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Rigorous peer-review is the corner-stone of high-quality academic publishing. The editors of Extracellular 
Vesicles and Circulating Nucleic Acids (EVCNA) would like to express their sincere gratitude to the 
following reviewers for their precious time and dedication, regardless of whether the papers were finally 
published in 2021 [Table 1].
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Abstract
Liquid biopsy of tumor-derived extracellular vesicles (EVs) has great potential as a biomarker source for prostate 
cancer (CaP) early diagnosis and predicting the stages of cancer. The contents of EVs play an important role in 
intercellular communication and have specific expression in blood and urine samples from CaP patients. Powered 
by high-throughput, next-generation sequencing and proteomic technologies, novel EV biomarkers are easily 
detected in a non-invasive manner in different stages of CaP patients. These identified potential biomarkers can be 
further validated with a large sample size, machine learning model, and other different methods to improve the 
sensitivity and specificity of CaP diagnosis. The EV-based liquid biopsy is a novel and less-invasive alternative to 
surgical biopsies which would enable clinicians to potentially discover a whole picture of tumor through a simple 
blood or urine sample. In summary, this approach holds promise for developing personalized medicine to guide 
treatment decisions precisely for CaP patients.

Keywords: Prostate cancer, liquid biopsy, extracellular vesicle, biomarker, early diagnosis, risk prediction
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Prostate cancer (CaP) is one of the most common malignancies in male in Western countries. With 
economic development and lifestyle changes, the incidence and mortality rate of CaP among Asian males 
have been rising rapidly[1,2]. In China, CaP is the leading male genitourinary malignant tumor, and its 
incidence is now higher than bladder cancer[3]. In 2020, CaP caused more than 50,000 deaths in China, 
which were nearly twice as high as in the United States[4]. The survival of CaP patients is highly dependent 
on tumor stage and risk classification. It was reported that low-risk and localized CaP achieved a favorable 
prognosis by long-term close monitoring, while metastatic patients had a median survival of 30 months[5]. 
The treatment options for different risk classifications are also unique. The principal treatment for clinically 
low-risk CaP is radical treatment, such as prostatectomy and radiotherapy. In addition to radical treatment, 
comprehensive treatment such as radiotherapy, chemotherapy, and endocrine therapy is required for 
patients with high-risk CaP. Therefore, CaP early diagnosis and grading are crucial to initiate proper 
treatment, improve patients' outcomes, and prolong survival.

Currently, prostate-specific antigen (PSA) is the most used diagnostic biomarker for CaP diagnosis in the 
clinic. The widespread use of PSA-testing has increased the diagnostic rate of CaP, but it is also 
accompanied by a high false-positive rate of CaP and overtreatment of indolent tumors due to the poor 
accuracy[6]. PSA cannot differentiate among benign prostate changes, indolent cancers (unlikely to cause 
significant symptoms), and early versus advanced stages of CaP. It often leads to 20% to 42% over-diagnosis 
and over-treatment, which may cause a patient more harmful than good[7]. The Prostate Cancer Prevention 
Trial showed that 14.9% of prostate tumors in men with PSA levels lower than 4.0 ng/mL had Gleason 
scores of seven or higher[8].

Also, due to the limitations of its low specific and low sensitive character, early detection and real-time 
monitoring of tumor progression cannot be achieved[9]. Needle biopsy is the gold standard for CaP 
diagnosis. However, tumor biopsy has several limitations in clinical application, including the pain 
associated with the invasiveness of the procedure, the significant risk of hemorrhage and urinary retention, 
and the risk of false-negative results due to tumor heterogeneity. Magnetic resonance imaging (MRI) has 
somewhat improved selection for biopsy but the utility is still limited by occasional false negatives in 5%-
15% of Prostate Imaging-Reporting And Data System (PIRADS) and false positives in 40%-60% of PIRADS 
scores 3-5 (equivocal or positive MRIs)[10]. There is thus an unmet need to develop tools to noninvasively 
detect CaP at an early stage with high sensitivity and specificity and to improve individualized treatment.

