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Abstract
Extracellular vesicles (EVs), which are nanocarriers with phospholipid bilayer structures released by most cells, 
play a key role in regulating physiological and pathological processes. EVs have been investigated due to their 
loading capacity, low toxicity, immunogenicity, and biofunctions. Although EVs have shown good potential as 
therapeutic vehicles, natural EVs have a poor targeting ability, which substantially reduces the therapeutic effect. 
Through the addition of a targeting unit into the membrane surface of EVs or inside EVs by engineering technology, 
the therapeutic agent can accumulate in specific cells and tissues. Here, we focus on mammalian EVs (MEVs) and 
bacterial EVs (BEVs), which are the two most common types of EVs in the biomedical field. In this review, we 
describe engineered MEVs and BEVs as promising nanocarriers for targeted therapy and summarize the 
biogenesis, isolation, and characterization of MEVs and BEVs. We then describe engineering techniques for 
enhancement of the targeting ability of EVs. Moreover, we focus on the applications of engineered MEVs and BEVs 
in targeted therapy, including the treatment of cancer and brain and bone disease. We believe that this review will 
help improve the understanding of engineered MEVs and BEVs, thereby promoting their application and clinical 
translation.

Keywords: Biological engineering, chemical modification, mammalian extracellular vesicles, bacterial extracellular 
vesicles, targeted therapy
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INTRODUCTION
According to the International Society for Extracellular Vesicles, extracellular vesicles (EVs) are defined as 
“particles naturally released from the cell that is delimited by a lipid bilayer and cannot replicate”[1]. Notably, 
the term “exosomes” is often used as a general description of EVs[2,3]. EVs can transmit a variety of 
biologically active components, such as proteins, nucleic acids, lipids, and metabolites, to affect the 
performance of recipient cells[4-7]. Many studies have found that EVs play an important role in regulating the 
physiological and pathological processes of the body by participating in cell-to-cell communication, cell 
proliferation, cell migration, angiogenesis, and immune regulation[6,8]. Due to their unique nanosized 
structures, loading capacity, biochemical properties, and good biocompatibility, EVs have been widely used 
in various applications in the biomedical field, such as vaccines, cancer agents, and drug delivery 
vehicles[9-11]. Although EVs have shown good potential as therapeutic vehicles, natural EVs were shown to 
have a poor targeting ability in animal experiments, which substantially reduced the therapeutic effect[12,13]. 
Therefore, many engineered methods have been applied to improve the targeting ability of EVs[14-16].

In our previous study, we focused on engineering EVs derived from mammalian cells such as endothelial 
cells[17] and NIH-3T3 cells[18]. Although these engineered mammalian EVs (MEVs) were shown to have an 
excellent targeting ability and therapeutic effect, the low extraction yield (requiring many mammalian cells) 
is still a limiting factor. The current complex and low yield protocols for purification and extraction of EVs, 
such as ultracentrifugation, gradient ultracentrifugation, co-precipitation, size-exclusion chromatography, 
and field flow fractionation, pose a tremendous challenge in the mass production of EVs. Therefore, we 
recently paid more attention to bacterial EVs (BEVs), which can be easily obtained through fed-batch 
fermentation and purification procedures[4,13]. Moreover, according to the latest minimal information for 
studies of extracellular vesicles (MISEV) in 2021, the topic of “nonmammalian EVs, especially BEVs” 
ranked fourth[1]. Although engineered BEVs have also been used in the field of biomedicine[19,20], BEV 
research is less developed than that of MEVs. The number of MEV and BEV studies has increased rapidly in 
recent years (PubMed.gov). In general, MEVs and BEVs are the two most common types of EVs in the 
biomedical field.

Due to the importance of MEVs and BEVs in the field of biomedicine, we focus on these two types of EVs 
and their engineering and applications in this review. Here, to elucidate engineered MEVs and BEVs as 
promising nanocarriers for targeted therapy, we first summarize the biological basis of MEVs and BEVs, 
including different mechanisms of biogenesis, isolation, and characterization. We then present approaches 
for modifying BEVs and MEVs, which are physical engineering (membrane fusion and membrane coating), 
biological engineering [membrane fusion, lysosome-associated membrane glycoprotein 2B (LAMP-2B), and 
CD63], and chemical engineering (covalent reaction and noncovalent reaction), to enhance the targeting 
ability. Finally, we conclude with the application of engineered MEVs and BEVs in targeted therapy of 
tumors (chemotherapy, gene therapy, photothermal therapy, and immunotherapy), brain disease 
[Alzheimer’s disease (AD), Parkinson’s disease (PD), and ischemic stroke], and bone disease [osteoarthritis 
(OA) and osteoporosis (OP)]. This review will help improve our understanding of the importance of MEVs 
and BEVs and thus promote targeted therapy for various diseases.

THE BIOGENESIS OF MEVS AND BEVS
EVs are a general term for nanovesicles with phospholipid bilayer structures secreted by most cells[2,3,21]. EVs 
can be secreted by almost all cells and are widely present in cell supernatants and various body fluids[22]. As 
early as the 1960s, BEVs were first reported in the Gram-negative bacteria Escherichia coli[23-26]. In the 1980s, 
Pan and Harding et al.[27,28]successively observed the release of MEVs in reticulocytes. At this stage, both 
BEVs and MEVs were regarded as “garbage bags” for cells to discharge metabolic waste[29]. In 1996, Raposo 
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et al.[30] found that EVs derived from B lymphocytes can present antigens and activate T lymphocytes to 
participate in the regulation of immune cells. Soon after, EVs that could transfer nucleic acids such as 
mRNA and miRNA were also found in archaea[31,32]. Gradually, researchers discovered that the role of EVs is 
much more than clearance of cell waste; EVs also transmit signals to distant parts of the body, where they 
can affect multiple dimensions of cell life[10]. A detailed description of the mechanisms of MEVs and BEVs 
would provide an important theoretical basis for the treatment of disease.

The biogenesis of MEVs
According to the size, biological characteristics, and formation process, MEVs can be classified into three 
major subtypes: exosomes, microvesicles, and apoptotic bodies [Figure 1A][33]. Exosomes are EVs with a 
diameter of 40-160 nm formed by the fusion of multivesicular bodies (MVBs) and cell membranes. 
Moreover, microvesicles are EVs with a size range of 200-1000 nm in diameter that are directly formed by 
cell membrane budding. Apoptotic bodies are vesicular bodies with larger diameters (500-2000 nm in 
diameter) formed by cell fragmentation during the process of cell apoptosis. Among these subtypes, 
exosomes have received widespread attention due to their sizes, biological composition, and cell-to-cell 
communication ability[10]. Therefore, we use exosomes to represent MEVs in this review.

MEVs are formed by the endosomal system in a process involving three stages [Figure 1A][34]. First, the 
plasma membrane invaginates to form endocytic vesicles, which fuse with each other to form early 
endosomes. Second, early endosomes invaginate again to encapsulate intracellular cargos, forming multiple 
intraluminal vesicles (ILVs), which are further transformed into late endosomes, MVBs. Finally, the MVBs 
fuse with the plasma membrane and excrete their contents into the extracellular space. The formation, 
sorting of cargos, and release of exosomes are a series of finely regulated processes that require the 
participation of many proteins. The formation of exosomes involves proteins such as endosomal sorting 
complex required for transport (ESCRT), transmembrane proteins (CD9, CD63, and CD81), apoptosis-
linked gene 2-interacting protein X (Alix), and tumor susceptibility gene 101 protein (TSG101). Moreover, 
the intracellular transport of exosomes involves the participation of many molecular switches such as the 
RAB GTPase protein and cytoskeletal proteins such as actin and tubulin[35]. In addition, the secretion of 
exosomes requires the participation of SNARE protein complexes and the synaptic binding protein 
family[36]. The protein composition of exosomes can reflect the characteristics of their endosomal origin. In 
different types of cells and body fluids, exosomes all contain the same marker protein molecules, such as 
Alix, TSG101, SNARE, and RAB GTPase, and the transmembrane proteins, CD9, CD63, and CD81[37]. In 
addition to specific protein composition, exosomes also have a special lipid composition. Exosome 
membranes are enriched with cholesterol, ceramide, and sphingolipids[38]. These lipids are also involved in 
the formation and secretion of exosomes. For example, ceramide is involved in the budding of ILVs and 
MVBs[38].

The biogenesis of BEVs
Bacteria are divided into Gram-negative (G-) bacteria and Gram-positive (G+) bacteria based on their 
structure, morphology, and staining properties. Both G+ and G- bacteria can release EVs without energy 
consumption[39,40]. BEVs are EVs with sizes of 20-400 nm in diameter and can be divided into four types: 
outer-membrane vesicles (OMVs), explosive outer-membrane vesicles (EOMVs), outer-inner membrane 
vesicles (OIMVs), and cytoplasmic membrane vesicles (CMVs). The first three EVs are formed by G- 

bacteria, and the latter are formed by G+ bacteria. G+ bacteria produce CMVs by endolysin-triggered cell lysis 
(bubbling cell death) [Figure 1B][26]. OMVs are formed by blebbing of the outer membrane of G- bacteria, 
while OIMVs and EOMVs are released by explosive cell lysis of G- bacteria [Figure 1B][25].
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Figure 1. The biogenesis of mammalian extracellular vesicles (MEVs) and bacterial extracellular vesicles (BEVs). (A) The biogenesis of 
MEVs. (B) The biogenesis of BEVs. Figures were created with Biorender.com.

Similar to MEVs, BEVs are lipid bilayer-enclosed structures containing various biomolecules released by 
cells and are increasingly regarded as the main form of cell-to-cell communication[41-43]. Due to the diversity 
of their contents, BEVs have a key role in bacteria-bacteria and bacteria-host communications. Generally, 
BEVs contain high levels of proteins, nucleic acids, metabolites, small molecules, etc. G- BEVs are enriched 
in periplasmic proteins such as the multidrug efflux pump subunit AcrA and outer membrane proteins such 
as outer membrane protein F (OmpF). Notably, Vanaja et al.[44] used OmpF as a specific (surface) marker 
for E. coli-derived EVs. However, the lack of specific markers is still a challenge in the field of BEVs[39]. 
Moreover, lipids are an important structural component of bacterial cell membranes. The most significant 
difference between G+ and G- BEV contents is lipopolysaccharide (LPS, or endotoxin), which can cause an 
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innate immune response[45]. Knockout of msbB in G- bacteria E. coli for less endotoxic EVs is a common 
approach[15,19,20,46]. Interestingly, the nonpathogenic G- bacteria E. coli Nissle 1917 lacks definite virulence 
factors such as LPS, so it can be used as a probiotic for the treatment of various gastrointestinal 
diseases[47-49]. Due to its easy genetic manipulation and probiotic characteristics, E. coli Nissle 1917 and its 
BEVs are promising candidates for medical engineering. In addition, BEVs have been reported to transfer 
nucleic acids, such as DNA and RNA, into other bacterial cells[50] and mammalian cells, which trigger 
different host immune responses and cellular processes[51,52]. RNA, especially miRNA and siRNA, can be 
protected from degradation through BEVs, which promotes delivery to mammalian cells[53]. BEVs selectively 
package different metabolites depending on the strains. Gujrati et al.[15] reported that the BEVs secreted by 
strains overexpressing melanin (Mel) also contain Mel. These findings indicate the applications of EVs in 
biomedicine.

THE ISOLATION OF MEVS AND BEVS
The isolation and characterization of MEVs and BEVs is an indispensable step for their further application 
in biomedicine. In fact, the isolation of such nanoparticles is generally difficult. MEVs can be derived from a 
variety of biological fluids, such as blood serum[54], breast milk[55], urine[56], tears[57], saliva[58], and sperm[59]. 
However, BEVs are found in many kinds of media, such as LB, MRS broth[60], and BHI broth (which always 
requires porcine mucin for Akkermansia muciniphila)[61]. Therefore, there is a major difference in viscosity, 
which causes difficulties in isolation and purification. Moreover, the amount of sample available for 
isolation is another factor that affects efficiency. Recently, various isolation methods, such as differential 
centrifugation, precipitation, size exclusion chromatography, and magnetic capture, have been established 
based on the differences in size, density, charge, and surface ligands[62-65]. Here, we summarize the most 
commonly used and effective MEV and BEV isolation techniques [Figure 2].

Isolation of MEVs
Ultracentrifugation-based MEV isolation is the gold standard, thus one of the most commonly used and 
reported techniques[66-69]. According to the first large-scale detailed survey of current global MEV isolation 
practices, 81% of researchers used ultracentrifugation (including differential centrifugation) for MEVs 
isolation[68]. Li et al.[67] summarized the use of ultracentrifugation and differential centrifugation to remove 
other impurities in the sample through a combination of different speeds and times to finally achieve the 
isolation of MEVs. Low-speed centrifugation (300-2000 g or 2000-10,000 g) is generally used to remove cells, 
dead cells, cell debris, etc. Ultracentrifugation (100,000-200,000 g) is generally applied to collect MEVs 
[Figure 2B]. In addition, for better purification of MEVs, density gradient centrifugation such as iodixanol 
can be used [Figure 2A]. After the isolation of MEVs, the most commonly used characterization methods 
are transmission electron microscopy (TEM), nanoparticle tracking analysis (NTA), and Western blotting 
(WB)[17,18,70,71]. TEM and NTA are used to show the sizes, shapes, and concentrations of EVs. The 
transmembrane proteins CD9, CD63, and CD81, as well as TSG101, are often used as specific markers in 
WB[17,18,70,71].

Isolation of BEVs
The standard protocol for BEVs purification is to physically separate EVs from cell culture through a series 
of steps [Figure 2B][72-74]. Simply, low-speed centrifugation (2000-10,000 g) is used to remove bacteria and 
their debris in the fermentation broth. Then, a 0.22 μm sterile filter is applied to remove residual bacteria. 
Subsequently, a 100 kDa ultrafiltration membrane is required to remove non-BEV-associated proteins. 
Furthermore, ultracentrifugation and density gradient centrifugation are used together for the separation 
and purification of BEVs. Using the above method, we successfully obtained multiple BEVs, such as EVs 
derived from Lactobacillus rhamnosus GG[4]. Similar to the characterization of MEVs, TEM and NTA are 
common methods used to assess BEVs. The outer membrane proteins OmpA[20] and OmpF[44] are used as 
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Figure 2. The isolation of MEVs and BEVs. (A) The isolation of MEVs. (B) The isolation of BEVs. Figures were created with 
Biorender.com.

specific markers for E. coli-derived EVs. However, many studies involving BEVs do not use WB[15,19,75]. The 
selection of specific markers is still a major challenge in the BEV field.

ENGINEERING TECHNIQUES TO IMPROVE THE TARGETING ABILITY OF MEVS AND 
BEVS
Nanosized EVs have been investigated as therapeutic vehicles due to their loading capacity, low toxicity, 
immunogenicity, and biofunctions[10,76]. However, the poor targeting ability of natural EVs is not conducive 
to therapy. With the introduction of the concept of precision medicine in 2015[77], researchers are 
increasingly investigating the targeting ability of EVs. Targeted delivery could increase the local 
concentration of the therapeutic agent and minimize side effects. Through the addition of a targeting unit 
into the membrane surface of EVs or inside EVs by engineering technology, the therapeutic agent could 
accumulate in specific cells and tissues. Many engineering technologies such as biological engineering and 
chemical modification have been used to modify EVs to enhance their targeting ability. The membrane 



Page 69Liu et al. Extracell Vesicles Circ Nucleic Acids 2022;3:63-86 https://dx.doi.org/10.20517/evcna.2022.04 

surface of MEVs is rich in lipoproteins (such as phosphatidylserine, cholesterol, sphingomyelin, and 
ceramide) and membrane proteins (adhesion molecules, integrins, membrane transport proteins, MHC 
class I/II, tetraspanins, and transferrin receptor)[78]. At present, the targeting engineering of MEVs is 
intensively studied[13,16,66], but research on the targeting engineering of BEVs has just started[15,20]. Their 
similar phospholipid bilayer structure makes most engineering methods universal. Here, we summarize the 
techniques to improve the targeting ability of MEVs and BEVs [Figure 3 and Table 1].

Physical engineering
Physical methods mainly include membrane fusion [Figure 3A] and membrane coating [Figure 3B]. The 
liposome mediated MEVs and BEVs membrane fusion strategy is an important engineering approach that 
endows EVs with specific functional ligands. Liposomes with targeting molecules on the surface can be 
delivered into EVs through membrane fusion. A mixture of MEVs and liposomes incubated at 37 °C for 12 
h could form hybrid nanocarriers. Lin et al.[79] developed MEV-liposome hybrid nanoparticles to accurately 
deliver large plasmids, such as CRISPR-Cas9, into mesenchymal stem cells (MSCs). Similarly, our team 
constructed MEV-liposome hybrid nanoparticles with the ability to target bone through spontaneous 
membrane fusion[18]. Yang et al.[91] reported that virus-mimetic fusogenic MEVs could deliver membrane 
proteins to the target cell membrane by membrane fusion. Gao et al.[92] also developed a virus-mimicking 
fusogenic vesicle with fusogenic proteins that could target sialic-acid-containing receptors on MEVs and 
promote membrane fusion. In addition, the fusion of MEVs derived from different cells and functionalized 
liposomes could be triggered by polyethylene glycol (PEG)[93].

On the other hand, membrane coating is a promising nanotechnology for disease-relevant targeting. The 
biological characteristics of cell membranes endow nanoparticles with broader applications, including 
targeting ability[94]. Various cell types, including mammalian cells (such as red blood cells[95], platelet[96], and 
cancer cells[97]) and bacterial cells[40,98], have been used for membrane sources. The bacterial membrane could 
be used for vaccination because of the immunogenic caused by peptidoglycan and outer membrane 
proteins[99]. Recently, BEV-coated multi-antigenic nano-vaccines have been developed. BEV coating and 
indocyanine green (ICG)-loaded magnetic mesoporous silica nanoparticles (MSN) were developed by Chen 
et al.[80] to regulate antigen presentation pathways in dendritic cells. The in vivo data show that the BEV-
ICG-MSNs vaccine could target lymph nodes from the injection site[80].

Biological engineering
We can use biological engineering to fuse the gene sequence of the protein with the gene sequence of the 
selected membrane protein[75]. The most commonly used methods of biological engineering are LAMP-2B [
Figure 3C][71,83,85,100,101] and CD63 [Figure 3D][86,87,102]. LAMP-2B, a member of the lysosome-associated 
membrane protein family, is the most widely used MEV membrane protein for displaying targeting motifs. 
The N-terminus of LAMP-2B is present on the outer surface of MEVs, and any targeting sequences can be 
added [Figure 3B]. Alvarez-Erviti et al.[83] used EVs derived from dendritic cells containing Lamp2B-RVG 
(neuron-specific rabies viral glycoprotein) to achieve neuronal cell (Neuro-2a) targeting. To obtain 
colorectal tumor (HCT-116) targeting abilities, Liang et al.[84] fused a human epidermal growth factor 
receptor 2 (HER2) affibody to the N-terminus of LAMP-2B. Xu et al.[71] fused peptide E7 and LAMP-2B to 
produce MEVs with the ability to target synovial fluid-derived MSCs. By fusing a chondrocyte-affinity 
peptide with LAMP-2B, Liang et al.[85] generated chondrocyte-targeting MEVs. The transmembrane protein 
CD63 can also be used to display targeting sequences [Figure 3C]. Engineered MEVs with hepatocellular 
carcinoma (HepG2)-targeting ability were developed by expression in 293T cell hosts and gene fusion 
between the CD63 and ApoA-1 sequences[86]. For targeting CD8+ T cells, Kanuma et al.[87] constructed 
engineered MEVs by fusing ovalbumin (OVA) antigen to CD63.
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Table 1. Summary of the techniques to improve the targeting ability of MEVs and BEVs

Methods Target cells/Tissue Ref.

Physical engineering

Membrane fusion Mesenchymal stem cells  
Bone mesenchymal stem cells 

[79] [18]

Membrane coating Lymph nodes
[80]

Biological engineering

LAMP-2B 
 
 

Neuronal cell 
Colorectal cancer (HCT-116) 
Synovial mesenchymal stem cells 
Chondrocyte

[83] 
[84] 
[71] [85]

CD63 Hepatocellular carcinoma (HepG2) 
CD8+ T-cells

[86] [87]

Chemical engineering

Covalent reactions Glioma 
Cerebral vascular endothelial cell

[88] [12]

Noncovalent reactions Hepatoma 22 subcutaneous  
cancer cells 
Cancer cells (SKOV3, HCC-1954)

[89,90] 
 [20]

MEVs: Mammalian extracellular vesicles; BEVs: bacterial extracellular vesicles.

Chemical engineering
Chemical engineering is another common method that allows various ligands to be displayed in the 
membrane by covalent reactions [Figure 3E][103-105] or noncovalent reactions [Figure 3F][106-108]. The most 
applied covalent reactions include click chemistry bioconjugation and aldehyde amine condensation. Click 
chemistry has been the most used method for attaching targeting peptides to the surface of MEVs in recent 
years[12,88,109]. Sulfhydryl groups, widely present in membrane proteins, can react with maleimide by Michael 
addition reaction, which is usually used to selectively modify protein sites. Therefore, various functional 
molecules are added to the surface of MEVs by conjugating sulfhydryl groups. Jia et al.[88] and Tian et al.[12] 
also applied click chemistry to develop targeting MEVs, which have glioma-targeting and cerebral vascular 
endothelial cell-targeting abilities, respectively. In addition, the binding of the anchor peptides CP05 and 
CD63 via covalent bonding is an example of bioconjugation, indicating that engineered MEVs have 
emerging prospects in targeted therapy[103]. Tran et al.[16] reported that the combination of aptamers and 
molecularly targeted MEVs is an intelligent engineering nanovesicle for precision medicine. Moreover, 
MEVs could be conjugated to aptamers by N-ethyl-N’-[3-(dimethylamino) propyl] carbodiimide/N-
hydroxysuccinimide amidation and aldehyde amine condensation reactions[82].

The most commonly applied noncovalent reactions include hydrophobic insertion, multivalent electrostatic 
interactions, and receptor-ligand binding [Figure 3E]. Lipids or amphiphilic molecules can be inserted into 
the lipid bilayer of MEVs, and the hydrophilic part is displayed on the exterior. The hydrophobic insertion 
can be easily accomplished with cells and MEVs at different temperatures. The commercial amphiphilic 
molecule DSPE-PEG can couple with ligands such as aminoethylanisamide (AA)[110], RGD[107,111], folate[112], 
etc., to enhance the targeting ability of MEVs. Multivalent electrostatic interactions and receptor-ligand 
binding are less frequently applied to MEVs. Nakase et al.[113] utilized the negatively charged characteristics 
of MEVs to bind cationic lipids, which promoted the formation of pH-sensitive fusion peptides and MEVs. 
Qi et al.[89,90] constructed targeted and magnetic MEVs by receptor-ligand binding. These researchers 
coincubated reticulocyte-derived EVs (containing transferrin receptors on the membrane surface) and 
transferrin-conjugated multiple superparamagnetic iron oxide nanoparticles. Importantly, Gujrati et al.[20] 
used this method to construct engineered BEVs with an anti-HER2 affibody on the outer membrane 
surface. The engineered BEVs could target and kill cancer cells without nonspecific side effects. Although 
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Figure 3. (A) The procedure to produce hybrid nanoparticles by membrane fusion. Liposomes with targeting molecules on the surface 
can be delivered into EVs through membrane fusion[79]. Copyright 2018 WILEY-VCH. (B) The procedure to produce hybrid 
nanoparticles by membrane coating[80]. Copyright 2020 Ivyspring International Publisher. (C) The fusion of the targeting peptide with 
LAMP- 2B[66]. Copyright 2021 Ivyspring International Publisher. (D) The fusion of the delivery molecule with CD63[81]. Copyright 2018 
Springer Nature. (E) Targeted modification of EVs based on chemical covalent reactions[82]. Copyright 2021 Elsevier. (F) Targeted 
modification of EVs based on chemical non-covalent reactions[82]. Copyright 2021 Elsevier. LAMP-2B: Lysosome-associated membrane 
glycoprotein 2B.

research on BEVs is not as developed as that on MEVs, their membrane structures are similar. Therefore, 
the engineering techniques of MEVs provide a good foundation for the in-depth study of BEVs in the 
future.
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THE APPLICATION OF ENGINEERED MEVS AND BEVS IN TARGETED THERAPY
We summarize above the biogenesis, isolation, and characterization methods of MEVs and BEVs, as well as 
the various engineering methods, and engineered MEVs and BEVs can be used for targeted therapy in a 
variety of tissues. Next, we summarize the applications of engineered MEVs and BEVs with an enhanced 
targeting ability in tumors, brain, and bone diseases [Figure 4 and Table 2].

Cancer
Various natural nanoscale MEVs and BEVs have been applied as drug delivery nanocarriers in cancer 
therapy[125-129]. The engineered targeting MEVs and BEVs show enhanced therapeutic effects for future 
cancer therapy, including chemotherapy, gene therapy, photothermal therapy, and immunotherapy.

Chemotherapy
The treatment of tumor diseases routinely involves chemotherapeutic drugs, but chemotherapy drugs do 
not show specific targeting and have significant cytotoxic side effects, resulting in poor therapeutic effects. 
Targeted drug delivery based on engineered MEVs and BEVs could increase the local concentration and 
minimize cytotoxic side effects, consequently improving efficacy. Tian et al.[100] constructed iRGD-MEVs for 
the delivery of doxorubicin to the breast cancer cell line MDA-MB-231. The chemotherapeutic drug 
doxorubicin was encapsulated in targeting iRGD-MEVs by electroporation technology. Intravenous 
injection of iRGD-MEVs specifically delivered doxorubicin to tumor tissues and resulted in inhibition of 
tumor growth. Qi et al.[89] developed dual-functional (magnetic and targeting ability) MEVs loaded with 
doxorubicin to target hepatoma 22 subcutaneous cancer cells. Dual-functional MEVs enhanced the cancer-
targeting ability under a magnetic field and suppressed tumor growth [Figure 5A]. Similarly, A33 antibody 
functionalized MEVs with doxorubicin were used to target the colorectal cancer cell line LIM1215[114].

