial observations of the environment and some agents are unable to receive rewards. The federated
Q-network aggregation algorithm between two agents is proposed for VFRL.The paper [97] specifically applies
both HFRL and VFRL for radio access network slicing. For the same type of services, similar data samples
are trained locally at participating devices, and BSs perform horizontal aggregation to integrate a cooperative
access model by adopting an iterative approach. The terminal device also can optimize the selection of base
stations and network slices based on the global model of VFRL, which aggregates access features generated
by different types of services on the third encrypted party. The method improves the device’s ability to select
the appropriate access points when initiating different types of service requests under restrictions regarding
privacy protection. The feasible implementation of VFRL also provides guidance for future research.

6. OPEN ISSUES AND FUTURE RESEARCH DIRECTIONS
As we presented in the previous section, FRL serves an increasingly important role as an enabler of various
applications. While the FRL-based approach possesses many advantages, there are a number of critical open
issues to consider for future implementation. Therefore, this section focuses on several key challenges, in-
cluding those inherited from FL such as security and communication issues, as well as those unique to FRL.
Research on tackling these issues offers interesting directions for the future.

6.1. Learning convergence in HFRL
In realistic HFRL scenarios, while the agents perform similar tasks, the inherent dynamics for the different
environments in which the agents reside are usually not exactly identically distributed. The slight difference in
the stochastic properties of the transitionmodels formultiple agents could cause the learning convergence issue.
One possible method to address this problem is by adjusting the frequency of global aggregation, i.e., after each
global aggregation, a period of time is left for each agent to fine-tune its local parameters according to its own
environment. Apart from the non-identical environment problem, another interesting and important problem
is how to leverage FL to make RL algorithms converge better and faster. It is well-known that DRL algorithms
could be unstable and diverge, especially when off-policy training is combined with function approximation
and bootstrapping. In FRL, the training curves of some agents could diverge while others converge although
the agents are trained in the exact replicas of the same environment. By leveraging FL, it is envisioned that we
could expedite the training process as well as increase the stability. For example, we could selectively aggregate
the parameters of a subset of agents with a larger potential for convergence, and later transfer the converged
parameters to all the agents. To tackle the above problems, several possible solutions proposed for FL algorithm
contains certain reference significance. For example, server operators could account for heterogeneity inherent
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in partial information by adding a proximal term [117]. The local updates submitted by agents are constrained by
the tunable term and have a different effect on the global parameters. In addition, a probabilistic agent selection
scheme can be implemented to select the agents whose local FL models have significant effects on the global
model to minimize the FL convergence time and the FL training loss [118]. Another problem is theoretical
analysis of the convergence bounds. Although some existing studies have been directed at this problem [119],
the convergence can be guaranteed since the loss function is convex. How to analyze and evaluate the non-
convex loss functions in HFRL is also an important research topic in the future.

6.2. Agents without rewards in VFRL
In most existing works, all the RL agents have the ability to take part in full interaction with the environment
and can generate their own actions and rewards. Even though some MARL agents may not participate in the
policy decision, they still generate their own reward for evaluation. In some scenarios, special agents in VFRL
take the role of providing assistance to other agents. They can only observe the environment and pass on the
knowledge of their observation, so as to help other agentsmakemore effective decisions. Therefore, such agents
do not have their own actions and rewards. The traditional RL models cannot effectively deal with this thorny
problem. Many algorithms either directly use the states of such agents as public knowledge in the systemmodel
or design corresponding action and reward for such agents, which may be only for convenience of calculation
and have no practical significance. These approaches cannot fundamentally overcome the challenge, especially
when privacy protection is also an essential objective to be complied with. Although the FedRL algorithm [65]

is proposed to deal with the above problem, which has demonstrated good performance, there are still some
limitations. First of all, the number of agents used in experiments and algorithms is limited to two, which
means the scalability of this algorithm is not high and VFRL algorithms for a large number of agents need
to be designed. Secondly, this algorithm uses Q-network as the federated model, which is a relatively simple
algorithm. Therefore, how to design VFRL models based on other more complex and changeable networks
remains an open issue.

6.3. Communications
In FRL, the agents need to exchange the model parameters, gradients, intermediate results, etc., between them-
selves or with a central server. Due to the limited communication resources and battery capacity, the commu-
nication cost is an important consideration when implementing these applications. With an increased number
of participants, the coordinator has to bear more network workload within the client-server FRL model [120].
This is because each participant needs to upload and download model updates through the coordinator. Al-
though the distributed peer-to-peer model does not require a central coordinator, each agent may have to
exchange information with other participants more frequently. In current research for distributed models,
there are no effective model exchange protocols to determine when to share experiences with which agents. In
addition, DRL involves updating parameters in deep neural networks. Several popular DRL algorithms, such
as DQN [121] and DDPG [122], consist of multiple layers or multiple networks. Model updates contain millions
of parameters, which isn’t feasible for scenarios with limited communication resources. The research direc-
tions for the above issues can be divided into three categories. First, it is necessary to design a dynamic update
mechanism for participants to optimize the number of model exchanges. A second research direction is to use
model compression algorithms to reduce the amount of communication data. Finally, aggregation algorithms
that allow participants to only submit the important parts of local model should be studied further.

6.4. Privacy and Security
Although FL provides privacy protection that allows the agents to exchange information in a secure manner
during the learning process, it still has several privacy and security vulnerabilities associated with communica-
tion and attack [123]. As FRL is implemented based on FL algorithms, these problems also exist in FRL in the
same or variant form. It is important to note that the data poisoning attack is a different attack mode between
FL and FRL. In the existing classification tasks of FL, each piece of training data in the dataset corresponds to
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a respective label. The attacker flips the labels on training examples in one category onto another while the
features of the examples are kept unchanged, misguiding the establishment of a target model [124]. However, in
the decision-making task of FRL, the training data is continuously generated from the interaction between the
agent and the environment. As a result, the data poisoning attack is implemented in another way. For example,
the malicious agent tampers with the reward, which causes the evaluative function to shift. An option is to
conduct regular safety assessments for all participants. Participants whose evaluation indicator falls below the
threshold are punished to reduce the impact on the global model [125]. Apart form the insider attacks which
are launched by the agents in the FRL system, there may be various outsider attacks which are launched by
intruders or eavesdroppers. Intruders may hide in the environment where the agent is and manipulate the
transitions of environment to achieve specific goals. In addition, by listening to the communication between
the coordinator and the agent, the eavesdropper may infer sensitive information from exchanging parameters
and gradients [126]. Therefore, the development of technology that detects and protects against attacks and
privacy threats does have great potential and is urgently needed.

6.5. Join and exit mechanisms design
One overlooked aspect of FRL-based research is the join and exit process of participants. In practice, the
management of participants is essential to the normal progression of cooperation. As mentioned earlier in
the security issue, the penetration of malicious participants severely impacts the performance of the cooper-
ative model and the speed of training. The joining mechanism provides participants with the legal status to
engage in federated cooperation. It is the first line of defense against malicious attackers. In contrast, the exit
mechanism signifies the cancellation of the permission for cooperation. Participant-driven or enforced exit
mechanisms are both possible. In particular, for synchronous algorithms, ignoring the exit mechanism can
negatively impact learning efficiency. This is because the coordinator needs to wait for all participants to sub-
mit their information. In the event that any participant is offline or compromised and unable to upload, the
time for one round of training will be increased indefinitely. To address the bottleneck, a few studies consider
updating the global model using the selectedmodels from a subset of participants [113,127]. Unfortunately, there
is no comprehensive consideration of the exit mechanism, and the communication of participants is typically
assumed to be reliable. Therefore, research gaps of FRL still exist in joining and exiting mechanisms. It is
expected that the coordinator or monitoring system, upon discovering a failure, disconnection, or malicious
participant, will use the exit mechanism to reduce its impact on the global model or even eliminate it.

6.6. Incentive mechanisms
Formost studies, the agents taking part in the FRL process are assumed to be honest and voluntary. Each agent
provides assistance for the establishment of the cooperation model following the rules and freely shares the
masked experience through encrypted parameters or gradients. An agent’s motivation for participation may
come from regulation or incentive mechanisms. The FRL process within an organization is usually governed
by regulations. For example, BSs belonging to the same company establish a joint model for offloading and
caching. Nevertheless, because participants may be members of different organizations or use disparate equip-
ment, it is difficult for regulation to force all parties to share information learned from their own data in the
same manner. If there are no regulatory measures, participants prone to selfish behavior will only benefit from
the cooperation model but not submit local updates. Therefore, the cooperation of multiple parties, organiza-
tions, or individuals requires a fair and efficient incentive mechanism to encourage their active participation.
In this way, agents providing more contributions can benefit more and selfish agents unwilling to share there
learning experience will receive less benefit. As an example, Google Keyboard [128] users can choose whether
or not to allow Google to use their data, but if they do, they can benefit from more accurate word prediction.
Although an incentive mechanism in a context-aware manner among data owners is proposed in the study
from Yu et al. [129], it is not suitable for the RL problems. There is still no clear plan of action regarding how
the FRL-based application can be designed to create a reasonable incentive mechanism for inspiring agents to
participate in collaborative learning. To be successful, future research needs to propose a quantitative standard
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for evaluating the contribution of agents in FRL.

6.7. Peertopeer cooperation
FRL applications have the option of choosing between a central server-client model as well as a distributed
peer-to-peer model. A distributed model can not only eliminate the single point of failure, but it can also
improve energy efficiency significantly by allowing models to be exchanged directly between two agents. In a
typical application, two adjacent cars share experience learned from road condition environment in the form
of models with D2D communications to assist autonomous driving. However, the distributed cooperation
increases the complexity of the learning system and imposes stricter requirements for application scenarios.
This research should include, but not be limited to, the agent selection method for the exchange model, the
mechanism for triggering themodel exchange, the improvement of algorithm adaptability, and the convergence
analysis of the aggregation algorithm.

7. CONCLUSION
As a new and potential branch of RL, FL can make learning safer and more efficient while leveraging the
benefits of FL.We have discussed the basic definitions of FL and RL as well as our thoughts on their integration
in this paper. In general, FRL algorithms can be classified into two categories, i.e., HFRL and VFRL. Thus, the
definition and general framework of these two categories have been given. Specifically, we have highlighted the
difference between HFRL and VFRL.Then, a lot of existing FRL schemes have been summarized and analyzed
according to different applications. Finally, the potential challenges in the development of FRL algorithms have
been explored. Several open issues of FRL have been identified, which will encourage more efforts toward
further research in FRL.
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Abstract
In the past decades, considerable attention has been paid to bio-inspired intelligence and its applications to robotics.
This paper provides a comprehensive survey of bio-inspired intelligence, with a focus on neurodynamics approaches,
to various robotic applications, particularly to path planning and control of autonomous robotic systems. Firstly, the
bio-inspired shunting model and its variants (additive model and gated dipole model) are introduced, and their main
characteristics are given in detail. Then, twomain neurodynamics applications to real-time path planning and control
of various robotic systems are reviewed. A bio-inspired neural network framework, in which neurons are charac-
terized by the neurodynamics models, is discussed for mobile robots, cleaning robots, and underwater robots. The
bio-inspired neural network has been widely used in real-time collision-free navigation and cooperation without any
learning procedures, global cost functions, and prior knowledge of the dynamic environment. In addition, bio-inspired
backstepping controllers for various robotic systems, which are able to eliminate the speed jump when a large initial
tracking error occurs, are further discussed. Finally, the current challenges and future research directions are dis-
cussed in this paper.
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1. INTRODUCTION
From the first stirrings of life, nature has been providing a suitable breeding ground for the intelligence of
organisms. Biological intelligence enables organisms to adapt the extreme or changing environments. For
instance, a group of birds and fishes can efficiently sense the surrounding dynamic environments and take
effective actions based on those inputs often with very simple mechanisms and with limited availability of
information. Some species exhibit collective behaviors and can cooperatively accomplish tasks that are beyond
the capabilities of a single individual under limited implicit communication. Organisms with such beneficial
traits can pass on these traits to offspring, exhibiting high adaptability to environments. The nervous system
in the brain gives human abilities of feeling, thinking, and learning abilities.

Recently, there has been a general movement towards service-oriented robots that require the ability to adapt to
complex dynamic situations and to handle various uncertainties. Due to the desirable properties of biological
organisms, such as adaptability, robustness, versatility, and agility, the researchers have been trying to infuse
robots with biological intelligence that will enable safe navigation and efficient cooperation among the au-
tonomous robots in changing environments [1]. The approaches inspired by biological intelligence are known
as biologically inspired intelligence, which has been explored and studied formany years in robotics research [2].
The fundamental idea of biologically inspired intelligence is to incorporate useful biological strategies, mecha-
nisms, and structures into the development of newmethodologies and technologies to solve existing problems
in a more efficient way than existing methodologies and technologies. For instance, swarm intelligence and
collective behaviors of living organisms have inspired the design of many robotics algorithms based on their
biological strategies [3,4]. The process of natural selection has inspired many computational models to opti-
mize robot performances, such as genetic algorithm [5,6] and differential evolution [7]. The neural network
algorithm, derived from neural science, has gained rising popularity among researchers around the world [8,9].
Biologically inspired intelligence algorithms were also integrated with various conventional algorithms to de-
velop more efficient algorithms. For example, a knowledge based genetic algorithm, which incorporated the
domain knowledge into its specialized operators, was proposed to efficiently generate collision-free path of
robots [10]. A neural network was used to convert the improved central pattern generator output to the foot
trajectories of quadruped robots [11]. However, most bio-inspired studies are limited to conceptual or labo-
ratory investigations or do not have much biological inspiration. Thus, the development of new intelligent
strategies, algorithms and technologies are still highly needed, such as real-time collision-free navigation algo-
rithms of individual robots or communication, coordination, and cooperation algorithms for multiple robotic
systems, to accomplish multi-objective tasks in dynamic environments.

Bio-inspired neurodynamics models have been studied for real-time path planning and control of various
robotic systems during the past decades [2]. The shunting neurodynamics model was derived from Hodgkin
and Huxley’s membrane models for dynamic ion exchanges [12]. Based on the shunting neurodynamics model
and its model variants, several new algorithms have been successfully developed for real-time path planning
and control of various autonomous robots [13,14]. The definition of real-time is in the sense that the robot path
planner and controller respond immediately to the dynamic environment, including the robots, targets, ob-
stacles, sensor noise and disturbances. Many other model variants have been also developed for robot path
planning and control. The additive model is computationally simpler and can generate real-time collision-
free paths under most conditions [13,15]. The gated dipole model shows excellent performance in multi-robotic
path planning and tracking control [16]. Beyond the application of autonomous robots, bio-inspired neuro-
dynamics models have been also widely applied to many other research fields, such as odor dispersion with
electronic nose [17] and dynamic ginseng drying [18]. These researches on agriculture have also been extended
to biomedical and other industrial applications.