Liquid biopsy refers to the technology that makes full use of body fluids minimally or non-invasively 
obtained, such as blood, urine, or saliva, and it is receiving great attention as a novel diagnostic tool to 
access response to clinically and biologically relevant information[11]. EV-based liquid biopsy can be 
integrated to maximize insights into tumor status especially in view of dissecting tumor heterogeneity. 
Liquid biopsy components include circulating tumor cell, circulating tumor DNA, and/or extracellular 
vesicles (EVs)[12,13]. Compared with other types of liquid biopsy, the use of EVs such as exosomes may offer 
unique advantages. Firstly, exosomes are highly abundant in most biological fluids, such as blood plasma, 
where one can detect 108-13 exosome particles/mL[14]. Secondly, tumor-derived exosomes have specific 
biomarkers distinguished from exosomes from normal tissues, which can be used for cancer diagnosis and 
prognosis[15]. Furthermore, exosomes have strong stability, which means they can be stored at -80 °C for 
several months or even years[16]. Thus, exosomes are emerging as a newly attractive biomarker of liquid 
biopsy for non-invasive cancer diagnosis. EVs are potent and clinically valuable tools for CaP early 
diagnosis and prognosis as they are highly representative of their cell of origin[17].
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It was reported that the differential expression of EV contents in nucleic acids (i.e., DNA, mRNA, and non-
coding RNAs), proteins, and lipids may create favorable conditions for CaP invasion and metastasis[18-22]. 
We have recently summarized the emerging role of EVs in liquid biopsy for monitoring CaP invasion and 
metastasis[23]. Current high-throughput technologies for genomic, transcriptomic, and proteomic analysis 
are driving ground-breaking discoveries in the field of new EV biomarkers. While most of the current CaP 
EV studies have been focused on the mechanism of metastasis and progression and as well as between cell-
cell communications[24,25], only a few reliable EV biomarkers for the risk classification of CaP were clinically 
applied.

In this commentary, we have to emphasize a very important milestone study, highlighting the clinical 
importance of EV biomarkers in CaP stratification, which is the discovery of a novel urine EV gene 
expression assay [the ExoDx Prostate IntelliScore (EPI) urine exosome assay] to differentiate high-grade 
CaP from low-grade CaP and avoid unnecessary biopsies[26]. This test has been approved by the United 
States Food and Drug Administration with the “Breakthrough Device” designation. The EPI test is a urine 
EV gene expression assay that does not require pre-collection digital rectal exam and relies on the isolation 
and analysis of urinary EVs. In the EPI test, first catch urine samples (25-50 mL) are collected and EVs are 
isolated by a proprietary ultrafiltration centrifugation technique. After extracting exosomal RNAs, the RNA 
copy numbers from three genes (i.e., ERG, PCA3, and SPDEF) are determined by RT-qPCR. EPI is a 
noninvasive, easy-to-use, urine EV-RNA assay that has been validated across three independent prospective 
multicenter clinical trials with 1212 subjects[27]. The test can discriminate high-grade (≥ GG2) from low-
grade (GG1) cancer and benign disease. EPI effectively guides the biopsy-decision process independent of 
PSA and other standard-of-care factors. The absence of clinical variables in the EPI algorithm represents an 
important differentiator from other assays predicting high-grade CaP, including 4K score test (OPKO 
Diagnostics, Miami, FL) and SelectMDX (MDx Health, Irvine, CA). As EPI performance is based on gene 
expression only, this assay is more accurate than existing risk assessment methods such as clinical features. 
There is an option for the urologist to introduce other parameters, such as obesity status, underlying 
genetics, and race, for developing a more personalized risk assignment at both initial and or repeat biopsy 
time-points. Among urologists, 68% reported that the EPI test influenced their biopsy decision with respect 
to selecting the right patients to biopsy at the right time, thereby improving their ability to identify clinically 
significant disease and reduce biopsies when the test was negative[28]. Although the EPI test has achieved 
some satisfactory results, future studies need to incorporate it in determining the use of MRI and inclusion 
of the EPI-risk score into an algorithm that includes the PIRADS designation and other clinical variables. 
More clinical trials still need to further confirm its clinical value. In addition to the EPI test, early diagnosis 
or efficient prognostic EV biomarkers are warranted for improving risk stratification, personalized 
postoperative adjuvant therapy, and prognostication of CaP patients for clinical translation in the future.

Although the analysis of EV contents is promising in the early diagnosis and progression grading of CaP, 
the application of the EV-based liquid biopsy in the clinic is still facing challenges. Due to the heterogenous 
nature of human samples and complications in isolation, it is ideal to optimize the isolation technique to 
obtain relatively homogeneous EV cargoes with reproducible, high-yielding and throughput, and scale-up 
capability. The contaminations in blood (e.g., high-abundance blood proteins and apolipoproteins) and 
urine (e.g., mucoprotein, also called as the Tamm-Horsfall protein) need to be removed before genomic and 
proteomic analysis.