Gene therapy
Gene therapy is a strategy to correct or compensate for abnormal gene expression in tumor cells by 
delivering nucleic acids such as siRNAs, miRNAs, etc., to achieve the purpose of treatment, which has 
proven to be a promising cancer treatment approach[130]. Specifically, EVs can protect RNA from 
degradation, which ensures the stability and bioactivity of RNA after targeting cells[131]. Bai et al.[101] reported 
engineered targeting tLyp-1 MEVs for efficient delivery of SOX2 siRNA to HEK293T cells. The engineered 
tLyp-1 MEVs had high transfection efficiency in non-small-cell lung cancer (NSCLC) and a high SOX2 gene 
silencing ability in NSCLC stem cells. Zhao et al.[115] exploited biomimetic CBSA-MEV nanoparticles loaded 
with S100A4 siRNA, which effectively targeted the lung and showed excellent gene-silencing e�ects. 
Moreover, bioengineered BEVs have been used for targeted therapy of tumors. Gujrati et al.[20] constructed 
BEVs with low immunogenicity that can target cancer cells by delivering KSP siRNA [Figure 5B].

Photothermal therapy
The problems of recurrence, drug toxicity, and multidrug resistance are still difficult to overcome with 
traditional surgical intervention, chemotherapy, and gene therapy. Photothermal therapy is a nontoxic and 
noninvasive tumor-targeted treatment method[111,116,132,133]. The combination of engineered bioactive material 
loaded EVs and photothermal therapy is a promising method for cancer therapy. Bose et al.[116] developed 
MEVs loaded with anti-miRNA-21-coated gold-iron oxide nanoparticles (GIONs). MEV-GIONs showed 
strong T2 contrast in magnetic resonance imaging and photothermal effects in breast cancer 4T1 cells. Cao 
et al.[111] constructed Arg-Gly-Asp (RGD) peptide-MEVs coated with vanadium carbide quantum dots. The 
resulting MEVs could target cancer cells and access the nucleus to induce low-temperature photothermal 
therapy, which showed effective tumor destruction. In addition, Mel is highly suitable for photothermal 
therapy due to its good photothermal conversion efficiency[134,135]. Gujrati et al.[15,117] introduced engineered 
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Table 2. Summary of the application of engineered MEVs and BEVs in cancer, brain, and bone disease

Disease/Therapy EV source Ref.

Cancer

Chemotherapy Mouse immature DCs  
Serum 
MDA231/B16F10 cells

[100] 
[89] [114]

Gene therapy HEK293T 
Mouse 4 T1 cells 
E. coli K-12 W3110

[101] 
[115] [20]

Photothermal therapy 4T1/SKBR3/HepG2 cells 
MCF-7 cells 
E. coli K-12 W3110

[116] 
[111] [15,117]

Immunotherapy CAR-T cells 
HEK-293T cells

[118] [119]

Brain

Alzheimer’s disease  
 
Parkinson’s disease 
 
 
Ischemic stroke 

Dendritic cells 
Mesenchymal stem cells 
Dendritic cells  
HEK293T cells 
HEK293T cells 
HEK293T 
Mesenchymal stem cells

[83] 
[120] 
[121] 
[81] 
[122] 
[123] [124]

Bone

Osteoarthritis 
 
Osteoporosis

Mesenchymal stem cells 
Chondrocyte 
Endothelial cells 
NIH-3T3 cells.

[71] 
[85] 
[17] [18]

MEVs: Mammalian extracellular vesicles; BEVs: bacterial extracellular vesicles; EV: extracellular vesicles.

BEVs derived from E. coli W3110△msbB to carry Mel [Figure 6C]. The engineered BEV-Mel is an excellent 
anticancer therapy due to its targeting ability, biocompatibility, and scalability. Importantly, BEV-Mel did 
not induce chronic systemic toxicity or side effects [Figure 5C].

Immunotherapy
Immunotherapy is another promising method in the field of tumor therapy[119,136]. Precision targeted therapy 
with chimeric antigen receptor T (CAR-T) cells is a new type of tumor treatment that has achieved good 
results in clinical tumor treatment. Fu et al.[118] introduced engineered MEVs derived from CAR-T cells. 
CAR-containing MEVs could express many cytotoxic molecules and target and kill cancer cells. Shi et al.[119] 
developed synthetic multivalent antibodies retargeted MEVs (SMART-MEVs), which could specifically 
target CD3-positive T cells and HER-2 breast cancer cells. The SMART-MEVs exhibited valid and specific 
antitumor effects [Figure 5D].

Brain 
In addition to their strong loading capacity, low toxicity, and low immunogenicity, EVs can also cross the 
blood-brain barrier. Therefore, EVs can be widely used as a therapeutic vehicle for brain and 
neurodegenerative diseases[13,137,138]. Here, we summarize the therapeutic effects of engineered targeting EVs 
in brain diseases, such as AD, PD, and ischemic stroke.

Alzheimer’s disease 
AD is a progressive neurodegenerative disease involving the superfluous accumulation of β-amyloid, which 
is produced by the BACE1 protein[139]. Therefore, controlling the expression of the BACE1 protein is an 
effective way to control AD. Alvarez-Erviti et al.[83] described engineered RVG (central nervous system-
specific peptide)-MEVs (derived from DCs) to specifically deliver GAPDH siRNA to neurons, 
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Figure 4. The application of engineered MEVs and BEVs in targeted therapy. The figure was created with Biorender.com. MEVs: 
Mammalian extracellular vesicles; BEVs: bacterial extracellular vesicles.

oligodendrocytes, and microglia in the brain. Mice were injected intravenously with RVG-MEVs, and the 
engineered MEVs resulted in a significant decrease in the expression of BACE1 mRNA and protein 
[Figure 6A]. Cui et al.[120] also demonstrated that intravenously infused RVG-MEVs (derived from MSCs) 
show strong targeting to the cortex and hippocampus, effectively improving learning and memory abilities.

Parkinson’s disease
PD is another progressive neurodegenerative disease that involves the formation of Lewy bodies, which is 
affected by excessive accumulation of α-synuclein (α-Syn)[140-142]. Similarly, decreasing α-synuclein in brain 
cells could delay PD. Cooper et al.[121] delivered α-Syn siRNA by RVG-MEVs (derived from murine 
dendritic cells) to reduce α-Syn accumulation in the brain. Kojima et al.[81] developed MEVs with targeting, 
cytoplasmic delivery capabilities, and specific RNA encapsulation by EV production booster devices. The 
delivery of therapeutic catalase mRNA significantly alleviated neurotoxicity and neuroinflammation in mice 
[Figure 6B]. Liu et al.[122] also modified the membrane surface with the RVG peptide for the targeting ability 
of MEVs, which delivered MOR siRNA to Neuro2A cells in the brain, leading to decreased morphine 
addiction.

Ischemic stroke
Ischemic stroke is a disease caused by cerebral arterial stenosis that releases high-mobility group box 1 
(HMGB1) to the extracellular spaces and results in inflammatory reactions[143]. The knockdown of HMGB1 
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Figure 5. (A) Engineered MEVs for tumor chemotherapy. Schematic illustration of the construction and delivery of doxorubicin loaded 
in MEVs, which show tumor targeting and antitumor effects[89]. Copyright 2016 American Chemical Society. (B) Engineered BEVs for 
tumor gene therapy. Schematic illustration of the construction and delivery of siRNA loaded in BEVs, which show tumor targeting and 
antitumor effects[20]. Copyright 2014 American Chemical Society. (C) Engineered MEVs for tumor photothermal therapy[15]. Schematic 
illustration of the construction of BEV-Mel, which shows tumor targeting and antitumor effects. Copyright 2019 Springer Nature. (D) 
Engineered MEVs for tumor immunotherapy[119]. Schematic illustration of the construction of SMART-MEVs, which show tumor 
targeting and antitumor effects. Copyright 2020 Elsevier. MEVs: Mammalian extracellular vesicles; BEVs: bacterial extracellular 
vesicles; SMART-MEVs: synthetic multivalent antibodies retargeted MEVs. Significance of finding was defined as follows: not 
significant, nsP > 0.05; *P < 0.05; **P < 0.01; ***P < 0.001.

in the brain may be an effective anti-inflammatory strategy to improve ischemic stroke. Kim[123] applied 
brain-targeting RVG-MEVs (derived from HEK293T cells) to precisely deliver HMGB1 siRNA. HMGB1 
siRNA was loaded by electroporation technology. Engineered RVG-MEVs with HMGB1 siRNA successfully 
reduced the expression of HMGB1 protein and apoptosis levels in the brain. In addition, the delivery of 
miRNAs such as miR-124 is involved in the neuro-remodeling process[144,145]. Using this strategy, Yang 
et al.[124] constructed RVG-MEVs to deliver miR-124 to the infarct site and protect against ischemic injury 
[Figure 6C].
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Figure 6. (A) Engineered MEVs for AD. Schematic illustration of the construction of MEVs to deliver BACE1 mRNA with targeting and 
anti-AD effects[83]. Copyright 2011 Springer Nature. (B) Engineered MEVs for PD. Schematic illustration of the construction of MEVs to 
deliver catalase mRNA with targeting and anti-PD effects[81]. Copyright 2018 Springer Nature. (C) Engineered MEVs for ischemic 
stroke.Schematic illustration of the construction of MEVs to deliver catalase miR-124 with targeting and anti-ischemic stroke 
effects[124]. Copyright 2017 Elsevier. MEVs: Mammalian extracellular vesicles. AD: Alzheimer’s disease. PD: Parkinson’s disease. 
Significance of finding was defined as follows: not significant, nsP > 0.05; *P < 0.05; **P < 0.01; ***P < 0.001.

Bone
Bone is an internal support system that provides the structural foundation for the human body and 
muscle[146-149]. The most common bone diseases, such as OA, OP, bone fractures, and bone defects, have 
been linked to MEVs and BEVs[150-153]. The application of engineering techniques to enhance the bone 
targeting ability of EVs has substantially increased their therapeutic efficacy in these bone-related diseases. 
Conventional fractures or bone defects often require biomaterials, such as hydrogels[154-156] and 
scaffolds[157-160], for therapeutic effects. Here, we review the application of targeted EVs in OA and OP.

Osteoarthritis 
OA is a common joint disease with no recognized mechanism[161]. Cartilage degeneration, subchondral bone 
sclerosis, and synovial inflammation are prominent features of OA[162,163]. There are no effective OA 
treatments approved by official agencies, except for joint replacement. Although the precise mechanism of 
OA is still unclear, EVs, especially targeted EVs, play a vital role during the progression of OA, indicating 
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their exciting therapeutic prospects[164]. The small molecule drug kartogenin (KGN) was shown to induce 
synovial fluid-derived MSCs (SF-MSCs) to differentiate into chondrocytes[165-167]. Xu et al.[71] reported the 
targeted delivery of KGN to SF-MSCs by engineered MEVs to accelerate chondrogenesis [Figure 7A]. The 
targeting ability of engineered MEVs is due to E7-Lamp2B. KGN was loaded inside MEVs by 
electroporation. Moreover, miR-140 is regarded as a promising agent for the treatment of OA due to its dual 
roles in both homeostasis and cartilage[168,169]. Liang et al.[85] reported a similar targeted strategy to deliver 
miR-140 to chondrocytes by engineered MEVs to alleviate the progression of OA. The targeting ability of 
engineered MEVs is due to CAP-Lamp2B. miR-140 was also introduced into MEVs by electroporation.

Osteoporosis 
OP is a systemic metabolic disease of the skeletal system characterized by fragility fracture[170-172]. The main 
cause of OP is an imbalance in the metabolism of osteoblasts and osteoclasts. Postmenopausal women suffer 
from osteoporosis-related fractures throughout their lifetime[173]. Bone-targeted EVs are optimal 
interventions to improve postmenopausal OP (PMO). Our group demonstrated that MEVs derived from 
endothelial cells have a better targeting ability than those from osteoblasts[17]. In addition, our team 
developed targeting MEVs by displaying C-X-C motif chemokine receptor 4 (CXCR4) on their surface[18]. 
miR-188 was shown to inhibit osteogenesis of bone marrow mesenchymal stem cells (BMSCs), and the 
knockdown of miR-188 also improved bone loss[174]. Therefore, we combined CXCR4+ with liposomes 
containing antagomir-188 to generate hybrid nanoparticles for OP treatment [Figure 7B].

CONCLUSION AND PERSPECTIVE
Over time, the pivotal role of EVs in cell-to-cell communications, in contrast to their initial roles as 
“garbage bags”, has been established. Nanosized EVs have many advantages, such as rich functional 
contents, a stable membrane structure, good biocompatibility, low immunogenicity, etc. Such cell 
membrane-derived vesicles have been explored in prokaryotic and eukaryotic cells[95,175,176]. As the two most 
common types of EVs in the biomedical field, MEVs and BEVs have been studied, resulting in major 
progress in the biogenesis, isolation, and characterization of these vesicles. For biogenesis, MEVs are formed 
by endosomal systems including sequential plasma membrane invagination and membrane fusion of 
eukaryotic cells. BEVs are generated by endolysin-triggered cell lysis and membrane blebbing of bacteria. 
The isolation and characterization of MEVs and BEVs determine their further application in biomedicine. 
Here, an ultracentrifugation-based isolation protocol is described for MEVs. An effective isolation method 
based on ultracentrifugation and density gradient centrifugation is also described for BEVs. For 
characterization, TEM and NTA are commonly used to characterize the sizes, shapes, and concentrations of 
these vesicles. However, different types of MEVs contain the same protein molecules, such as TSG101, 
CD63, and CD81, which are always used as specific markers by WB. In contrast, although several 
membrane proteins, such as OmpF and OmpA, have been used for the characterization of E. coli EVs, 
specific markers of BEVs are still a major challenge.

The use of MEVs and BEVs also has many challenges, such as poor targeting specificity. Targeted drug 
delivery of EVs was proposed in 2011 and has since received increasing attention due to their excellent 
characteristics[177]. Targeted modification methods have been applied in MEVs and BEVs to increase the 
targeting ability and healing efficacy. Targeted engineering aims to increase the local concentration of EVs 
at diseased sites, thereby reducing toxicity and side effects and maximizing healing efficacy. Both MEVs and 
BEVs are lipid bilayer-enclosed structures containing various biomolecules. Therefore, most engineering 
methods are universal. Here, physical, biological, and chemical engineering methods based on membranes 
to modify MEVs are described, which could also guide the modification of BEVs. Furthermore, the 
applications of engineered MEVs and BEVs in targeted therapy, such as therapy for tumors and brain and 
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Figure 7. (A) Engineered MEVs for OA. Schematic illustration of the construction of MEVs to deliver KGN with targeting and anti-OA 
effects[71]. Copyright 2021 Springer Nature. (B) Engineered MEVs for OP. Schematic illustration of the construction of hybrid 
nanoparticles to deliver antagomir-188 with targeting and anti-OP effects[18]. Copyright 2021 Elsevier. MEVs: Mammalian extracellular 
vesicles; OA: osteoarthritis; KGN: kartogenin; OP: osteoporosis. Significance of finding was defined as follows: not significant, nsP > 
0.05; ***P < 0.0001.

bone diseases, are summarized. MEVs and BEVs with targeting capabilities are usually administered 
systemically intravenously, and they will accumulate at the target site for better therapeutic efficiency. In 
addition to the direct injection, the incorporation of MEVs and BEVs with biomaterials is also a promising 
approach to enhance the healing efficacy[160]. Different types of biomaterials, such as hydrogels[154,178-181] and 
scaffolds[157,159,182,183], have been developed to achieve high retention rates of EVs and healing efficacy of tissue. 
In situ injection is another targeted technique, allowing MEVs and BEVs to act directly at the injured 
tissues. However, some hard-to-reach tissues still require targeted EVs. The many big deals recently by large 
pharmaceutical companies indicate that the industry expects MEVs and BEVs to deliver drugs to hard-to-
reach tissues[184].

Although MEVs have been more extensively studied than BEVs, one of the challenges of MEVs is the 
limited yield. BEVs are easily available due to the rapid proliferative abilities, mature culture methods, and 
gene editing techniques of bacteria[185,186]. In addition, the scalability, low cost, and environmental 



Page 79Liu et al. Extracell Vesicles Circ Nucleic Acids 2022;3:63-86 https://dx.doi.org/10.20517/evcna.2022.04 

friendliness of bacterial fermentation culture indicate that the industrialization of BEVs is possible[187,188]. 
Synthetic biology can also be used to confer additional functions on bacteria and their associated 
BEVs[189,190]. Moreover, several biotherapeutic bacteria, especially human commensal bacteria, such as E. coli 
Nissle 1917[48], A. muciniphila[191], and L. rhamnosus GG[192], are being investigated in clinical trials[193,194]. 
Therefore, BEVs derived from probiotics are promising pharmaceutical agents in the biomedical field. 
Importantly, BEVs are safe because they are cell-free. Both oral and intravenous BEVs were well tolerated 
and resulted in low immunogenic responses[15,19,20]. Therefore, the topic of “nonmammalian EVs, especially 
BEVs” is receiving more attention in the latest MISEV. The mature application system of MEVs can also lay 
a solid foundation for BEVs in biomedical fields. Studies on MEVs and BEVs can inspire each other and 
draw important elements from each type to enhance functional and therapeutic effcacy. Overall, the rise of 
targeted therapeutics of engineered MEVs and BEVs shows promise for future clinical translation of EVs.
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Abstract
Extracellular vesicles (EVs) have been regarded as influential intracellular delivering parcels that possess 
tremendous potential because of their strict and complex secretion regulation processes. However, traditional 
detection methods cannot monitor the secretion of EVs due to their small particle diameters. Inspired by their 
peculiar diverse appearances and lipid membranes ingredients, we developed an innovative strategy to detect EVs 
in any kind of fluids by using rationally designed peptide probes that particularly recognize the highly curved 
surface of EVs. These peptide probes also serve as novel tools to selectively target cancerous cells with specific 
lipid compositions and distributions. With this strategy, we discovered a series of EV-secreting regulation 
mechanisms and identified their roles within physiological processes. Recently, we found that the transportation of 
oligodeoxynucleotides and cell division control protein 42 homolog from TLR9-activated macrophages to naïve 
cells via EVs exerts synergetic effects in the propagation of the intracellular immune response, which suggests a 
general mechanism for EV-mediated uptake of pathogen-associated molecular patterns.

Keywords: Extracellular vesicles (EVs), peptide probe, detection methods
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INTRODUCTION
Microvesicles and exosomes are two subsets of extracellular vesicles (EVs) with diameters of 30-1000 nm[1,2]. 
EVs are secreted by all living cells and then maintained in fluids or taken up by cells after being packed with 
certain proteins, nucleotides, metabolites, etc.[3,4]. The secretion and uptake of EVs are precisely manipulated 
by regulation systems under strict and highly conserved mechanisms for intercellular communication and 
resource exchange in normal physiology[5,6]. Although normal cells use EVs for intercellular 
communications, they also transport molecules that promote disease progression and immune system 
modulation, for instance, in inflammatory autoimmune diseases, cardiovascular diseases, neurodegenerative 
diseases, and cancer[7,8]. Therefore, EVs are currently considered to be promising but underexploited 
potential biomarkers. Large amounts of bioactive molecules such as proteins, DNA, mRNA, microRNA, 
lncRNA, and lipids are found in EVs, rendering them potential biomarkers for the diagnosis of carcinomas, 
cardiovascular disorders, autoimmune disorders, etc.[7,9]. Furthermore, understanding the functions of EVs 
in the physiological environment and disease progression would shed light on EVs’ mechanism as 
biomarkers in these diseases.

Beginning two decades ago, we focused on developing the technology for EV peptides sensing through 
chemical and biological tools. In conducting this work, we have sought to elucidate previously obscure 
regulatory mechanisms of EVs in diverse diseases. Our curvature-sensing biotechnology works by targeting 
protein-lipid interactions. EV-enabled biofluid diagnostics such as our curvature-sensing biotechnology are 
potentially applicable to tumor metastasis and other diseases. Our laboratory has also successfully developed 
several promising peptides and peptidomimetic agent candidates that can sense and induce membrane 
curvature, providing a potential measure of the concentration of exosomes in solution and blood plasma. 
With these tools, we have broadened the horizon for EVs’ diagnostic and treatment functions and 
characterized the relevant machinery that EVs use to influence the onset and progression of diseases.

Curvature and lipid-sensing peptide probes for EV detection
It has been demonstrated that EVs exist in various kinds of body fluids, such as plasma, saliva, urine, breast 
milk, and cerebrospinal fluid, and that biomarkers remain stable inside the EVs because of the protection 
afforded by their lipid bilayers. Conventional diagnostics for cancer, such as biopsy or antinuclear antibody 
tests, have drawbacks, including the invasive nature of biopsies and their limitation in specificity and 
sensitivity. The challenges posed by conventional methods call for a breakthrough to address existing 
technical bottlenecks. Examination of EVs in human bodily fluid may allow for a new method of non-
invasive liquid biopsy and could therefore serve as a pivotal diagnostic tool for various diseases. The 
development of specific, efficient, and minimally invasive probes for the detection of disease biomarkers 
offers a remarkable opportunity for advancing both basic, applied, and clinical research.

Nonetheless, despite the crucial role EVs could play in liquid biopsy developments, there are still problems 
with their efficient isolation. Current techniques for EV isolation, such as size exclusion, ultracentrifugation, 
immunoaffinity, or polymeric precipitation, are tedious, expensive, or have limitations for acquiring 
adequate EV quantities or purity. To deal with these problems, we have designed peptide probes to capture 
EVs by sensing their highly curved membranes and specific lipid compositions, independent of protein and 
oligonucleotide cargoes, thus enabling a paradigm shift from the conventional immunoaffinity approach to 
the universal recognition of ubiquitous phospholipids in EV membranes based on peptide-lipid interactions.

Diagnostic EVs are believed to be superior to some traditional methods in terms of sensitivity and 
specificity. More importantly, they can be collected from and detected in bodily liquids such as blood serum 
and urine, so their extraction is, at the most, minimally invasive[10]. The most recognized standard for EV 
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isolation is ultracentrifugation, but the capital outlay cost of the instrument and the long EV isolation 
process (up to 12 h of continuous centrifugation) prohibit its utility in routine clinical use. New EV-based 
diagnostic kits have been approved by the US Food and Drug Administration for clinical use. However, 
there are still several limitations in exosome diagnostics. The quick, efficient, and effective isolation of EV 
from a bodily fluid sample is a prerequisite for their translation into clinical use[10], as contaminants may 
affect the accuracy of the work. Newly developed techniques such as size exclusion, immunoaffinity, or 
polymeric precipitation are tedious, limited to specific protein recognition, or yield samples contaminated 
with materials that adversely affect downstream analyses. Therefore, developing more efficient and standard 
separation methods for clinical diagnostics is a necessity.

Several proteins or peptides that interact with the membrane bilayer, including but not limited to Bin-
Amphiphysin-Rvs domains[11], Arf-GAP lipid packing sensors[12], synaptotagmin I[13], myristoylated alanine-
rich protein kinase C substrate effector domain (MARCKS-ED)[14,15], and bradykinin (BK)[16], have been 
reported to possess lipid-binding domains. We demonstrated that the C2B loop 3 of synaptotagmin could 
be truncated and cyclized using solid-phase “click chemistry” to recuse its lipid and EV curvature sensing 
properties[13]. MARCKS-ED was investigated via empirical and theoretical processes to elucidate its 
interactions with lipid located in membrane bilayers [14,15], providing insights into the correlation of its 
structure and functions. We further found that the curvature sensing behavior of BK may be due to its 
negatively charged phosphatidylserine (PS) lipid component, which aids in its binding affinity and its lipid 
packing effects in smaller vesicles, and which may even allow for hydrophobic Phe interactions with the 
membrane bilayers. We found that the peptides’ synthetic lipid vesicle binding ability was also translated to 
the detection of EVs, which offers an exciting new direction in the study of cell-derived lipid vesicles that 
carry membrane-protected information for intercellular communications.

Previously, we showed that the monomeric and trimeric forms of BK bind on synthetic nanovesicles and 
EVs, with multimerization yielding an increased binding affinity of up to 7 uM[16]. BK (RPPGFSPFR) is a 
cationic peptide ligand for B1 and B2 G-protein coupled receptors. It is believed that the conformation 
adopted by peptide ligands such as BK is facilitated by interactions with membrane phospholipids prior to 
receptor binding and activation[17,18]. Previous studies reported that this molecule shows differential 
interactions with lipid vesicles[17] and micelles[19] and has a stronger preference for mixtures with higher 
anionic phospholipid composition[17], which makes it an excellent candidate for capturing EVs.

The proline-induced beta-turn orients the arginine residues to a claw-like conformation that is critical for 
lipid recognition and attachment. Since the outer leaflets of EVs are enriched with anionic lipids as a 
consequence of their biogenesis[20,21], it is possible that BK analogs could sense PS-enriched lipid vesicles 
such as EVs and work as capture and isolation agents. Moreover, the rational design of peptides can 
significantly alter the degree of peptide-lipid interactions. Overall, the EV-sensing peptide technique is 
innovative and significant because its successful implementation will offer a new approach for rapid 
isolation of EVs, independent of their biomolecule cargoes, and fulfill an unmet need for a simple, efficient, 
and high throughput EV isolation method for disease diagnosis.

The role of EVs in intercellular innate immune responses
Another research focus in our laboratory has been to decipher the function of EVs in response to immune 
stimuli. Using the above-mentioned chemical biology tools and others to detect and track EVs, we recently 
deciphered the mechanism of innate immunity and pro-inflammatory signaling. Sensing pathogen-
associated molecular patterns and danger-associated molecular patterns is a vital step in innate immune 
responses. Because intracellular innate immunity has already attracted attention, we chose to investigate the 
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Figure 1. Roles of extracellular vesicles (EVs) in the communication between macrophages and propagation of the intracellular immune 
response (this figure is reprinted from Science Advances journal)[22].

role of EVs in intercellular communication and the activation of innate immunity.