This paper focuses a comprehensive survey of the state-of-the-art research on bio-inspired neurodynamics
models with their applications to path planning and control of autonomous robots. A detailed introduction
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Figure 1. Electrical circuit representing membrane.

of the shunting model and its variants are provided in this paper. Two main applications to robotic systems
based on bio-inspired neurodynamics models are focused. The bio-inspired neural networks, in which each
neuron is characterized by a neurodynamics model, is discussed for various robotic systems. The bio-inspired
backstepping controllers that resolve the speed jump problem in tracking control is further discussed. The
bio-inspired controllers have been successfully employed in tracking control and formation control. The pros
and cons of different neurodynamics-based algorithms are also discussed in this paper. The overall studies give
an insight into neurodynamics models on autonomous robot applications, which could inspire potential ideas
for future developments of novel intelligent bio-inspired path planning and control for diversified autonomous
robotic systems.

This paper is organized as follows: Section 2 introduces the background of bio-inspired neurodynamics mod-
els. Section 3 gives a survey on the path planning of various robots based on bio-inspired neurodynamics
models. The applications of bio-inspired neurodynamics models to tracking control and formation control
are presented in Section 4. Section 5 discusses the current challenges and future works. Some concluding
remarks are finally summarized in Section 6.

2. BIO-INSPIRED NEURODYNAMICS MODELS
In this section, the originality of the shuntingmodel is briefly described. Then, twomodel variants, the additive
model and gated dipole model are also introduced.

2.1. Originality
In 1952, an electrical circuit model was proposed by Hodgkin and Huxley to describe the action potential
process in the membrane of neurons, based on experimental findings [19]. The electrical behavior of the mem-
brane can be represented by the circuit shown in Figure 1. The dynamics of voltage across the membrane, 𝑉𝑚 ,
is described using the state equation technique as

𝐶𝑚
𝑑𝑉𝑚
𝑑𝑡

= −
(
𝐸𝑝 +𝑉𝑚

)
𝑔𝑝 + (𝐸𝑁𝑎 −𝑉𝑚) 𝑔𝑁𝑎 − (𝐸𝐾 +𝑉𝑚) 𝑔𝐾 (1)

where 𝐶𝑚 is the membrane capacitance; 𝐸𝐾 , 𝐸𝑁𝑎 , and 𝐸𝑝 are the Nernst potentials (saturation potentials)
for potassium ions, sodium ions, and passive leak current in the membrane, respectively; and 𝑔𝐾 , 𝑔𝑁𝑎 and
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𝑔𝑝 represent the conductances of the potassium, sodium, and passive channels, respectively. Inspired from
this membrane model for dynamic ion exchanges, Grossberg proposed a shunting model [12,20,21]. By setting
𝐶𝑚 = 1 and substituting 𝑢𝑘 = 𝐸𝑝 + 𝑉𝑚 , 𝐴 = 𝑔𝑝 , 𝐵 = 𝐸𝑁𝑎 + 𝐸𝑝 , 𝐷 = 𝐸𝑘 − 𝐸𝑃, 𝑆𝑒𝑘 = 𝑔𝑁𝑎 , and 𝑆𝑖𝑘 = 𝑔𝐾 in
Equation (1), a shunting equation is obtained as [22,23]

𝑑𝑥𝑘
𝑑𝑡

= −𝐴𝑥𝑘 + (𝐵 − 𝑥𝑘 ) 𝑆𝑒𝑘 − (𝐷 + 𝑥𝑘 ) 𝑆
𝑖
𝑘 (2)

where 𝑥𝑘 is the neural activity (membrane potential) of the 𝑘-th neuron; 𝐴, 𝐵, and 𝐷 are nonnegative constants
representing the passive decay rate, the upper and lower bounds of the neural activity, respectively; and 𝑆𝑒𝑘 and
𝑆𝑖𝑘 are the excitatory and inhibitory inputs to the neuron, respectively. In the shunting model, 𝐵 and 𝐷 are not
essential factors because the neural activity is the relative values between the boundary lines. Only parameter
𝐴 determines the model dynamics. However, 𝐴 can be chosen in a very wide range. Thus, the shunting model
is not very sensitive to the model parameters [13].

Equation (2) shows that the increase of activity 𝑥𝑘 depends on the positive term (𝐵 − 𝑥𝑘 )𝑆𝑒𝑘 that relies on
both the excitatory input 𝑆𝑒𝑘 and the difference of neural activity to its upper bound (𝐵 − 𝑥𝑘 ). Therefore, the
increases of 𝑥𝑘 become slower as the value of 𝑥𝑘 is closing to the upper bound 𝐵. If the value of 𝑥𝑘 equals to 𝐵,
the (𝐵 − 𝑥𝑘 ) term becomes zero, and positive term has no effect no matter how big the excitatory input 𝑆𝑒𝑘 is.
In the case that the value of 𝑥𝑘 is greater than 𝐵, the (𝐵 − 𝑥𝑘 ) term becomes negative, then the positive term
becomes negative, the excitatory input will decrease the activity 𝑥𝑘 until it is not higher than 𝐵. Therefore, 𝐵 is
the upper bound of the neural activity 𝑥𝑘 . The same for the negative term (𝐷+𝑥𝑘 )𝑆𝑖𝑘 , which guarantees that the
neural activity 𝑥𝑘 is always greater than the lower bound −𝐷. Thus, the neural activity 𝑥𝑘 is bounded between
the [−𝐷, 𝐵] region under various inputs conditions. The shunting model has been studied to understand the
adaptive behaviors of individuals in dynamic and complex environments [12]. Many achievements have been
accomplished in the past decades, such as, machine vision, sensory motor control, and many other areas [21,22].
In the field of robotics, the shunting model has been wildly used in path planning, tracking control, hunting,
cooperation of various autonomous robots [13,24–26].

2.2. Model variants
If the excitatory and inhibitory inputs in Equation (2) are lumped together and the auto-gain control terms are
removed, then Equation (2) can be written into a simpler form

𝑑𝑥𝑘
𝑑𝑡

= −𝐴𝑥𝑘 + 𝑆𝑘 (3)

where 𝑆𝑘 is the total inputs of the 𝑘-th neuron. Then, Equation (3) is rewritten as:

𝑑𝑥𝑘
𝑑𝑡

= −𝐴𝑥𝑘 + 𝐼𝑘 +
𝑁∑
𝑙=1

𝑤𝑘𝑙 𝑓 (𝑥𝑙) (4)

where 𝑤𝑘𝑙 is the connection weight from the 𝑙-th neuron to the 𝑘-th neuron; 𝑓 () is an activation function; 𝐼𝑘
represents the external input to the 𝑘-th neuron; and 𝑁 is the total number of neurons in the neural network.
In most situations, the additive model is computationally simpler and can also generate the real-time collision-
free path for robots. However, the shunting model has two important advantages. Firstly, the shunting model
in Equation (2) has excitatory and inhibitory auto-gain control terms, (𝐵−𝑥𝑘 ) and (𝐷+𝑥𝑘 ), respectively, which
give the shunting model the dynamic responsive ability to input signals. The shunting model is more sensitive
to the changes of inputs [13]. Nevertheless, the dynamics of the additive model may saturate in some situations.
Secondly, the shunting model is bounded between the upper bound 𝐵 and lower bound −𝐷, whereas the
additive model is bounded only by limiting the input signals. The additive models have been widely applied to
artificial vision, learning-based algorithms, and other research fields [21]. Owning to the simple computation
process, even the limitations of the additive model exist, the additive model has been also applied to replace
the shunting model in many situations [13,15].
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Figure 2. A gated dipole model.

Another essential neurodynamics model is the gated dipole model, which is shown in Figure 2. A basic gated
dipole model is consisted of the opponent on-channel and off-channel. An arousal signal 𝐼 can stimulate both
on- and off- channels. The extra inputs 𝐽 and 𝐾 stimulate the on-channel and off-channel, respectively. The
dynamics of the available transmitters are characterized by

𝑑𝑧on
𝑑𝑡 = 𝛼 (𝛽 − 𝑧on) − 𝛾(𝐼 + 𝐽)𝑧on (5)

𝑑𝑧off
𝑑𝑡 = 𝛼

(
𝛽 − 𝑧off

)
− 𝛾(𝐼 + 𝐾)𝑧off (6)

where 𝑧on and 𝑧off are the number of available transmitters in the on- and off-channels, respectively; 𝛼 and 𝛾 are
the transmitter production and depletion rates, respectively; and 𝛽 represents the total amount of transmitter.
The on-cells receive excitatory inputs from the on-channel, while receive inhibitory inputs from its opponent
channel (off-channel). Similar to the off-channel, the off-cells receive excitatory inputs from the off-channel,
while receive inhibitory inputs from its opponent channel (on-channel). Thus, the dynamics of the on- and
off-channels are characterized by the following shunting equations

𝑑𝑥on
𝑑𝑡

= − 𝐴𝑥on + (𝐵 − 𝑥on) (𝐼 + 𝐽)𝑧on − (𝐷 + 𝑥on) (𝐼 + 𝐾)𝑧off (7)

𝑑𝑥off
𝑑𝑡

= − 𝐴𝑥off +
(
𝐵 − 𝑥off

)
(𝐼 + 𝐾)𝑧off −

(
𝐷 + 𝑥off

)
(𝐼 + 𝐽)𝑧on (8)

where 𝑥on and 𝑥off are the activities of the on-channel and the off-channels, respectively. In the on-channel,
the available transmitters decrease exponentially to a plateau when the extra light 𝐽 is on, and goes back to its
initial resting level in the same manner after the offset of the light. The available transmitter in the off-channel
stays constant since there is no change of light. In the on-channel, when the extra light 𝐽 turns on, there is more
available transmitter depleted, and the response of the on-cell initially overshoot. However, after the onset of
light, the available transmitter decreases exponentially due to temporal adaptation, the activity of on-cell decays
exponentially to a plateau. At the offset of the extra input, the on- and off-channels have the same input 𝐼 , while
the available transmitter in the on-channel is used up by the depletion during the on-light, the activity of the
on-channel appears a rebound which is called antagonistic rebound. After the extra light-off, due to temporal
adaption, the available transmitter rises exponentially to its resting level, the activity of the on-channel climbs
exponentially back also. The gated dipole model was successfully used to explain many biological phenomena
that involve agonist and antagonist interaction [27], and had applications for robotic research of path planning
and tracking control [16,28].
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Figure 3. An example of the bio-inspired neural network.

3. PATH PLANNING
A basic path planning problem can be defined as: given a work environment with obstacles, the target, and
the initial robot position, a collision-free path should be generated from the initial position to the target. The
bio-inspired neurodynamics model has been wildly used in real-time path planning without any learning pro-
cedures and any prior knowledge of the dynamic environment. The key point of the neurodynamics-based
path planning approach is to represent the work environment as one-to-one corresponding to the neurons in
the neural network. The dynamics of each neuron in the neural network are characterized by Equation (2). An
example of a neural network is shown in Figure 3. Thus, the neural activity for the 𝑘-th neuron is obtained by

d𝑥𝑘
d𝑡

= −𝐴𝑥𝑘 + (𝐵 − 𝑥𝑘 )
(
[𝐼𝑘 ]+ +

𝑛∑
𝑙=1

𝑤𝑘𝑙 [𝑥𝑙]+
)
− (𝐷 + 𝑥𝑘 ) [𝐼𝑘 ]− (9)

where 𝑥𝑙 represents the activity value of those neighboring neurons; 𝑛 is the number of neighboring positions
of the 𝑘-th neuron; [𝑎]+ is a linear-above-threshold function defined as [𝑎]+ = max {𝑎, 0}; and [𝑎]− is defined
as [𝑎]− = max {−𝑎, 0}. In the bio-inspired neural network, the excitatory input 𝑆𝑒𝑘 is consisted of two parts,
[𝐼𝑘 ]+ and

∑𝑛
𝑗=1 𝑤𝑘𝑙 [𝑥𝑙]+, where [𝐼𝑘 ]+ is the external input from targets, and

∑𝑛
𝑗=1 𝑤𝑘𝑙 [𝑥𝑙]+ is the internal input

through the propagation of the positive activity from its neighborhoods. The inhibitory input 𝑆𝑖𝑘 has only
external input [𝐼𝑘 ]−, which is from the obstacle, and only has local effects (no negative activity propagation).
Thus, the target has maximum and positive neural activity, which could globally propagate through the neural
network to attract the robot, while the obstacles have only local effects without propagating. The path selection
rule of the individual robot can be defined as: the next move position of the robot is the maximum neural
activity of its current neuron’s neighbors. After robots move to the next position, the next position becomes
a new current position until the current position is the location of the target. The robot would never choose
the position of an obstacle to be the next movement due to the negative neural activity of obstacles. Thus, the
robot is able to avoid collisions and move to the target. It is important to note that the path planning process is
without any learning procedures and any prior knowledge of the dynamic environment. Due to the real-time
performance and computational efficiency, bio-inspired neural network path planning approaches have been
developed for various robot systems. In this section, based on the different types of robots, three categories
are divided: mobile robots, cleaning robots, and underwater robots.

3.1. Mobile robots
Path planning of mobile robots has received a lot of interest because mobile robots have been participating in
human life. In this section, twomain challenges of mobile robot path planning are focused: real-time collision-

http://dx.doi.org/10.20517/ir.2021.08


Li et al. Intell Robot 2021;1(1):58-83 I http://dx.doi.org/10.20517/ir.2021.08 Page 64

Figure 4. Path planning of a mobile robot to avoid local minima with concave obstacles. A: the robot path; B: the landscape of neural
activity [13].

free navigation and the cooperation of the multi-robot systems. In addition, many developed model variants
are also discussed for robot path planning.

3.1.1. Navigation
The first bio-inspired neural network framework was proposed by Yang and Meng for the mobile robot path
planning [29]. Many remarkable achievements in mobile robot path planning have been achieved [13,30,31]. Due
to the global effects of positive neural activity from the target, the robot is not trapped in the undesired local
minima. Figure 4 shows an example of path generation of a mobile robot to avoid local minima. The robot is
not trapped in a set of concave obstacles and move to the target position.

Some researchers consider the different types of robots in the application to navigation. A nonholonomic car-
like robot was studied by Yang et al. [15,32,33] for real-time collision-free path planning. The simulation results
showed the car-like robots performed well in parallel parking, navigation in several deadlock situations, and
sudden environmental changes conditions. In a house-like environment as shown in Figure 5A, the robot
moved to the target along the shortest path in case that the door is opened. When the door is closed, the
robot travels a much longer path to reach the target without any learning procedures. The robot is capable of
reaching the target along the shortest path without any collisions, without violating the kinematic constraint,
and without being trapped in deadlock situations.

In addition, Yang and Meng developed the bio-inspired neural network for robot manipulators [13]. The joint
space of the robot manipulators was corresponded to the bio-inspired neural network, in which neurons were
characterized by the shunting model or the additive model. Figure 5B shows the trajectory of robot manipu-
lators avoiding obstacles. In addition, a virtual assembly system was proposed by Yuan and Yang for assisting
product engineers to simulate the assembly-related manufacturing process [34].

An improved bio-inspired neural network based on scaling terrain was proposed by Luo et al. [35] for reducing
the calculation complexity. This multi-scale method mentioned better performance in terms of time complex-
ity. However, the simulation experiments do not give the criteria for choosing the parameter of coarse-scale
and fine-scale maps. Ni et al. [36] used a bio-inspired neurodynamics model as the reward function for the
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Figure 5. Examples of a nonholonomic car-like robot and amanipulator robot. A: robotmotionwhen the door is opened [15]; B: simple planar
robot avoiding obstacles [13].

Q-learning algorithm, which can reduce the effect of the reward function on the convergence speed.