EVs act as cellular messengers and have been shown to transfer proteins and nucleic acids between tumor 
cells that influence tumor initiation, proliferation, progression, and metastasis[29-31]. An increasing number of 
studies have screened candidate biomarkers from body fluids that may be used to diagnose CaP. Due to the 
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Figure 1. Overview of EV biomarker discovery and validation for CaP personalized treatment decision. Step 1. Group different stages of 
CaP patients and healthy control subjects. Step 2. Collect human samples including blood, urine, and semen. Step 3. Integrate multi-
omic technology including genomics, transcriptomics, proteomics and lipidomics for profiling. Step 4. Select candidate biomarkers by 
machine learning and establish machine learning models. Step 5. Validate selected biomarkers by different methods such as WB, qRT-
PCR, ELISA, PRM, and immunofluorescence in samples such as blood, urine, tissue, and cultured cell lines. Step 6. Evaluate selected 
biomarkers in a large set of independent patient samples. Step 7. Multi-center EV biomarker diagnosis performance verification. Step 8. 
Novel EV biomarkers for early diagnosis and patient grading, and for precision medicine. ELISA: Enzyme-linked immunosorbent assay; 
CaP: prostate cancer; EV: extracellular vesicle; qRT-PCR: quantitative reverse transcription PCR; PRM: parallel reaction monitoring; WB: 
western blot.

heterogeneity and variety of genetic backgrounds of patients, the lack of data from large‐scale samples for 
the validation of CaP biomarkers is the main deterrent to translating the potential EV biomarkers from 
bench to the bedside. In order to discover specific and sensitive biomarkers of tumors in diagnosis and 
screening, more multidisciplinary technologies and collaborations are highly expected in the near future.

The advances in high-throughput and modern omics technologies such as genomics, transcriptomics and 
proteomics have greatly promoted EV biomarker research in the recent decade. Machine learning has been 
applied to integrate multi-omics sequencing data, which are still generated at ever-growing rates and scales. 
Machine learning can lead to a high-quality performance for liquid biopsy-based diagnosis for multiple 
human cancers[15] and holds promise for EV-based CaP liquid biopsy. Comprehensive multi-omics data 
analysis with machine learning has been a frontier in cancer genomics[32] and should be performed in CaP 
EV biomarker research in the future [Figure 1].
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Oncogenesis is driven by a complex and intricately controlled gene expression programming related to 
molecular-level variation in many genes. Due to the high heterogeneity and intricacy, a single biomarker 
does not fully characterize tumor properties, and more accurate predictions using multi-parameter markers 
are required[33,34]. A set of candidate biomarkers can be evaluated for their differences in abundance between 
patients and normal controls, resulting in more robust predictive and diagnostic capacities[35]. For CaP EV-
based biomarker research, a comprehensive pipeline for discovery and validation is shown in Figure 1.

Most importantly, these putative EV biomarkers need further validation independently at multiple levels, 
such as blood, urine, tumor tissue, and cell lines, to increase their specificity and sensitivity before clinical 
application. During this stage, the sensitivity and specificity of the selected EV markers need to be compared 
with the current PSA test, MRI imaging, and tissue biopsy. These markers need to ensure they are disease-
specific, rather than trial-dependent. Assessing multi-center EV biomarker diagnosis performance in CaP is 
necessary to further evaluate the clinical value of these biomarker set prior to its widespread use. These EV 
biomarkers can be used to diagnose CaP and predict the stages of cancer and the tumor biological activity. 
This EV-based liquid biopsy can guide clinicians in choosing the best treatment methods for an individual 
CaP patient and significantly improve their prognosis.
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Abstract
Previous studies have suggested that aberrant 5-hydroxymethylcytosines (5hmC) modifications are related to 
cancer pathobiology. Genome-wide profiling 5hmC in circulating cell-free DNA (cfDNA) using the highly sensitive 
chemical labeling-based 5hmC-Seal technique has been demonstrated to have the potential to be a robust 
epigenomic tool for cancer biomarker discovery. Prior studies have mostly focused on cfDNA-derived 5hmC-Seal 
data summarized in well-annotated genic features (e.g., gene bodies) or unbiased bins. Zhou et al. recently 
proposed long non-coding RNAs (lncRNAs) as an alternative molecular target for biomarker discovery using 
publicly available 5hmC-Seal data. Considering its potential clinical impact, we would like to comment on 
Zhou et al. and advocate more serious consideration of critical issues such as the availability of clinical information 
and technical variables, especially when performing secondary analysis using publicly available data, with the aim 
of improving data transparency and translatability.

Keywords: 5-Hydroxymethylcytosine, long non-coding RNA, cell-free DNA, cancer biomarker

The 5-hydroxymethylcytosine (5hmC) is an emerging epigenetic marker that reflects gene activation 
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status[1]. Previous studies have suggested that aberrant 5hmC modifications are related to cancer 
pathobiology. Genome-wide profiling of 5hmC in circulating cell-free DNA (cfDNA) using the 5hmC-Seal 
technique[2], a highly sensitive chemical labeling approach suitable for a very limited amount of clinical 
biospecimens (e.g., 1-2 ng of cfDNA from a few mL of plasma) has been demonstrated by our team and 
other groups to be a robust epigenomic tool for cancer biomarker discovery with the goal of achieving non-
invasive cancer diagnosis and prognosis[3-6].