Endosomal Toll-like receptors (TLR) are an important family of proteins in innate immune responses 
capable of recognizing foreign nucleic acid sequences and then mediating innate immune responses. In our 
study, aided by real-time tracking of EVs, we showed that EVs transported a DNA ligand, 
oligodeoxynucleotides (ODN), for TLR9 activation, revealing the role of EVs in innate immune 
surveillance[22]. In addition, we found that cellular uptake of EVs is increased upon TLR9 activation, which 
was demonstrated by a biological tool showing real-time EV transfer between cells called the Cre-LoxP 
reporter system[22]. Further, we found that cell division control protein 42 homolog (Cdc42) is responsible 
for the increased cellular uptake of ODN-induced EVs from macrophages. In particular, we found that EV-
carried ODN induced the release of tumor necrosis factor-α (TNF-α) from macrophages, transforming 
Cdc42 into its activated form, which is bound to guanosine triphosphate inside cells and accounts for the 
further uptake of EVs. In this study, we elucidate a new mechanism that facilitates the understanding of the 
positive feedback loop influenced by the uptake of EV protein cargo[22]. Our findings not only shed light on 
a new mechanism via which EVs may shuttle protein to increase their cellular uptake but also point out that 
Cdc42 could be a novel target for developing more efficient therapeutic approaches to regulate EV uptake 
[Figure 1].

Discussion and perspectives
Here, we briefly introduce our previous work using chemical and biological tools to enable EV sensing and 
facilitate the understanding of the functions and mechanisms in EVs’ role in physiological or pathological 
conditions. Moreover, EVs have been characterized and investigated in various diseases including cancer, 
and this work was summarized and discussed in our recent publication[23]. In addition, EVs show great 
potential in drug delivery by acting as a Trojan horse, even penetrating biological barriers such as the blood-
brain barrier. Notably, in the current pandemic situation, EVs have been approved in clinical trials as 
therapeutic entities and are demonstrating great potential in disease treatment, in addition to serving as 
biomarkers. Very soon, EVs may lead to a new era in both the pharmaceutical and biomedical fields, 
affecting mechanisms for the surveillance of disease, drug delivery systems, or even drug development and 
treatment for a variety of diseases.
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Abstract
Cell-secreted extracellular vesicles (EVs) are membranous particles highly heterogeneous in size and molecular 
cargo. Comprehensively, released EV sub-populations can show a wide range and selection of different protein, 
RNA, and lipid species, complementing cell communication signals. Recently, EVs represent a new source for 
developing targeted delivery systems. EVs are stable in biofluids, intrinsically biocompatible with low 
immunogenicity, and capable of transferring cargo molecules into “recipient” cells. The immune-mediated 
recognition represents a popular approach to functionalize and direct EVs towards receptor-positive cell 
populations. The human epidermal growth factor receptor 2 (HER2, also known as neu or ERBB2) is a tyrosine 
kinase of clinical relevance, targeted by several available antibodies, and a model receptor used to test the 
biodistribution and anticancer activity of bioformulations, including EVs. Here, we focus on recent strategies 
adopted for EV functionalization with fusion ligands able to recognize HER2, covering the enhanced expression of 
membrane-fusion proteins in “EV-donor” cells as well as post-isolation EV-surface modifications.

Keywords: Extracellular vesicles, human epidermal growth factor receptor 2 (HER2/ERBB2), EV engineering, fusion 
proteins

INTRODUCTION
The establishment of programmable and versatile delivery systems that could control the dosage of the 
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therapeutic agent in the tumor site and bypass biological barriers represents a current challenge in 
biomedical research. Extracellular vesicles (EVs) can serve as a new biological source for targeted drug 
delivery and the development of nanoparticle-based technologies[1,2]. EVs are cell-secreted membranous 
particles highly heterogeneous in size and molecular cargo. Ranging from nanometer to micrometer scale, 
EVs are classified as exosomes or microvesicles according to the cellular pathways responsible for their 
release from the endosomal system or the plasma membrane, respectively[3]. As cell-derived material, 
secreted EV sub-populations can show a wide range and selection of different species of proteins, RNA, and 
lipids, complementing cell communication signals[4,5,6]. Substantiated by the observed stability in biofluids, 
intrinsic biocompatibility, low immunogenicity, and capacity to convey the cargo molecules into “recipient” 
cells, EVs have been proposed as advantageous delivery vehicles compared to liposomes or other synthetic 
biomaterials[7,8]. For example, EVs were successfully employed in vitro and in vivo for miRNA delivery, 
siRNA-based gene silencing, or shuttling mRNAs encoding for reporter proteins[9,10,11].

The immune-mediated interaction is commonly exploited to direct EVs towards specific membrane 
receptors on the desired cell populations[12]. The family of epidermal growth factor receptors (EGFRs) 
includes well-known functional ligands and clinically relevant biomarkers in solid tumors, such as breast, 
ovarian, and stomach cancers. The proto-oncogene human epidermal growth factor receptor 2 (HER2, also 
known as neu or ERBB2) is a member of tyrosine kinase receptors involved in cell differentiation, 
proliferation, and migration[13]. Overexpression of this glycoprotein can be due to HER2 gene amplification 
or aberrant protein expression in tumor tissues[14,15,16]. Since the secreted EV sub-populations display 
proteins that mirror the plasma-membrane identity of the donor cells, the HER2 receptor has been detected 
in EVs recovered by different methods, from media of cultured cells or the blood of patients with HER2-
positive tumors. Indeed, Nanou et al.[17] (2020) encouraged the screening of vesicular HER2 in clinical 
settings as they found blood circulating EVs extremely informative on the presence of HER2-positive 
primary tumors and proposed them as valuable prognostic factors complementing circulating tumor cells 
(CTCs)[17]. Kim et al.[18] (2020) described a positive correlation between cellular HER2 and receptor 
enrichment in the smallest EV fractions, confirming the presence of HER2 in EVs circulating in breast 
cancer patients with different tumor stages[18]. Vesicular HER2 was also detected in human serum using a 
primary antibody with the same variable region of trastuzumab[19,20], an antibody under clinical use since 
1998 for treating HER2-positive breast cancer patients[13]. Interestingly, Quinn et al.[21] (2021) reported that 
EVs released from cells overexpressing HER2 could horizontally transfer the protein to receptor-negative 
cells, sensitizing them to paclitaxel[21].

Different monoclonal antibodies or fusion moieties have been developed to target the extracellular domain 
of HER2[22], leading to cytostatic effects or cell death when in conjugation with cytotoxic compounds[23,24,25]. 
These moieties were explored for their targeted delivery potential within different bioformulations, 
including unilamellar liposomes loaded with chemotherapy agents[26], gold nanoparticles[27], or silk 
nanospheres[28].

In this review, we summarize the different strategies of EV-functionalization with ligands able to recognize 
the HER2 receptor, including seminal examples designed on EGFR, ranging from the enhanced expression 
of membrane-fusion proteins in EV-donor cells to post-isolation approaches.

STRATEGIES TO FUNCTIONALIZE EVS BY MANIPULATING DONOR CELLS
The manipulation of specific cells conceived as EV-producers is one of the most common strategies adopted 
to enrich vesicle sub-populations with specific surface proteins. This approach finds a rationale, for 
example, with chimeric antigen receptor (CAR)-T cells which can be directed against a tumor-expressing 
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antigen. Indeed, there is evidence that heterogeneous EVs deriving from CAR-T cells, over-expressing an 
anti-HER2 ligand, can penetrate and induce apoptosis in target cells, albeit with a delayed timing compared 
to donor cells[29].

As already demonstrated for the anti-EGFR strategy, donor cells can be used to transiently or stably 
overexpress multi-domain proteins subsequently detected on secreted EVs. These constructs generally 
encode for a receptor transmembrane (TM) domain, a linker, and an antibody-derived targeting moiety. 
This last portion can also be fused with a reporter, such as the green fluorescent protein (GFP)[30]. Leading 
examples of HER2-targeting strategy include the lysosome-associated membrane protein 2b (LAMP2b), the 
platelet-derived growth factor receptor domain (PDGFR TM), and the membrane-associated C1-C2 
domains of lactadherin.

LAMP2b
Limoni et al.[31] (2019) isolated exosomes from HEK293T cells expressing a fusion protein constituted by 
LAMP2b followed by designed ankyrin repeat protein (DARPin) G3, a 14 kDa-engineered peptide targeting 
HER2. The authors observed that the concentration of particles used to treat recipient cells was crucial for 
targeting HER2-positive SKBR3 cells compared to HER2-negative MDA-MB-231 cells. In addition, the 
isolated exosomes were able to deliver siRNAs specifically, ultimately impacting the levels of TPD52 in 
recipient cells[31]. The same group used the construct to transduce bone marrow mesenchymal stem cells 
(MSCs) and isolate exosomes that were electroporated in the presence of doxorubicin (exo-DOX). In this 
case, LAMP2b-DARPin-exo-DOX confirmed a specific targeting profile up to 0.1 μg/μL, while not at 0.2 μg/
μL, and induced death of TUBO cells to a greater degree than free doxorubicin[32].

In the study by Molavipordanjani et al.[33] (2020), radiolabeled 99mTc-DARPins were used to decorate 
exosomes with an affinity for HER2. They tested the uptake ratio of their preparations using SKOV-3, 
MCF-7, U87-MG, HT-29, and A549 cell lines characterized by different levels of HER2 expression. They 
profiled an accumulation of particles proportional to the higher expression of the receptor (SKOV-3 cells). 
The authors also evaluated the biodistribution of their particles injected in normal and SKOV-3 xenografted 
nude mice and reported a high liver uptake at one hour, which gradually decreased at four hours. In 
addition, the intestines and kidneys showed a consistent level of radioactivity, while it decreased in a time-
dependent manner in other tissues, including the spleen, lungs, and blood. The same pattern of biological 
distribution, including accumulation in the tumor site, was observed in the xenografted mice subjected to 
tumor tissue visualization by planar imaging[33].

A LAMP2b-directed fusion protein approach was also adopted by Liang et al.[34] (2020), who fused a HER2-
binding affibody (or antibody mimetic) at the C-terminus with the addition of GFP. They reported the 
complete sequence of the fusion protein, including a flexible peptide linker (GGGGS)3, and exploited 
exosomes to co-deliver oligonucleotides and drugs to HER2-positive colorectal cancer cells. Besides the cell-
targeting properties of the preparations reaching HER2-mcherry-SGC-7901 cells or the tumor in vivo, 
encapsulated 5-fluorouracil (5-FU) together with miR-21 inhibitor nucleotide (miR-21i) were found to be 
more effective than exosomes loaded with either miR-21i or 5-FU alone[34].

PDGFR TM

Another interesting strategy exploited EVs co-expressing CD3 and HER2 ligands to enhance the proximity
of T cells to tumor cells and elicit an anticancer effect in the presence of non-activated human peripheral
blood mononuclear cells (PBMCs) in vivo[35]. In this study, the authors exploited the human PDGFR TM
domain fused to an antibody single-chain variable fragments (scFv) connected by a (GGGGS)3 linker in the
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CD3/HER2 bi-specific chimeric protein. By confirming cellular uptake in vitro, the authors demonstrated 
cytotoxic activity selectively enhanced in HER2-expressing breast cancer cells mediated by T cell activation 
compared with native vesicles still isolated by ultracentrifugation. The same qualitative data were obtained 
using mouse xenografts with no significant effects reported in total body weight or specific organ damage, 
especially liver or kidney[35].

Lactadherin C1-C2 domains
Longatti et al.[36] (2018) transduced HEK293 cells to express anti-HER2 scFvs fused to C1-C2 domains of 
lactadherin, which associate with phosphatidylserine (PS) in exosome fractions. The authors used three 
different scFvs covering a range of high (Kd~15 pM), intermediate (Kd~1 nM), and low (Kd~317 nM) 
affinity for HER2. They compared the different preparations by also varying the HER2 expression level on 
recipient cells, finding that both high-affinity scFv and high receptor expression were parameters positively 
influencing the selective uptake[36]. Another targeting moiety to direct exosomes against the receptor 
consisted of two copies of HER2 ligand still fused to the C-terminal C1-C2 domains[37]. The authors 
reported ELISA experiments showing a four-fold enhanced binding of recovered exosomes compared to 
untargeted ones. In vivo experiments demonstrated a tumor volume reduction of implanted SKOV-3 cells 
upon injection of targeting exosomes carrying a HER2-downregulating miRNA[37]. The lactadherin C1-C2 
domains fused to anti-HER2 scFv were used by Forterre et al.[38] (2020) to deliver prodrugs that exert 
cytotoxic activity in recipient cells. The authors showed a near-complete growth arrest of human HER2-
positive breast cancer xenografts upon systemic administration in athymic mice, with no reported injury to 
other tissues and absence of “off-target mRNA delivery”[38].

STRATEGIES TO FUNCTIONALIZE EVS POST-ISOLATION
Since biochemical strategies focused on HER2 emulate approaches already presented for targeting EGFR, 
we include the most recent post-isolation designs to direct vesicles against EGFR. Seminal approaches 
include the use of lactadherin C1-C2 domains, protein ligation, and antibody-receptor binding.

In the study by Kooijmans et al.[39] (2016), the nanobody EGa1 was conjugated to PEG-phospholipid 
micelles, subsequently incorporated into EVs, and then purified by size-exclusion chromatography. The 
authors reported that PEGylation increased circulation time in the blood of tumor-bearing mice and 
presented this method as a versatile tool to increase the stability of targeting EVs[39]. A different study 
followed in 2018 and reported EVs decorated with C1-C2 fusion proteins[40]. The authors expressed in 
HEK293 a fusion protein connecting the EGa1 sequence to the PS-binding domains of lactadherin (C1-C2) 
via a GGGS2 linker. The EGa1-C1-C2 protein was generated together with R2-C1-C2 protein as a negative 
control, and the native recombinant proteins were purified from cell culture media, still retaining binding 
activity. The final preparation was obtained by incubating fusion proteins with PS-bearing EVs following 
the nanobody:EVs ratio of ng:µg. Exosomes isolated from red blood cells (RBCs) and mouse neuroblastoma 
cells were reported to maintain their size and integrity after decoration with the fusion proteins. The 
authors showed enhanced specific binding (incubation at 4 °C for 1 h) and uptake (incubation at 37 °C for 4 
h) by receptor-positive cells[40].

Wang et al.[41] (2018) provided an example of enzyme/prodrug therapy mediated by targeted EVs. They 
designed a chimeric protein containing a high-affinity anti-HER2 scFv antibody fused to lactadherin C1-C2 
domains. To engineer EVs, they showed that post-isolation incubation of EVs from HEK293 with the 
protein alone was more efficient than HEK293 transfection with the plasmid encoding for the protein. They 
showed that the PKH26-labeled targeted EVs could bind to HER2-positive cells with a selective cytotoxic 
profile in vitro when combined with the mRNA of the enzyme responsible for the prodrug activation. In 
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addition, their preparations inhibited HER2-positive tumor xenografts growth in mice[41].

Other authors exploited the protein ligase OaAEP1 to conjugate a biotinylated EGFR-targeting peptide 
(Biotin-YHWYGYTPQNVI-GGGGS-NGL)[42] to EVs recovered from human red blood cells (RBCEVs)[43]. 
They proved an increased internalization of functionalized EVs in EGFR-positive cells after 2 h of 
incubation at 37 °C. The authors performed a similar enzymatic ligation to conjugate RBCEVs with an α-
EGFR camelid biparatopic nanobody (VHH) and reported the importance of a linker peptide with the ligase 
binding site at the C-terminus (GGG-Myc-GLPETGG), necessary as a bridge to reduce the steric hindrance 
between the VHH and the RBCEV surface. In vivo experiments with immunodeficient NOD scid gamma 
(NSG) mice bearing luciferase-mCherry-H358 lung tumors demonstrated that tail vein-injected EVs 
preferentially accumulated in the lung, as expected, as compared to the liver, and enhanced the effect of 
paclitaxel, pre-loaded through sonication[43].

Focusing directly on the HER2 receptor, Sato et al.[44] (2016) produced hybrid particles through membrane 
fusion between exosomes derived from a mouse macrophage cell line and liposomes after up to 10 freeze-
thaw cycles. They used zwitterionic, cationic, or anionic lipids to explore different lipidic compositions and 
found that exosomes from mouse fibroblast sarcoma cells, overexpressing HER2, maintained the receptor 
expression after fusion with PEGylated anionic lipids. These preparations showed increased uptake in HeLa 
cells[44].

A different approach was proposed by Barok et al.[45] (2018), who decorated exosomes from HER2-positive 
cancer cells with the antibody–drug conjugate trastuzumab emtansine (T-DM1). They isolated EVs from 
the secretome of several HER2-positive cancer cell lines and incubated them with T-DM1 (25 ug/mL at 4 °C 
for 30 min). Confocal microscopy imaging showed that EV preparations, exposed overnight, preferentially 
entered HER2-positive cells, inhibiting proliferation and inducing caspase activation[45].

CONCLUSION
EVs represent a valuable source in liquid biopsy studies as cargo of clinically relevant biomarkers, including 
HER2 and EGFR. Recent reports also indicate that EVs decorated with anti-HER2 ligands hold promise for 
targeted therapy, expanding the repertoire of nanoparticle-based technologies[46].

In Figure 1, we summarize the pre- and post-isolation strategies thus far presented to direct EVs against 
HER2/EGFR receptors. The lactadherin C1-C2 domains emerged as the most versatile system used either in 
pre- or post-isolation strategies. However, we could not determine comparative relationships based on the 
yield of specific EV sub-populations, relative in vitro and in vivo stability, HER2-binding efficiency, or 
tissue-specific EV internalization rates. Table 1 highlights the liquid biopsy studies reporting the detection 
of blood circulating HER2-positive EVs in breast cancer patients and the outcomes described in preclinical 
models with the corresponding targeting strategy. In xenograft studies, the LAMP2b- and lactadherin C1-
C2-based strategies effectively inhibited tumor growth with a certain degree of tissue specificity.

Considering the qualitative proof-of-principles reported with both in vitro and in vivo models using cell-
secreted EVs, the preparation of the vesicle suspension represents a relevant aspect. A repeatable and 
homogenous suspension of the bioformulation is a crucial requirement to develop EV-based 
nanotechnologies. On the one side, we cannot exclude that the high heterogeneity of cell-secreted EVs could 
be directly responsible for their stability in circulation or the biological effects exerted in recipient cells due 
to a sort of induced “parallel, cumulative signaling/internalization”. On the other side, technical challenges 
exist in establishing single-step, multi-parametric methodologies that efficiently separate vesicle sub-
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Figure 1. Strategies for EV targeting against HER2/EGFR. Pre-isolation strategies (A): manipulation of EV-producing cells to enrich 
targeting proteins in EVs. TM proteins (LAMP2b), TM domains (PDGR, transferrin receptor), or membrane-associated domains (C1-C2 
of lactadherin) are exploited to anchor the targeting moieties to the EV membrane. Post-isolation strategies (B): EVs are directly 
functionalized by incubation with nanobodies or targeting peptides alone or fused to membrane-associated domains (C1-C2 of 
lactadherin). Post-isolation modifications also include the fusion of EVs with micelles or liposomes, forming hybrid particles. Both pre- 
and post-isolation approaches include scFvs, affibodies, nanobodies, DARPins, or peptides as targeting moieties. The figure was partially 
created on www.biorender.com.

influences the EV up/intake, or the advantages conferred by specific linkers. In this regard, the presence of 
linkers of different lengths that confer distance and flexibility to the targeting moiety on the EV surface has 
been evaluated in synthetic immunoliposomes[26] as well as engineered EVs, favoring the particle 
uptake[43,34,40]. Nevertheless, the storage, freezing cycles, and potential cryopreserving agents could be 
relevant to correlating morphological changes and quality of proteins/RNAs with bioactivity[47,48].

We believe these are fundamental aspects contributing to the development of promising routes for 
establishing EV-based, innovative delivery systems.
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Abstract
Mesenchymal stem cells-derived extracellular vesicles (MSC-EVs) have noticeably attracted clinicians’ attention in 
treating ocular diseases. As the paracrine factor of MSCs and an alternative for cell-free therapies, MSC-EVs can 
be conveniently dropped over the ocular surface or diffused through the retina upon intravitreal injection, without 
increasing the risks of cellular rejection and tumor formation. For clinical translation, a standardized and scalable 
production, as well as reprogramming the MSC-EVs, are highly encouraged. This review aims to assess the 
potential approaches for EV production and functional modification, in addition to summarizing the worldwide 
clinical trials initiated for various physiological systems and the specific biochemical effects of MSC-EVs on the 
therapy of eye diseases. Recent advances in the therapy of ocular diseases based on MSC-EVs are reviewed, and 
the associated challenges and prospects are discussed as well.

Keywords: Mesenchymal stem cells, extracellular vesicles, ophthalmic diseases, therapy

INTRODUCTION
Mesenchymal stem cells (MSCs) are a heterogeneous population of stromal stem cells that can be isolated 
from various tissues, including bone marrow, adipose tissue, umbilical cords, and even urine[1]. Recently, 
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MSCs have been extensively recognized as an experimental and therapeutic tool spanning from 
physiological regulation to organ remodeling, due to their superiority in low antigenicity and 
tumorigenicity[2-3]. When the term “Mesenchymal Stem Cell” was searched on ClinicalTrials.gov, more than 
1000 clinical trials could be retrieved, which were directly associated with various diseases, suggesting the 
great potential of the mentioned term in regenerative medicine.

The roles of MSCs may include straight differentiation into target cells to replace injured tissues and 
generate various bioactive substances including extracellular vesicles (EVs), especially nano-sized 
exosomes[4,5]. EVs are generally classified as exosomes (30-150 nm) formed inwardly during the maturation 
of multiple vesicle endosomes[6-7], microvesicles (50-1000 nm) directly shed from plasma membrane, and 
apoptotic bodies (1000-5000 nm) released by dying cells[8,9] [Figure 1A]. However, due to the overlapping 
size range and the lack of specific markers, current “exosome” preparations are a mixture of EVs with 
undefined biogenesis origin and undetermined purity. According to the MISEV2018 position paper from 
ISEV[10], in this review, we use the term “MSC-EVs” to describe the MSC-derived exosomal preparations. 
EVs are released from living cells and can be found in almost all body fluids, including blood, urine, breast 
milk, tears, saliva, vitreous fluid, and aqueous humor[11-14]. The top two most studied body fluids are still 
blood and urine observed in 143 clinical trials [www.clinicaltrials.gov (Accessed: August 2021)] [Figure 1B]. 
These nanoparticles carry plenty of bioactive molecules, such as proteins, lipids, RNAs [messenger RNAs 
(mRNAs), circular RNAs (circRNAs), small RNAs (sRNAs), long non-coding RNAs (lncRNAs)], and 
DNAs [genomic DNA (gDNA), complementary DNA (cDNA), and mitochondrial DNA (mDNA)][15-19] that 
are delivered to recipient cells mediating intercellular response. Compared with MSCs, EV-based 
therapeutics have shown unique advantages, including cell-free therapy, large-scale EV production, low 
immunogenicity, and high bioavailability, making these vesicles possible drugs in treating various diseases 
(e.g., eye diseases).

The human eye has a localized array of surface molecules and cytokines, and it is a sensory organ that reacts 
with visible light and enables us to use visual information for various purposes[20-22]. The intercellular 
signaling pathway is critical to maintaining the homeostasis of the intraocular microenvironment. EVs from 
both non-immune and immune cells play important roles in immune regulation[23]. At present, for the 
visual system, researchers have mainly concentrated on the application of EV-based therapeutics in a variety 
of ocular diseases, such as physical injuries, immune-related diseases, and other eye diseases. These 
nanoparticles migrate to injured or inflammatory sites, releasing genetic materials or proteins to repair 
damage by participating in signaling pathways[24-29]. As a new model of cell-free therapy, EVs have been 
evaluated in preliminary clinical trials and have shown great efficacy[30]. In addition, EV-associated products 
have also been applied in the treatment of ocular diseases[31,32]. With the continuous exploration of the 
physical and chemical properties and functions of the EVs, these naturally occurring nanoparticles have 
been feasibly applied to clinical medicine.

The present review aims to assess the biological characteristics of MSC-EVs and consider novel methods for 
EV isolation. More importantly, the translational application of MSC-EVs in eye diseases and the current 
challenges are discussed.

MSC-EVs
Secretion of the cells in the form of EVs was traditionally considered as unimportant waste material, cellular 
“garbage bags”, or dust particles, while it was later found that these nano-vesicles are vital messengers and 
participate in diverse physiological and pathological processes, such as bone tissue regeneration[33], tumor 
defense[34], nerve signal transmission[35], endothelial cell migration[36], and immune tolerance[37], as 
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Figure 1. Illustration of biogenesis of EVs and MSC-EVs for ocular therapy. (A) EVs mainly include microvesicles, apoptotic bodies, and 
exosomes based on their biogenesis. (B) EV sources and the proportion of EV sources derived from 143 clinical trials 
[www.clinicaltrials.gov (Accessed: August 2021)]. (C) MSC-EVs, which are used for ocular therapy, are associated with the 
mechanisms of cell proliferation, angiogenesis, immunoregulation, and miRNA-dependent regulation. EVs: Extracellular vesicles; MSC-
EVs: mesenchymal stem cells-derived EVs; ILVs: intraluminal vesicles; MVB: multivesicular body; RGC: retinal ganglion cells; VEGF-A: 
vascular endothelial growth factor A; M2: macrophage of type 2; T cells: thymus-dependent lymphocyte; Th cells: helper T cells; 
miRNA: microRNA.

summarized in Table 1. The paracrine effect of MSCs was first described by Haynesworth et al.[51], who 
reported the synthesis and secretion of various growth factors, chemokines, and cytokines by MSCs. In 
2009, Bruno et al.[52] demonstrated that microvesicles derived from MSCs may activate a proliferative 
program in surviving tubular cells after injury via a horizontal transfer of mRNAs. MSC-EVs were first 
fractionated with a particle size of 55-65 nm by high-performance liquid chromatography. In total, 857 
related proteins and 151 microRNAs (miRNAs) of MSC origin have been detected by mass spectrometry, 
antibody array technology, and microarray analysis[53,54]. Besides, among the functional elements of these 
EVs, the roles of miRNAs in EV-based therapeutics have been widely investigated[55-57]. We mainly 
summarize several mechanisms achieved by recent studies, including proliferation, angiogenesis, 
immunoregulation, and miRNA-dependent activity [Figure 1C].