Some researchers pointed out that if the planned path is too close to the obstacles, it is dangerous for robot nav-
igation. A dynamic risk level was incorporated to the shunting neurodynamics model to reduce the probability
of collision in the dynamic obstacle avoidance task [37]. In addition, a novel 3-D neural dynamic model was
proposed and expected to obtain the safety-enhanced trajectory in the work space considering of minimum
sweeping area [38]. A safety consideration path planning can be implemented by setting a constant value 𝜎 to
inhibitory inputs in Equation (2). The safety consideration shunting equation is obtained by [39,40]

d𝑥𝑘
d𝑡

= −𝐴𝑥𝑘 + (𝐵 − 𝑥𝑘 )
(
[𝐼𝑘 ]+ +

𝑛∑
𝑙=1

𝑤𝑘𝑙 [𝑥𝑙]+
)
− (𝐷 + 𝑥𝑘 )

(
[𝐼𝑘 ]− +

𝑛∑
𝑙=1

𝑣𝑘𝑙 [𝑥𝑙 − 𝜎]−
)

(10)

where parameter 𝜎 is the threshold of the inhibitory lateral neural connections. In Equation (2), the inhibitory
input 𝑆𝑖𝑘 is only from the obstacles. However, in the safety consideration model, the inhibitory input 𝑆𝑖𝑘 is
consisted of two parts: [𝐼𝑘 ]− and

∑𝑛
𝑙=1 𝑣𝑘𝑙 [𝑥𝑙 − 𝜎]

−.The
∑𝑛
𝑙=1 𝑣𝑘𝑙 [𝑥𝑙 − 𝜎]

− term guarantees that the negative
activity propagates to a small region due to the threshold 𝜎 of the inhibitory lateral neural connections. Thus,
there is a small negative neural activity region surrounding the obstacles, and the robot is able to keep a safe
distance from obstacles to avoid possible collisions.

Many variants of the bio-inspired neurodynamics models have been developed to deal with different situa-
tions. The additive model generates the real-time collision-free robot paths under most conditions [13]. Even
the computation of the additive model is simpler, the real-time performance of the additive model could be
saturated in many situations. A similar neural network model was proposed by Glasius et al. [41] for real-time
trajectory generation. Even Glasius’s model had limitations with fast dynamic systems, Glasius bio-inspired
neural network models have been used in underwater robots [42–44]. Inspired by the bio-inspired neural net-
work model, a distance-propagating dynamic system was proposed that can efficiently propagate the distance
instead of the neural activity from the target to the entire robot work space [45]. After that, Willms and Yang
designed the safety margins around obstacles. The robots not only avoid obstacles but also keep a safe distance
between the obstacles [46]. Based on Willms and Yang’s previous work, a shortest path neural networks model
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was proposed by Li et al. [47] for generating the globally shortest path. A modified pulse-coupled neural net-
work was proposed by Qu et al. [48,49] for real-time collision-free path planning. The computational complexity
of the algorithm was only related to the length of the shortest path. In addition, an improved Hopfield-type
neural networkmodel was proposed by Zhong et al. [50] for easily responding the real-time changes in dynamic
environments. A paddingmean neurodynamics model was proposed by Chen et al. [51] for the reasonable path
generation in both static and dynamic varying environments.

3.1.2. Cooperation of Multi-robotic Systems
A team of robots would work together to accomplish an assigned task rapidly and efficiently. In many chal-
lenging applications such as search and rescue operations, security surveillance and safety monitoring, a multi-
robotic system has obvious advantages than a single robotic system. The key challenge ofmulti-robotic systems
in dynamic environments is to infuse these robots with biologically inspired intelligence that will enable effi-
cient cooperation among the autonomous robots, and successful completion of designated tasks in changing
environments.

For the multiple targets path planning, an online solution based on the bio-inspired neural network was pro-
posed by Bueckert et al. [52] in static and dynamic environments. However, the task assignment approach was
very simple, as the robot visited the target, this target was removed from the visit list. Thus, the robot was hard
to find the optimal visit sequence of targets. A novel hybrid agent framework was proposed by Li et al. [53]
for real-time path planning to multi-robotic systems considering many moving obstacles. In this work, an
improved shunting equation was proposed by setting safety margins for the robots and the moving obstacles.
The robots are able to predict the movement of obstacles and avoid any collision. Nanoassembly planning
creates enormous potential in a vast range of new applications. An integrated method based on the shunt-
ing model was proposed to generate collision-free paths of multi-robotic nanoassembly [54]. The tasks of the
multi-robotic nanoassembly planning were a continuous process considering the environmental uncertainty.

If the robotic systems need to track the moving targets, an important influence of the algorithms is the relative
moving speed between the target and robot [55]. If the speed of robotic systems is much lower than the target,
the robotic systems need to corporately track the target, otherwise the robot will never catch the target. A real-
time cooperative hunting algorithmwas proposed byNi and Yang base on shunting neurodynamicsmodels [56].
In this hunting task study, the robots had no previous knowledge about the environment and locations of
evaders. It is important to note that the difference between tracking a moving target and the hunting algorithm
is that the evader in hunting problems has some intelligence to escape from the hunt of pursuer robots. Figure
6A shows the hunting process considering many evader robots. Compared with other hunting algorithms,
the hunting algorithm based on bio-inspired neurodynamics still works efficiently when some hunting robots
are broken. Figure 6B shows the hunting process that some robots are broken.

3.2. Cleaning robots
The cleaning tasks require the robot to pass through every area in the work environment. The task requirement
is the same as the complete coverage path planning (CCPP), which is a special type of path planning in 2-D
environments. The CCPP can be also applied to many other robotic applications, such as painter robots, dem-
ining robots, lawnmowers, automated harvesters, agricultural crop harvesting equipment, windows cleaners,
and autonomous underwater covering vehicles [57,58]. In the bio-inspired neural network, the unclean areas are
set as targets, which globally attract the robot. The obstacles have only local effects, which avoids robot colli-
sions [59–61]. As the cleaning robot works, the unclean areas become clean and the excitatory input of the clean
area becomes zero. Thus, the landscape of neural activity dynamically changes with the change of the unclean
areas, obstacles, and other robot position. For any current position of the robot, the next robot position 𝑝𝑛 is
obtained by

𝑝𝑛 ⇐ 𝑥𝑝𝑛 = max {𝑥𝑙 + 𝑐𝑦𝑙 , 𝑙 = 1, 2, · · · , 𝑛} (11)
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Figure 6. Examples of hunting tasks. A: multiple evaders need to be hunted; B: some robots break down [56].

where 𝑐 is a positive constant and 𝑦𝑙 is a monotonically increasing function of the difference between the cur-
rent to next robot moving directions. Compared with path planning and CCPP problems, the main difference
is that many target positions might attract the cleaning robot because all unclean areas are set as targets. Thus,
the turning numbers of clean robots might increase significantly. Function 𝑦𝑙 is designed to reduce the turn-
ing numbers. If the robot goes straight, 𝑦𝑙 =1; if goes backward, 𝑦𝑙 = 0. Thus, the cleaning robot tends to go
straight.

In this section, based on the previous knowledge of the environment, the research fields of cleaning robots using
the neurodynamics model are categorized as: completed known environment and unknown environment.

3.2.1. Completed known environment
Figure 7 shows the neurodynamics-based CCPP in a completely known environment. The neurodynamics
model can work efficiently in the dynamic environment, so even considering sudden change environment and
moving obstacles in the environment, the cleaning robots can still work efficiently [57,59,60]. In order to improve
the computational complexity, a discrete bio-inspired neural network was proposed to convert to the shunting
equation a difference equation [62].

One CCPP challenging problem is the deadlock situation. The deadlock area is a specific situation that the
cleaning robot is trapped in a position where all of the neighborhood areas have been covered, but the work en-
vironment is still unclear. If the cleaning robot moves to deadlock areas, the cleaning robot is unable to escape
from the deadlock areas without any interventions. A dynamic neural neighborhood analysis for deadlock
avoidance was proposed based on the characteristics of deadlock areas [59]. The robot can recognize whether
the current position is the deadlock point. If the current position is a deadlock point, the connection weights
of the neural network were changed to generate a path to escape this deadlock point.

3.2.2. Unknown environment
In order to deal with CCPP in the unknown environment, the cleaning robots are typically required to build
a surrounding map with a very limited time range [63]. The onboard sensors have been widely used for robot
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Figure 7. CCPP in a completely known environment. A: the generated robot path; B: the neural activity landscape when the robot reaches
point C [63].

navigation with a limited reading range. Thus, the key challenge of CCPP in unknown environments is to
design the map-building algorithm and combine it with previous coverage algorithms studies. Combing with
the sensor detection, an improved CCPP algorithm based on the neurodynamics model was developed in
unknown environments [64,65]. The robots move to the nearest unclean areas and detect the environment until
the cleaning task is finished. A real-robot platform iRobot Create 2 was used to test the proposed algorithm in
unknown environments [66]. The actual cleaning robots testing showed that the effectiveness of the proposed
algorithm, in which the robotic systems could cooperatively work together in a large and complex environment.

3.3. Underwater robots
The autonomous underwater vehicle (AUV) or unmanned underwater vehicle (UUV) have been studied in a
variety of tasks such as underwater rescue, data collection, and ocean exploration. In addition, some bionic
robots are also studied, such as robotic fish [67,68]. Unlike the work environment of mobile robots or cleaning
robots, the underwater environment is more complex and uncertain. Firstly, based on the 2-D neural network
structure, a 3-D grid-based neural network is typically required to represent the underwater environment. Sec-
ondly, the effect of the ocean or river currents is necessary to consider. Finally, the robots work in underwater
environments, facing many uncertainties, such as some robots broken down. Based on different task require-
ments, three major research fields of underwater robots using the neurodynamics model are studied in this
section.

3.3.1. Navigation
For the underwater environment, the neural network architecture needs to be extended to the 3-D environ-
ment, where more complex topography of randomly distributed obstacles is involved. Figure 8 shows a typ-
ical AUV path planning in 3-D underwater environments. In 2-D neural network architecture, each neuron
connects with 8 neighborhood neurons, whereas, in the 3-D neural network, each neuron connects with 26
neighborhood neurons [69]. Thus, the computation complexity dramatically increased. In order to improve the
efficiency in the 3-D underwater environment, a dynamic bio-inspired neural network was proposed to guide
the movement of AUV in large unknown underwater environments [25]. A virtual target selection approach
was applied to search the path and avoid dead loop situations. Since the large unknown environment is par-
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Figure 8. An example of path planning in 3-D underwater environments [25].

titioned into small portions centered with moving AUV, and the bio-inspired neural network only deals with
this small range, the path can be calculated relatively fast. However, the dynamic bio-inspired neural network
misses the best route in certain circumstances, which could waste the power of the AUV.

The environmental disturbances of the underwater area, such as currents, create inevitable influences on the
AUV path planning. A current effect-eliminated bio-inspired neural network was proposed to guide the AUV
navigation considering the effect of currents [70]. A current correcting component was incorporated with the
bio-inspired neural network to generate the paths. Each neuron in the network, the velocity and direction of
robots are corrected for eliminating the current effect. Thus, the generated UUV path is robust and efficient.

The real-world ocean environment is complex and unknown. The onboard robot sensors were used for robot
navigationwith a limited detection range. Theultrasonic sensorwas used to interpret the sonar data and update
the map based on the dempster’s inference rule [71]. A potential field bio-inspired neural network (PBNN) was
proposed to generate a safe path in underwater environments [72,73]. The planned path keeps a safe distance to
the obstacles, which could avoid the collisions for the underwater robot navigation.

Multi-AUV systems cooperation has received lots of interest due to the fact that groups of AUVs can work
more efficiently and effectively compared with a single AUV. The main task of AUVs cooperation is to assign
several targets to a team of AUVs and avoid obstacles autonomously in underwater environments. Due to
the similarity of multi-tasks assignment and self-organizing map (SOM) neural networks, many researchers
have been applied the SOM approach to solve task assignment problems of multi-robotic systems [74–76] and
multi-AUV systems [77,78]. However, the SOM-based methods require an ideal 2-D work environment without
obstacles. An integrated biologically inspired SOM (BISOM) method was proposed to deal with collision-free
and multi-AUV task assignment problems [79]. After integrated the bio-inspired neural network method, the
AUV is able to avoid obstacles and speed jumps. The ocean currents could influence the AUV navigation in
the underwater environment. A velocity synthesis algorithm was integrated with the BISOM approach for
optimizing the individual robot path in a dynamic environment considering the ocean current [80].

The BISOM method is able to generate the shortest path for the multi-robotic systems in most situations.
However, the update rule of the BISOM method ignores the effect of obstacles. Therefore, although the win-
ner AUV is the shortest distance from the target, the obstacles could increase the movement of the winner
robot. A novel biologically inspired map algorithm was proposed by Zhu et al. [81] for changing the update
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Figure 9. Examples of target search tasks. A: the AUV R4 breaks down; B: final trajectories of the search process [83].

rule. The winner rule is not the shortest distance between target and AUV, whereas the winner rule becomes
the maximum neural dynamic value in the neural activity values.

3.3.2. Target search
The fundamental problem of target search for multi-AUV search systems is how to control all the vehicles
to search to their target along the optimized paths cooperatively. The initial work on search was carried out
by simplifying the search problem as an area coverage problem. As same as in cleaning robot application, the
landscape of neural activity can guide the robot to search every unknown areas until the target was searched [82].
However, the coverage algorithm is not an efficient search algorithm as the robot power is wasted by unneces-
sary visiting positions. In order to improve the efficiency of the search algorithm, a sonar systemwas applied to
extract the information of the environment to build themap and localize the target location [83]. Figure 9 shows
that the proposed algorithm not only enabled the multi-AUV team to achieve search but also ensures a suc-
cessful search if one or several AUVs fail. However, factors in real environments, such as ocean currents, were
excluded in this simulation and there might be a waste of search capacity because of the overlapping search
spaces. Same as the navigation application, with the consideration of ocean current, an integrated method
based on the neurodynamics model and velocity synthesis algorithm was proposed for the cooperative search
of the multi-AUV system [84].

3.3.3. Hunting
Based on the previous study of neurodynamics model hunting for mobile robots in 2-D environments, a 3-
D underwater environment hunting algorithm was proposed [85,86]. Compared with Ni and Yang’s hunting
algorithm [56], the catching stage was very different in applying underwater robots. The final hunting state can
be divided into four situations. Figure 10 shows one of the hunt situations that four AUVs surrounded the
target.

The path conflict situation happened when multiple AUVs chose the same position to be the next movement.
A collision-free rule was established that location information is recorded between each AUV and selects the
next step grid in each vehicle in anticipation before the movement [87]. If any other AUV has occupied the grid,
then choose another grid to move.

4. CONTROL
Robot control is ongoing research that tracks much attention. The control in robotics is to develop controllers
that drive robot kinematics or dynamics to reach desired states. Intelligent control of the robot is to develop a
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Figure 10. The hunting process with one target and six AUVs. 𝐸𝑣 : the target; 𝑃𝑐1-𝑃𝑐6: the AUVs [86].

controller by taking advantage of vital characteristics of human intelligence, such as fuzzy logic, neural network,
etc. bio-inspired intelligent control mechanism is based on biological systems. Using this biologically inspired
system is targeting to improve the control performance by the implementation of natural biological systems in
the control design.