Preparation and modification of EVs
The important role of EVs in the diagnosis, prognosis, and regeneration of diseases promotes the 
development of EV isolation techniques. As EVs are nanoparticles and originate from a complex fluid 
environment, obtaining homogeneous and high purity therapeutic EVs remains a great challenge. The 
current methods for isolating EVs are mainly based on physical (size and density) and chemical (affinity) 
properties, as well as immunoaffinity chromatography (combining the use of liquid chromatography with 
the specific binding of antibodies)[58-60]. However, the most ubiquitous adopted method for EV preparation 
is still dominated by ultracentrifugation (UC). Methods based on micromachining technology, due to label-
free processing, cost-effectiveness, and amenability to automation, have emerged as a promising method for 
label-free EV separation. Inglis et al.[61] designed and implemented theoretical models for the critical particle 
size of fractionation in deterministic lateral displacement (DLD) separation arrays, aiming to provide a 
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Table 1. Summary of the mechanisms and applications of the MSC-derived EV therapies

Application Disease model EV source Dose Effector molecule

Nephrectomy UMSCs 10 μg Proteins: ANG-1, etc[38]

Renal ischemia reperfusion hP-MSCs 100 μg miRNA let-7a-5p[39]

Tissue regeneration

Calvarial bone defect BMSCs 5 × 108 particles Protein:  
BMP2[40]

Metastatic lung nodules AD-MSCs 2.32 × 109 particles miR-101[41]

Gastric cancer UMSCs 64 μg Protein:  
L-PGDS[42]

Tumor defense

LC BMSCs 50 μg Protein: caspase 3[43]

Sciatic nerve transection UMSCs 100 μg Protein:  
IL-10, etc[44]

Brain injury BMSCs 200 μL (unknown) miR-140-5p[45]

Nerve injury

AD BMSCs 30 μg miR-29c-3p[46]

Angiogenesis OM-MSCs 50 μg miR-612[47]Endothelial cell migration

Myocardial ischemia DPSC 3.5 × 1010 particles miR-4732-3p[48]

Knee osteoarthritis SMSC 5 μL (unknown) miR-31[49]immunoregulation

Chronic asthma UMSCs 40 μg miR-146a-5p[50]

EV: Extracellular vesicle; UMSCs: Umbilical cord-derived mesenchymal stem cells; ANG-1: angiopoietin-1; hP-MSCs: human placenta-derived 
MSCs; BMP2: bone morphogenetic protein 2; AD-MSCs: adipose tissue-derived mesenchymal stromal cells; L-PGDS: lipocalin-type prostaglandin 
D2 synthase; LC: lung carcinoma; AD: Alzheimer’s disease; OM-MSCs: olfactory mucosa MSCs; DPSC: dental pulp-derived MSC; SMSC: synovial 
MSC.

theory and experimental measurements for critical conditions. Wunsch et al.[62] applied this technique to the 
true nanoscales, where they could function in EV separation, such as exosomes. This study revealed a 
potential for the on-chip sorting of these nanoparticles. For fast EV enrichment, a technology that integrates 
1024 nanoscale DLD (nano-DLD) arrays on a single chip allows parallel processing to reach 900 μL/h[63]. 
Moreover, compared with other methods, including UC, UC plus density gradient, size-exclusion 
chromatography, and co-precipitation, the chip showed a superior efficiency. Recently, our team reported a 
novel exosome detection method via the ultrafast-isolation system (EXODUS) that allowed automated 
label-free purification of exosomes from various biofluids[64]. We also reported a size-based EV isolation 
tool, namely ExoTIC, to efficiently isolate EVs from small sample volumes, providing an analytical tool for 
preclinical studies[65]. These techniques are advantageous for the standardized preparation of MSC-EVs and 
can accelerate the clinical translation of MSC-EVs.

The massive production of MSC-EVs is another research hotspot for the cell-free treatment model. To 
expand the clinical translation of MSC-EVs, the methods used for large-scale production of EVs with a 
good manufacturing practice (GMP) level are necessary. To date, the efficiency of EVs has been improved 
by changing the culture method of donor cells, such as three-dimensional (3D) environmental culture[66-68]. 
Natural extracellular matrix and 3D biological scaffolds were used for cell attachment, cell growth, and 
production of functional EVs[69]. Using the 3D spheroid culture method based on photolithography and 
micro-pattern technologies, gene expression profiles of MSCs were confirmed with a high differentiation 
efficiency[70]. Cone et al.[71] assessed the potential therapeutic effects of EVs from a 3D culture of bone 
marrow-derived MSCs (BMSCs) in an Alzheimer’s disease (AD) model, and it was revealed that intranasally 
administration of MSC-EVs ameliorated pathology and cognitive deficits of AD. Mend et al.[72] reported a 
bioreactor-based and clinical-grade production of engineered exosomes with the ability to target oncogenic 
KRAS. The clinical-grade product was tested in multiple in vitro and in vivo experiments to confirm the 
feasibility of various therapies for human diseases.
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In addition to natural EV agents, the development of different modifications of MSC-EVs may provide new 
approaches for gene therapy and drug delivery. Exogenous nucleic acids, such as miRNA, siRNA, DNA 
carrier, and DNA probe, are loaded into EVs by electroporation, accompanied with favorable 
biocompatibility and biostability. For instance, the engineered MSC-EVs can serve as a promising anti-
osteoporosis therapy via loading Shn3 gene-targeted siRNA[73]. Angiopep-2 (Ang) is a ligand that binds 
specifically to the lipoprotein receptor-related protein 1 receptor and improves the high efficiency of 
transport across the blood-brain barrier (BBB)[74-76]. Several scholars designed a multifunctional exosome-
mimetics decorated with Ang and load docetaxel for anti-glioblastoma therapy[77]. This personalized 
approach also achieved the purpose of targeted therapy.

Overall, with the advances of nanomedicine in molecular cell biology, pharmaceutical science, and nano-
engineering[78], higher requirements for engineering transformation of MSC-EVs are demanded, especially 
standardized production and storage of MSC-EVs.

EV-based therapeutics
EVs have been extensively studied in clinical trials. A statistical analysis of 143 EV-dependent clinical trials 
was performed, and significant conclusions were obtained, as shown in Figure 2 [www.clinicaltrials.gov 
(Accessed: August 2021)]. The majority of clinical studies are conducted in the United States and China, 
and respiratory, tumor, and gland-related diseases were research hotspots [Figure 2A and B]. Based on 
research purposes, we divide all studies into four groups, which are followed by diagnosis, monitoring, 
treatment, and mechanisms [Figure 2C]. Then, we calculate the percentages of EVs involved in 108 studies 
that are mainly related to exosomal RNAs and proteins [Figure 2D]. Treatment-related research accounted 
for 15% of all items, which are mostly derived from MSCs [Figure 2E]. As shown in Figure 2F, most clinical 
trials are still in the infancy stage. At present, therapeutic vesicles are widely used in cardiovascular and 
cerebrovascular diseases, respiratory diseases, neurological diseases, cancer, and bone regeneration by 
affecting cell cycle arrest or apoptosis[79-84]. As a good example of the application of EVs in bone 
regeneration, osteoarthritis (OA) is a joint degenerative disease characterized by synovial inflammation and 
articular cartilage damage. The treatment of OA mainly depends on surgery and drugs. Several studies have 
shown that EVs maintain homeostasis and improve the severity of osteoarthritis pathologically through 
local and distal intercellular and intracellular signaling pathways[84-86]. In a rat model of glucocorticoid-
induced femoral head necrosis, human umbilical cord-derived MSC-EVs (UMSC-EVs) could reduce the 
apoptosis of bone cells through the miR-21-PTEN-AKT signaling pathway[87].

MSC-EV-BASED THERAPY FOR OPHTHALMIC DISEASES
Corneal disease
Corneal disease is the major cause of vision loss, which may be caused by several clinical conditions, 
including physical trauma, chemical burns, infections, limbal stem cell defects, age-related degeneration, 
and corneal malnutrition[26]. Although corneal transplantation has made significant progress in the past 
decade, there are still problems, such as few donors, immune rejection, and long-term use of 
immunosuppressant agents[88,89]. The role of MSCs in corneal regeneration therapy can be directly attributed 
to cell replacement[90] and delivering targeted biomolecules[91-94]. Several scholars attempted to incorporate 
hydrogel with exogenous recombinant human stromal cell-derived factor-1 alpha for corneal epithelial 
regeneration[95]. EVs have a promising prospect of therapeutic applications, as they inherit parental cell-
derived molecules. Thus, MSC-EVs have also been applied in the therapy of corneal disease.

Many studies have confirmed the therapeutic efficiency of MSC-EVs for eye diseases including corneal and 
retinal models in vitro and in vivo, as presented in Table 2. Overall, tissue sources of MSCs for ocular 
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Table 2. Studies on the therapy of ocular diseases using MSC-EVs

Position EV 
source

Administration 
route/dose Results Effector 

molecule

BMSCs Viscoelastic gel 
carrier/unclear

Enhance HCECs proliferation and wound healing; reduce scar formation, 
neovascularization, and hemorrhage

Unclear[96]

BMSCs Co-culture/unclear Induce proliferation and migration of damaged HCECs; inhibit cell apoptosis Unclear[97]

ADSCs Topical 
administration/unclear

Promote proliferation and migration of HCECs, reduce inflammatory 
cytokine levels, polarize infiltrating macrophages toward M2

Unclear[98]

CSSCs EVs drop/5.0 × 106 
particles

Accelerate wound healing Unclear[99]

CSSCs Topical fifibrin  
gel/1 × 107 particles

Decreased expression of fibrotic genes Col3a1 and Acta2, blocked 
neutrophil infiltration

miRNA[100]

ADSCs Co-culture/1.61 × 1010 
particles

Toxicological testing Unclear[101]

Cornea

BMSCs Co-culture/unclear facilitate wound healing Unclear[102]

UMSCs IV/2.5 μg Inhibition of MCP-1 MCP-1[28]

BMSCs IV/3 × 109 particles Through miRNA dependent mechanisms miRNA[56]

UMSCs Tail vein/55 μg MiR-126 expression and downregulating the HMGB1 signaling pathway miR-126[103]

ADSCs IS/unclear Delivering microRNA-222 acts as mediators in retinal tissue repair miRNA-
222[104]

BMSCs IV/4 × 109 particles Reduce neuroinflammation and neuronal apoptosis Unclear[105]

BMSCs Tail vein/30 μg Inhibit activation of antigen-presenting cells and suppress the development 
of Th1 and Th17 cells

Unclear[106]

UMSCs IV/0.05 μg Ameliorate retinal injury via downregulation of VEGF-A Unclear[107]

UMSCs IV/1 × 109 particles Promoting the RGCs survival and glia cells activation Unclear[108]

BMSCs IV/1 × 109 particles Preserving RGC numbers and protecting against axonal degeneration Unclear[109]

Retina

ES-MSCs IO/15 μg Improved Brn3a+ RGCs survival and improved cognitive visual behavior Unclear[110]

MSC-EVs: Mesenchymal stem cells-derived extracellular vesicles; BMSCs: bone marrow-derived MSCs; HCECs: human corneal epithelial cells; 
ADSCs: adipose tissue-derived mesenchymal stem cells; CSSCs: corneal stromal stem cells; IV: intravitreal injection; UMSCs: umbilical cord-
derived MSCs; IS: intravenous subconjunctival; RGCs: retinal ganglion cells; ES-MSCs: embryonic stem cell-derived MSCs; MCP-1: monocyte 
chemoattractant protein-1; HMGB1: high mobility group 1; IO: intravenous.

diseases mainly originate from human corneal stroma, bone marrow, umbilical cord, and adipose tissues. 
In-depth analysis and generalization of the mechanism of MSC-EVs for corneal disease can be summarized 
in the following aspects: (1) MSC-EVs enhance the proliferation of human corneal epithelial cells (HCECs) 
and promote the migration of HCECs after corneal disease[96-98]; (2) MSC-EVs reduce scar formation, 
neovascularization, and hemorrhage after corneal disease[96,97,99]; (3) MSC-derived products decrease the 
levels of inflammatory cytokines, such as interleukin (IL)-1β, IL-6, and IL-10[98]; (4) MSC-EV-based 
treatment can inhibit neutrophil infiltration and polarize M2 macrophage infiltration[98,100]; and (5) MSC-
EVs depress the expression levels of fibrotic genes (Col3a1 and Acta2) and serve as a delivery vehicle for 
miRNA in blocking corneal scarring blocking scarring and initiating regeneration after wound healing[100].

EV-encapsulated natural lipid bilayers were considered as a good carrier to protect miRNAs from 
degradation. The differences in certain miRNA or miRNA expressions of EVs showed the diversity of 
receptor phenotypic regulation by non-coding RNA[111-113]. To elucidate the molecular mechanisms of EVs in 
the treatment of corneal wounds, researchers have performed numerous cutting-edge experiments. Using 
small-interfering RNAs (siRNAs) to knock down the mRNA of ESCRT protein Alix resulted in a reduction 
of 85% of EV miRNA; thus, EVs lacking miRNA lost their regeneration function[100]. The finding indicates 
that miRNA is a key adjustable molecule for EVs to exert restorative effects. Some studies have concentrated 
on the exosomal miRNA functions (i.e., regulating angiogenesis and anti-fibrotic immunosuppressive 
agents)[114,115], suggesting that miRNAs play an important role in maintaining homeostasis. Moreover, the 
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Figure 2. The progress of 143 clinical trials involving EVs worldwide [www.clinicaltrials.gov (Accessed: August 2021)]. (A) The number 
of studies on EVs by physiological structure. There are 22 categories according to the body structure in 143 studies. (B) The number of 
studies on EVs is classified according to country and project progress status. According to country classification, 27 countries 
participated in the 143 studies on exosomes, and there are nine research statuses in 143 studies. (C) The percentage is presented based 
on the research purpose. There are four different directions of EV-based research, including diagnosis, treatment, monitoring, and 
mechanism. (D) The contents of EVs were evaluated in 108 studies. Others were used to illustrate an unclear description. (E) The 
proportion of cell sources used for the treatment with EVs in 42 studies. There are nine therapeutic sources of EVs, mainly originating 
from MSCs. (F) According to the definition presented by the US Food and Drug Administration (FDA), the number of studies in each 
clinical trial stage is shown. “Not Applicable” is used to describe trials without FDA-defined phases. EVs: Extracellular vesicles; MSCs: 
mesenchymal stem cells.

miRNA expression profiles are variable in different cell types, which were mainly reflected in the number 
and category[116].

The therapeutic potential of MSCs can be related to cultivation conditions and cellular microenvironment. 
The influences of two-dimensional (2D) and 3D culture conditions on the therapeutic efficacy of MSC 
secretomes on corneal wound healing were studied with in vitro cell and organ culture experiments[84]. 
Notably, the secretomes from the MSC 3D environment facilitate wound healing in corneal fibroblast cells 



Page 109 Liu et al. Extracell Vesicles Circ Nucleic Acids 2022;3:102-17 https://dx.doi.org/10.20517/evcna.2022.08

and enhance epithelialization. Ha et al.[101] conducted a toxicological evaluation of exosomes derived from 
human adipose tissue-derived mesenchymal stem cells (ADSCs), and the eye irritation test suggested that 
ADSC exosomes are safely used as a topical treatment.

Altogether, MSC-EV-dependent therapeutic molecules can regulate intercellular signaling pathways, and 
engineered EVs may be an emerging agent for corneal diseases.

Retinal diseases
Retinal ganglion cell (RGC) death is the irreversible endpoint of optic neuropathy. Glaucoma is a group of 
progressive optic neuropathies characterized by the gradual disappearance of RGCs. Under an in vitro strict 
culture, MSCs can induce differentiation into neuroectodermal cells, including neuronal cells[117]. MSCs 
used for the treatment of glaucoma mainly contribute to producing neurotrophins, differentiation into 
functional RGCs, and interaction with TM (trabecular meshwork), thereby reducing the intraocular 
pressure of glaucoma[118]. The capacity of MSC-EVs for neuroprotection and immunomodulation in the 
treatment of retinal diseases is mainly due to miRNA-dependent and inflammatory responses[119].

Studies have proven that miR-34a-5p, miR-126, and miR-222 affect the progression of retinal damage 
through diverse mechanisms[103,104,120]. For instance, in a cell model of diabetic retinopathy, MSC-derived 
exosomal lncRNA SNHG7 suppresses endothelial-mesenchymal transition and tube formation by 
negatively regulating miRNA[120]. miR-126 has been reported as an endothelial cell-restricted miRNA that 
mediates inflammation and vascular development[103]. HMGB1, one of the target genes of miR-126, has high 
expression levels in various inflammatory and autoimmune diseases[121]. Co-culture of MSC-EVs with high 
expressions of miR-126 and human retinal endothelial cells was found to significantly reduce the level of 
HMGB1 protein and improve retinal inflammation caused by hyperglycemia in diabetic rats[103]. A previous 
study showed that MSC-EVs are endocytosed by retinal neurons, retinal ganglion cells, and microglia as 
biomaterials for neuroprotective and regenerative therapy of retinal disorders[105]. Moreover, in a clinical 
trial, Zhang et al.[122] also proved that MSC-EV therapy may be an advantageous and safe method for 
improving visual outcomes after surgery for refractory macular holes.

With the advent of induced pluripotent stem cells (iPSCs), tremendous progress has been made in stem cell 
biology and regenerative medicine. Human iPSCs are widely used in animal modeling, drug discovery, and 
cell therapy development[123]. Besides MSC-EV-based therapies, iPSCs can also be used as an unlimited 
source for retinal degenerative diseases[124]. Retinal pigment epithelial cells derived from iPS (iPS-RPE) 
replace damaged or diseased cells and promote the healing and repairing of eye tissues[125]. Studies have 
shown that iPS-RPE plays an effective role in delaying photoreceptor degeneration by stably surviving in a 
degraded ocular environment and releasing neuroprotective factors, such as the pigment epithelium-derived 
factor[126]. To obtain an adequate source of cells, Reichman et al.[127] developed a two-step culture system to 
effectively differentiate iPSCs into retinal cells and achieved large-scale production and storage of hiPSCs-
derived retinal cells and tissues. The development of iPSCs is expected to be another novel approach to treat 
retinal diseases in the future.

Other ocular diseases
The immunoregulatory effects of MSC-EVs have been reported in a variety of experimental models, such as 
rheumatoid arthritis[128], neurodegenerative disorders[129], and inflammatory bowel disease[130]. Studies have 
demonstrated that the anti-inflammatory effect of MSC-EVs is closely associated with regulating the activity 
of macrophages[131-133], natural killer cells[134], B cells[135,136], and T cells[137,138]. Scholars also used this positive 
influence in the modeling of inflammatory-related eye diseases. Uveitis, an inflammatory disorder involving 
the pigmented vascular coat of the eyeball, can result in blindness in the absence of timely therapy. Similar 
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to inflammatory eye disease, MSC-EVs suppress autoimmunity in models of experimental autoimmune 
uveoretinitis (EAU) by inhibiting the development of T cells[106]. Administering MSC into rodents with 
induced models of clinical diseases with an appropriate dose can result in the reversal of abnormalities for 
weeks thereafter. Zhang et al.[139] examined the long-term effects of BMSCs in a recurrent EAU model in 
rats. The results demonstrate that BMSCs significantly decreased responses of T helper 1 (Th1) and Th17 
cells, suppressed the functions of antigen-presenting cells, and upregulated T regulatory cells. In the study of 
EAU in Lewis rats, MSCs showed an inhibitory effect on activation and maturation of dendritic cells via 
regulation of STAT1 and STAT6 phosphorylation[140]. In the subsequent studies using MSC-EVs on the 
same EAU models, it was found that administration of MSC-EVs could ameliorate uveitis similar to their 
parent cells[141]. Using in vitro experiments, the effects of MSC-EVs on immune-cell activation were assessed 
using allogeneic mixed lymphocyte reaction assays. Consistent with previous MSC-related findings, MSC-
EVs simultaneously reduce the infiltration of T cells and the levels of inflammatory cytokines[106].

Sjögren’s syndrome (SS), a chronic multi-system autoimmune disease mainly involving the exocrine gland, 
causes dry mouth (hyposialia or even asialia) and dry eye (xerophthalmia)[142,143]. MSCs, as a therapeutic 
approach to treat SS, have been assessed in preclinical trials[144,145]. In an in vivo study, Xu et al.[146] proposed a 
novel therapeutic approach to alleviate diseases in patients with primary SS by infusing allogeneic UMSCs. 
These effects are nutritive, anti-inflammatory, anti-immunologic, and associated with the healing of 
abnormalities. Regarding EVs secreted by MSCs, MSC-EVs may be an ideal replacement for decreasing the 
pathogenesis of SS. Rui et al.[147] found that murine olfactory ecto-MSC-derived exosomes significantly 
improved impaired immunosuppressive function of myeloid-derived suppressor cells by administering 
MSC-EVs intravenously into mice with induced models of SS. Considering the limited expandability, 
significant donor variations, and safety concerns of MSC sources, it is essential to optimize a protocol that 
can be easily scaled up to produce standardized iPSC-MSCs, showing the same potential to prevent the 
progression of SS[148].

Taken together, a combination of MSC and MSC-EVs with emerging technologies may provide novel 
insight for into the therapy of eye diseases.

CHALLENGES AND PROSPECTS
Although MSC-EVs are regarded as a new treatment strategy, their affiliated clinical challenges are worthy 
of further assessment.

Firstly, obtaining an appropriate cell line is a prerequisite for collecting EVs. The existing research on eye 
diseases is summarized in Table 2. Therapeutic vesicles are mainly sourced from cells of adipose, bone 
marrow, umbilical cord, and cornea. However, there is a lack of research comparing MSCs from various 
sources for the treatment of eye diseases. The impurity of MSCs leads to the complexity of the contents of 
EVs, negatively influencing their performance. Therefore, to obtain high-quality products, the tissue source, 
identification, and functional testing of MSCs are required. Despite that, the mechanism of MSC-EVs for 
other diseases has been studied in detail [Table 1], EV contents such as protein and genetic cargo for the 
therapy of eye diseases remain unknown. Most studies still observe the curative effect by injecting intact 
MSC-EVs into model animals [Table 2]. Above all, the personalized design of EVs is also essential; to date, 
based on the pathogenesis and pathological process, various genetic or non-genetic engineering methods 
have been developed for producing EVs with specific biological characteristics[148-152]. To achieve precision 
treatment, it is necessary to master the knowledge of EVs related to the composition, identification, 
purification, and function of distinct cell origins and under various physiological statuses.
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Another question is how to achieve a standardized and stable production of EVs as drugs with a GMP level. 
Studies showed that the heterogeneity of EVs derives from their size, contents, and cell origin[153]. 
Proteomics analysis of EVs revealed the heterogeneity of protein profiles, suggesting that there is an urgent 
need to optimize and standardize the purification method to obtain high-quality EVs[154]. Despite the 
emergence of many novel EV preparation techniques, a consensus on manufacturing the therapeutic 
vesicles from cell culture needs to be reached. Referring to the recent ISEV workshop position papers, there 
are some issues that should be considered[155]. First, the maximum cell death rate must be less than 5% to 
prevent dead cells from releasing particles unrelated to the therapeutic purpose that affect EV purity. 
Secondly, the detection of cellular microbial contamination such as mycoplasma and viruses must be 
performed to meet the requirements of standard level for clinical use. In addition, the standardized protocol 
of MSC-EV preparation from cultured cell-conditioned-medium should be automated, timesaving, and 
have a high recovery efficiency. Some operational considerations need to be noted, for example, avoiding 
repeated freeze–thaw samples and ensuring temperature control during EV separation to prevent the 
destruction of functional molecules in vesicles. The EXODUS platform is a promising tool that highly 
satisfies all demands for the collection of EVs in a large-volume culture medium[64]. Finally, the quality of 
the MSC-EV preparation should be evaluated by the size, morphology, specific markers, and detection of 
contaminants. The scientific storage and transportation conditions of MSC-EVs are important to ensure the 
efficacy.

Given the security of EVs, the mechanism-dependent and safety data of MSC-EVs mainly originate from 
preclinical in vitro and animal research. However, it is important to indicate whether the results of the 
application of MSC-EVs in animal experiments can be reliably used in human clinical trials. This relies on 
conducting a large number of clinical trials. For the treatment of eye diseases, the administration routes of 
EVs mainly involve injection, eye drops, and dressing. MSC-EVs serve as an ideal source for drug delivery, 
regardless of encapsulating in biomaterials or dissolving in liquid[156], maintaining the biological activity.

CONCLUSIONS
The main limitation of MSC therapy for optic neuritis is the difficulty of reaching the site of pathology in 
the optic nerve and retina. In the view that EVs can cross the BBB, while MSCs cannot, and deliver various 
therapeutic factors to the brain, MSC-EVs have been extensively tested as a beneficial treatment for the 
control of chronic inflammation of the central nervous system. Adequate EVs can be produced by large-
scale expanding parental cells. For precision medicine, engineering and modification of EVs can improve 
the targeted drug delivery efficiency by overexpressing therapeutic molecules, such as miRNAs. Although 
additional advanced research is still required to explore the mechanism of EVs in the therapy of various eye 
diseases, it is undeniable that MSC-EVs have promising prospects in ocular repairing.
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Abstract
Aim: A peripheral inflammatory response can drive neuroinflammation in a number of infections including human 
immunodeficiency virus (HIV). Monocyte/macrophage (M/Mφ) activation is a hallmark of acute HIV infection and 
a source of chronic inflammation in a subset of HIV-infected individuals. We sought to decrease peripheral 
inflammation and M/Mφ transmigration after HIV infection by engineering extracellular vesicles (EV) to 
antagonize a microRNA (miR) associated with inflammation. We hypothesized that induced pluripotent stem cell 
(iPSC)-derived monocyte EVs (mEVs), engineered to contain an antagomir to miR-155 (αmiR mEV) would target 
monocyte inflammation and influence neuroinflammation in an HIV-infected humanized mice.

Methods: mEVs were characterized by tetraspanins, nanoparticle tracking analysis, electron microscopy, and their 
preferential entry into circulating monocytes as well as testing for endogenous selected miRNAs. HIV-infected 
humanized mice were treated with control or antagomir155 mEVs. Plasma viral load was measured plus activation 
markers on lymphocytes and monocytes and the number of macrophages in the brain was quantified.
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Results: mEVs preferentially entered peripheral monocytes. HIV infection increased C-C chemokine receptor type 
5 (CCR5) and major histocompatibility complex, class II, DR (HLA-DR) expression on T cells and monocytes. 
Treatments with mEVs did not decrease plasma HIV viral load; however, mEVs alone resulted in a decrease in 
%CCR5+ and %HLA-DR+ on T cells and an increase in %CCR5+ monocytes. αmiR mEVs decreased %CCR5 on 
M/Mφ. The mEV-treated HIV-infected mice did not show an increase in macrophage transmigration to the brain.

Conclusion: mEVs alone caused an unexpected decrease in lymphocyte activation and increase in monocyte 
%CCR5; however, this did not translate to an increase in macrophage transmigration to the brain.

Keywords: Monocyte, extracellular vesicles, pluripotent stem cells, miRNAs, HIV, bone marrow-liver-thymic (BLT) 
mouse, inflammation, neuroinflammation

INTRODUCTION
Neurocognitive impairment associated with human immunodeficiency virus (HIV) infection is initially 
driven by peripheral inflammation. Activated monocytes produce cytokines and monocyte-derived 
macrophages (M/Mφ) transmigrate into the brain, seeding the brain with HIV and contributing to 
neuroinflammation. Quenching peripheral inflammation with antiretroviral therapy (ART) for most HIV-
infected individuals decreases impairment except for a few that have lingering chronic inflammation that 
perpetuates neuroinflammation and potential cognitive impairment. While ART greatly contributes to 
lowering the viral load to undetectable and, in most individuals decreasing chronic inflammation, cognitive 
impairment continues for some.

Targeting chronic inflammation remains an active area of research for many diseases including HIV. New 
therapeutic agents that could suppress the immune system without immunosuppression, thereby exposing 
someone to increased susceptibility to infection, are needed. While targeting the virus with antiretrovirals is 
standard care, targeting inflammation as adjunct therapy may decrease susceptible cells as well as dampen 
the deleterious effects of inflammation. Targeting a specific pro-inflammatory cytokine has not had 
widespread acceptability (Review Ref.[1,2]), although an interferon inhibitor showed promise to restore 
immune function in humanized HIV-infected mice[3]. Newer approaches to modulating the immune system 
include using noncoding microRNAs (miRs). miRNAs transcriptionally control gene expression for many 
targets. Our previous studies identified miRs associated with monocytes activated by interferon alpha and 
lipopolysaccharide (LPS) (I/L) to mimic immune activation in HIV infection[4,5]. In those studies, miR-155 
was elevated in I/L-treated monocytes and their extracellular vesicles (EVs). miR-155 is highly expressed in 
T and B cells and M/Mφ (Review Ref.[6]).

Based on these in vitro studies, we set out to determine if monocyte EVs could be engineered to reduce 
peripheral inflammation in the setting of HIV infection, lower viral load and decrease peripheral monocyte 
activation markers plus neuroinflammation as defined by M/Mφ infiltration to the brain. We used an HIV-
infected humanized mouse model[7,8]. This involves the implantation of immunodeficient mice with human 
fetal thymus, liver and hematopoietic stem cells [termed the humanized bone marrow-liver-thymus (BLT)] 
mouse model[8]. This mouse has a functional human immune system that can be infected with HIV. We 
engineered induced pluripotent stem cell (iPSC)-derived monocyte EVs (mEVs) to overexpress antagomir-
155 and used these engineered EVs to target monocytes in HIV-infected BLT mice. We found that these 
mEVs preferentially targeted peripheral monocytes in the mouse and that the antagomir-155 silenced miR-
155; however, the mEVs did not decrease HIV viral load. mEVs alone suppressed C-C chemokine receptor 
type 5 (CCR5) expression on T cells and increased CCR5 on M/Mφ. In spite of an increase in CCR5 
expression on monocytes, there was no increase in M/Mφ transmigration to the brain. Thus, we found that 
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mEV treatment had distinct immunomodulatory effects in vivo.

METHODS
iPSC-monocyte culture and EV collection
Human iPSC differentiated monocytes (ATCC-ACS-7030) were a gift from the American Type Culture 
Collection (ATCC, Manassas, VA, USA). Frozen iPSC-monocytes were thawed at 37  °C and washed and 
cultured in RPMI-1640 with 10% exosome-depleted fetal bovine serum (FBS, Thermo Fisher Scientific, 
Waltham, MA, USA). A low dose of 500 pg/mL rhMCSF (RandD Systems, Minneapolis, MN) was used to 
maintain monocyte viability. Cells were cultured at 37 °C with 5% CO2 for 48 hrs. Conditioned media were 
collected. EVs were purified with ExoQuick-TC (System Biosciences, SBI, Palo Alto, CA, USA) as described 
by the manufacturer [Figure 1A]. EVs were then stored at -80 °C until use.

Characterization of mEVs by NTA, electron microscopy and tetraspanins
Nanoparticle tracking analysis (NTA) was performed on the mEV samples to determine the size and 
particle number. Data were generated using a NanoSight LM10 instrument (Malvern Instruments, Malvern, 
United Kingdom) with a 405 nm laser-equipped sample chamber as previously described[4]. Results were 
analyzed using NTA 3.3 software. Each sample analysis consisted of three 40 s video recordings. Mode 
particle sizes were reported due to the skewed distributions.

mEVs were characterized by transmission electron microscopy (TEM). In brief, eluted mEVs were fixed in 
4% buffered paraformaldehyde (PFA) and deposited onto Formvar carbon-coated electron microscopy 
nickel grids for 5 min. The excess fluid was blotted off with #1 filter paper, and the grids were stained with 
saturated uranyl acetate solution (Ted Pella, Inc., USA) for 5 s. Excess fluid was then blotted off again, and 
the grids dried overnight. Visualization of EVs was performed using a Technai 10 transmission electron 
microscope (Field Electron and Ion Co. USA).

The relative amount of tetraspanin proteins CD63, CD81 and CD9 on the surface of the mEVs were 
evaluated using a U-PLEX human tetraspanin kit (MSD, Meso Scale Diagnostics, Rockville, MD, USA) in 
duplicate according to the manufacturer’s instructions. Analyses were done using a QuickPlex SQ 120 
instrument (MSD) and Discovery Workbench® 4.0 software.

Antisense miR-155-Cy5 and transfection
Antisense miR-155-5p (αmiR) sequence (5’-/5Cy5/ AACCC CUAUC ACGAU UAGCA UUAA-3’) and 
Control Oligo-1 miR (cmiR) (SBI) were submitted to Integrated DNA Technologies (Redwood City, CA), 
synthesized and labelled with Cy5 at the 5’ end. EVs were transfected with antisense miR-155 or Control 
Oligo-1 miRs with Exofect (SBI) following the manufacturer’s instructions. Transfected EVs were purified 
with ExoQuick-TC (SBI) and stored at -80 °C until use [Figure 1A].

Luciferase assay
The plasmid containing 3’ UTR of human E2F2 (NM_004091.3, HMIT094972-MT05) was purchased from 
GeneCopoeia (Rockville, MD, USA). HEK293 cells were cultured in a 96-well plate at 4 × 104/well. 
Exchanged media every other day until 80% confluence. Then cells were transfected with 0.1ug 
HMIT094972-MT05 plasmid using Lipofectamine 3000 (Thermo). Media was exchanged after 24hr. Half of 
a microgram of cmiR or αmiR were added to the wells. Supernatants were collected after 24 h of incubation 
at 37  °C. Dual luminescence assays were performed on the cell culture supernatants using Secrete-Pair Dual 
Luminescence Assay Kit (GeneCopoeia) per manufacturer protocol. Plates were read using a SpectraMax 
M5 plate reader (Molecular Devices, San Jose, CA, USA). The ratio of secreted Gaussia luciferase and 
secreted alkaline phosphatasse was reported.
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Figure 1. Experimental outline. (A) Preparation of iPSC-monocyte-derived extracellular vesicles (mEV), (B) preparation of HIV-infected 
Bone marrow Liver Thymic (BLT) mice, mEV treatment and (C) collection of samples. cmiR mEV: mEVs transfected with control 
miRNA; αmiR mEV: mEVs transfected with antagomiR-155; i.o.: intraocular injection; wks: weeks; D: day.

HIV infection of BLT mice and mEV treatment 
Humanized BLT mice were constructed and housed at The University of California, Los Angeles (UCLA) 
Humanized Mouse Core as previously described[9]. Animal use was approved by the UCLA IACUC 
(Protocol ARC-2010-038). The model was validated with flow cytometry as described[10]. Briefly, human 
fetal CD34+ liver cells and thymus tissue were transplanted into irradiated non-obese diabetic (NOD) severe 
combined immunodeficient (SCID) gamma mice. Mice were monitored daily for signs of toxicity. Human 
immune cell engraftments were verified after 12 weeks [Figure 1B]. Thirty mice were divided into six 
groups: HIV-uninfected non-treated controls (HIV- NT, n = 4), HIV-uninfected antagomir-155 mEV 
(HIV- αmiR, n = 4), HIV-infected non-treated (HIV+ NT, n = 5), HIV-infected mEV alone (HIV+ mEV, n 
= 6), HIV-infected control miR mEV (HIV+ cmiR, n = 6) and HIV-infected antagomir155 mEV (HIV+ α
miR, n = 5).

The mice were infected with 500 ng (approximately 6.25 × 104 infectious units) of HIV (NFN-SX, R-5 
tropic) intravenously. HIV viral RNA in the peripheral blood was checked 6 days post infection (p.i.). 
Twenty micrograms of mEVs were injected intraocularly on day 7 and day 10 p.i. Two weeks p.i., the mice 
were sacrificed, and the blood was processed to evaluate HIV viral RNA, inflammatory response and the 
effects of EVs on the mice were analyzed. Brains were collected for immunohistochemistry staining [
Figure 1B and C].

Human peripheral blood mononuclear cells isolation, mEV treatment and flow cytometry
To evaluate the propensity of mEVs to enter different cell types in the peripheral blood and particularly 
monocytes, we performed an mEV entrance experiment. Peripheral blood mononuclear cells (PBMCs) were 
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enriched from a healthy donor as previously described[11]. In an ultra-low attachment 6-well plate (Corning, 
Kennebunk, ME, USA), 6 × 106 PBMCs were cultured in RPMI-1640 supplemented with 10% FBS at 2 × 106

/mL. Ten µg of mEVs transfected with Cy-5 labelled antagomir-155 were added. Cells were incubated for 24 
h and sampled at 2 h, 8 h and 24 h. Cells were immediately stained with CD8-FITC, CD4-PerCP-Cy5.5, 
CD14-PE, CD16-BV421 (all from BD, Becton, Dickinson and Company, Franklin Lakes, NJ, USA) for 30 
min at room temperature (RT). Cells were then washed and fixed in 2% PFA for 10 min at RT, followed by 
washing. Flow cytometry analyses were performed on a FACSAria II flow cytometer (BD) and data were 
analyzed with FlowJo software (BD). At least 10,000 cells were collected for each sample. Gates were set 
using isotype antibodies (BD).

HIV viral RNA
Blood from the HIV-infected mice was collected with EDTA anticoagulant from retro-orbital biweekly 
bleeding or heart puncture at sacrifice. Blood was spun at 1200 g to collect plasma supernatant. Cell-free 
plasma viral RNA was purified using a QIAamp Viral RNA Mini Kit (Qiagen, Germantown, MD, USA). 
HIV RNA was quantified by real-time reverse-transcription polymerase chain reaction (RT-PCR) using 
TaqMan RNA-To-Ct One-Step reagents (Thermo) with primers HIV_F: 5’-CAATG GCAGC AATTT 
CACCA-3’ and HIV_R: 5’-GAATG CCAAA TTCCT GCTTG A-3’ and a probe hybridizing to HIV1 NL4-3 
HIV probe: 5’-[6FAM] CCCAC CAACA GGCGG CCTTA ACTG [Tamra-Q]-3’.

RT-PCR analysis for miRNA 
Five microliters of EV solutions were lysed in 350µL Qiazol (Qiagen) and total RNA was isolated using 
miRNeasy Mini kit (Qiagen). Two microliters of total RNA were reversely transcribed using a Taqman 
MicroRNA RT kit (Thermo). Taqman assay for human miR-155-5p (Thermo) was used for RT-PCR. 
Taqman advanced master mix was used for PCR. Assays were performed and analyzed on a ViiA7 
instrument (Thermo) in triplicate. Relative expressions to RNU6 were reported.

Antibodies and flow cytometry for mouse PBMCs 
The following antibodies were used in flow cytometry: CD45-V500 (clone HI30), CD3-BV786 (clone 
OKT3), CD4-Vioblue (clone RPA-T4), CD8-APC780 (clone SK1), CD19-APC, CD15-PerCP-Cy5.5, CD14-
ECD, CD16-AF700, CD11b-PE-Cy7, CD209-FITC, CCR5-PC5, CD163-BV605, and major 
histocompatibility complex, class II, DR (HLA-DR)-PE (all BD). The cells were acquired using an 
LSRFortessa flow cytometer and FACSDiva software (BD). Data were analyzed using FlowJo software. At 
least 10,000 cells were acquired for each analysis, and each representative flow plot was repeated more than 
three times.

Spleen monocyte isolation
Human CD14+ monocytes were sorted from splenocytes through a human CD14 microbead kit (Miltenyi, 
Gaithersburg, MD, USA. Cat#130-050-201). We double-checked the CD14 clone (TÜK4) in this kit, and it 
does not have cross-reaction with mouse species.

Immunostaining of brain sections
Mouse brains were collected and fixed in 2% paraformaldehyde. After 72 h, the tissues were washed with 
water and placed in 70% ethanol. Brains were embedded in paraffin and sectioned. Briefly, sections were 
deparaffinized and rehydrated. Antigen retrieval was performed by boiling for 30 min. Slides were treated 
with an endogenous peroxidase blocking solution (Vector, USA), followed by another block with 3% bovine 
serum albumin. Anti-CD68 rabbit monoclonal antibody (Abcam, USA, 1:500) was incubated at 4 C 
overnight in a humidified chamber. Anti-rabbit IgG secondary antibody was added (Vector), followed by 
diaminobenzidine substrate for 5 min and counterstained with hematoxylin. All slides were read blinded by 
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a single reader.

Statistical analysis
Data are reported as mean ± standard deviation unless otherwise specified. Wilcoxon signed-rank test was 
used to compare differences between two group means, analysis of variance (ANOVA) or Kruskal-Wallis 
rank sum test was used to compare differences between three or more group means where appropriate. 
Count data were compared with negative binomial regression. P < 0.05 was considered significant. All 
statistical analyses were performed with R (version 4.1.1).

RESULTS
iPSC-monocytes express CD14
iPSC-derived monocytes expressed CD14 by flow cytometry from 65.5% on day 0 to 76.9% on day 7 
[Figure 2]. CD68 and CD16 were negative on day 0 and slightly increased on day 7; the majority of the cells 
remained CD16 and CD68 negative.

iPSC-monocyte EV characterization
NTA characterization showed the mEVs had an average mode size of 150.8 nm (standard error 19.6 nm) 
and a major peak at 133nm [Figure 3A]; the concentration was 1.27 ± 0.115 × 109 particles/mL. The protein 
concentration was 200 µg/mL by absorbance at 280nm using a spectrophotometer measurement. Typical 
donut-shaped vesicles were visualized by TEM [Figure 3B]. mEVs expressed abundant CD63 (14.4 ± 0.17 × 
106 particles/mL) with CD81 (8.6 ± 0.25 × 106 particles/mL) and CD9 (7.9 ± 0.31 × 106 particles/mL) also 
present [Figure 3C]. When mEVs were incubated with PBMCs, mEVs entered lymphocytes in less than 2 h 
followed by monocytes preferentially over time. About 84% of the monocyte population were Cy5 positive 
after 24 h of treatment [Figure 3D].

miRNA cargo and antagomir-155
Because the antisense sequence of miR-155 is complementary to the sense sequence, both sense and anti-
sense miR-155 were detected by the RT-PCR assay. αmiR mEVs showed very high levels of sense / anti-
sense miR-155 expression (5.2 × 105 fold relative to U6) compared to mEV alone (0.39 fold) and cmiR mEVs 
(0.19 fold) due to transfection of the antagomir-155 [Figure 4A]. The targeting of miR-155 by antagomir-
155 was validated with a luciferase assay. A 58% increase in antagomir-155 treatment (31.1 ± 1.3 Gluc/SEAP 
ratio)  compared to control miR treatment (19.7 ± 3.7 Gluc/SEAP ratio) showed that the constitutive 
inhibition effect from endogenous miR-155 to the downstream luciferase gene was partially reversed by 
antagomir-155 [Figure 4B]. To determine the entry of the αmiR mEVs into monocytes, we performed RT-
PCR of miR-155 on CD14+ monocytes from the mouse spleen. The αmiR mEVs showed significant increase 
of miR-155 expression (1.427 ± 0.981 fold to RNU6) than HIV+ NT (0.0419 ± 0.0211, P = 0.016), mEV alone 
(0.029 ± 0.0087, P = 0.0079) or cmiR mEV (0.013 ± 0.0079, P = 0.0043) [Figure 4C].

BLT mouse construction, HIV infection and mEV treatment
After BLT mice were constructed as described previously[9], reconstitution of human blood cells was 
confirmed by flow cytometry after 12 weeks following transplantation [Figure 1B], and all mice showed 
proper reconstitution of human PBMCs [Supplementary Figure 1]. One mouse in the HIV+ αmiR group 
died during HIV infection and was eliminated from the group. All other mice tolerated two doses of mEV 
injection with no side effects. HIV viral load in the peripheral blood was measured on day 6 p.i. and after 
sacrifice on day 14. There was no significant difference among groups on either day 6 (P = 0.085) or day 14 (
P = 0.47) [Figure 5A]. Fourteen days after HIV infection, %CCR5+ increased in CD4 T cells (7.4 ± 1.7 for 
HIV- vs. 22.5 ± 9.9 for HIV+, P = 0.016) and CD8 T cells (13.2 ± 3.9 for HIV- vs. 53.6 ± 10.0 for HIV+, P = 
0.016). %HLA-DR+ significantly increased in CD4 T cells (7.4 ± 1.7 for HIV- vs. 22.5 ± 9.9 for HIV+, P = 

https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202204/4822-SupplementaryMaterials.pdf
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Figure 2. iPSC-monocytes remain CD14+ over time. Flow cytometry analysis show monocytes continue to express CD14 and not CD68 
or CD16 on Days 0 and 7. Red lines denote isotype controls, blue lines with shaded areas denote corresponding antibody staining. 
Gating shows in percent of the parent population.

Figure 3. Characterization of iPSC-monocyte EVs (mEV). (A) Representative nanoparticle tracking analysis (NTA) showing the 
majority of mEVs approximately 130nm. (B) Transmission electron microscopy (TEM) of mEVs. Scale bar = 100 nm. (C) mEVs express 
tetraspanins CD9, CD63 and CD81. (D) Cy-5-labeled mEVs preferentially enter peripheral blood mononuclear cells (PBMC) monocytes 
over time.
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Figure 4. Antagomir-155 loading, targeting and delivery. (A) mEVs transfected with antagomiR-155 (αmiR mEV) showed expression of 
miR-155 compared to mEV alone and mEVs transfected with Control Oligo-1 miR (cmiR mEV).  (B) αmiR, which was transfected into 
luciferase-plasmid-transfected HEK293 cells, successfully neutralized miR-155 and increased downstream luciferase expression. The 
ratio of Gaussia Luciferase (GLuc) and Secreted Alkaline Phosphatase (SEAP) is reported. (C) Mouse spleen CD14+ monocyte 
antagomiR-155 expression increases indicating successful delivery of αmiR mEV into monocytes. NT: No mEV treatment; αmiR: 
antagomiR-155; cmiR: control miRNA. *P < 0.05, **P < 0.01.

0.016) and CD8 T cells (27.1 ± 5.8 for HIV- vs. 58.0 ± 9.2 for HIV+, P = 0.016). The increases of CCR5 and 
HLA-DR on CD4+ or CD8+ T cells are consistent with previous reports[9], confirming that HIV successfully 
activated human PBMCs in the BLT mouse model. The %CD16+ cells increased in various cell populations 
indicating activation of M/Mφ, which includes the non-B non-T cells (CD3-CD19-) (2.1 ± 0.7 for HIV- vs. 
12.4 ± 5.8 for HIV+, P = 0.016), CD14+ monocytes (19.1 ± 4.5 for HIV- vs. 37.2 ± 6.7 for HIV+, P = 0.016), 
CD11b+ macrophages (21.7 ± 5.3 for HIV- vs. 41.7 ± 8.9 for HIV+, P = 0.032) and CD163+CD11b+ activated 
macrophages (20.1 ± 4.4 for HIV- vs. 40.6 ± 8.8 for HIV+, P = 0.016) [Figure 5B]. Frequency of intermediate 
monocytes (13.5 ± 4.4 for HIV- vs. 32.3 ± 6.6 for HIV+, P = 0.019) increased while classical (P = 0.19) and 
non-classical (P = 1) monocytes did not change [Figure 5C]. Median fluorescent intensity (MFI) analyses of 
CCR5, HLA-DR and CD16 expression on the CD4 or CD8 T cell populations showed similar results [
Supplementary Figure 2].

mEV altered surface marker expressions in monocytes and T cells with or without antagomir-155
The CD14 population decreased after mEV treatment in PBMCs (16.4 ± 5.3 for HIV+NT vs. 6.1 ± 4.1 for 
HIV+ mEV alone, P = 0.017) and partially normalized with antagomir-155 (6.0 ± 3.3 for cmiR mEV and 
12.7 ± 4.5 for αmiR mEV, P = 0.028) [Figure 6A]. Intermediate monocytes trended lower (32.3 ± 6.6 for 
HIV+NT vs. 20.3 ± 9.5 for HIV+ mEV alone, P = 0.082) and were partially normalized by antagomir-155 
(14.7 ± 4.4 for cmiR mEV and 27.6 ± 9.1 for αmiR mEV, P = 0.03). Alternatively, classical (P = 0.77) and 
non-classical (P = 0.83) monocytes did not show significant changes with mEV treatments [Figure 6A].

mEVs alone activated CCR5 on CD14+ monocytes (44.5 ± 11.2 for HIV+NT vs. 67.0 ± 10.0 for HIV+ mEV 
alone, P = 0.017), classical CD14+ CD16- monocytes (43.2 ± 13.0 for HIV+NT vs. 69.8 ± 11.5 for HIV+ mEV 
alone, P = 0.017), intermediate CD14++CD16+ monocytes (46.9 ± 10.6 for HIV+NT vs. 73.2 ± 10.7 for HIV+ 
mEV alone, P = 0.017) and was trending on non-classical CD14+CD16++ monocytes (39.9 ± 23.26 for 
HIV+NT vs. 65.5 ± 13.0 for HIV+ mEV alone, P = 0.082) [Figure 6B]. The treatment with antagomir-155 
normalized the increase on CD14+ monocytes (67.0 ± 5.2 for cmiR mEV and 37.6 ± 14.8 for αmiR mEV, P = 
0.0043), on classical monocytes (70.4 ± 5.0 for cmiR mEV and 37.1 ± 15.4 for αmiR mEV, P = 0.043), on 
intermediate monocytes (72.8 ± 4.3 for cmiR mEV and 40.9 ± 13.1 for αmiR mEV, P = 0.0043) and was 
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Figure 5. HIV-infected BLT mice. (A) Box plots for mouse plasma viral load on Days 6 and 14 post infection showed no difference 
among groups. (B) Frequencies of CCR5, HLA-DR and CD16 on PBMCs after HIV infection on Day 14. Parent populations are indicated 
in the titles of the panels. (C) Frequency of monocyte subsets in CD14+ monocytes. Parent population is CD14+CD3-CD19-.

trending on non-classical monocytes (68.0 ± 16.4 for cmiR mEV and 32.3 ± 28.8 for αmiR mEV, P = 0.082) 
[Figure 6B]. MFI analyses of CCR5 expression on these monocyte populations showed similar results [
Supplementary Figure 3A].

The %CCR5+ increased on CD163+CD11b+ M2-type macrophages (42.6 ± 16.8 for HIV+NT vs. 75.1 ± 6.6 
for HIV+ mEV alone, P = 0.017) with mEV treatment and decreased with antagomir-155 mEV (74.0 ± 7.8 
for cmiR mEV and 38.1 ± 18.6 for αmiR mEV, P = 0.0087) in HIV-infected mice [Figure 6C]. CCR5 had no 
significant changes on CD163-CD11b+ M1 macrophages. CD16 did not show a significant decrease with 
mEV treatments alone (P = 0.13), but showed a decrease with cmiR mEV (P = 0.0087) and a partial 
normalization on M2 macrophages with antagomir-155 (23.3 ± 5.0 for cmiR mEV and 38.1 ± 8.3 for αmiR 
mEV, P = 0.0087) [Figure 6C]. HLA-DR expression on M/Mφ did not show significant differences between 
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Figure 6. PBMC profile of iPSC-monocyte EV (mEV) treated HIV+ BLT mice. (A) %CD14+ of CD3-CD19-, classical monocytes (CD16-
CD14++), intermediate monocytes (CD16+CD14++) and non-classical monocytes (CD16++CD14+) (B) %CCR5 expression of overall 
monocytes (CD14+CD3-CD19-), classical monocytes (CD16-CD14++), intermediate monocytes (CD16+CD14++) and non-classical 
monocytes (CD16++CD14+) (C) %CCR5 and %CD16 of macrophages including M1 macrophages (CD163-CD11b+CD3-CD19-) and M2 
macrophages (CD163+CD11b+CD3-CD19-) (D) %CCR5 and %HLA-DR of CD4+ or CD8+ T cells.

groups (data not shown). MFI analyses of CCR5 and CD16 expression on the macrophage populations 
showed similar results except CD16 was trending low by mEV alone compared to HIV+ NT and trending 
increase by antagomir-155 compared to control miR [Supplementary Figure 3B].

mEVs alone also suppressed CCR5 expression in CD4+ (22.5 ± 9.9 for HIV+NT vs. 6.0 ± 6.8 for HIV+ mEV 
alone, P = 0.017) and CD8+ T cells (53.6 ± 10.0 for HIV+NT vs. 22.9 ± 16.6 for HIV+ mEV alone, P = 0.017) 
and HLA-DR expression on CD4 (22.5 ± 9.9 for HIV+NT vs. 6.0 ± 6.8 for HIV+ mEV alone, P = 0.017) and 
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CD8+ T cells (58.0 ± 9.2 for HIV+NT vs. 34.0 ± 13.6 for HIV+ mEV alone, P = 0.03). The decrease of CCR5 
on CD8+ T cells with mEVs alone in HIV+ NT mice was normalized with αmiR mEV treatment (19.0 ± 8.1 
for cmiR mEV and 40.9 ± 12.9 for αmiR mEV, P = 0.0043) [Figure 6D]. Trending normalizations were also 
observed with CCR5 (P = 0.082) and HLA-DR (P = 0.082) on CD4+ T cells but not HLA-DR on CD8 T cells 
(P = 0.66). MFI analyses showed mEV alone suppressed CCR5 on CD8 T cells and trending on CD4 T cells, 
while HLA-DR was trending low on both CD4 and CD8 T cells. Antagomir-155 normalized CCR5 MFI on 
both CD4 and CD8 T cells while HLA-DR did not [Supplementary Figure 3C].