4.1. Tracking control
The tracking control of robots or motors has been studied for many years. Sliding mode control is robust
to variable changes, however this method suffers chattering issues, which is a critical factor that needs to be
considered when designing the control strategy. The linearization control method is easy to implement, how-
ever, it suffers from a large velocity jump when a large tracking error occurs at the initial stage. Backstepping
control is easy to design, however, when a large tracking error occurs, this method becomes impractical as the
speed jump will result in a large velocity surge, which can damage the hardware of the system. Neural network
and fuzzy logic control are capable of resolving the large velocity jump at the initial stage, however, both neu-
ral network and fuzzy logic control are hard to practice. The neural network-based control methods require
online learning, which is expensive and computationally complicate, the fuzzy logic control requires human
experience to make the robot perform well, both of these control methods are rather expensive to practice.

The bio-inspired backstepping control, which is based on the backstepping technique, aims to eliminate the
speed jump in conventional design when a large initial tracking error occurs. The general control design for
the unmanned robot with the implementation of bio-inspired neural dynamics can be described in Figure 11.
The motion planner plans the desired posture 𝑃𝑑 , then the desired trajectory along with the feedback of the
current posture 𝑃𝑐 propagates through a transformation matrix to convert the tracking error from the inertial
frame into body fixed frame. Then, the path tracker, which contains the bio-inspired backstepping controller
uses the tracking error and desired velocity to generate a velocity command, which then along with the ob-
served velocity 𝜐𝑐 propagate through torque controller to generate torque command, which drives the robot
to generate a velocity and reach its desired posture by propagating the velocity that is generated from robot
dynamics to robot kinematics.

The applications of bio-inspired backstepping control are mainly divided into three different platforms: mobile
robots, surface robots, and underwater robots. Therefore, this section illustrates the efficiency, effectiveness,
and applications of the bio-inspired backstepping control into these three different platforms.
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Figure 11. The block diagram of the bio-inspired tracking control for robots

4.1.1. Mobile robots
Real-time tracking control of a mobile robot is a challenging issue in mobile robotics. The main purpose of
the tracking control is to eliminate or reduce the effects of errors. However, the disturbance, noise, and sensor
errors will interfere with the output of the robotic system and produce errors. Many control algorithms of
the mobile robot have been studied for precisely tracking a desired trajectory. The conventional backstepping
control for mobile robots suffers from velocity jump issues, this problem is embedded in the design of the
controller. The linear velocity error term causes the velocity jump if the initial tracking error does not equal
zero. As seen this problem, the bio-inspired neural dynamics was brought into the design of the backstepping
control. For a nonholonomic mobile robot operates in a 2-D Cartesian work space, the main control variables
for its kinematic model are the linear velocity and angular velocity. Focusing on the design of solving the
velocity jump issue, the bio-inspired backstepping kinematic control for a mobile robot is defined as

𝜐𝑐 = 𝜐𝑠 + 𝜐𝑑 cos 𝑒𝜃 (12)

𝜔𝑐 = 𝜔𝑑 + 𝐶1𝜐𝑑𝑒𝐿 + 𝐶2𝜐𝑑 sin 𝑒𝜃 (13)

𝑑𝜐𝑠
𝑑𝑡 = −𝐴𝜐𝑠 + (𝐵 − 𝜐𝑠) [𝑒𝐷]+ − (𝐷 + 𝑣𝑠) [𝑒𝐷]− (14)

where 𝜐𝑠 is derived from neural dynamics equation regards to the error in driving direction for the mobile
robot,𝐶1 and𝐶2 are the designed parameters, 𝜐𝑑 and𝜔𝑑 are respectively the desired linear and angular velocity
that are given at path planning stage, 𝜐𝑐 and 𝜔𝑐 are respectively the linear and angular velocity commands
that generated from the controller, and 𝑒𝐷 and 𝑒𝐿 are respectively the tracking error in driving and lateral
directions [14]. Compared to conventional design, the bio-inspired backstepping control takes the advantage
of the shunting model that provides bounded smooth output.

The bio-inspired backstepping controller resolved the problem of sharp speed jumps at the initial stage [24,88,89].
The total design of the proposed control and path planning method were able to provide both real-time
collision-free path and provide smooth velocity tracking commands for a nonholonomic mobile robot. How-
ever, the generated angular velocity seemed to suffer from sharp changes, therefore, the validation of the pro-
posed control strategy is needed. In addition, the simulation environment is assumed as a simple environment
with no obstacles. Zheng et al. [90] proposed an adaptive robust finite-time bio-inspired neurodynamics con-
trol with unmeasurable angular velocity and multiple time-varying bounded disturbances. The outputs were
smooth and the sharp jumps of initial values were decreased.

In real-world applications, the model input of the mobile robot may have errors, therefore, to overcome the
problemof this abrupt change in the generated velocities caused by themodel input errors, a fuzzy neurodynamics-
based tracking controller, which incorporated fuzzy control to generate smooth velocities, was proposed [91].
The proposed control considered the model input error that consequently have impacts on the tracking er-
ror, which was further reduced using fuzzy logic to incorporate with the bio-inspired backstepping control.
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Figure 12. The comparisons of the traditional backstepping control and bio-inspired backstepping control. A: tracking a straight line; B:
linear velocity estimates of tracking a straight line; C: peak linear velocity comparison of tracking straight line; D: tracking a circular line; E:
linear velocity estimates of tracking a circular line; F: peak linear velocity comparison of tracking a circular line [95].

In addition, the shunting model also incorporated with PID controller to modify the error term, this control
strategy provided a smooth velocity curve and more importantly, avoided impulse acceleration and torque,
which could potentially damage the mechanical system [92].

In order to improve the efficiency and effectiveness of the bio-inspired backstepping control, the parameters
of the control were determined using a genetic algorithm [93]. Tuning control parameters with the genetic algo-
rithm provided better results than the implementation of bio-inspired backstepping control alone. Although
the parameters tuned with the genetic algorithm provided satisfactory results, many other optimization meth-
ods could be used to choose the parameters, a comparison study could be tested to demonstrate the efficiency
of the genetic algorithm. A biologically inspired full-state tracking control technique was proposed to gen-
erate smooth velocity commands [94]. The proposed control considered both position error and orientation
error as the control input and used the shunting model to constrain its output to reach its goal of providing
a smooth velocity curve. There are still some improvements can be made as the path itself is not smooth but
has sharp turns before it tracks its desired trajectory in a straight line tracking simulation. In addition to the
simulation studies, successful implementation on a real mobile robot system demonstrates the effectiveness of
the bio-inspired backstepping controller [14]. The experiment results showed that the robot tracked both the
straight path and the circular path, and simulation results provided smooth velocity curves.

The mobile robot usually works in a complicated environment, which system and measurement noises can
affect its tracking accurate. Therefore, an enhanced a bio-inspired backstepping control was proposed to gen-
erate the smooth, accurate velocity and torque command for mobile robots, respectively [95]. The total control
Incorporated bio-inspired backstepping controller with unscented Kalman and Kalman filters that were suit-
able in real-world applications. The proposed control considered noises in real-world applications, and the
proposed control considered such noises effect and successfully eliminated it. However, the proposed control
is considered a fixed noise, which is not true in real-world applications.
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Figure 13. Tracking trajectory comparison of the bio-inspiredmethod and conventional backsteppingmethod for the underactuated surface
vessel. A: line tracking; B: circle tracking [96].

To illustrate the efficiency and effectiveness of the bio-inspired backstepping control for a mobile robot, Fig-
ure 12 is chosen to show the superiority of the bio-inspired backstepping control over the conventional method.
As seen from Figure 12A and Figure 12F, the larger the initial error occurs, the larger the initial velocity jump
from the conventional method occurs, however, the bio-inspired backstepping control still makes the robot
maintain a low initial velocity change. It is obvious that the bio-inspired backstepping control has practically
solved a speed jump issue in backstepping control for a mobile robot, which is more practical in real-world
applications.

4.1.2. Surface robots
The tracking problem of the unmanned surface vehicle (USV) usually refers to the design of a tracking con-
troller that forces robots to reach and follow a desired curve, where 2-D and three DOF (surge, sway and yaw)
are considered [96,97].

The bio-inspired backstepping controller was used to USV for dealing with the velocity-jump problem [98].
In the case that considering the impact of ocean current, a current ocean observer is fused with the control
design to reduce the impact of ocean current in the tracking performance [99]. The bio-inspired backstepping
controller was integrated with a single-layer neural network for underactuated surface vessels in unknown
and dynamics environments [96]. The proposed tracking controller reduced the calculation process, therefore,
the tracking controller avoided the complexity problem existed in conventional backstepping controllers. The
stability of the tracking control system is guaranteed by a Lyapunov theory, and the tracking errors are proved to
converge to a small neighborhood of the origin such that a satisfactory tracking result is presented in Figure 13.

4.1.3. Underwater robots
Bio-inspired neurodynamics models have been applied to the tracking control of underwater robots for many
years [100]. The tracking control of the underwater robots is generally addressed by designing a control law
that realizes asymptotically exact tracking of a reference trajectory based on the given underwater robots plant
model [101]. However, different from common robots such as the land vehicle or the USV, the underwater
robotics system contains more states, whose DOF can be extended to six. Among the six DOFs of the under-
water robots, surge, sway, heave, roll, pitch, and yaw, roll and pitch can be neglected since these two DOFs
barely have an influence on the underwater vehicle during practical navigation. Therefore, when establish-
ing the trajectory tracking model to keep a controllable operation of the underwater robots, usually only four
DOFs: surge, sway, heave, and yaw are involved. As same as the mobile robot, the speed jumps largely affect
the robustness of the underwater robots path tracking. Due to the complex underwater work environment
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Figure 14. Tracking trajectory comparison of the bio-inspired model based method and conventional backstepping method for the under-
water robots. A: curve tracking; B: helix tracking [105].

and limited electric power of underwater robots, the speed jumps as well as the driving saturation problem
have to be considered. The bio-inspired backstepping controller was introduced in the control design to give
the resolution respectively [102]. Due to the characteristics of the shunting model, the outputs of the control are
bounded in a limited range with a smooth variation [103].

The bio-inspired backstepping controller has been applied on different underwater robots under various con-
ditions by combining with a sliding mode control that controls the dynamic component of the vehicle, where
an adaptive term is used in the sliding mode control to estimate the non-linear uncertainties part and the
disturbance of the underwater vehicle dynamics [104]. For example, the driving saturation problem of a 7000m
manned submarine was resolved through this bio-inspired backstepping with the sliding mode control cas-
cade control [105]. The control contains a kinematic controller that used bio-inspired backstepping control to
eliminate the speed jump when the tracking error occurred at the initial state. Then, a sliding mode dynamic
controller was proposed to reduce the lumped uncertainty in the dynamics of the underwater robots, thus re-
alizing the robust trajectory tracking control without speed jumps for the underwater robots Figure 14. Jiang
et al. [106] accomplished the trajectory tracking of the autonomous underwater robots in marine environments
with a similar bio-inspired backstepping controller and the adaptive integral sliding mode controller. In the
sliding mode controller, the chattering problem was alleviated, which increased the practical feasibility of the
vehicle. However, more studies are needed to compare to prove the effectiveness of the proposed control
strategy, such as the tracking control based on the filtered backstepping method.

4.2. Formation control
The bio-inspired neurodynamics trajectory tracking control for a single nonholonomic mobile robot can be
extended to the formation control for multiple nonholonomic mobile robots, in which the follower can track
its real-time leader by the proposed kinematic controller. This section introduces leader-follower formation
control based on the bio-inspired neurodynamics tracking controller into three different robot platforms.

4.2.1. Mobile robots
The leader-follower formation control based on the bio-inspired neurodynamics tracking controller was stud-
ied by Peng et al. [107]. The asymptotic stability of the closed-loop system was guaranteed. The issue of imprac-
tical velocity jump arising from the use of the backstepping approach was handled bymeans of the bio-inspired
neurodynamics model. However, the control design was based on the level of the kinematics model so that the
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performance of formation control relies highly on the low-level servo controller. The robustness property of
the system is not analyzed, which is important when facing uncertainties or disturbances. Therefore, further
improvements can be made based on these aforementioned points. A leader–follower formation control using
a bioinspired neurodynamics-based approach was proposed by Yi et al. [108] for resolving the impractical veloc-
ity jump problem of nonholonomic vehicles. Simulation results demonstrate the effectiveness of the proposed
control law.

In order to further improve the tracking performance, a non-time based controller was also proposed [6]. The
path planner not only generated a desired path for the mobile robot, but also became part of the control
to adjust the actual path and desired path. Along with the bio-inspired backstepping tracking control, the
proposed method provided an overall better performance than a single backstepping control alone for multi-
robotic systems.

4.2.2. Surface robots
To fulfill the requirement of accomplishing complex tasks in the unpredictable marine environment, where the
ocean currents and the marine organism may affect the efficiency of the vehicle operation, formation control
on the system of multiple USVs has become a hot topic in recent decades [109]. Studies of combining the bio-
inspired model with the marine vehicle formation control have been proposed and the model is often used to
achieve the intelligent planning results of the multi-vehicle system [110].

Regarding the bio-inspired model application on the USV formation control, a novel adaptive formation con-
trol scheme based on bio-inspired neurodynamics for waterjet USVs with the input and output constraints
was proposed [111]. However, the learning process of the adaptive neural network can reduce the real-time per-
formance, which is the superiority of the bio-inspired neural network. In addition, the robustness property of
the resulting closed-loop system is not analyzed when the undesired perturbation is injected into the system,
which is considered a critical problem in practical engineering.

For multi-robotic system operates in large and unknown environments, Ni et al. [26] used a dynamic bio-
inspired neural network for real-time formation control of multi-robotic systems in large and unknown en-
vironments. The proposed approach considered many uncertain situations. Figure 15 shows that the multi-
robotic systems still finish the formation task, when the leader USV was broken. However, the mathematical
analysis for the proposed algorithm is not provided, such as convergence analysis and robustness analysis.
Comparison with traditional approaches is not provided, thus it is not sufficient to demonstrate the efficiency
of the proposed method.

Intelligent formation control for a group of waterjet USVs considering formation tracking errors constraints
was proposed [112]. To guarantee line-of-sight range and angle tracking errors constraints, a time-varying
tan-type barrier Lyapunov function is employed. Besides, the bio-inspired neurodynamics was integrated
to address the traditional differential explosion problem, i.e., avoiding the differential operation of the virtual
control. However, the simulation example is much limited, thus the effectiveness and efficiency of the pro-
posed control scheme are not sufficiently verified, i.e., the lack of the comparison with another type of control
method.

4.2.3. Underwater robots
For underwater robots, the definition of formation control is similar to the surface vehicle but with additional
dimensions [113]. Formation control of the multi-UUV system considers both 2-D and 3-D, where the former
focuses on the lateral movement of the vehicle groups [114].

A formation control on the multi-UUV system to realize the tracking of desired trajectory and obstacle avoid-
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Figure 15. The simulation experiment in the case that the leader robot 𝑅3 is broken down [26].

ance in the 3-D underwater environment was proposed by Ding et al. [115]. The bio-inspired neural network
helps the leader UUV decide the transform of the formation when encountering obstacle fields to avoid the
obstacles for all UUVs and meanwhile sustain on the desired trajectory. However, complex environmental
disturbances such as multi-obstacles are not thoroughly considered in this paper.