CD68 immunohistochemistry staining
Mouse brain sections were stained for CD68 proteins [Figure 7A-D]. CD68 positive cell counts showed 
significant differences using negative binomial regression analysis (likelihood ratio Χ2 = 13.27, df = 4, P = 
0.01). CD68+ cell counts increased in HIV-infected mouse brains compared to HIV-uninfected mice (3.6 ± 
1.8 for HIV- NT, 10.6 ± 3.2 for HIV+ NT, P = 0.006) and no significant changes with mEV, cmiR or αmiR 
mEV treatments [Figure 7E].

DISCUSSION 
Pluripotent stem cell-derived monocytes provide a uniform cell source with the ability to scale up as well as 
minimize human donor variations. Extracellular vesicles generated by these stem cell monocytes can be 
used as a tool for transferring cargo to other cells and targeting monocytes. Using EVs instead of cells to 
carry agents avoids drawbacks of stem cell treatment such as malignant transformation[12,13]. iPSC-derived 
monocytes showed monocytic morphology and cell surface markers such as high CD14, with low CD16 and 
CD68. This phenotype could be maintained for at least 7 days in culture, which makes it a good source of 
EVs. We chose stem cell-derived monocytes to increase the chance of EVs entering and delivering cargo to 
peripheral monocytes.

EVs produced directly from stem cells have been used as therapeutic tools in different studies. Reports show 
that stem cell-derived EVs alleviated colitis[14], attenuated aging-associated vascular endothelial 
dysfunction[15], prevented allergic airway inflammation[16] and promoted repair of cardiac infarction[17] in 
mouse models. There are also various reports on engineered-parent cell generated miRNA-loaded EVs. EVs 
derived from stem cells transfected with miRNA mimics or antagomirs ameliorated spinal cord injury[18] 
and microglial activation from brain injury[19], promoted selective regeneration in ischemic hearts[20] or 
alleviated systemic sclerosis[21] in mouse models. We chose to transfect EVs directly due to the short lifespan 
of iPSC-monocytes and ease of manipulation.

In our previous studies on monocyte activation and the subsequent effect on their EVs, we found that 
monocytes treated with interferon/LPS released EVs that transferred functional miRs to human endothelial 
cells. miR-155, miR-146a, miR-146b and miR-125a-5p were significantly increased and miR-222 was 
significantly decreased[5]. We further determined that this activation was through the toll-like receptor 
4/MYD88 innate immune signal transduction adaptor (MYD88) pathway that activates nuclear factor-κB[5]. 
We chose to transfect the antagomir-155 into iPSC monocyte-derived EVs to determine the effect on HIV-
infected humanized mice with the hypothesis that the monocyte EVs with antagomir-155 would decrease 
neuroinflammation, possibly viral load and peripheral activation. miR-155 is well characterized, rapidly 
released in response to infections and injury, and is associated with pathological processes including 
inflammation and immune responses (Reviewed Ref.[6,22]). miR-155 can push myeloid cells to a pro-
inflammatory phenotype[23] that can culminate in neuroinflammation. Knockout of miR-155 reduced 
macrophage-mediated neuron dysfunction[24] and death in mice[25]. The mEVs alone or with a scrambled 
control miR decreased T cell and increased monocyte activation. These divergent effects may be due to the 
constitutive expression of miR-155 in the EVs and its competing effects on these cell types. When an 
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Figure 7. CD68 immunohistochemistry staining of the mouse brains. (A) HIV+ non-treated, (B) HIV+ and treated with mEV alone, (C) 
HIV+ and treated with cmiR mEVs, (D) HIV+ and treated with αmiR mEVs, arrows indicate positive CD68 staining. 20X. Scale bar = 25 
µm. (E) CD68 positive cell counts. Group-wise counts were compared with negative binomial regression. LR: likelihood ratio test for 
negative binomial regression. *P < 0.05, **P < 0.01.

antagomiR-155 EV was introduced, there was a setback to HIV infection without treatment. However, there 
was a trend toward a decrease in the %CCR5+ on the non-classical monocytes that translated to a trend in 
decreased macrophage brain infiltration. These results may suggest an miR redirecting of migration[26], in 
this case, from the brain to other tissues. While the exosomes may have delivered the miR-155 antagomir to 
monocytes, there was no significant decrease in activation markers.

In this HIV-infected BLT humanized mouse model, we observed no differences in viral load before or after 
EV treatment suggesting that these mEVs do not act against HIV replication directly within this time 
period. CCR5 is a major HIV coreceptor expressed on T cells and monocytes. CCR5 also plays an important 
role in T cell and M/Mφ migration including infiltration of the central nervous system (CNS). Increased 
CCR5 in HIV infection is associated with amyloidosis, tau pathology, neurodegeneration, and blood-brain 
barrier alterations[27]. We observed an increase of CCR5 on monocytes after HIV infection but not on T 
cells. miR-155 expression in T cells regulates CCR5 and C-X-C motif chemokine receptor 4 and is central to 
T cell migration into organs[28]. In multiple sclerosis lesions, T cells that overexpress CCR5 migrate into 
lesions and the non-migratory T cells express low levels of CCR5[29]. The discrepancy between monocytes 
and T cells may be due to the difference in the timing of migration between monocytes and T cells. 
Intermediate monocytes increase and transmigrate across the blood-brain barrier after HIV infection[30]. 
CCR5 is associated with the CD16+ intermediate monocytes in HIV-infected individuals and a CCR5 
antagonist improved neurocognitive performance in a small cohort, suggesting suppression of monocyte 
migration[31]. The CCR5 antagonist also blocked T cell chemotaxis in vitro. CD14+CD16+ monocytes are the 
subset of intermediate and non-classical cells that have a pro-inflammatory phenotype and migrate into 
tissues and the brain[32,33]. In this BLT model, the mEVs alone decreased the percent of intermediate 
monocytes, suggesting that treatment with mEVs had an effect on myeloid differentiation[34].
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Significantly, this pilot study showed that EVs can be loaded with cargos, transported to target cells and 
have biological effects in vivo including alteration of T cell and monocyte activation markers with a trend 
toward decreasing M/Mφ infiltration to the brain. EVs have the advantage of crossing biological barriers, 
delivering anti-inflammatory cargo to recipient cells[35], thereby influencing peripheral and 
neuroinflammation. This would have implications for other neuroinflammatory pathologies. Alternatively, 
there are several limitations in this study including a small number of animals and short acute HIV 
infection period. mEVs were in the mice for only 7 intermediate days and this may have been an insufficient 
time or dose to have further effects. We used an intraorbital delivery of mEVs, and an intravenous route 
may have more robust effects. Future studies would require a closer examination of the timing of 
administration of the mEVs following infection and the optimization of the dosing (with and without 
antiretroviral therapy) to more closely assess the role of myeloid/T cell activation and antagomir-155 on 
HIV.

Our results raise a number of interesting issues. Control mEV treatments decreased the number of CD16+ 
or intermediate monocytes in the periphery. These monocytes are thought to preferentially transmigrate to 
the brain in HIV infection[33]. These results suggest that targeting these monocytes would seem more 
beneficial than targeting the CCR5+ monocytes. The mEV treatments also caused a significant decrease in 
peripheral T cell activation. Our results show a differential expression of CCR5 and CD16 on monocytes, 
with mEVs decreasing the percentages of CD16+ monocytes and increasing the CCR5 expression on 
monocytes. Since CD14++/CD16+ monocytes preferentially transmigrate and seed the brain as a reservoir, 
targeting this subset in the periphery would be the best approach to limit CNS seeding[33]. The mEV 
treatments also caused an increase in %CCR5 of CD163+CD11b+ cells and a decrease in %CD16 of 
CD163+CD11b cells, again suggesting a divergent beneficial effect on monocytes. We posit that the mEV 
treatments decreased CD16+ monocytes and increased CCR5+ monocytes that may translate to higher 
migration to other tissues than the brain. These studies do not show an advantage in using antagomir-155 to 
reduce inflammation below HIV infection alone, but the numbers are small and the outliers may obscure 
significance. The contents of the mEVs need to be further investigated to determine these positive effects. 
To our knowledge, this is the first time an EV has been engineered to suppress an inflammatory miRNA 
and delivered into a humanized HIV mouse to modulate neuroinflammation. In conclusion, there appears 
to be value in treatment with monocyte EVs in reducing CD16+ monocytes, and although CCR5 was 
increased on monocytes in mEV-treated mice, this did not translate to an increase in migration to the brain.
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Abstract
Aim: Activation of microglial NLRP3 inflammasome is an essential contributor to neuroinflammation underlying 
HIV-associated neurological disorders (HAND). Under pathological conditions, microglia-derived-EVs (MDEVs) 
can affect neuronal functions by delivering neurotoxic mediators to recipient cells. However, the role of microglial 
NLRP3 in mediating neuronal synaptodendritic injury has remained unexplored to date. In the present study, we 
sought to assess the regulatory role of HIV-1 Tat induced microglial NLRP3 in neuronal synaptodendritic injury. We 
hypothesized that HIV-1 Tat mediated microglia EVs carrying significant levels of NLRP3 contribute to the 
synaptodendritic injury, thereby affecting the maturation of neurons.

Methods: To understand the cross-talk between microglia and neuron, we isolated EVs from BV2 and human 
primary microglia (HPM) cells with or without NLRP3 depletion using siNLRP3 RNA. EVs were isolated by 
differential centrifugation, characterized by ZetaView nanoparticle tracking analysis, electron microscopy, and 
western blot analysis for exosome markers. Purified EVs were exposed to primary rat neurons isolated from E18 
rats. Along with green fluorescent protein (GFP) plasmid transfection, immunocytochemistry was performed to 
visualize neuronal synaptodendritic injury. Western blotting was employed to measure siRNA transfection 
efficiency and the extent of neuronal synaptodegeneration. Images were captured in confocal microscopy, and 
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subsequently, Sholl analysis was performed for analyzing dendritic spines using neuronal reconstruction software 
Neurolucida 360. Electrophysiology was performed on hippocampal neurons for functional assessment.

Results: Our findings demonstrated that HIV-1 Tat induced expression of microglial NLRP3 and IL1β, and further 
that these were packaged in microglial exosomes (MDEV) and were also taken up by the neurons. Exposure of rat 
primary neurons to microglial Tat-MDEVs resulted in downregulation of synaptic proteins- PSD95, synaptophysin, 
excitatory vGLUT1, as well as upregulation of inhibitory proteins- Gephyrin, GAD65, thereby implicating impaired 
neuronal transmissibility. Our findings also showed that Tat-MDEVs not only caused loss of dendritic spines but 
also affected numbers of spine sub-types- mushroom and stubby. Synaptodendritic injury further affected 
functional impairment as evidenced by the decrease in miniature excitatory postsynaptic currents (mEPSCs). To 
assess the regulatory role of NLRP3 in this process, neurons were also exposed to Tat-MDEVs from NLRP3 
silenced microglia. Tat-MDEVs from NLRP3 silenced microglia exerted a protective role on neuronal synaptic 
proteins, spine density as well as mEPSCs.

Conclusion: In summary, our study underscores the role of microglial NLRP3 as an important contributor to Tat-
MDEV mediated synaptodendritic injury. While the role of NLRP3 in inflammation is well-described, its role in EV-
mediated neuronal damage is an interesting finding, implicating it as a target for therapeutics in HAND.

Keywords: NLRP3, microglia-derived EVs, synaptodendritic injury, mEPSC

INTRODUCTION
Globally, 37.7 million people are living with human immunodeficiency virus (HIV) as of 2020, with greater 
than 50% having access to combined antiretroviral therapy (cART) as of June 2021 (UNAIDS). The 
introduction of cART has changed the face of HIV-1 from a death sentence to a manageable chronic disease 
condition. HIV enters the brain soon after infection via Trojan horse mechanisms involving the migration 
of infected monocytes across the blood-brain barrier (BBB)[1]. It has been demonstrated that HIV patients 
on cART with no detectable viral load therapy[2] continue to be inflicted with complications of the central 
nervous system (CNS), collectively termed HIV-associated neurocognitive disorders (HAND). This is likely 
due to the presence of ongoing low-level virus replication and HIV-1 viral proteins in the brain. About half 
of the HIV-1 infected patients go on to develop HAND regardless of the cART regimen[3], thereby 
implicating the effects of residual viral proteins on the CNS[4]. Among these viral proteins, the trans-
activator of transcription (Tat) is an early viral regulatory protein that enhances the efficiency of viral 
transcription in the brain[5]. Tat is an HIV-1 protein with a variable length of 86-102 amino acids[6,7] and 
plays a critical role in HIV pathogenesis owing to its cytotoxic potential[8].

In the CNS, HIV does not directly infect the neurons but can efficiently infect microglia[9] and, to some 
extent, the astrocytes[10,11]. HIV-infected microglia or astrocytes, in turn, produce Tat protein, which then 
can be taken up by the uninfected bystander cells, including the neurons[12-14]. A sufficient amount of Tat is 
present in the CNS of HIV-infected patients to induce neurotoxicity and neuronal dysfunction in vivo[15] as 
well as in vitro in cultured neurons[16]. Reports have shown that Tat alters the expression of neuronal 
proteins such as the postsynaptic density protein 95 (PSD-95)[17], Gephyrin[17], and synaptophysin[18].

Microglia not only function as the resident immune cells of the CNS, but also communicate with various 
other CNS cells, including the neurons[19] and astrocytes[20], for normal functioning of the brain. In healthy 
cells, microglia secrete extracellular vesicles (EVs) to support the metabolic functions of neurons and to 
provide substrates needed for energy metabolism during synaptic activity[21-25]. Similarly, under pathological 
conditions, microglia-derived EVs (MDEVs) can also affect neuronal functions by delivering 
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proinflammatory cytokines and other neurotoxic mediators to these latter cells[26,27]. Previous reports from 
our laboratory have shown that HIV-1 Tat could impact the astrocyte EV cargo, which in turn, could impair 
the synaptic architecture of neurons[28,29]. It has also been suggested that secretion of EVs could be a 
necessary and compensatory pathway to eliminate damaged or toxic molecules produced due to Tat 
cytotoxicity[30-33]. To support this notion, we and others have shown that HIV-1 Tat inhibits the autophagy 
and proteasomal degradation pathways in microglia and astrocytes[30-33], which in turn, can modulate the EV 
biogenesis pathways[34,35]. Additionally, our previous study has demonstrated that HIV-1 Tat can induce the 
NLRP3 inflammasome pathway in microglia[36], resulting in their activation. Taken together, we thus 
hypothesized that in the context of HIV/HAND pathology EVs released from inflammasome-activated 
microglia cells could also carry the inflammatory mediators such as NLRP3, which, upon being taken up by 
the neurons, could affect their functions.

In the present study, we isolated and characterized EVs released by BV2 cells (immortalized murine 
microglial cells) and human primary microglia (HPM) cells in the presence or absence of HIV-1 Tat. Both 
the BV2 and primary microglial cells derived-MDEVs were demonstrated to carry the NLRP3 and IL1β 
cargoes that, upon being uptaken by the neurons, resulted in synaptodendritic injury and lowering 
excitatory postsynaptic currents, suggesting that the MDEVs via an NLRP3 dependent mechanism could be 
a contributing factor for HAND pathogenesis.

METHODS
Reagents
NLRP3 (AG-20B-0014, AdipoGen, CA, USA); IL1β (ab9722, Abcam, MA, USA); Anti-CD63 antibody 
(ab216130, Abcam, MA, USA); Anti-CD9 antibody (ab92726, Abcam, MA, USA), Anti-TSG101 antibody 
(ab125011, Abcam, MA, USA), Anti-Alix antibody (ab275377, Abcam, MA, USA), Anti-Calnexin antibody 
(ab133615, Abcam, MA, USA); Anti-PSD95 antibody (ab2723, Abcam, MA, USA); Anti-GAD65 antibody 
(ab239372, Abcam, MA, USA); Anti-Gephyrin antibody (ab181382, Abcam, MA, USA); Anti-vGLUT1 
antibody (AB5905, Millipore, Burlington, MA, USA), GFP expressing plasmid (13031, Adgene, Watertown, 
MA, USA); β-actin (A5316, Sigma- Aldrich, MO, USA); horseradish peroxidase conjugated goat anti-rabbit 
(sc-2004, Santa Cruz Biotechnology, TX, USA) and horseradish peroxidase conjugated goat anti-mouse (sc-
2005, Santa Cruz Biotechnology, TX, USA); human primary microglia (Cat # 1900; Sciencell research 
laboratory, CA, USA) and BV2 microglial cell line was received from Dr. Sanjay Maggirwar (University of 
Rochester Medical Center, Rochester, NY, USA).

Microglia culture 
HPM cells were purchased from Celprogen (cat no:37089-01).  HPM cells were grown in HPM culture 
complete Media with Serum (Cat. No: M37089-01, Celprogen, CA, USA). The BV2 cell lines were obtained 
from Dr. Sanjay Maggirwar (University of Rochester Medical Center, Rochester, NY, USA). These cultured 
BV2 cells were maintained in Dulbecco’s modified Eagle’s medium (DMEM) with high glucose 
supplemented with 10% heated-inactivated fetal bovine serum, penicillin (100 units/mL), and streptomycin 
(100 μg/mL). Both the cell types were seeded at a density of 3 × 105 (per well) in a six-well plate or 2.5 × 106 
in a T150 flask for different experiments. After overnight serum starvation, cells were treated with 50 ng/mL 
HIV-1 Tat for 24 h in a humidified incubator at 37 °C with 5% CO2, followed by EV isolation.

Rat primary neuron cultures
Rat primary cortical and hippocampal neurons were isolated from E18 rats as described previously[37,38]. The 
animal experiment is approved by the ethical committee of University of Nebraska Medical Center 
(IACUC# 20-057-07-FC). Briefly, the cortex and hippocampi were dissected in HBSS (14025076, Gibco™) 
followed by incubation with 0.25% trypsin (25200056, Gibco™) for 10 min in a 37 °C water bath. Tissue-free, 
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single cell suspensions were obtained by triturating, followed by passing the cell suspension through the 40 
µM cell strainer. Primary neuron cultures were maintained in a complete neuronal media containing 
neurobasal medium (21103049, Invitrogen), with B27 supplement (17504044, Invitrogen), L-Glutamate 
(A2916801, Gibco™), and penicillin-streptomycin (15070063, Invitrogen). Rat primary cortical neurons were 
seeded at a density of 2 × 105 in poly-D-lysine (P1024, Sigma-Aldrich) coated plates for western blot analysis. 
For microscopy analysis, hippocampal neurons were seeded at a density of 1.5 × 105 in poly-D-lysine coated 
coverslips. After two weeks of culture, cells were used for further experimentation.

EV isolation
The EVs were prepared from the supernatant of BV2 cells and HPM by differential centrifugations, which 
was previously described[29]. Briefly, serum-starved BV2 cells and HPM were exposed to HIV-1 Tat protein 
(50 ng/mL) for 24 h. Then, the conditioned media from this treatment were harvested, centrifuged at 300 g 
and 2000 g for 10 min to eliminate cellular debris and residual cells, and the supernatant was spun at 
10,000 g for 30 min, followed by filtration using a 0.22 μm filter. The EVs were pelleted by 
ultracentrifugation (Beckman Ti32 rotor, Brea, CA, USA) for 70 min at 100,000 g. All EV isolation protocols 
were performed at 4 °C. The EVs were quantified using the ZetaView nanoparticle tracking analysis system 
(NS300, Particle Metrix, Germany) as described previously[29]. The protein content was assessed using a 
BCA protein assay kit (Pierce, Rockford, IL, USA); after normalization, the EVs were used for 
characterization of the exosome-specific markers by Western blotting and transmission electron 
microscopy, as well as used for further experimentation. The total number of EVs from 2 million cells were 
diluted in 300 µL of PBS. Approximately 2 million BV2/HPM cells yielded 109/mL of EVs. All the neurons 
were exposed with 100, 500, and 1000 EVs/ cell for standardization, and 500 EVs/ neurons were used for 
further experimentation (after standardization). The neurons were exposed to these EVs for 48 h, followed 
by an assessment of synaptodendritic injury and electrophysiology.

Zeta view tracking analysis 
Isolated EVs from BV2 or HPM supernatant were analyzed by nanoparticle tracking analysis (NTA) using 
ZetaView nanoparticle tracking analyzer (Particle Metrix, Germany) along with the software ZetaView 
8.04.02 SP1. Prior to the analysis, the instrument was calibrated using 100 nm polystyrene nano standard 
particles and cell quality checking was performed before sample reading. The video was captured at a 
sensitivity of 85, a shutter speed of 100, and a frame rate of 30. Size (in nm) and concentration 
(particles/mL) for each sample were determined by injecting the diluted sample in filtered PBS, with two 
cycles of reading at each position.

Electron microscopy
EV pellets were subjected to negative staining. In brief, EV pellets were deposited on 200-mesh Formvar-
coated copper grids and the membranes were covered for 4-5 min for the absorption. Next, for contrast 
staining, the grids were further transferred to uranyl acetate solution. Hereafter, the grids were washed with 
PBS and excess fluid was blotted with filter paper and allowed to air-dry at room temperature. Imaging was 
performed using a Hitachi H-7500 electron microscope (Hitachi, Tokyo, Japan) at 200kV.

NLRP3 siRNA transfection
Microglial cells were seeded at a density of 3 × 105 (per well) in a 6-well plate for siRNA transfection. At 
about 70% confluency, cells were transfected with NLRP3 siRNA or scrambled siRNA in Opti-MEM media 
(Life Technologies, 31985062) using Lipofectamine RNAiMAX transfection reagent (Thermo Fisher 
Scientific, catalog: 13778150) according to the manufacturer’s instructions. Following transfection, cells 
were incubated for 12-18 h in a humidified incubator at 37 °C with 5% CO2. After transfection, cells were 
treated with 50 ng/mL Tat in a fresh DMEM medium for 24 h. The siRNA transfection efficiency was 
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determined by western blotting.

GFP-plasmid transfection
Lipofectamine 3000 (2307436, Invitrogen, Carlsbad CA) was used for GFP plasmid transfection in 
hippocampal (0.15 × 106 cells/well) neurons according to the manufacturer’s instructions. Briefly, cells were 
transfected with GFP plasmid (500 ng) mixed with 1μl of Lipofectamine 3000 diluted in 25 μL of Opti-MEM 
(31985-070, Gibco, Thermo Fisher Scientific, Amarillo, TX) media. The cells were incubated with the 
plasmid-lipid complex for 6 h, and the medium was changed with fresh media. Thereafter, transfected cells 
were used for various treatments after 72 h.

Immunocytochemistry
GFP-plasmid transfected primary rat hippocampal neurons on coverslips were exposed to MDEVs for 48 h. 
After the treatment, neurons were fixed with 4% paraformaldehyde (PFA) for 20 min at room temperature 
and permeabilized with 0.1% Triton X-100 (BP151-1; Thermo Fisher Scientific, Grand Island, NY, USA). 
Blocking was performed with 5% normal goat serum in PBS for 1 h at room temperature, followed by the 
addition of respective primary antibodies: GAD65 (ab18258, Cambridge, MA), vGlut1 (ab5905, Cambridge, 
MA). After incubation with primary antibody overnight, the neurons were probed with secondary Alexa 
Fluor 594 goat anti-rabbit (A11012, Invitrogen, Carlsbad CA) and Alexa Fluor 647 goat anti-guinea pig 
(A21450, Invitrogen, Carlsbad CA) antibodies. Cells were counterstained and mounted with Prolong Gold 
antifade reagent with DAPI (P36935, Invitrogen, Carlsbad CA).

Image acquisition and dendritic spine quantification
Images were captured in confocal microscopy (ZEISS ELYRA PS.1 Super Resolution Microscope, Jena, 
Germany) with a 63× magnification with consistent contrast and brightness for each set of experiments. 
Dendritic spines were captured using Z-stack projection. Thereafter, Sholl analysis was performed for 
analyzing dendritic spines using neuronal reconstruction software Neurolucida 360 (version 2021.1.1).

Western blotting
The BV2 or HPM cells treated with HIV-1 Tat in culture were lysed using the mammalian cell lysis kit 
(Sigma, MCL1-1KT). Protein electrophoresis was performed using 10 μg of the lysate proteins on a 10% 
sodium dodecyl sulfate-polyacrylamide gel under reducing conditions, then transferred to polyvinylidene 
difluoride (PVDF) membranes (Millipore, IPVH00010). Then, the blots were blocked with 5% nonfat dry 
milk diluted in 1 × TTBS buffer. After washing with 1 × TTBS buffer three times, the membranes were 
probed with primary antibodies specific for the proteins of interest overnight. The secondary antibodies 
used to probe were HRP conjugated to goat anti-mouse/rabbit IgG. β-actin (Sigma, A5441) was used as a 
loading control for the study.

Electrophysiology
Whole-cell electrophysiology was performed on rat primary hippocampal neurons (DIV 19-21) as 
previously described[39]. Primary hippocampal neurons were seeded on coverslips. The signal was filtered at 
2 kHz & digitized at 10 kHz using an Axon Digidata 1440A analog-to-digital board (Molecular Devices, San 
Jose, CA, USA). Recordings with a pipette access resistance of less than 20 mOhm and less than 20% 
changes during the duration of recording were included. The external solution contained (in mM): 150 
NaCl, 3 KCl, 10 HEPES, 6 mannitol, 0.02 EDTA, 1.5 MgCl2, and 2.5 mM CaCl2 (pH 7.4). Glass pipettes with 
a resistance of 2-5 mOhm were filled with an internal solution consisting of (in mM) 110 cesium gluconate, 
30 CsCl, 5 HEPES, 4 NaCl, 0.5 CaCl2, 2 MgCl2, 5 BAPTA, 2 Na2ATP, and 0.3 Na2GTP (pH 7.35). QX-314 
was added in pipette solution to block voltage-gated sodium channels. Miniature excitatory postsynaptic 
currents (mEPSCs) were recorded in the presence of 0.5 μM tetrodotoxin and 100 μM picrotoxin at -70 mV. 
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The mEPSC recordings were analyzed using Minianalysis software (Synaposoft, Atlanta, GA, USA) with an 
amplitude threshold set at 5 pA. The frequency of the miniature currents was measured.