5. CHALLENGES AND FUTURE WORKS
Although there have been many studies of bio-inspired intelligence with applications to robotics and remark-
able achievements have been accomplished, there are still several challenges that would be further investigated
as future works.

• Many existing approaches assumed the environment is static andwithout any uncertainties (e.g., some robot
breakdown), disturbance (e.g., wind for surface robots, ocean/river current for underwater robots), and
noise (system and measurement noise). However, it is a big challenge for collision-free robot navigation in
complex changing environmentswithmanymoving robots/targets and subject to uncertainties, disturbance,
and noise.

• Communication issue has always been an essential research area in robotics. It is important to build a
stable communication network in multi-robotic systems to ensure the updating of neural activity in the
bio-inspired neural network. However, most studies on the cooperation of multi-robotic systems did not
consider the communication issue, where the communication is normally noisy and with time delay. Many
approaches did not consider the optimal performance with multi-objectives (e.g., short total distance, com-
pletion time, energy, smoothness of the robot paths). Communication and multi-objectives optimization
could be a potential research direction in the future.

• Most conventional aerial robot navigation cannot act properly due to the limitations of communication
and perception ability of sensors in complex environments. The complexity of the aerial robot makes the
controllers are hard to design to achieve overall good performance. Though real-time collision-free nav-
igation and control of mobile robots, surface robots, and underwater robots have been studied for many
years, there is a lack of research for aerial robots based on bio-inspired neurodynamics models. The future
research is to incorporate bio-inspired neurodynamics models with other useful algorithms for aerial robot
navigation.
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• Most studies on the navigation and control of robots fail not to consider the teleoperation and telepresence
issues. It is assumed that the robot works without human interactions. New approaches to telerobotic
operations and human-robot interactions would be developed based on biologically inspired intelligence
to outperform existing technologies. The future developed algorithms will not directlymimic any biological
systems. The infusion of “human-like” and biological intelligence into robotic systems is the crux of future
research.

6. CONCLUSION
Biologically inspired intelligence has been explored and studied for decades in the field of robotics. The re-
searchers have been trying to replicate or transfer the biological intelligence to robotic systems for empow-
ering the robots stability, adaptability, and cooperativeness. This paper provides a comprehensive survey of
the research on bio-inspired neurodynamics models and their applications to path planning and control of
autonomous robots. Among all bio-inspired neurodynamics models, shunting models, additive models, and
gated dipole models were further elaborated. As for path planning, a bio-inspired neural network was elabo-
rated for the dynamic collision-free path generation for many robotic systems. There are several key points
are worth to highlight about bio-inspired neurodynamics models to real-time collision-free path planning.

• The fundamental concept of the neurodynamics-based path planning approach is to develop a one-to-one
correspondence neural network, which is called the bio-inspired neural network, to represent the work
environment. The neural activity is a continuous signal with both upper and lower bounds.

• The bio-inspired neural network is able to guide the robot to avoid the local minima points and the deadlock
situations. The target globally influences the whole work space through neural activity propagation to all
directions in the same manners.

• The bio-inspired neural network is able to generate the path without explicitly searching over the free work
space or the collision paths, without explicitly optimizing any global cost functions, without any prior knowl-
edge of the dynamic environment, and without any learning procedures.

• The bio-inspired neural network is able to perform properly in an arbitrarily dynamic environment, even
with sudden environmental changes, such as suddenly adding or removing obstacles or targets. The obsta-
cles have only local effects to push the robot to avoid collisions.

As for the bio-inspired robot control, several key points are worth to note:

• The neural activity is bounded between the [−𝐷, 𝐵] region with different inputs, which is the fundamental
concept of the bio-inspired backstepping control.

• The bio-inspired backstepping control provides a smooth velocity curve, which is crucial to ensure the
control effectiveness and efficiency

• The speed jump in conventional backstepping control design is eliminated by replacing the tracking error
term with shunting model, this modification allows a wider application of the bio-inspired backstepping
control in robotics.

• The excellent feasibility of the bio-inspired backstepping control allows it compatible with many other con-
trol strategies to form new hybrid control strategies for robots working in various working environments.

The current challenges and future works are the development of original and innovative new intelligent navi-
gation, cooperation, and communication strategies, algorithms and technologies with consideration of uncer-
tainties, disturbance and noise issues, communication issues, and human-robot interaction issues for robots
in changing complex situations.
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Abstract
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burden. Additionally, the 2D discrete wavelet transform is applied to the structural similarity loss (SSIM) to reduce
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performance of the depth network on the KITTI dataset and decrease the domain gap on the Make3D dataset.

Keywords: Unsupervised depth estimation, computational complexity, aggregated residual transformations, 2D dis-
crete wavelet transform

© The Author(s) 2021. Open Access This article is licensed under a Creative Commons Attribution 4.0
International License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, shar

ing, adaptation, distribution and reproduction in any medium or format, for any purpose, even commercially, as long as you
give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate
if changes were made.

www.intellrobot.com

https://creativecommons.org/licenses/by/4.0/
www.intellrobot.com
a
图章



Page 85                                                                    Li et al. Intell Robot 2021;1(1):84-98 I http://dx.doi.org/10.20517/ir.2021.06

1. INTRODUCTION
Predicting depth from a single 2D image is a fundamental task in computer vision. It has been studied formany
years with widespread applications in reality, such as visual navigation [1], object tracking [2,3], and surgery [4].
Moreover, accurate depth information is vital with considerable influence on the performance of autonomous
driving, where expensive laser sensors are usually used. Recent advances in convolutional neural networks
(CNNs) show their powerful ability to learn an image’s high-dimensional features. Especially, the mapping
relationship between image feature and image depth can be built. Generally, monocular depth estimation ap-
proaches can be classified into three categories: supervised [5–9], semi-supervised [10], and unsupervised [11–19].
Both supervised and semi-supervised learning rely on the image depth ground truth. Using a laser sensor to
obtain the depth ground truth of many images is expensive and difficult. However, unsupervised learning has
the advantage of eliminating the dependency on the depth ground truth. Therefore, more and more studies
are training monocular depth estimation networks using unsupervised methods from monocular images or
stereo pairs. Compared with stereo pairs, a monocular dataset is more general as the input of network. How-
ever, it needs to estimate the pose transformation between consecutive frames simultaneously. As a result, a
pose estimation network is necessary that outputs relative 6-DoF pose with given sequences of frames as input.

Most unsupervised depth estimation networks [5,8,11] are constructed using typical CNN structures. On the
one hand, a series of max-pooling and stride operations may reduce the network’s ability to learn image fea-
tures and cause lower quality of depth map. On the other hand, to improve the performance of the network,
deeper convolution layers are designed in depth CNNs. They increase the computational burden of the net-
work and bring extra hardware cost. In most cases, the cost of the network overweighs the benefits generated
by the network. To improve the depth estimation performance without increasing the network burden, an
end-to-end unsupervised monocular depth network framework is proposed in this paper. Inspired by previ-
ous work [20] on the image classification task, aggregated residual transformations (ResNeXt) are migrated to
the depth estimation field. Based on typical depth CNNs, the ResNeXt block is embedded to extract more
delicate image features in the encoder network. In addition, more accurate mapping relationship between the
feature map and depth map can be built without bringing extra network burden. In addition, the accuracy of
depth network suffers from some noise (𝑒.𝑔., haze and rain) in the complex images. To reduce the influence
of noise, the 2D wavelet discrete transform [21] is applied to SSIM loss, which can recover high-quality clear
images. A sample of depth prediction is shown in Figure 1.

In summary, our proposed network can improve depth prediction accuracy without increasing network com-
putational complexity. The contributions of this paper can be summarized as follows:

(1) Based on a ResNeXt block, a novel feature extraction module for depth network is developed to improve
the accuracy of depth prediction. It can not only extract high-dimensional image features but also guide the
network to more deeply learn the scene to get farther pixel depth.

(2) A wavelet SSIM loss is applied to photometric loss to converge the training network. Various patches with
clearer image information computed by DWT are used as input, rather than the whole image, to the loss func-
tion, which can remove some noise (daze, rain, etc.) from the image.

The rest of this paper is organized as follows. The related work on depth estimation is discussed in Section
2. Section 3 presents an overview of the proposed network architecture and the loss function. Then, some
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Figure 1. The input image from the KITTI dataset (top); the baselineMonoDepth2 [22] (M, ResNet50, without pre-training) depth prediction;
(middle) and our result (bottom).

experiments based on different datasets are presented to verify the performance of the proposed network in
Section 4. Finally, the conclusions and future work are introduced in Section 5.

2. RELATED WORK
2.1. Supervised depth estimation
Based on vast training datasets with depth ground truth, depth estimation networks show great performance
in recent years. Eigen et al. [5] first demonstrated the huge potential of CNNs in depth prediction from a single
image. They obtained reliable depth estimation results by using a coarse-to-fine depth network. Further, Liu
et al. [7] combined CNNs with Markov random fields (MRF) to learn intermediate features, acquiring clearer
local details of depth map in the visual effect. Laina et al. [8] changed the structure of the depth network and
proposed a residual CNNs to model the mapping relationship between monocular image and its correspond-
ing depth map. Instead of using absolute depth ground truth, Chen et al. [9] acquired relative depth value labels
between the random pixel pairs from the image to train the depth network. In addition, to obtain dense depth
map, Kuznietsov et al. [10] proposed a semi-supervised method which used both sparse ground truth depth for
supervised learning and a photo consistent loss in stereo images for unsupervised learning.

Even though the works mentioned above significantly contributed to depth estimation, these methods still
suffer from the limitation of depth ground truth.

2.2. Unsupervised depth estimation
Based on stereo or monocular images, unsupervised learning methods focus on how to design the supervisory
signal. The typical solution is to use view synthesis as a proxy task [11,12,14–24], so as to get rid of depth ground
truth.

2.2.1. Unsupervised depth estimation from stereo images
Using stereo images is a feasible unsupervised way to train a monocular depth network. A depth network
can be obtained by predicting the left–right pixel disparities between stereo pairs during training. It can be
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applied when predicting monocular image depth. Garg et al. [11] first used stereo pairs to train depth network
with known disparities between left and right images and acquired great performance. Inspired by the authors
of [11], Godard et al. [12] designed a novel loss function which enforced both left-right and right–left disparities
consistency produced from stereo images [12]. Zhan et al. [13] extended the stereo-based network architecture
by increasing the visual odometry network (VO). The performance of Zhan’s network was superior to other
unsupervised methods at that time. To recover absolute scale depth map from stereo pairs, Li et al. [14] pro-
posed a visual odometry system (UnDeepVO), which was capable of estimating the 6-DoF camera pose and
recovering the absolute depth value.

2.2.2. Unsupervised depth estimation from monocular images
For monocular depth estimation, it is necessary to design an extra pose network to obtain pose transformation
between consecutive frames. Both depth and pose networks are trained together with loss function. Zhou
et al. [16] pioneered the training of depth networks with monocular video. They proposed two separate net-
works (SfMLearner) to learn image depth and inter-frame pose transformation. However, the accuracy of
the depth network was often limited by the influence of moving objects and occlusion. Their work motivated
some researchers to consider these shortcomings. Subsequently, Casser et al. [17] developed a separate network
(struct2depth) to learn each moving object motion, but their work was based on the condition that the num-
ber of moving objects needed to be hypothesized in advance. In addition, researchers found that the optical
flow method could be employed to deal with moving object motion. Yin et al. [18] developed a cascading net-
work framework (GeoNet) to adaptively learn rigid and non-rigid object motion. Recently, multi-task training
methods have been proposed. Luo et al. [19] intended to train depth, camera pose, and optical flow networks
(EPC++) jointly with 3D holistic understanding. Similarly, Ranjan et al. [24] proposed a competitive collabora-
tion mechanism (CC) with depth, camera motion, optical flow, and motion segmentation together. Both Luo
and Ranjan’s joint network inevitably increased the difficulty of the training network and the computational
burden of the network.

From the above works, we can see that most studies aim to improve the accuracy of the depth network by
changing the network structure or building robust supervisory signal. It is worth noting that these methods
bring network complexity and computational burden while improving the network accuracy. This motivates
us to study how to balance both sides. Poggi et al. [15] presented an effective pyramid feature extraction net-
work, which can be implemented in real-time on CPU. However, the accuracy of the network cannot satisfy
the requirements of practical applications. Xie et al. [20] provided a template with aggregated residual trans-
formations (ResNeXt), which achieved a better classification result without increasing network computation.
Because of the advantages of ResNeXt, we apply it to the image depth prediction field. The ResNeXt block
serves as a feature extraction module of the depth network to learn the image’s high-dimensional features.
The proposed approach is not only independent of depth ground truth, but also does not increase computa-
tional burden.

3. METHOD
Theproposedmethod contains two parts: an end-to-end network framework and a loss function. The network
framework consists of a depth network and a pose network, as shown in Figure 2. Given unlabeled monocular
sequences, the depth network outputs the predicted depth map, while the pose network outputs the 6-DoF
relative pose transformation between adjacent frames. The loss function is made up of the basic photometric
loss and the depth smoothness loss, and it couples both networks into the end-to-end network.
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Figure 2. The overall architecture of both the depth network and the pose network.

Figure 3. The architecture of ResNet and ResNeXt block: (a) the ResNet block; and (b) the aggregated residual transformations. Both have
similar complexity, but the ResNeXt block has better adaptability and expansibility.

3.1. Problem statement
The aim of the unsupervised monocular depth network is to develop a mapping relationship Γ : 𝐼 (𝑝) → 𝐷 (𝑝),
where 𝐼 (𝑝) is an arbitrary image, 𝐷 (𝑝) is the predicted depth map of the image 𝐼 (𝑝), and 𝑝 is per pixel in the
image 𝐼 (𝑝). Establishing a more accurate mapping function Γ is considered in this paper, which includes:
(a) a simple and effective network pipeline without increasing network computational complexity; and (b) a
high-quality depth map 𝐷 (𝑝) with subtle details for a given input image 𝐼 (𝑝).

For Item (a), our focus is to change the basic building blocks of the depth CNN structure using aggregated
residual transformations (ResNeXt). In the depth network, ResNeXt serves as feature extraction module to
learn the image’s high-dimensional features without increasing network computational burden. For Item (b),
low-texture regions in the low-scale depth map are weakened, bringing inaccurate image reconstruction. In-
spired by the authors of [22], four images with full resolution are reconstructed instead of building four images
with different resolutions. Before the four images are reconstructed, the predicted four-scale depth map needs
to be resized to the same resolution as input image with bilinear interpolation.

A single image 𝐼 (𝑝) is considered as the input of the depth network. The designed depth network outputs five-
scale feature map 𝐹𝑘×(𝑘 ∈ 1, 2, 3, 4, 5) in the encoder network and four-scale depth map 𝐷𝑛 in the decoder
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network. The mapping function is designed as

𝐷𝑛×(𝐼 (𝑝)) = Γ𝑛 ((𝐹1×(𝐼 (𝑝), . . . , (𝐹𝑚×(𝐼 (𝑝)))) (1)

where 𝑚 denotes the number of feature maps, 𝑚 = 5. 𝑛 represents the scale factor of depth map, 𝑛 ∈ 0, 1, 2, 3.
𝑘 denotes the resolution of feature map 𝐹𝑘× is 1/2𝑘 of the input resolution.