Statistics
The data are represented as mean ± SEM. Student t-test was employed to compare between two groups, and 
one-way ANOVA followed by Bonferroni post hoc test was employed to compare within multiple 
experimental groups, using the GraphPad Prism software (Version 5). For the in vitro study, three replicates 
per sample and six independent sets of experiments were analyzed. Statistical analysis for which probability 
levels were less than P < 0.05 was considered statistically significant.

RESULTS
HIV-1 Tat increases NLRP3 cargoes in exosomes derived from microglia 
In our previous study, we demonstrated the role of HIV-1 Tat in activating NLRP3 inflammasome with 
subsequent maturation of caspase-1 and production and release of IL-1β from microglia[36]. NLRP3 
inflammasome plays a crucial role in the development of neuroinflammation[40]. It has been shown that 
microglial exosomes can be transported and taken up by the recipient cells[24,25,41]; however, scanty reports 
are available on the functionality of these microglial exosomes, specifically in the context of HIV-1. In the 
current study, we investigated whether microglial NLRP3 plays a role in causing neuronal damage via 
microglia-neuron cross-talk involving the exosomes. We first sought to isolate and characterize EVs from 
conditioned media of BV2 cells and HPM with or without Tat exposure [Figure 1A]. The total number of 
EVs and particle size distribution were determined by NTA. Exposure of BV2 cells [Figure 1B] and HPM 
[Figure 2A] to HIV-1 Tat (50 ng/mL, 24h) resulted in increased release of exosomes compared to the 
control or heated Tat (HT) exposed cells; however, there was no significant difference among the groups. 
Size distribution by NTA showed that isolated EVs were in the size range of 50-150 nm in BV2 cells 
[Figure 1C] and HPM [Figure 2B]. The protein expression of exosomal markers such as Alix, TSG101, CD9, 
and CD63 was analyzed by western blotting in BV2 [Figure 1D] and HPM [Figure 2D] EVs. Additionally, 
immunoblotting of calnexin was also performed to demonstrate that isolated EVs were pure and enriched 
vesicles [Figures 1D and 2D]. Further characterization by TEM revealed the cup-shaped profile of EVs with 
sizes ranging from 50-150 nm in BV2 [Figure 1E] and HPM [Figure 2C]. Since we were specifically 
interested in the role of NLRP3 inflammasome pathway, we determined the protein expression of NLRP3 
and its downstream IL1β in the exosomes derived from BV2 and HPM. HIV-1 Tat was found to increase the 
release of NLRP3, pro- and mature IL1β in EVs isolated from BV2 cells [Figure 1F] and HPM [Figure 2E].

BV-2 exosomes cause neuronal damage 
Since excessive microglial activation damages the surrounding healthy cells, we next enquired whether 
factors derived from activated microglia could reach the recipient neurons and inflict neuronal damage. For 
this, BV2 cells were transfected with a plasmid encoding the exosome marker TSG101 fused with mCherry, 
followed by isolation of EVs from the conditioned media of transfected BV2 cells. As shown in Figure 3A, 
BV2-derived exosomes were found localized within the neurons. Having confirmed the transfer of 
exosomes from microglia to neurons, we next asked whether NLRP3 carried through the exosomes could be 
taken up by the neurons and inflict neuronal damage. For this, rat cortical neurons were exposed to 
exosomes isolated from conditioned media of BV2 cells with or without Tat exposure. As neuronal 
excitability relies precisely on excitatory and inhibitory signals, we analyzed the protein expression of 
postsynaptic density protein 95 (PSD95), a critical synaptic protein that controls synaptic transmission and 
plasticity. Figure 3B represents the immunoblotting analysis of PSD95, which showed a dose-dependent 
significant down-regulation of PSD95 in cortical neurons exposed to exosomes isolated from Tat treated 
BV2 cells (P < 0.05) compared with control EV exposed neurons. Interestingly, there was a significant 
increase in the expression of inhibitory postsynaptic markers, glutamic acid decarboxylase 65 (GAD65), in 
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Figure 1. Characterization of microglia-derived exosomes from BV2 cells. (A) Schematic representation of the isolation protocol from 
BV2 cells. (B) Quantification of the total number of EVs and (C) size distribution of exosomes by NTA using ZetaView. (D) 
Representative western blots showing the expression of exosome-specific markers (Alix, TSG101, CD9, CD63). Calnexin used as a 
negative control for exosomes. (E) Representative transmission electron microscopy (TEM) image of exosome particles isolated by 
ultracentrifugation at 100,000 g. Scale bar 100 nm. (F) Representative western blot images showing protein expression of NLRP3, pro-
IL1β, mIL-β in control, Tat (50 ng/mL) or HT treated-BV2-derived exosomes. Data are presented as mean ± SEM. NLRP3: NOD-, LRR- 
and pyrin domain-containing protein 3; IL: interleukin; mIL: mature interleukin; Tat: trans-activator of transcription; HT: heat inactivated 
Tat protein.

the neurons exposed to varying numbers of Tat-MDEVs (P < 0.05) compared with neurons exposed to 
control MDEVs [Figure 3C]. Similarly, the expression of inhibitory postsynaptic markers, Gephyrin, was 
also found to be significantly upregulated in neurons exposed to Tat-MDEVs (P < 0.05) compared with 
control MDEVs [Figure 3D].

While the neurotoxic effect of NLRP3 has been well documented in neurons[41], the direct role of microglial 
NLRP3 on neuronal synaptodendritic injury has not been shown to date. To assess this phenomenon, the 
expression of NLRP3 was first silenced in BV2 cells using the siRNA approach [Figure 3E]. Next, to 
determine the transfection efficiency, NLRP3 expression was assessed in different groups. Results showed 
that NLRP3 expression was significantly increased in the Tat exposed BV2 cells compared with the 
scrambled control group, and that NLRP3 expression was minimal in the siNLRP3 transfected groups in the 
presence or absence of Tat (50 ng/mL, 24 h) (P < 0.05) [Figure 3E]. As shown in Figure 3F, Tat-MDEVs 
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Figure 2. Characterization of microglia-derived exosomes from human primary microglia (HPM). (A) Quantification of the total number 
of EVs and (B) size distribution of exosomes by NTA using ZetaView. (C) Representative TEM image of exosome particles isolated by 
ultracentrifugation at 100,000 g. Scale bar 100 nm. (D) Representative western blots showing expression of exosome-specific markers 
(Alix, TSG101, CD9, CD63). Calnexin is used as a negative control for exosomes. (E) Representative western blot images showing 
protein expression of NLRP3, pro-IL1β, mIL-1β in control, Tat (50 ng/mL) or HT treated-HPM-derived exosomes. Data are presented as 
mean ± SEM. Abbreviations: similar as Figure 1.

significantly downregulated the expression of PSD95 compared with the control-MDEV group. Silencing of 
microglial NLRP3 significantly abrogated Tat-MDEV mediated downregulation of PSD95 in cortical 
neurons (P < 0.05). Similarly, the expression of GAD65 [Figure 3G] and Gephyrin [Figure 3H] was 
significantly downregulated in neurons exposed to NLRP3 silenced MDEVs exosomes compared with 
neurons exposed to Tat-MDEVs (P < 0.05).

Microglial NLRP3 leads to neuronal dendritic injury 
Having demonstrated that Tat stimulated BV2-derived MDEVs induced alterations in the expression of 
synaptic proteins, we next wanted to assess the role of these MDEVs in mediating neuronal dendritic injury. 
As expected, and as demonstrated in Figure 4A, synaptic spines were abundantly present in the 
hippocampal neurons exposed to BV2-siControl MDEVs. There was, however, significant downregulation (
P < 0.05) of neuronal spines in neurons exposed to BV2 Tat-MDEVs. Interestingly, neurons exposed to 
microglial NLRP3 silenced Tat-MDEVs showed restoration of spine numbers similar to the control group 
[Figure 4C]. Interestingly, the expression of the vGLUT1 was significantly (P < 0.05) decreased and that of 
the GAD65 increased in the hippocampal neurons exposed to MDEVs derived from scrambled siRNA+Tat 
treated BV2 cells, while both of these synaptic proteins remained unchanged in MDEV exposed neurons 
from NLRP3 silenced BV2 [Figure 4B]. Another important finding of this study was that the most mature 
spine sub-type, the mushroom type, was present in high numbers in neurons exposed to MDEVs isolated 
from scrambled siRNA treated BV2 cells, while they decreased significantly in the neurons exposed to 
MDEVs isolated from scrambled siRNA+Tat treated BV2 cells (P < 0.05) [Figure 4D]. A similar trend was 
also observed for the stubby spines [Figure 4E]. MDEVs isolated from NLRP3 silenced BV2 cells, however, 
showed a similar trend as that of the scrambled siRNA treated BV2 cells for mushroom and stubby spines [
Figure 4D-E]. The numbers of immature filopodial and thin spines, however, did not change significantly 
across the different groups [Figure 4F-G].
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Figure 3. Role of BV2 derived exosomes from BV2 on neuronal synaptic proteins. (A) Schematic representation showing the exposure 
of BV2-derived exosomes to primary neurons. Representative western blot images and their quantitative analysis showing the dose-
dependent effects of BV2-derived exosomes on the expression of (B) PSD95, (C) GAD65, and (D) Gephyrin in rat cortical primary 
neurons. (E) Representative western blot images and quantitative analysis showing the expression of NLRP3 in BV2 cells transfected 
with either NLRP3 or scrambled siRNA in the presence of Tat (50 ng/mL) to confirm the transfection efficiency of NLRP3. 
Representative western blots and their quantitative analysis showing the expression of (F) PSD95, (G) GAD65, and (H) Gephyrin in rat 
primary cortical neurons exposed with MDEVs from NLRP3 siRNA transfected BV2 cells in the presence of Tat (50 ng/mL). β-actin was 
used as a loading control. Data are presented as mean ± SEM. *P < 0.05 vs. siControl MDEV, #P < 0.05 vs. Tat MDEV. One-way 
ANOVA followed the Bonferroni post hoc tests were used for statistical analysis. MDEV: Microglia derived exosomes’ HT: heated Tat; 
NLRP3: NOD-, LRR- and pyrin domain-containing protein 3; PSD95: postsynaptic density protein 95; GAD65: glutamic acid 
decarboxylase; siRNA: small interfering RNA; Tat: trans-activator of transcription.

HPM exosomes cause neuronal synaptodendritic injury 
We next wanted to validate our findings with HPM-derived EVs. We assessed the role of NLRP3 in HPM-
derived EVs on a neuronal synaptodendritic injury. Similar to BV2 cells, neurons were also exposed to 
HPM-derived EVs for 48 h. As shown in Figure 5A, in HPMs transfected with either scrambled or NLRP3 
siRNA, Tat significantly (P < 0.05) increased NLRP3 expression in HPM. In NLRP3 silenced cells, there was 
effective NLRP3 silencing.  As shown in Figure 5B, HPM-Tat-EVs significantly (P < 0.05) downregulated 
the expression of PSD95 and upregulated the expression of GAD65 in neurons compared with neurons 
exposed to control MDEVs. In neurons exposed to MDEVs from microglial silenced NLRP3, on the other 
hand, Tat failed to alter the expression of synaptic proteins (P < 0.05). Similarly, in neurons exposed to 
HPM-Tat-MDEVs, significantly (P < 0.05) downregulated the expression of synaptophysin and upregulated 
the expression of Gephyrin in neurons compared to neurons exposed to control MDEVs. MDEVs from 
NLRP3 silenced HPM in the presence/absence of Tat showed minimal alterations in the expression of 
synaptic proteins (P < 0.05) [Figure 5C]. Having demonstrated that Tat stimulated HPM-derived EVs 
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Figure 4. Role of BV2-derived exosomes on neuronal dendritic spines. (A) Representative immunofluorescence images showing 
hippocampal spine density & expression of vGlut1 and GAD65, after exposure of hippocampal neurons with MDEVs from control, Tat, 
NLRP3 silenced and NLRP3 silenced- Tat treated BV2 cells. Scale bar: 2 µm. (B) Quantitative analysis of vGlut1 and GAD65 via Image J 
Launcher software. (C) Quantification of spine numbers in different groups of neurons via Neurolucida software. (D-G) Quantification 
of spine sub-types in different groups of neurons via Neurolucida software. Data are presented as mean ± SEM. *P < 0.05 vs. siControl 
MDEV, #P < 0.05 vs. Tat-MDEV. One-way ANOVA, followed by the Bonferroni post hoc tests, was used for statistical analysis. Scramb: 
scrambled siRNA (small interfering RNA); NLRP3: NOD-, LRR- and pyrin domain-containing protein 3; vGLUT1: vesicular glutamate 
transporters; GAD65: glutamic acid decarboxylase; Tat: trans-activator of transcription.

induced alterations in the expression of the synaptic proteins, we next wanted to assess the role of these 
exosomes in neuronal dendritic injury. As demonstrated in Figure 5D, there was an abundant expression of 
synaptic spines in hippocampal neurons exposed to MDEVs isolated from HPMs treated with scrambled 
siRNA. Total spine numbers, however, were significantly downregulated (P < 0.05) in neurons exposed to 
MDEVs isolated from HPM transfected with scrambled siRNA+Tat group. Neurons exposed to MDEVs 
from NLRP3 silenced group showed spine numbers similar to the control group [Figure 5F]. Interestingly, 
the expression of the vGLUT1 was significantly (P < 0.05) decreased, and that of the GAD65 increased in 
hippocampal neurons exposed to MDEVs isolated from HPM transfected with scrambled siRNA+Tat 
group. In neurons exposed to MDEVs from NLRP3 silenced HPMs, the expression levels of both the 
synaptic proteins were comparable to the neurons exposed to control MDEVs [Figure 5E]. Intriguingly, we 
found that the numbers of mushroom and stubby spines were significantly (P < 0.05) decreased (P < 0.05) in 
the neurons exposed to MDEVs isolated from the HPM+Tat group compared to that of control 
[Figures 5G]. As expected, the NLRP3 silenced groups showed a similar trend as that of the control group 
[Figure 5G]. However, the immature thin and filopodial spines did not significantly change across the 
different groups [Figure 5H].

HPM exosomes reduce excitatory neurotransmission 
To study the functional alterations in neurons induced by the HPM-exosomes, we recorded miniature 
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Figure 5. Role of human primary microglia-derived exosomes on neuronal miniature excitatory postsynaptic currents (mEPSC). (A) 
Representative traces of whole-cell voltage-clamp recording showing mEPSC, (B) mean mEPSC frequencies (Hz), and (C) amplitude 
(pA) in primary rat hippocampal neurons (DIV 18-22) exposed to MDEVs from control, Tat, NLRP3 silenced and NLRP3 silenced- Tat 
treated HPM cells. Data are presented as mean ± SEM. *P < 0.05 vs. siControl MDEV, #P < 0.05 vs. Tat MDEV. One-way ANOVA, 
followed by the Bonferroni post hoc tests, was used for statistical analysis. Scramb: Scrambled siRNA (small interfering RNA); MDEV: 
microglia derived exosomes; NLRP3: NOD-, LRR- and pyrin domain-containing protein 3; PSD95: postsynaptic density protein 95; 
vGLUT1: vesicular glutamate transporters; GAD65: glutamic acid decarboxylase; siRNA: small interfering RNA; Tat: trans-activator of 
transcription.

excitatory postsynaptic currents (mEPSCs) in rat primary hippocampal neurons (DIV 18-22) treated with 
scrambled siRNA-MDEV, scrambled siRNA+-Tat-MDEV, NLRP3 siRNA MDEV, NLRP3 siRNA+Tat 
MDEVs isolated from HPM. As demonstrated in Figure 6A-C, scrambled siRNA+-Tat-MDEVs 
significantly (P < 0.05) decreased the excitatory neurotransmission (reduced frequency and amplitude) in 
rat primary neurons. On the other hand, in rat primary neurons exposed to NLRP3 siRNA MDEVs, NLRP3 
siRNA+Tat MDEVs, the mEPSCs were comparable to the neurons exposed to scrambled siRNA-MDEV; 
however, the amplitudes still remained low [Figure 6C].

Schematic representation of microglia-neuronal cross-talk in synaptodendritic injury involving Tat 
MDEVs
In this study, we demonstrated that exposure of microglia (BV2/HPM) to HIV-1 Tat resulted in the release 
of MDEVs carrying NLRP3 and IL1β cargoes, which could be taken up by the neurons. Upon uptake by the 
neurons of the NLRP3, IL1β containing MDEV cargoes, there was a decreased expression of synaptic 
proteins PSD95, excitatory vGLUT1, and an increase in inhibitory synaptic proteins - GAD65 and 
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Figure 6. Schematic representation of the role of microglial NLRP3 on neuronal synaptodendritic injury via exosomes. Exposure of 
microglia (BV2 or HPM) with HIV-1 Tat results in the activation of NLRP3 inflammasome complex, whichleads to  the production of IL-1
β and  microglial activation. Thereafter, these NLRP3 and IL1β can be packaged in the exosomes and released by the microglia. These 
exosomes carrying NLRP3/IL1β upon uptake by the neurons result in alteration of synaptic proteins (PSD95, vGLUT1, GAD65, 
Gephyrin) and dendritic injury (change in the spine- numbers and sub-types). Overall, these microglial EVs carrying NLRP3 cargoes can 
cause synaptodendritic injury resulting in HAND in patients via microglia-neuron cross talk. NLRP3: NOD-, LRR- and pyrin domain-
containing protein 3; ASC: apoptosis-associated speck-like protein; IL 1β: interleukin 1β; PSD95: postsynaptic density protein 95; 
vGLUT1: vesicular glutamate transporters; GAD65: glutamic acid decarboxylase; Tat: trans-activator of transcription.

Gephyrin. Further, these MDEVs also resulted in a loss of dendric spines as well as a change in the ratio of 
spine sub-types (mushroom, stubby, filopodia, thin). Silencing of microglial NLRP3 led to the protection of 
Tat MDEV mediated neuronal synaptodendritic injury [Figure 7]. Overall, the Tat-MDEVs carrying NLRP3 
cargoes could mediate neuronal synaptodendritic injury underlying HAND involving the microglial-
neuronal cross-talk [Figure 7].

DISCUSSION
HAND is a common cause of morbidity in HIV-1 positive individuals who are on cART[42]. The prevalence 
of milder forms of the disease, such as asymptomatic neurocognitive impairment (ANI) or mild-
neurocognitive disorder (MND), however, continues to increase, accounting for ~70% of HAND cases[42]. 
As demonstrated by several investigators, people living with HIV-1 on cART continue to exhibit neuronal 
damage[43]. Although neurons are less susceptible to direct infection, infected microglia can mediate 
neuronal damage involving both the EVs and non-EV fractions[44-47]. In healthy cells, microglia secrete EVs 
to support the metabolic functions of neurons and to provide them with substrates needed for energy 
metabolism during synaptic activity[21-23]. Ample evidence suggests that EVs play a significant role in 
microglia-mediated neuroinflammation and the progression of several neurodegenerative disorders in the 
brain[27,48,49]. Recent studies indicate that EVs are key players in intercellular communication that underlies 
physiological processes such as synaptic plasticity and maintenance of myelination[50,51]. Similarly, MDEVs 
also affect neuronal functions by delivering proinflammatory cytokines and other neurotoxic mediators 
under pathological conditions[26,27].

As reviewed by Saylor et al. (2016), evidence suggests that inflammation plays a critical role in HAND[42]. 
HIV-1 Tat protein has been shown to be present in the brains of infected individuals and is an important 
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Figure 7. Schematic representation of the role of microglial NLRP3 on neuronal synaptodendritic injury via exosomes. Exposure of 
microglia (BV2 or HPM) with HIV-1 Tat results in the activation of NLRP3 inflammasome complex, whichleads to  the production of IL-1
β and  microglial activation. Thereafter, these NLRP3 and IL1β can be packaged in the exosomes and released by the microglia. These 
exosomes carrying NLRP3/IL1β upon uptake by the neurons result in alteration of synaptic proteins (PSD95, vGLUT1, GAD65, 
Gephyrin) and dendritic injury (change in the spine- numbers and sub-types). Overall, these microglial EVs carrying NLRP3 cargoes can 
cause synaptodendritic injury resulting in HAND in patients via microglia-neuron cross talk. NLRP3: NOD-, LRR- and pyrin domain-
containing protein 3; ASC: apoptosis-associated speck-like protein; IL 1β: interleukin 1β; PSD95: postsynaptic density protein 95; 
vGLUT1: vesicular glutamate transporters; GAD65: glutamic acid decarboxylase; Tat: trans-activator of transcription.

contributor to the development of HAND[52-55]. In our previous study, we showed that HIV-1 Tat-mediated 
microglial activation involves the NLRP3 inflammasome pathway. In brief, our previous findings showed 
that Tat primes and activates the NLRP3 inflammasome in microglia, resulting in the release of IL-1β, a 
highly potent cytokine that, in turn, induces other cytokines, including IL-6 and TNF-α, to further 
exacerbate neuroinflammation[36]. Other investigators have also shown induction of the NLRP3 
inflammasome in both microglia and monocytes during HIV-1 infection[56-58]. Interestingly, individuals who 
developed ANI and MND have elevated levels of NLRP3 activators such as ceramide and multiple forms of 
cholesterol compared with cognitively normal HIV-1-positive individuals[59]. In the present study, we 
demonstrate that Tat-induced NLRP3 in the microglia can be packaged in MDEVs and is released in the 
extracellular space. The MDEVs carrying the NLRP3 cargoes can be taken up by the neurons, in turn 
leading to synaptodendritic injury and functional impairment [Figure 7]. Although NLRP3 is primarily 
induced by microglia, recent reports have also demonstrated the role of neuronal NLRP3 in Parkinson’s 
Disease[41]. There is, however, no evidence of activation of NLRP3 in neurons in HIV-1 to date. While the 
role of microglial NLRP3 in neuronal damage has been demonstrated in the presence of HIV protein 
gp120[60], the role of Tat in microglial NLRP3 mediated neuronal damage remains elusive.

In the present study, we demonstrated that Tat exposed MDEVs had a size distribution ranging from 50-150 
nm and were found to carry the NLRP3 and IL1β cargoes. The numbers of MDEVs, however, did not 
change in the presence or absence of Tat. The current study was not aimed at assessing the direct role of IL1
β on neuronal injury, instead was focused on the indirect effect of activation of the microglial NLRP3 
pathway. Exposure of neurons to Tat-MDEVs resulted in downregulation of synaptic proteins- PSD95, 
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synaptophysin, excitatory vGLUT1 and upregulation of inhibitory proteins- Gephyrin, GAD65, thus 
suggesting impaired neuronal transmissibility. Furthermore, Tat MDEVs exposed neurons also exhibited 
decreased mEPSCs, thereby implicating functional impairment of the neurons. Previous studies have 
demonstrated damage of the pyramidal neurons in the neocortex during HIV infection with alterations in 
excitatory neurotransmitters and inflammatory markers[43]. Interestingly, it was also shown that PSD95 
expression was downregulated[61], and Gephyrin expression was increased in neurons following Tat 
exposure[17]. Other reports in HIV transgenic mice have demonstrated an increase in Gephryin, associated 
with inhibitory transmission and minimal dendritic pathology[62]. Dysregulation of excitatory/inhibitory 
proteins[62,63] could underlie functional impairment of the neurons, as evidenced by the increase in mEPSCs 
in our study. Previous reports from our laboratory have also shown that HIV-1 Tat could also induce 
alteration of EV cargoes from astrocytes, in turn leading to impairment of the synaptic architecture of 
neurons[28,29].

Alterations of synaptic proteins and cognitive deficits are often associated with a neuronal spine injury, as 
shown in HIV-Tg rats[64]. Our present study showed loss of dendritic spines, mature spine sub-types 
mushroom and stubby, following exposure of neurons with Tat-MDEVs. Alterations in total spine density 
have been demonstrated by several investigators in HAND[62-64]. In line with our study, clinical studies have 
shown that HIV patients exhibit loss of neurons, and aberrant sprouting, and dystrophic synaptodendritic 
connections in the CNS[65], with decreased expression of MAP2 and neurofilament, and markers for 
synaptodendritic connectivity. Intriguingly, it has also been reported that damage initiates in the synapses 
and dendrites and then spreads to the rest of the neuron, leading to apoptosis[66,67]. Association of alterations 
of spine sub-types with synaptodendritic injury has not been reported earlier in HAND. Additionally, the 
role of MDEVs in the process of synaptodendritic injury is a novel finding of this study. Next, to assess the 
role of microglial NLRP3 in this process, neurons were exposed to MDEVs from NLRP3 silenced microglia 
in the presence of Tat. Results showed that these MDEVs, derived from NLRP3 silenced microglia, 
abrogated Tat-MDEV mediated neurotoxicity as evidenced by restoration of changes in synaptic proteins- 
PSD95, Synaptophysin, GAD65, and Gephyrin as well as total spines and spine sub-types. The protective 
role was also observed in the frequency of the mEPSCs, but not in the amplitudes.