Then, bilinear interpolation is applied to each predicted depth map 𝐷𝑛× to acquire the full-resolution depth
map 𝑅(𝐼 (𝑝)), which is defined as follows:

𝑅(𝐼 (𝑝)) = 𝑈𝐷𝑛×(𝐼 (𝑝)) (2)

where𝑈 represents bilinear interpolation which recovers the resolution 1/2𝑛 of 𝐷𝑛× to the input full resolution.

The full-resolution depth map 𝑅(𝐼 (𝑝)) is necessary to reconstruct the input image. Given two adjacent images
with a target view and a source view ⟨𝐼𝑡 (𝑝), 𝐼𝑠 (𝑝)⟩, and the predicted 6-DoF pose transformation 𝑇 , a pixel in
the target image 𝑝𝑡 ’s mapping homogeneous coordinate 𝑝𝑠→𝑡 in the source image 𝐼𝑠 is computed as

𝑝𝑠→𝑡 ∼ 𝐾𝑇𝑡→𝑠𝑅(𝑝𝑡)𝐾−1𝑃𝑡 (3)

where 𝐾 is camera intrinsic matrix, 𝑝𝑡 is set as the normalized coordinate in target image 𝐼𝑡 , and 𝑇𝑡→𝑠 is a 4×4
matrix transformed by 𝑇 .

Therefore, the reconstructed target image 𝐼 𝑡𝑠 can be obtained by Equation (3) using differentiable bilinear sam-
pling mechanism [16] to sample the corresponding pixel 𝑝𝑠→𝑡 on the source image 𝐼𝑠. The reconstructed target
image 𝐼 𝑡𝑠 is used to calculate the photometric loss in Part D.

3.2. Feature extraction module
Equation (1) is applied to exploit higher-dimensional features and acquire feature map 𝐹𝑘× with more de-
tails. Since the ResNeXt block has a great performance on classification task. the feature extraction module is
constructed by the ResNeXt block. In contrast to the ResNet used in most depth CNNs, the ResNeXt block
aggregates more image features without bringing more network parameters, as shown in Figure 3.

The ResNeXt block puts the input image into 32 parallel groups and learns the image features, respectively.
Each group shares the same super-parameters and is designed as a bottleneck structure which cascades three
convolution layers with the kernel sizes, respectively, being 1 × 1, 3 × 3, and 1 × 1. The first 1 × 1 convolution
layer extracts high-dimensional abstract features by reducing (or increasing) output channels. Given an input
image 𝐼 with 𝐻 ×𝑊 ×𝐶′ resolution, the transformation function 𝑇𝑖 of the 𝑖th group maps image 𝐼 to the high-
dimensional feature map 𝑇𝑖 (𝐼). The aggregated output 𝑓 (𝐼) is the summation of the output of all the groups,
which is defined as follows:

𝑓 (𝐼) =
𝐶∑
𝑖=1
𝑇𝑖 (𝐼) (4)

where 𝐶 is the number of groups, 𝐶 = 32, with 𝐶 as cardinality.

Then, to be closely connected with the input, a residual operation is used, 𝐹 (𝐼). The aggregated output feature
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map for each module is

𝐹 (𝐼) = 𝐼 +
𝐶∑
𝑖=1
𝑇𝑖 (𝐼) (5)

3.3. Network architecture
The proposed depth estimation network employs U-Net structure including an encoder network and a de-
coder network. The encoder network is built by embedding the ResNeXt block [20]. It transforms the three-
dimensional monocular image into multi-channel feature map. The decoder network builds the relationship
between extracted feature map and the depth map by a series of upsample and convolution (Up-convolution)
operations, as shown in Figure 4.

(1) To eliminate texture copy artifacts in the depth map, the Up-convolution operation [22] instead of deconvo-
lution is used to reshape the feature map. (2) Due to max-pooling and stride operations ignoring some local
features and causing some details to be lost in the depth image, skip connections are used to merge the corre-
sponding feature maps for encoder network into decoder network and obtain fine image details. (3) Inspired
by the authors of [22], we resize all depth maps to the same resolution as input using bilinear interpolation
(represented by the𝑈 operation in Equation (2)).

The structure for the pose network is designed as a standard ResNet18 encoder, which is similar to the one
in [22]. More input images in the pose network bring more accurate depth estimation under certain conditions.
However, to reduce the number of training parameters of pose network, the pose network has 𝑁 (𝑁 = 3)
adjacent images as input. Therefore, the shape for convolutional weights in the first layer is (3×𝑁) ×64×3×3
rather than the default 3 × 64 × 3 × 3 in the pose network. The output of the pose network has 6 ∗ (𝑁 − 1)
channels. In addition, our pose network is trained without pre-training. All convolution layers are activated
by ReLU function [25] except for the last layer. When the pose result is evaluated, an image pair is fed into
pose network to produce six output channels, the first three-channel is rotation, and the last three-channel is
translation.

3.4. Wavelet SSIM loss
In general, the SSIM [26] loss is included in the photometric loss to measure the degree of similarity between
images. In this paper, the 2D discrete wavelet transform (DWT) is applied to SSIM to decrease the photomet-
ric loss. Firstly, The DWT divides an image into some patches with different frequencies. Then, the SSIM of
each patch is computed. To preserve high-frequency image details and avoid producing “holes” or artifacts in
some low-texture regions, it can flexibly adjust the weights of each patch of SSIM loss.

In the 2D discrete wavelet transform (DWT), low-pass and high-pass filters are performed on an image to
obtain the convolution results. For instance, four filters, 𝑓𝐿𝐿 , 𝑓𝐿𝐻 , 𝑓𝐻𝐿 , and 𝑓𝐻𝐻 , are obtained by the low-
pass filter multiplying the high-pass filter. The DWT divides an image into four small patches with different
frequencies through these four filters, which can remove unnecessary interference from the images (𝑒.𝑔., haze
and rain). Iteratively, the DWT can be formulated as follows:

𝐼𝐿𝐿𝑖+1, 𝐼
𝐿𝐻
𝑖+1 , 𝐼

𝐻𝐿
𝑖+1 , 𝐼

𝐻𝐻
𝑖+1 = 𝐷𝑊𝑇 (𝐼𝐿𝐿𝑖 ) (6)

where 𝑖 is the iterative time of DWT. 𝐼𝐿𝐿0 is the original image. In this paper, 𝑖 = 2. 𝐼𝐿𝐿 is the down-sampling
image. 𝐼𝐻𝐿 and 𝐼𝐿𝐻 are the horizontal and vertical edge detection images, respectively. 𝐼𝐻𝐻 is the corner de-
tection image.
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Figure 4. The proposed depth network architecture. The width and height of every cube indicates output channels, and the size is reduced
by half every time. The first yellow cube is a convolution block, while the rest of the yellow cubes are ResNeXt blocks. The orange blocks
represent the five-scale feature map, 𝐹𝑘×. In the decoder network, convolution layers are blue. Upsample and convolution operations are
red. 𝐷𝑛× is the four-scale depth map.

To preserve high-frequency image details and avoid producing image artifacts, a coarse-to-fine manner is
adopted to change the image resolution in the SSIM loss. The DWT divides the image into four patches:
𝐼𝐿𝐿𝑖 , 𝐼𝐻𝐿𝑖 , 𝐼𝐿𝐻𝑖 , 𝑎𝑛𝑑𝐼𝐻𝐻𝑖 . Except the low-frequency 𝐼𝐿𝐿𝑖 , the SSIM loss of the other three high-frequency patches
are computed. Iteratively, 𝐼𝐿𝐿𝑖 is divided by DWT to generate different patches to obtain the new SSIM loss.
Therefore, the total wavelet SSIM (W-SSIM) loss is

𝐿𝑊−𝑆𝑆𝐼𝑀 (𝑡,𝑠) =
𝑖∑
0
𝑟𝑖𝐿𝑆𝑆𝐼𝑀 (𝑡𝑤𝑖 , 𝑠𝑤𝑖 ), 𝑤 ∈ {𝐿𝐿, 𝐻𝐿, 𝐿𝐻, 𝐻𝐻} (7)

The ratios of the four patches are

𝐼𝐿𝐿 : 𝐼𝐿𝐻 : 𝐼𝐻𝐿 : 𝐼𝐻𝐻 = 𝑟2 : 𝑟 (1 − 𝑟) : 𝑟 (1 − 𝑟) : (1 − 𝑟)2 (8)

where 𝑟𝑖 is the weight of each patch. The initial value of 𝑟 is 0.7. 𝑡 is the target image. 𝑠 is the source image.

Initially, before the DWT divides the image, the SSIM loss between the target image and source image is
calculated. The total wavelet SSIM (𝐿𝑊𝑆𝑆𝐼𝑀) loss is

𝐿𝑊𝑆𝑆𝐼𝑀 = 𝐿𝑆𝑆𝐼𝑀 (𝑡, 𝑠) + 𝐿𝑊−𝑆𝑆𝐼𝑀 (9)

3.5. Total loss function
There are two main parts in the loss function: the target image photometric loss 𝐿𝑝 is calculated by recon-
structing the target image, while the smoothness loss 𝐿𝑠 of depth image compels the predicted depth map to
be smooth, given the input target image 𝐼𝑡 and its reconstructed image 𝐼 𝑡𝑠. The details are shown in Equation
(3). To make the photometric loss effective and meaningful, some assumptions need to be set: (1) the scenes
are Lambertian; and (2) the scenes should be static and unsheltered.
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In general, the image photometric loss contains the structural similarity metric (SSIM) [26] and the regulariza-
tion loss 𝜁1. The wavelet SSIM loss is used to replace SSIM loss in photometric loss. Therefore, the image
photometric loss is defined as

𝑝𝑒 = 𝛼
1 − 𝐿𝑊𝑆𝑆𝐼𝑀 (𝐼𝑡 , 𝐼 𝑡𝑠)

2
+ (1 − 𝛼)

𝐼𝑡 − 𝐼 𝑡𝑠1 (10)

where we empirically set 𝛼 = 0.85.

When computing the photometric loss from different source images, most previous approaches average the
photometric loss together into every available source images. However, the second assumption requests that
each pixel in the target image is also visible to the source image. However, this assumption is easily broken. It
is inevitable that some moving objects and occlusions exist in the scene; thus, some pixels are available in one
image but are not available in the next image. As a result, inaccurate pixel reconstruction and the photometric
error are caused. Following the work in [22], the minimum photometric loss at each pixel in the target image
is computed instead of the average photometric loss. Note that this method can only correct the photometric
loss but not eliminate it. Therefore, the final per-pixel photometric loss is

𝐿𝑝 = min
𝑡
𝑝𝑒(𝐼𝑡 , 𝐼 𝑡𝑠) (11)

In addition, the performance of depth network suffers from the influence ofmoving objects in the image. These
moving pixels should not be involved in computing the photometric loss. Therefore, a binary per-pixel mask
𝜇 in [22] is applied to automatically recognize moving pixels (𝜇 = 0) and static pixels (𝜇 = 1). The mask 𝜇 only
includes some pixels whose photometric error of the reconstructed image 𝐼 𝑡𝑠 is lower than that of the target
image 𝐼𝑡 and source image 𝐼𝑠. The mask 𝜇 is defined as

𝜇 = [min(𝑝𝑒(𝐼𝑡 , 𝐼 𝑡𝑠)) > min(𝑝𝑒(𝐼𝑡 , 𝐼𝑠))] (12)

[ ] is the Iverson bracket. The auto-masking photometric loss [22] is

𝐿𝑝 = 𝜇𝐿𝑝 (13)

The second-order gradients of the depth map are used to make the depth map smooth. Because the edge or
corner in the depth map should be less smooth than other flat regions, the gradient of the depth map should
be locally smooth rather than fully smooth. Therefore, a Laplacian [23] is applied to automatically perceive the
position of each pixel. Different from the method in [23], it is used at every scale instead of a specific scale. The
Laplacian template is second-order differencing with four neighborhoods. It can reinforce object edges and
weaken the region of slowly varying intensity. The smoothness loss of this pixel receives a lower weight when
the Laplacian is higher. The smoothness loss is defined as follows:

𝐿𝑠 = 𝑒
−∇2 𝐼 (𝑥𝑖) ( |𝜕𝑥𝑥𝑑𝑖 | + |𝜕𝑥𝑦𝑑𝑖 | + |𝜕𝑦𝑦𝑑𝑖 |) (14)

∇2 𝑓 =
𝜕2 𝑓

𝜕𝑥2 +
𝜕2 𝑓

𝜕𝑦2 (15)

where ∇ is the Laplacian operator.

Therefore, the total loss function is
𝐿𝑡𝑜𝑡𝑎𝑙 = 𝜇𝐿𝑝 + 𝜆𝐿𝑠 (16)

The final total loss is averaged per pixel, batch, and scale.
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Table 1. The standard evaluation metrics for network
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𝑑
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) < 𝑡

4. EXPERIMENTS
To evaluate the effectiveness of our approach, some qualitative and quantitative results are provided about
depth and pose prediction. KITTI dataset is the main data source to train and test depth networks. The KITTI
odometry split was used to train and test our pose network. Meanwhile, the Make3D dataset was used to
evaluate the adaptive ability and generalization of the proposed network.

4.1. Implementation details
The proposed depth network has dense skip connections which can fully learn deep abstract features. The
network was trained from scratch without pre-training model weights and post-processing. The Sigmoid out-
put of depth map is 𝐷 = 1/(𝛼𝜎 + 𝛽), where 𝜎 and 𝛽 make the depth value 𝐷 between 0.1 and 100 units. In
our experiments, the MonoDepth2 [22] was set to standard ResNet50 encoder for monocular depth network,
ResNet18 for pose network, and without pre-training. Here, we simplify its name to MD2 for the rest of the
paper.

Deep learning framework PyTorch [27] was used to implement our model. For comparison, the KITTI dataset
was resized and downsampled to 640×192. The proposed network used Adam [28] optimizer with 𝛽1 = 0.9 and
𝛽1 = 0.999 to train 22 epochs. The batch size was set as 4 and the smoothness term 𝛾 was set to be 0.001. The
learning rate was set to be 10−4 for the first 20 epochs and reduced by a factor of 10 for the remaining epochs.
The settings for the pose network were the same as in [22]. In addition, a single NVIDIA GeForce TITAN X
with 12 GB GPU memory was used in our experiments.

4.2. Evaluation metrics
To evaluate our method, we used some standard evaluation metrics, as shown in Table 1.

|𝐼 | is the number of pixels in image 𝐼 . 𝑑𝑝𝑟𝑒𝑑𝑖 𝑗 is the predicted depth from model. 𝑑𝑔𝑡𝑖 𝑗 is the depth ground
truth. 𝛿𝑡 represents the threshold between the depth ground truth and the predicted depth, which is set to be
1.25, 1.252, and 1.253, respectively.

4.3. KITTI eigen split
The KITTI Eigen split [16] was used to train the proposed network. Before the network was trained, Zhou’s [16]

preprocessing was used to remove static images. As a result, the training dataset had 39,810 monocular triplets,
which contain 29 different scenes. The validation dataset had 4424 images, and there were 697 testing images.
The image depth ground truth of the KITTI dataset was captured by Velodyne laser. Following the work in [22],
the intrinsics of all images were same, the principal point of the camera was set as image center, and the focal
length was defined as the average of all focal lengths in the KITTI dataset. In addition, the depth predicted
results were obtained by using the per-image median ground truth scaling proposed in [16]. When the results
were evaluated, the maximum depth value was set to be 80 m and the minimum to be 0.1 m.
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Figure 5. Qualitative results on the KITTI Eigen split. The results are compared with some existing unsupervised methods.

Figure 5 shows some visual examples of predicted depth maps. Our proposed model in the last row generates
higher quality depth maps and gets clearer object edges than the other models. Some quantitative results are
also provided in Table 2. The evaluation metrics are defined in Table 1. For the first four indices, lower scores
are better. For the last three indices, higher scores are better. In Table 2, all results are shown without post-
processing [12]. The last row is the predicted result of our proposed method. The accuracy of depth prediction
is improved when compared with other methods trained on monocular images. It is demonstrated that the
proposed method is effective. Generally, the fewer input images in the pose network have a negative impact
on the accuracy of the depth network. Even though only three frames are used to train the pose network at
a time, our depth prediction results still outperform the other methods. Note that, some methods in Table
2 [18,19,24] were trained with multiple tasks.

4.4. Additional study
4.4.1. Make3D dataset
The collected scene of the Make3D dataset is different from the KITTI dataset. Therefore, the Make3D dataset
is often used to evaluate the adaptability of a network model. Our depth model trained on the KITTI dataset
was tested on the Make3D dataset to evaluate its adaptability. The qualitative results are shown in Figure 6.
The second column is the depth ground truth. Compared with MD2 [22], the visual results of our model can
get the global scene information and capture more object details. It can be seen that our method is useful and
has great scene adaptability.
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Table 2. The quantitative results. This table shows the results of our method and other existing methods on KITTI Eigen split [16]. The
best results in every category are in bold. M denotes the training dataset is monocular. * represents the newer results from GitHub

Lower is better Higher is better

Method Train AbsRel SqRel RMSE logRMSE 𝛿 < 1.25 𝛿 < 1.252 𝛿 < 1.253

Zhou* [16] M 0.183 1.595 6.709 0.270 0.734 0.902 0.959
Yang [29] M 0.182 1.481 6.501 0.267 0.725 0.906 0.963
Mahjourian [30] M 0.163 1.240 6.220 0.250 0.762 0.916 0.968
GeoNet* [18] M 0.149 1.060 5.567 0.226 0.796 0.935 0.975
DDVO [23] M 0.151 1.257 5.583 0.228 0.810 0.936 0.974
DF-Net [31] M 0.150 1.124 5.507 0.223 0.806 0.933 0.973
LEGO [32] M 0.162 1.352 6.276 0.252 - - -
Ranjan [24] M 0.148 1.149 5.464 0.226 0.815 0.935 0.973
EPC++ [19] M 0.141 1.029 5.350 0.216 0.816 0.941 0.976
Struct2depth [17] M 0.141 1.026 5.291 0.215 0.816 0.945 0.979
MD2 [22] M 0.131 1.023 5.064 0.206 0.849 0.951 0.979
Ours M 0.125 0.992 5.076 0.203 0.858 0.953 0.979

Input Ground truth MD2 Ours

Figure 6. Some predicted depth examples on the Make3D dataset. The models were all trained on KITTI only, monocular, and directly
tested on Make3D.

Table 3. Ablation studies on ResNeXt and 𝐿𝑊𝑆𝑆𝐼𝑀

Lower is better Higher is better

Method Train AbsRel SqRel RMSE logRMSE 𝛿 < 1.25 𝛿 < 1.252 𝛿 < 1.253

Basic [22] M 0.131 1.023 5.064 0.206 0.849 0.951 0.979
Basic+ ResNeXt M 0.127 0.990 5.109 0.205 0.854 0.950 0.978
Basic+ResNeXt+𝐿𝑊𝑆𝑆𝐼𝑀 M 0.125 0.992 5.076 0.203 0.858 0.953 0.979
Basic+ResNeXt+𝐿𝑊𝑆𝑆𝐼𝑀 (single scale) M 0.123 0.980 4.987 0.200 0.862 0.954 0.979

4.4.2. Validating proposed ResNeXt and 𝐿𝑊𝑆𝑆𝐼𝑀
Table 3 shows the result of depth prediction for different components of the proposed method. “Basic” is the
MD2 mentioned above. The results clearly prove that the contributions of our proposed terms to the overall
performance. It is evident that discrete wavelet transform (DWT) can recover a high-quality clear image and
improve the accuracy of depth prediction. The accuracy of depth prediction for both single-scale and multi-
scale supervisions are shown. Compared with the multi-scale method, the result of the single-scale method is
better. The reason for this phenomenon is hypothesized to be that the low-resolution image has over-smoothed
pixel color, which can easily cause inaccurate photometric loss.
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Table 4. Model capacity. 𝑝𝑎𝑟𝑎𝑚𝑠 is the number of parameters of depth network, 𝑡𝑜𝑡𝑎𝑙𝑝𝑎𝑟𝑎𝑚𝑠 indicates the total parameters for both
depth and pose network, and 𝑀 is million unit.

Method Params FLOPs Total params

MD2(ResNet50) [22] 25.56M 1.0𝑥1010 61.8M
ours 25.03M 1.0𝑥1010 61.3M

Table 5. Odometry results on the KITTI odometry dataset

Method Sequence09 Sequence10 Frames

ORB-SLAM [33] 0.014 ± 0.008 0.012 ± 0.011 -
DDVO [26] 0.045 ± 0.108 0.033 ± 0.074 3
Zhou* [16] 0.05 ± 0.039 0.034 ± 0.028 5→2
Mahjourian [30] 0.013 ± 0.010 0.012 ± 0.011 3
GeoNet [18] 0.012 ± 0.007 0.012 ± 0.009 5
EPC++(M) [19] 0.013 ± 0.007 0.012 ± 0.008 3
Ranjan [24] 0.012 ± 0.007 0.012 ± 0.008 5
MD2(M) 0.018 ± 0.009 0.015 ± 0.010 2
ours 0.017 ± 0.010 0.015 ± 0.010 2

4.4.3. Network capacity
To show our proposed network can improve accuracy without increasing network capacity, the number of
network parameters and the floating-point operations per second (𝐹𝐿𝑂𝑃𝑠) for the network were computed
to evaluate the capacity of the proposed network. The quantitative results are shown in Table 4. For the sake
of fair comparison, the pose network of MD2 and ours were set as ResNet50. Note that ResNet50 serves as
our pose network only for comparison. The pose network adopted in the proposed overall framework is still
ResNet18. Compared with MD2, our proposed method improves the accuracy of the depth network without
adding extra computational burden, as expected.

4.5. Pose estimation
Our pose model was evaluated on the standard KITTI odometry split [16]. This dataset includes 11 driving
sequences. Sequences 00–08 were used to train our pose network without using pose ground truth, while Se-
quences 09 and 10 were used to evaluate our pose model. The average absolute trajectory error with standard
deviation (in meters) was used as evaluation metric. Godard’s [22] handling strategy was followed to evaluate
the result of the two-framemodel on the five-frame snippets. Because Godard’s [22] pose estimation results (M,
ResNet50 for depth network, and ResNet18 for pose network) are not provided, we retrained and obtained the
trained result (MD2).

Only two adjacent frames were taken in our pose model at a time, as shown in Table 5. The output was the
relative 6-DoF pose between images. Even though our pose network structure is the same as that in MD2, our
pose model obtains better performance than MD2. In addition, the results are comparable to other previous
methods. Thus, it is observed that the proposed depth network has a positive effect on pose network.

5. CONCLUSIONS
A versatile end-to-end unsupervised learning framework of monocular depth and pose estimation is devel-
oped and evaluated on a dataset in this paper. Aggregated residual transformations (ResNeXt) are embedded
in depth network to extract the input image’s high-dimensional features. In addition, the proposed wavelet
SSIM loss is based on 2D discrete wavelet transform (DWT). Different patches with different frequencies are
computed by DWT as the input to the SSIM loss to converge the network, which can recover high-quality clear
image patches. The evaluation results show that the performance of depth prediction is improved while the
computational burden is reduced. In addition, the proposed method has great adaptive ability on the Make3D
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dataset and can decrease the domain gap between different datasets. In future work, how to further optimize
the whole system will be considered.
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of the event, including the conference name, time, and place in the cover letter.
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There is no restriction on the length of manuscripts, number of figures, tables and references, provided that the manuscript 
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Manuscript 
Type Definition Abstract Keywords Main Text Structure

Research 
Article

A Research Article is a seminal and 
insightful research study and showcases 
that often involves modern techniques or 
methodologies. Authors should justify 
that their work is of novel findings.

The abstract should 
state briefly the 
purpose of the 
research, the principal 
results and major 
conclusions. No more 
than 250 words.

3-8 keywords The main content should include 
four sections: Introduction, 
Methods, Results and 
Discussion.

Review A Review should be an authoritative, 
well balanced, and critical survey of 
recent progress in an attractive or a 
fundamental research field.

Unstructured abstract. 
No more than 250 
words.

3-8 keywords The main text may consist of 
several sections with unfixed 
section titles. We suggest that the 
author include an "Introduction" 
section at the beginning, several 
sections with unfixed titles in the 
middle part, and a "Conclusions" 
section at the end.

Technical 
Note

A Technical Note is a short article 
giving a brief description of a specific 
development, technique, or procedure, 
or it may describe a modification of an 
existing technique, procedure or device 
applied in research.

Unstructured abstract. 
No more than 250 
words.

3-8 keywords /

Editorial An Editorial is a short article describing 
news about the journal or opinions of 
senior Editors or the publisher.

None required None required /

Commentary A Commentary is to provide comments 
on a newly published article or an 
alternative viewpoint on a certain topic.

Unstructured abstract. 
No more than 250 
words.

3-8 keywords /

Perspective A Perspective provides personal points 
of view on the state-of-the-art of a 
specific area of knowledge and its future 
prospects.

Unstructured abstract. 
No more than 250 
words.

3-8 keywords /

2.3 Manuscript Structure
2.3.1 Front Matter
2.3.1.1 Title
The title of the manuscript should be concise, specific and relevant, with no more than 16 words if possible.

2.3.1.2 Authors and Affiliations
Authors’ full names should be listed. The initials of middle names can be provided. The affiliations and email addresses for 
all authors should be listed. At least one author should be designated as the corresponding author. In addition, corresponding 
authors are suggested to provide their Open Researcher and Contributor ID upon submission. Please note that any change 
to authorship is not allowed after manuscript acceptance. The authors’ affiliations should be provided in this format: 
department, institution, city, postcode, country.

2.3.1.3 Abstract
The abstract should be a single paragraph with word limitation and specific structure requirements (for more details please 
refer to Types of Manuscripts). It usually describes the main objective(s) of the study, explains how the study was done, 
including any model organisms used, without methodological detail, and summarizes the most important results and their 
significance. The abstract must be an objective representation of the study: it is not allowed to contain results that are not 
presented and substantiated in the manuscript, or exaggerate the main conclusions. Citations should not be included in the 
abstract.

2.3.1.4 Graphical Abstract
The graphical abstract is essential as this can catch first view of your publication by readers. We recommend you submit an 
eye-catching figure. It should summarize the content of the article in a concise graphical form. It is recommended to use it 
because this can make online articles get more attention.
The graphical abstract should be submitted as a separate document in the online submission system. Please provide an 
image with a minimum of 531 × 1328 pixels (h × w) or proportionally more. The image should be readable at a size of 5 cm 
× 13 cm using a regular screen resolution of 96 dpi. Preferred file types: TIFF, PSD, AI, JPEG, and EPS files.
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2.3.1.5 Keywords
Three to eight keywords should be provided, which are specific to the article, yet reasonably common within the subject 
discipline.

2.3.2 Main Text
Manuscripts of different types are structured with different sections of content. Please refer to Types of Manuscripts to 
make sure which sections should be included in the manuscripts.

2.3.2.1 Introduction
The introduction should contain background that puts the manuscript into context, allow readers to understand why the 
study is important, include a brief review of key literature, and conclude with a brief statement of the overall aim of the 
work and a comment about whether that aim was achieved. Relevant controversies or disagreements in the field should be 
introduced as well.

2.3.2.2 Methods
The methods should contain sufficient details to allow others to fully replicate the study. New methods and protocols should 
be described in detail while well-established methods can be briefly described or appropriately cited. Statistical terms, 
abbreviations, and all symbols used should be defined clearly. Protocol documents for clinical trials, observational studies, 
and other non-laboratory investigations may be uploaded as supplementary materials.

2.3.2.3 Results
This section contains the findings of the study. Results of statistical analysis should also be included either as text or as 
tables or figures if appropriate. Authors should emphasize and summarize only the most important observations. Data on 
all primary and secondary outcomes identified in the section Methods should also be provided. Extra or supplementary 
materials and technical details can be placed in supplementary documents.

2.3.2.4 Discussion
This section should discuss the implications of the findings in context of existing research and highlight limitations of the 
study. Future research directions may also be mentioned.

2.3.2.5 Conclusion
It should state clearly the main conclusions and include the explanation of their relevance or importance to the field.

2.3.3 Back Matter
2.3.3.1 Acknowledgments
Anyone who contributed towards the article but does not meet the criteria for authorship, including those who provided 
professional writing services or materials, should be acknowledged. Authors should obtain permission to acknowledge 
from all those mentioned in the Acknowledgments section. This section is not added if the author does not have anyone to 
acknowledge.

2.3.3.2 Authors’ Contributions
Each author is expected to have made substantial contributions to the conception or design of the work, or the acquisition, 
analysis, or interpretation of data, or the creation of new software used in the work, or have drafted the work or substantively 
revised it.
Please use Surname and Initial of Forename to refer to an author’s contribution. For example: made substantial contributions 
to conception and design of the study and performed data analysis and interpretation: Salas H, Castaneda WV; performed 
data acquisition, as well as providing administrative, technical, and material support: Castillo N, Young V.
If an article is single-authored, please include “The author contributed solely to the article.” in this section.

2.3.3.3 Availability of Data and Materials
In order to maintain the integrity, transparency and reproducibility of research records, authors should include this section 
in their manuscripts, detailing where the data supporting their findings can be found. Data can be deposited into data 
repositories or published as supplementary information in the journal. Authors who cannot share their data should state 
that the data will not be shared and explain it. If a manuscript does not involve such issues, please state “Not applicable.” 
in this section.

2.3.3.4 Financial Support and Sponsorship
All sources of funding for the study reported should be declared. The role of the funding body in the experiment design, 
collection, analysis and interpretation of data, and writing of the manuscript should be declared. Any relevant grant numbers 
and the link of funder’s website should be provided if any. If the study is not involved with this issue, state “None.” in this 
section.
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2.3.3.5 Conflicts of Interest
Authors must declare any potential conflicts of interest that may be perceived as inappropriately influencing the 
representation or interpretation of reported research results. If there are no conflicts of interest, please state “All authors 
declared that there are no conflicts of interest.” in this section. Some authors may be bound by confidentiality agreements. 
In such cases, in place of itemized disclosures, we will require authors to state “All authors declared that they are bound by 
confidentiality agreements that prevent them from disclosing their conflicts of interest in this work.”. If authors are unsure 
whether conflicts of interest exist, please refer to the “Conflicts of Interest” of IR Editorial Policies for a full explanation.