To summarize, this study demonstrated that HIV-1 Tat exposure can lead to the release of MDEVs from 
microglia, carrying NLRP3 cargoes. These MDEVs, upon being taken up by the neurons, resulted in 
synaptodendritic injury and functional impairment- as evidenced by decreased mEPSCs. The role of 
microglia-neuronal cross-talk via MDEVs has not been demonstrated earlier in the context of HAND; 
specifically, how the microglial NLRP3 plays a role in this process will open future avenues for the 
development of adjunctive therapeutics for HAND. Although we demonstrated the role of microglial 
NLRP3 in neuronal injury, further studies are warranted to assess the mechanistic underpinnings by which 
MDEVs mediate neuronal damage. The role of NLRP3 in inflammation is very well known; however, the 
role of the same NLRP3 in neuronal damage is an interesting finding that implicates the role of the 
therapeutic potential of NLRP3 blockers as a treatment option for HAND and other neuroinflammatory 
conditions.
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Abstract
Plant exosome-like nanovesicles (PELNVs) are membrane-encapsulated nanostructures released from cells into 
their surroundings. PELNVs have an important role in intercellular and interspecies communication in all three 
domains of life. They act as protective compartments for the long-distance transit of signal molecules like proteins, 
nucleic acids, lipids, and other metabolites. A range of plants and vegetables can emit PELNVs. The importance of 
PELNVs in interspecies communication stems from their concentration in biomolecules (lipids, proteins, and 
miRNAs), lack of toxicity, ease of internalization by cells, and anti-inflammatory, immune-modulatory, and 
regenerative characteristics. PELNVs derived from numerous fruits and vegetables are biocompatible, 
biodegradable, and abundant in various plant species. Moreover, their convincing physicochemical characteristics 
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underpin their modulative role in physiological and pathological processes, all of which have fueled speculation that 
these nanovesicles could be particularly adept at developing future-generation bio-therapeutic platforms. The goal 
of this review was not only to present an overview of the identified roles of PELNVs in physiology and pathology, 
but also to provide new insight toward their engineering for effective therapeutics and drug delivery nanoplatforms, 
a clue for future direction to the ongoing research gaps.

Keywords: Plant exosome-like nanovesicles (PELNVs), engineering exosomes, nanotheranostics

INTRODUCTION
Exosomes are extracellular vesicles with a 30-150 nm diameter secreted by eukaryotic cells. They are vesicles 
released from the cells after the fusion of intracellular multivesicular bodies (MVBs) [Figure 1]. After 
discovering exosomes in animal cells, more and more evidence shows that MVBs and plant exosome-like 
nanovesicles (PELNVs) appear in plants[1,2]. PELNVs have been isolated using different methods and show 
similar morphology and structure to animal exosomes. They have a phospholipid bilayer structure, contain 
proteins and microRNAs (miRNAs), and are saucer-shaped or cup-shaped can be observed with a 
transmission electron microscope (TEM). PELNVs are nanoscale particles released from various plants, 
including broccoli[3], ginger[4], grapefruits, and lemon[5,6]. They are crucial for normal cellular homeostasis, 
including control of the immune system, intercellular and interkingdom communications[7], and 
involvement in physiological responses and pathological progression[8]. Moreover, their molecular 
constituents were correlated with numerous disorders and treatment responses, suggesting their potential 
for application as diagnostic instruments[5]. They are also employed in the development of tissue 
engineering and reconstructing, nucleic acids, and chemotherapeutical agent delivery, thus emerging as a 
novel form of nanomedicine.

Compared to synthetic nanocarriers, PELNVs are far better because they do not cause cell toxicity[5]. 
PELNVs also stimulate intestinal tissue renewal. Their exclusive lipid and miRNA content can modulate gut 
microbiota and play biological roles in fighting inflammatory disorders, including liver steatosis, colitis 
disease, and even cancers[9]. PELNVs can be loaded with therapeutic factors, including siRNAs, DNA 
expression vectors, proteins, and macromolecular therapeutics, and transferred to specific tissues in various 
disorders[10]. PELNVs can also be functionalized to deliver drugs into a target tissue conveniently. Despite all 
these promising features of PELNVs, the concept of molecular and cellular mechanisms accountable for 
their bio-functions is limited. However, the high pressure of interstitial fluid hinders homogeneous 
distributing and effective internalization of drugs in specific tissues such as a solid tumor. Functionalization 
of PELNVs nanocarriers could be an innovative approach for the delivery of drugs[11,12].

Furthermore, poor loading and encapsulating efficacy and problems with exogenic hydrophilic 
macromolecules delivery and the possible delivery of undesirable cargo substances innately exist within 
PELNVs. This review discusses the recent development in PELNVs research and develops mechanistic 
insights for advancing their engineering for innovative therapeutic and drug delivery nanoplatforms. We 
propose that engineering the PELNVs, through an innovative approach for developing designer PELNVs 
with greatly enhanced and adjustable communication efficiency, is highly necessary to address these 
challenges. Thus, PELNVs can be offloaded, reengineered, functionalized, and reloaded with a cargo of 
choice or co-loaded with their contents without distorting their structural integrity to ensure higher loading 
and encapsulating efficacy cargo specificity and precision[13].
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Figure 1. Schematic diagram of the biogenesis, release, structure, and uptake of PELNVs. PELNVs are formed by inward budding of the 
cell membrane and are produced by MVBs (also called late endosomes). The membrane of MVBs expands inwardly to fuse with the 
plasma membrane to release their intraluminal vesicles into the extracellular space (called exosomes) or fuse with lysosomes for 
degradation. In this process, proteins, nucleic acids (e.g., DNA, mRNA, miRNA), and lipid rafts are packed into PELNVs. A variety of 
mechanisms mediate the uptake of PELNVs, including the fusion of PELNVs with the cell membrane of recipient cells, resulting in the 
release of PELNVs cargo into the cytoplasm, uptaking by receptor-ligand interactions, endocytosis, and phagocytosis. PELNVs: Plant 
exosome-like nanovesicles.

Engineering approaches for exosomes 
Multiple disciplinary technologies have been developed for exosome engineering [Figure 2] and loading 
therapeutic cargos, including DNAs, RNAs, pharmacological agents, lipids peptides, proteins, and 
nanomaterials into exosomes[14]. Incubating, transfection, physical treatments like extrusion, 
electroporation, sonication, freeze-thawing, surfactant treatment, and dialysis, as well as in situ synthesis, 
are all employed[10]. Furthermore, molecular homing with substantial receptor affinities, acidic milieu, 
responsivity, and magnetic features has been assembled on exosomes by transfection or chemical 
modification, conferring the targeting capacity to exosomes.

Indirect manipulation of exosomes
Plant-derived exosomes could be modified by genetic engineering of exosomes producing cells, including 
expressing fresh proteins on their membranes or increasing therapeutic proteins cargo load packing efficacy 
through selective peptides. In an animal model, a platelet-derived growth factor receptor transmembrane 
domain was fused to the GE11 peptide, which could selectively bound to EGFR on HEK293 cells. 
Subsequently, GE11 was found on HEK293 cell exosomes. These cells were then transfected with a synthetic 
let-7a miRNA. This let-7a containing exosomes could target tumor cells and efficiently distribute let-7a by 
interacting with EGFR and GE11 present on cancer cells. This administration method potentially affected 
treating EGFR-expressing breast cancer in a mouse model[15].

Direct manipulation of exosomes
Direct manipulation of exosomes is efficient for engineering exosome nanovesicles (ENVs) through direct 
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Figure 2. Reengineering PELNVs as nanoscale therapeutics. (1) Using lipophilic or amphiphilic molecules, these molecules can be 
directly inserted into the EV membrane through the hydrophobic interaction with the phospholipid bilayer. (2) Enzyme catalytic 
reaction, for example, sortase enzyme can react the sequence of LPETX with the N-terminal protein on exosomes. (3) Metabolic 
labeling, in which metabolite analogs are incorporated into cell biosynthesis, and functional groups (such as azide) can be introduced 
into EVs, thereby allowing subsequent bio-orthogonal reactions. (4) Chemical reactions can also be carried out directly on the vesicle 
membrane. For example, carbodiimide can modify natural amines to present azide groups for click chemistry reactions. (5) Exogenous 
substances can be introduced through liposomes or micelles fused with the exosomal membrane. (6) Genetic engineering can be used 
to fuse coding genes on exosomal membrane proteins.

modification[16]. A recent study proposed a way for directly conjugating biomolecules to the surface of ENVs 
using the click chemistry approach, which is a copper-catalyzed azide-alkyne cycloaddition. This work 
coupled alkyne groups to EVs via a copper-catalyzed azide-alkyne cycloaddition. This method did not affect 
EV size, adhesion, or internalization by recipient cells. Furthermore, this approach can successfully use 
bioconjugated micro-and macro-molecules onto the ENVs surfaces with various benefits, including 
excellent selectivity and compatibility to aqueous buffers. Another modified strategy for extending ENVs in 
vivo circulation period was also devised. This study transformed ENVs with EGFR conjugated to 
polyethylene glycol (PEG). A temperature-dependent transfer of nano-PEG-lipids to EV membranes was 
accomplished by mixing micelles with ENVs from neuro2A cells. The above modification method did not 
affect ENVs shape, size distribution, or protein content. Still, it extended EV circulation duration in an 
animal model, perhaps enhancing ENVs tissue-specific aggregation and cargo delivery efficacy[17].

Genetic engineering
Genetic engineering is a simple way of endowing exosomes with novel features. As in animal exosomes[18,19], 
in plants, ligands or homing peptides fused with transmembrane proteins were found on the surface of 
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exosomes. A recent study reported that the N-terminus of LAMP-2B is expressed on the surface of 
exosomes and may be attached with targeting sequences. Cell-specific binding peptides targeting specific 
organs or tissues can be screened and chosen by phage display and genetically changed at the N-terminus of 
LAMP-2B to achieve their targeting effects. Exosomes containing the designed peptide ligands are produced 
by cells that have been transfected with the plasmid. The TIWMPENPRPGTPCDIFTNSRGKRASNG 
peptide (TIWMPENPRPGTPCDIFTNSRGKRASNG) of the rabies virus glycoprotein (RVG) demonstrates 
preferential binding to acetylcholine receptors. Neuro-specific exosomes were produced to deliver 
pharmacological agents to the central nervous system (CNS)[20]. In the experimental mice, intravenous 
administered miRNA-124-loaded RVG exosomes entered ischemic cortical areas and induced neurogenesis. 
iRGD exosomes were also employed to precisely transport KRAS siRNA to v3-containing A549 tumors in 
vivo, resulting in specific KRAS gene knockdown and tumor growth reduction. In a recent study, we created 
chondrocyte affinity peptide (CAP, DWRVIIPPRPSA) modified exosomes that precisely transported 
miRNA-140 to chondrocytes in joints and slowed the progression of osteoarthritis[21]. Also, this genetic 
engineering technology was used to modify the exosomal membrane protein lamp2b to fuse with the 
mesenchymal stem cell affinity peptide E7, rending exosomes (E7-Exos) the ability to target mesenchymal 
stem cells. The modified E7-Exos can accurately deliver small molecular KGN into synovial fluid-derived 
MSCs (SF-MSCs), effectively promoting the differentiation of mesenchymal stem cells into chondrocytes, 
thus providing an advanced stem cell therapy for osteoarthritis[22].

Exosomal surface engineering
Exosomal surfaces could be efficiently manipulated, regardless of their origin. The most apparent purpose 
of surface engineering is to confer selective cell targeting. Genetic engineering and chemical managing are 
two manipulative technologies. Genetic engineering fuses gene sequencing to guided protein or polypeptide 
with a specified exosomal membrane protein[23,24]. This method is successful for peptide and protein surface 
display; however, it is restricted to targeting patterns that are genetically encoded. The chemical 
modification enables the presentation of a diverse spectrum of ligands, both natural and synthetic, through 
conjugation processes or lipid assembly. Conjugating reaction could covalently and stably transform 
exosomal surface protein. However, the complexity of the exosomal membrane might impair reaction 
efficacy and frequently limits the regulation of the response on a selective site[25]. Covalent manipulation 
might potentially compromise the vehicle's structure and functioning. Exosomes’ lipid bilayer can also be 
injected with lipids or amphipathic molecules, allowing their hydrophilic sections to be exhibited on the 
outside. This approach, driven by lipid self-assembly, might potentially increase exosomal toxicity.

Exosome-like nanovesicles reengineering 
Preparing uniform-sized plant-derived exosomes is problematic since their size differs, ranging from 50 to 
500 nm and even within species, posing a significant barrier to their application in the delivery of 
therapeutic drugs[26]. Furthermore, effective loading of drugs is a critical challenge that is difficult to achieve 
in pristine form in pure plant-derived exosomes[27]. As a result, it is vital to devise a method for consistently 
producing uniform-sized nanoparticles with adequate drug loading[28]. Researchers have successfully used 
the Bligh and Dyer technique, a well-known liquid-liquid extraction technique, to extract nano-lipids from 
plant-derived exosomes, which are then processed via a 200-nm liposome extruder reengineers the 
exosomes into equal-size nano-platform called plant derive exosomes nanocarriers[29].

Production of semi-synthetic exosomes by manipulation of natural exosomes through 
biotechnological engineering
Despite the biocompatibility and natural targeting capacity, plant-derived exosomes can be desirably 
manipulated based on targeted cells for efficient and specified therapeutic targets. This modification can be 
achieved through a process such as the integration of pharmaceuticals and other therapeutic agents and 
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manipulating the surface charge for improved drug absorption. The most logical method of producing 
exosomes would be to harness the cellular machinery’s natural processes. The composition of exosomes at 
all levels is known to respond to a high level of regulation at particular cellular functions[30]. As a result, 
purposeful manipulation of the cellular environment might regulate the exosomal composition. When using 
this technology, exosomes might be created with a composition profile tailored to a given function. The 
selection of exosome-producing cells, including their in vitro harvesting settings, and the exosome isolation 
or enrichment processes, are critical components[26]. Plant-derived exosomes from several natural origins, 
including vegetable juice and fruits and secretions from mammals, have been manipulated earlier by 
different researchers to realize their potential for biomedical benefits in nanomedicine. Plant-derived 
exosomes could also be driven by internal modification. As discussed earlier, the exosome's cargos 
morphology is influenced by surface modification, whereby the exosomes' external surface morphology is 
manipulated to produce semi-synthetic plant-derived exosome nanovesicles[31].

Application of bio-engineered and simulated exosomes in nanomedicine
For larger therapeutic capacity, exosomes have been manipulated. This method sometimes includes 
introducing additional features for targeted purposes, in vitro or in vivo traceability, or administering the 
item[30,32]. In other circumstances, the goal of the manipulation was to improve colloidal stability or to adjust 
the surface charge to boost the rate of absorption[4]. These novel methodologies have given rise to new 
names such as bioengineered exosomes, artificial exosomes, exosome-mimetic nanovesicles, exosome-like 
nanovesicles, and exosome-based semi-synthetic vesicles[33]. These expressions have been used with many 
meanings in the literature, but there has yet to be a definite classification criterion. “Exosome-like vesicles” 
is used in certain research to describe artificial vesicles created from cells using various approaches to 
resemble exosomes. Other scientists, however, dubbed exosome-like nanovesicles with morphological and 
biochemical features comparable to exosomes. Other writers using non-animal research models adopted 
this name to describe vesicles with exosome-like size and flotation density values. For example, a prior study 
confirmed the presence of plant exosome-like vesicles in sunflower fluids, whereas another work detected 
exosome-like vesicles during pollen germination[34]. Several isolation procedures have been used to purify 
PELNVs for their application in nanomedicine [Table 1].

Exosome cargo loading approaches
Several biomolecules are inherently enclosed in exosome-like nanovesicles. The content of exosomes and 
exosome-like particles may need to be redeployed to enhance their loading delivery and targeting 
efficiency[37,38]. Plant exosome-like particles contain higher biomolecules than animal exosome-like 
nanovesicles, although a redeployment approach could be introduced in cases where the bioactive 
component of interest is not present. Plant-derived exosome nanovesicles can be loaded with exogenous 
therapeutic molecules, including siRNAs, DNAs, proteins, and expression vectors, in addition to 
endogenous constituents, to ensure optimal therapeutic effects[39]. Various ways have been explored to load 
exosome-like nanovesicles with therapeutic compounds. These procedures begin with PELNVs from plants, 
which are then directly manipulated and loaded with pharmacological compounds. Active and passive 
cargo loading approaches are commonly utilized in the mechanical loading of exosome-like nanovesicles[39]. 
An incubation method is used in the passive drug loading procedure, in which plant exosome-derived 
nanovesicles are incubated with drug molecules at a specific temperature[40]. This drug encapsulation 
technique was driven by diffusion action and lipophilic contact between the drug molecule and the lipid 
bilayer of plant-derived exosomes. In addition to passive cargo loading, the sonication approach is applied, 
which disrupts the exosome-like nanovesicles membrane structure momentarily for successful cargo 
diffusion into exosome-like nanovesicles[41]. Following the cargo loading, the exosome-like nanovesicles' 
membrane morphology restores to its original state. This method was revealed to improve passive cargo 
loading by increasing cargo loading capability by up to 11 times. PELNVs retain a negatively charged 
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Table 2. Drug loaded PELNVs and their plant origin

Pharmacological agents Target cell/tissue Source of 
nanovesicles Reference

miRNA, 6-shogaol & 6-gingerol Intestinal epithelia [43]

HT-29 cells & Colon-26 cells

siRNA-CD98 Colon-26 cells & RAW 264.7 macrophages [44-46]

Doxorubicin Colon tumor cell line

 
 
Ginger

[10]

Sulforaphane Colon tissues Broccoli

Protein Chronic myeloid leukemia Citrus limon [13]

miR-18a Hepatic Kupffer cells

Luciferase gene siRNA, Paclitaxel, JSI-124 (anti-Stat3 
inhibitor)

Cancer cells (GL26, 4T1, SW620, A549 & CT26)

Curcumin & Doxorubicin Colon tumors [47]

Methotrexate Intestinal macrophages

 
 
Grapefruit

miR17 Brain cancer cell line (GL26)

miRNAs Human epithelial colorectal adenocarcinoma cell 
(Caco-2)

Apple [48]

Figure 3. Therapeutic effects of PELNVs. PELNVs can regulate immunity and exert anti-inflammatory functions by inducing the 
functions of macrophages and dendritic cells in vitro and in vivo. PELNVs can deliver therapeutic reagents, siRNAs, and proteins to 
diverse cell types or in vivo animal models.

Nevertheless, compared to chemically produced nanoparticles, plant exosome-like nanovesicles are 
biocompatible and have minimal immunogenic effects, more excellent cellular absorption, higher stability 
in the GI tract (GIT), and selective absorption targeting ability[16]. Furthermore, PELNVs-based 
nanoplatforms have a less complex creation procedure, whereas artificially generated nanoparticles such as 
liposomes necessitate complex manufacturing methods such as membrane extrusion, micro emulsification, 



Page 158Shinge et al. Extracell Vesicles Circ Nucleic Acids 2022;3:150-62 https://dx.doi.org/10.20517/evcna.2021.25

etc. Furthermore, additional stringent modifications of synthetic nanoparticles for cargo loading and 
coating improvements, such as polyethylene glycol (PEG) coatings, are necessary to produce adequate 
immunological tolerance. However, PEG coating increases the circulation period and aids with 
immunological tolerance; nevertheless, these coatings may interfere with the interaction between the 
nanoparticle and targeted cells, reducing the biodistribution of the drug in the targeted tissue. Furthermore, 
repeated treatment with PEG-coated liposomes has been linked to the formation of anti-PEG antibodies, 
resulting in ineffective therapy[54].

Furthermore, chemically synthesized nanoparticles only assist in the delivery of therapeutics but lack an 
inherent therapeutic advantage. Lastly, the lipid bilayer structure of PELNVs secures their cargo while 
avoiding enzymatic decomposition by proteinases and nucleases. These outstanding characteristics, 
combined with the discovery of their intrinsic therapeutic actions, make PELNVs an ideal candidate for 
entry into the field of drug delivery applications[55-57] [Table 3].

PELNVs therapeutics application against diseases
The bioactivities of PELNVs have been demonstrated by earlier works, such as their regenerative function, 
lowering inflammation, promoting healing, reducing gingivitis, increasing the maturation of beneficial gut 
microbiota, and preventing cancer and infection[8,44]. Their biological processes in natural pristine 
morphological stability with intact bioactive payloads after simple separation from plants alleviate various 
pathologic problems in the kingdom of other species and provide different therapeutic options. Their plant 
origin and high safety profile of PELNVs and their various therapeutic potentials anchored in their active 
parent plants make them promising therapeutic candidates[48,61].

Concluding remarks 
Despite the infancy of PELNVs research, they have shown various advantages, including internalization, 
biocompatibility, cellular uptake, bioavailability, and targeting capability compared to their synthetic 
counterpart. Due to the excessive curiosity about PELNVs, there has been surplus interest in their potential 
application in disease treatment and therapeutic drug delivery settings[62]. Since they can mediate 
interkingdom communication, they prioritize nanomedicine for theranostics and cargo delivery 
applications. Various experiments have demonstrated exosomes to involve the exchange of substances 
between cells in physiology and pathology. Exploiting these exosome contents transfer mechanisms may 
prove crucial for advancing the engineering PELNVs with improved delivery and selective targeting. For 
example, the synthetic drugs and RNA delivery using polymeric nanomaterial, translocation to the nucleus 
is a significant issue because, while passaging RNAs could come across the lysosomal pathway, which 
induces the lysosomal substance degradation resulting in failure, and has a substantial effect on the delivery 
efficiency. However, engineered PELNVs can overcome this limitation. Thus, improving various aspects of 
PELNVs engineering through innovative nanotechnologies is crucial[24]. For such different innovative 
techniques required developing a novel strategy for exosome drug delivery, the significant challenges are the 
complexity of the extraction, the purifications, and storage. Further work is necessary to understand their 
biogenesis and the loading mechanisms for addressing these challenges. Developing a novel approach for 
long-term storage is also required for maintaining their integrity and bioactivities after purification.
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Table 3. PELNVs for drug delivery nanoplatform

Sources Lipids Targets Modification Loaded 
agents Impacts Reference

 
Grapefruits

PC: 28.53% 
PE: 45.52%

4T1 breast tumor 
CT26colon tumor

Inflammatory receptors Cur 
DOX

DSS-induced mouse colitis 
Cancer suppression

[6] 
 

 
 
Ginger

MGDG: 18.9% 
PC: 6.5% 
DGDG: 27.4% 
PA: 41.9%

Female mice 
 
RAW264.7 
Colon-26

Passed via 200nm 
polycarbonate 
membranes

 
 
siRNA CD98

Ulcerative colitis 
therapeutic benefits CD98 
downregulation

[43,58]

Broccoli High ratio of 
monoglycerides

C57BL/6 colitis mice Unmodified Sulforaphane Colitis prevention in mice [3,5]

 
 
Lemon

 
 
 
-

CT 26, SW620 colon 
tumor 
A549 tumor, ML LAMA84 
CML xenograft mice 
SW480 Colorectal 
adenocarcinoma

Folic acid 
Unmodified

PTX 
Proteins

Tumor suppression 
Suppression of different 
cancer cell lines 
Bcl-xl, survivin, Bad, Bax, 
Tumor suppression 
suppression of 
angiogenesis, Bax, survivin, 
Bcl-xl

[59]

 
Grape

PE: 26.09% 
PA: 53.17% 
PC: 9.03%

Intestinal stem cells in 
Lgr5-EGFP -IRES-CreERT2 
mice

Unmodified No agent Protect mice against DSS-
evoked colitis 
Proliferation of Lgr5 
intestinal stem cells

[60]
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2.3.3.8 Copyright
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2.3.3.10 Supplementary Materials
Additional data and information can be uploaded as Supplementary Materials to accompany the manuscripts. The 
supplementary materials will also be available to the referees as part of the peer-review process. Any file format is 
acceptable, such as data sheet (word, excel, csv, cdx, fasta, pdf or zip files), presentation (powerpoint, pdf or zip files), image 
(cdx, eps, jpeg, pdf, png or tiff), table (word, excel, csv or pdf), audio (mp3, wav or wma) or video (avi, divx, flv, mov, mp4, 
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in numeric order (e.g., Supplementary Figure 1, Supplementary Figure 2, Supplementary Table 1, Supplementary Table 2, 
etc.). The style of supplementary figures or tables complies with the same requirements on figures or tables in main text. 
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2.4 Manuscript Format
2.4.1 File Format
Manuscript files can be in DOC and DOCX formats and should not be locked or protected.

2.4.2 Length
There are no restrictions on paper length, number of figures, or amount of supporting documents. Authors are encouraged 
to present and discuss their findings concisely.

2.4.3 Language
Manuscripts must be written in English.

2.4.4 Multimedia Files
The journal supports manuscripts with multimedia files. The requirements are listed as follows:
Videos or audio files are only acceptable in English. The presentation and introduction should be easy to understand. The 
frames should be clear, and the speech speed should be moderate.
A brief overview of the video or audio files should be given in the manuscript text.
The video or audio files should be limited to a size of up to 500 MB.
Please use professional software to produce high-quality video files, to facilitate acceptance and publication along with the 
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submitted article. Upload the videos in mp4, wmv, or rm format (preferably mp4) and audio files in mp3 or wav format.

2.4.5 Figures
Figures should be cited in numeric order (e.g., Figure 1, Figure 2) and placed after the paragraph where it is first cited;
Figures can be submitted in format of tiff, psd, AI or jpeg, with resolution of 300-600 dpi;
Figure caption is placed under the Figure; 
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Internal scale (magnification) should be explained and the staining method in photomicrographs should be identified; 
All non-standard abbreviations should be explained in the legend;
Permission for use of copyrighted materials from other sources, including re-published, adapted, modified, or partial 
figures and images from the internet, must be obtained. It is authors’ responsibility to acquire the licenses, to follow any 
citation instruction requested by third-party rights holders, and cover any supplementary charges.

2.4.6 Tables
Tables should be cited in numeric order and placed after the paragraph where it is first cited;
The table caption should be placed above the table and labeled sequentially (e.g., Table 1, Table 2);
Tables should be provided in editable form like DOC or DOCX format (picture is not allowed);
Abbreviations and symbols used in table should be explained in footnote;
Explanatory matter should also be placed in footnotes;
Permission for use of copyrighted materials from other sources, including re-published, adapted, modified, or partial tables 
from the internet, must be obtained. It is authors’ responsibility to acquire the licenses, to follow any citation instruction 
requested by third-party rights holders, and cover any supplementary charges.
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consistently thereafter. Non-standard abbreviations are not allowed unless they appear at least three times in the text. 
Commonly-used abbreviations, such as DNA, RNA, ATP, etc., can be used directly without definition. Abbreviations in 
titles and keywords should be avoided, except for the ones which are widely used.
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2.4.9 Units
SI Units should be used. Imperial, US customary and other units should be converted to SI units whenever possible. There 
is a space between the number and the unit (i.e., 23 mL). Hour, minute, second should be written as h, min, s.

2.4.10 Numbers
Numbers appearing at the beginning of sentences should be expressed in English. When there are two or more numbers 
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2.4.11 Equations
Equations should be editable and not appear in a picture format. Authors are advised to use either the Microsoft Equation 
Editor or the MathType for display and inline equations.
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