2.3.3.6 Ethical Approval and Consent to Participate
Research involving human subjects, human material or human data must be performed in accordance with the Declaration 
of Helsinki and approved by an appropriate ethics committee. An informed consent to participate in the study should also 
be obtained from participants, or their parents or legal guardians for children under 16. A statement detailing the name of 
the ethics committee (including the reference number where appropriate) and the informed consent obtained must appear 
in the manuscripts reporting such research.
Studies involving animals and cell lines must include a statement on ethical approval. More information is available at 
Editorial Policies.
If the manuscript does not involve such issue, please state “Not applicable.” in this section.

2.3.3.7 Consent for Publication
Manuscripts containing individual details, images or videos, must obtain consent for publication from that person, or in 
the case of children, their parents or legal guardians. If the person has died, consent for publication must be obtained from 
the next of kin of the participant. Manuscripts must include a statement that written informed consent for publication was 
obtained. Authors do not have to submit such content accompanying the manuscript. However, these documents must be 
available if requested. If the manuscript does not involve this issue, state “Not applicable.” in this section.

2.3.3.8 Copyright
Authors retain copyright of their works through a Creative Commons Attribution 4.0 International License that clearly 
states how readers can copy, distribute, and use their attributed research, free of charge. A declaration “© The Author(s) 
2021.” will be added to each article. Authors are required to sign License to Publish before formal publication.

2.3.3.9 References
References should be numbered in order of appearance at the end of manuscripts. In the text, reference numbers should be 
placed in square brackets and the corresponding references are cited thereafter. If the number of authors is less than or equal 
to six, we require to list all authors’ names. If the number of authors is more than six, only the first three authors’ names are 
required to be listed in the references, other authors’ names should be omitted and replaced with “et al.”. Abbreviations of 
the journals should be provided on the basis of Index Medicus. Information from manuscripts accepted but not published 
should be cited in the text as “Unpublished material” with written permission from the source.

References should be described as follows, depending on the types of works:
Types Examples
Journal articles by 
individual authors

Weaver DL, Ashikaga T, Krag DN, et al. Effect of occult metastases on survival in node-negative 
breast cancer. N Engl J Med 2011;364:412-21. [PMID: 21247310 DOI: 10.1056/NEJMoa1008108]

Organization as author Diabetes Prevention Program Research Group. Hypertension, insulin, and proinsulin in 
participants with impaired glucose tolerance. Hypertension 2002;40:679-86. [DOI: 10.1161/01.
HYP.0000035706.28494.09]

Both personal authors and 
organization as author

Vallancien G, Emberton M, Harving N, van Moorselaar RJ; Alf-One Study Group. Sexual dysfunction 
in 1,274 European men suffering from lower urinary tract symptoms. J Urol 2003;169:2257-61. [PMID: 
12771764 DOI: 10.1097/01.ju.0000067940.76090.73]

Journal articles not in 
English

Zhang X, Xiong H, Ji TY, Zhang YH, Wang Y. Case report of anti-N-methyl-D-aspartate receptor 
encephalitis in child. J Appl Clin Pediatr 2012;27:1903-7. (in Chinese)

Journal articles ahead of 
print

Odibo AO. Falling stillbirth and neonatal mortality rates in twin gestation: not a reason for 
complacency. BJOG 2018; Epub ahead of print [PMID: 30461178 DOI: 10.1111/1471-0528.15541]

Books Sherlock S, Dooley J. Diseases of the liver and billiary system. 9th ed. Oxford: Blackwell Sci Pub; 
1993. pp. 258-96.

Book chapters Meltzer PS, Kallioniemi A, Trent JM. Chromosome alterations in human solid tumors. In: Vogelstein 
B, Kinzler KW, editors. The genetic basis of human cancer. New York: McGraw-Hill; 2002. pp. 93-
113.

Online resource FDA News Release. FDA approval brings first gene therapy to the United States. Available from: 
https://www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/ucm574058.htm. [Last accessed 
on 30 Oct 2017]
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Conference proceedings Harnden P, Joffe JK, Jones WG, Editors. Germ cell tumours V. Proceedings of the 5th Germ Cell 
Tumour Conference; 2001 Sep 13-15; Leeds, UK. New York: Springer; 2002.

Conference paper Christensen S, Oppacher F. An analysis of Koza's computational effort statistic for genetic 
programming. In: Foster JA, Lutton E, Miller J, Ryan C, Tettamanzi AG, editors. Genetic 
programming. EuroGP 2002: Proceedings of the 5th European Conference on Genetic Programming; 
2002 Apr 3-5; Kinsdale, Ireland. Berlin: Springer; 2002. pp. 182-91.

Unpublished material Tian D, Araki H, Stahl E, Bergelson J, Kreitman M. Signature of balancing selection in Arabidopsis. 
Proc Natl Acad Sci U S A. Forthcoming 2002.

The journal also recommends that authors prepare references with a bibliography software package, such as EndNote to 
avoid typing mistakes and duplicated references.

2.3.3.10 Supplementary Materials
Additional data and information can be uploaded as Supplementary Materials to accompany the manuscripts. The 
supplementary materials will also be available to the referees as part of the peer-review process. Any file format is 
acceptable, such as data sheet (word, excel, csv, cdx, fasta, pdf or zip files), presentation (powerpoint, pdf or zip files), image 
(cdx, eps, jpeg, pdf, png or tiff), table (word, excel, csv or pdf), audio (mp3, wav or wma) or video (avi, divx, flv, mov, mp4, 
mpeg, mpg or wmv). All information should be clearly presented. Supplementary materials should be cited in the main text 
in numeric order (e.g., Supplementary Figure 1, Supplementary Figure 2, Supplementary Table 1, Supplementary Table 2, 
etc.). The style of supplementary figures or tables complies with the same requirements on figures or tables in main text. 
Videos and audios should be prepared in English, and limited to a size of 500 MB.

2.4 Manuscript Format
2.4.1 File Format
Manuscript files can be in DOC and DOCX formats and should not be locked or protected.
Manuscript prepared in LaTex must be collated into one ZIP folder (including all source files and images, so that the 
Editorial Office can recompile the submitted PDF).
When preparing manuscripts in different file formats, please use the corresponding Manuscript Templates.

2.4.2 Length
There are no restrictions on paper length, number of figures, or number of supporting documents. Authors are encouraged 
to present and discuss their findings concisely.

2.4.3 Language
Manuscripts must be written in English.

2.4.4 Multimedia Files
The journal supports manuscripts with multimedia files. The requirements are listed as follows:
Video or audio files are only acceptable in English. The presentation and introduction should be easy to understand. The 
frames should be clear, and the speech speed should be moderate;
A brief overview of the video or audio files should be given in the manuscript text;
The video or audio files should be limited to a size of up to 500 MB;
Please use professional software to produce high-quality video files, to facilitate acceptance and publication along with the 
submitted article. Upload the videos in mp4, wmv, or rm format (preferably mp4) and audio files in mp3 or wav format.

2.4.5 Figures
Figures should be cited in numeric order (e.g., Figure 1, Figure 2) and placed after the paragraph where it is first cited;
Figures can be submitted in format of TIFF, PSD, AI, EPS or JPEG, with resolution of 300-600 dpi;
Figure caption is placed under the Figure;
Diagrams with describing words (including, flow chart, coordinate diagram, bar chart, line chart, and scatter diagram, etc.) 
should be editable in word, excel or powerpoint format. Non-English information should be avoided;
Labels, numbers, letters, arrows, and symbols in figure should be clear, of uniform size, and contrast with the background;
Symbols, arrows, numbers, or letters used to identify parts of the illustrations must be identified and explained in the 
legend;
Internal scale (magnification) should be explained and the staining method in photomicrographs should be identified;
All non-standard abbreviations should be explained in the legend;
Permission for use of copyrighted materials from other sources, including re-published, adapted, modified, or partial 
figures and images from the internet, must be obtained. It is authors’ responsibility to acquire the licenses, to follow any 
citation instruction requested by third-party rights holders, and cover any supplementary charges.
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2.4.6 Tables
Tables should be cited in numeric order and placed after the paragraph where it is first cited;
The table caption should be placed above the table and labeled sequentially (e.g., Table 1, Table 2);
Tables should be provided in editable form like DOC or DOCX format (picture is not allowed);
Abbreviations and symbols used in table should be explained in footnote;
Explanatory matter should also be placed in footnotes;
Permission for use of copyrighted materials from other sources, including re-published, adapted, modified, or partial tables 
from the internet, must be obtained. It is authors’ responsibility to acquire the licenses, to follow any citation instruction 
requested by third-party rights holders, and cover any supplementary charges.

2.4.7 Abbreviations
Abbreviations should be defined upon first appearance in the abstract, main text, and in figure or table captions and used 
consistently thereafter. Non-standard abbreviations are not allowed unless they appear at least three times in the text. 
Commonly-used abbreviations, such as DNA, RNA, ATP, etc., can be used directly without definition. Abbreviations in 
titles and keywords should be avoided, except for the ones which are widely used.

2.4.8 Italics
General italic words like vs., et al., etc., in vivo, in vitro; t test, F test, U test; related coefficient as r, sample number as n, 
and probability as P; names of genes; names of bacteria and biology species in Latin.

2.4.9 Units
SI Units should be used. Imperial, US customary and other units should be converted to SI units whenever possible. There 
is a space between the number and the unit (i.e., 23 mL). Hour, minute, second should be written as h, min, s.

2.4.10 Numbers
Numbers appearing at the beginning of sentences should be expressed in English. When there are two or more numbers 
in a paragraph, they should be expressed as Arabic numerals; when there is only one number in a paragraph, number < 10 
should be expressed in English and number > 10 should be expressed as Arabic numerals. 12345678 should be written as 
12,345,678.

2.4.11 Equations
Equations should be editable and not appear in a picture format. Authors are advised to use either the Microsoft Equation 
Editor or the MathType for display and inline equations.
Display equations should be numbered consecutively, using Arabic numbers in parentheses;
Inline equations should not be numbered, with the same/similar size font used for the main text.

2.4.12 Headings
In the main body of the paper, three different levels of headings may be used.
Level one headings: they should be in bold, and numbered using Arabic numbers, such as 1. INTRODUCTION, and 2. 
METHODS, with all letters capitalized;
Level two headings: they should be in bold and numbered after the level one heading, such as 2.1 Statistical analyses, 2.2 
..., 2.3..., etc., with the first letter capitalized;
Level three headings: they should be italicized, and numbered after the level two heading, such as 2.1.1 Data distributions,and 
2.1.2 outliers and linear regression, with the first letter capitalized.

2.4.13 Text Layout
As the electronic submission will provide the basic material for typesetting, it is important to prepare papers in the general 
editorial style of the journal.
The font is Times New Roman;
The font size is 12pt;
Single column, 1.5× line spacing;
Insert one line break (one Return) before the heading and paragraph, if the heading and paragraph are adjacent, insert a line 
break before the heading only;
No special indentation;
Alignment is left end;
Insert consecutive line numbers;
For other details please refer to the Manuscript Templates.

2.5 Submission Link 
Submit an article via https://oaemesas.com/login?JournalId=ir.
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3. Publication Ethics Statement
OAE is a member of the Committee on Publication Ethics (COPE). We fully adhere to its Code of Conduct and to its Best 
Practice Guidelines.

The Editors of this journal enforce a rigorous peer-review process together with strict ethical policies and standards to 
guarantee to add high-quality scientific works to the field of scholarly publication. Unfortunately, cases of plagiarism, 
data falsification, image manipulation, inappropriate authorship credit, and the like, do arise. The Editors of IR take such 
publishing ethics issues very seriously and are trained to proceed in such cases with zero tolerance policy.

Authors wishing to publish their papers in IR must abide by the following:

The author(s) must disclose any possibility of a conflict of interest in the paper prior to submission;
The authors should declare that there is no academic misconduct in their manuscript in the cover letter;
Authors should accurately present their research findings and include an objective discussion of the significance of their 
findings;
Data and methods used in the research need to be presented in sufficient detail in the manuscript so that other researchers 
can replicate the work;
Authors should provide raw data if referees and the Editors of the journal request;
Simultaneous submission of manuscripts to more than one journal is not tolerated;
Republishing content that is not novel is not tolerated (for example, an English translation of a paper that is already published 
in another language will not be accepted);
The manuscript should not contain any information that has already been published. If you include already published 
figures or images, please get the necessary permission from the copyright holder to publish under the CC-BY license;
Plagiarism, data fabrication and image manipulation are not tolerated;
Plagiarism is not acceptable in OAE journals.

Plagiarism involves the inclusion of large sections of unaltered or minimally altered text from an existing source without 
appropriate and unambiguous attribution, and/or an attempt to misattribute original authorship regarding ideas or results, 
and copying text, images, or data from another source, even from your own publications, without giving credit to the source.

As to reusing the text that is copied from another source, it must be between quotation marks and the source must be cited. 
If a study’s design or the manuscript’s structure or language has been inspired by previous studies, these studies must be 
cited explicitly.

If plagiarism is detected during the peer-review process, the manuscript may be rejected. If plagiarism is detected after 
publication, we may publish a Correction or retract the paper.

Falsification is manipulating research materials, equipment, or processes, or changing or omitting data or results so that the 
findings are not accurately represented in the research record.

Image files must not be manipulated or adjusted in any way that could lead to misinterpretation of the information provided 
by the original image.

Irregular manipulation includes: introduction, enhancement, moving, or removing features from the original image; the 
grouping of images that should be presented separately, or modifying the contrast, brightness, or color balance to obscure, 
eliminate, or enhance some information.

If irregular image manipulation is identified and confirmed during the peer-review process, we may reject the manuscript. 
If irregular image manipulation is identified and confirmed after publication, we may publish a Correction or retract the 
paper.

OAE reserves the right to contact the authors’ institution(s) to investigate possible publication misconduct if the Editors find 
conclusive evidence of misconduct before or after publication. OAE has a partnership with iThenticate, which is the most 
trusted similarity checker. It is used to analyze received manuscripts to avoid plagiarism to the greatest extent possible. 
When plagiarism becomes evident after publication, we will retract the original publication or require modifications, 
depending on the degree of plagiarism, context within the published article, and its impact on the overall integrity of the 
published study. Journal Editors will act under the relevant COPE guidelines.

4. Authorship
Authorship credit of IR should be solely based on substantial contributions to a published study, as specified in the 
following four criteria:
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1. Substantial contributions to the conception or design of the work, or the acquisition, analysis, or interpretation of data 
for the work;
2. Drafting the work or revising it critically for important intellectual content;
3. Final approval of the version to be published;
4. Agreement to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity 
of any part of the work are appropriately investigated and resolved.

All those who meet these criteria should be identified as authors. Authors must specify their contributions in the section 
Authors’ Contributions of their manuscripts. Contributors who do not meet all the four criteria (like only involved in 
acquisition of funding, general supervision of a research group, general administrative support, writing assistance, 
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