Analytically, although our previous studies mostly focused on the 5hmC-Seal profiles summarized in well-
annotated genic features (e.g., gene bodies) or unbiased bins, recently, we started exploring the possibility of 
integrating 5hmC profiles summarized for long non-coding RNAs (lncRNAs) and repetitive elements to 
improve biomarker discovery using glioblastoma (GBM) as an example[3]. Specifically, in the cell, lncRNAs 
are known to regulate gene expressions at both transcriptional and post-transcriptional levels, and play 
important and heterogeneous regulatory roles in nearly all cellular and biological processes, including 
transcriptions, translation, and nuclear trafficking, as well as tumorigenesis and therapy resistance[7]. In 
GBM, dysregulation of lncRNAs can contribute to the epithelial-mesenchymal transition, therefore 
promoting cancer metastasis[8]. In addition, a recent study reported a positive association between 5hmC 
and lncRNA transcription in colorectal cancer, indicating the regulatory role of 5hmC on lncRNA 
expression[9]. Given its tissue-specificity and roles in tumor initiation, progression and resistance to therapy, 
lncRNAs remain to be promising markers for cancer diagnosis and prognosis.

Specifically, we read with interest that a recent study published by Zhou et al.[10] described the development 
of plasma-derived 5hmC-LncRNA diagnostic score (5hLD-score) for cancer diagnosis and surveillance 
using publicly available 5hmC data. The proposed 5hLD-score was shown the capability of distinguishing 
tumors from healthy controls in their training and internal validation cohorts. Further validation showed 
the 5hLD-score achieved area under the curve (AUC) of 0.85, 0.89, and 0.77 in a non-small cell lung cancer 
cohort, an esophageal cancer cohort, and a hepatocellular carcinoma (HCC) cohort, respectively. The 
authors identified an association between the 5hLD-score and the progression of liver cancer in the HCC 
cohort, as well as the capability to identify the origin and location of tumors. This study further supported 
the clinical potential of 5hmC levels in lncRNAs for cancer early detection and progression monitoring. 
However, we would like to comment on a few important issues of Zhou et al. and advocate that there are 
several critical issues that need to be taken into consideration in order to make an informed conclusion of 
the current status of applying 5hmC levels in lncRNAs as a marker for cancer diagnosis and prognosis, 
especially when such a conclusion was drawn from performing secondary data analysis using public data.

Firstly, during statistical modeling, differential 5hmC modifications should be identified in the training set 
solely. Instead, Zhou et al. used the whole Li’s cohort (training and internal validation set combined) to 
perform the differential analysis. This procedure would have caused data leakage, which introduced the 
knowledge of the validation set into the modeling process, and could have led to model overfitting in the 
validation set. Therefore, the observed differences in terms of the AUCs between the internal validation set 
and the independent validation set presented by Zhou et al. could be due to data leakage and model 
overfitting, which should be evaluated using appropriate tests such as the Delong test[11].

Secondly, when using the 5hmC profiles generated from different platforms/protocols, sequencing length, 
depth, or platform information should be taken into considerations. Regarding these potential technical 
biases, Zhou et al. did not take them into considerations in their analysis. To our best knowledge, the Li’s 
cohort[6] was sequenced with 150 base-pair (bp) paired-end library, while the Cai’s liver cancer cohort[5] was 
sequenced with 38 bp paired-end library. In addition, the publicly available 5hmC data were generated at 
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different times and core facilities. Those unaccounted factors, taken together, could cause substantial batch 
effects, with the likelihood of leading to misinterpretation of the results.

Thirdly, clinical variables, such as age, gender, tumor stages, place of residence, and lifestyle, have been 
established as potential confounders in epigenetic studies. These variables (known or hidden) contribute to 
the epigenetic differences between cases and controls. Not appropriately adjusting for these confounding 
variables could lead to biased interpretation of results. For examples, in figure 5, Zhou et al.[10] argued that 
the 5hLD-scores were associated with liver cancer progression. However, this finding could be confounded 
by patient’s age, as the liver cancer patients were much older than patients with hepatitis B infection history 
in the Cai cohort[4].

Finally, unlike mRNAs with protein-coding potential or microRNAs with high sequence conservations, 
lncRNAs possessing unique features such as lower transcription rate, reduced stability and lower expression 
levels can pose analytic constraints in the characterization and annotation of lncRNAs[12]. For example, the 
GENCODE[13] lncRNAs were identified from RNA-Seq data and algorithm not optimized for the full 
exploitation and annotation for non-polyA lncRNA transcripts or functional lncRNAs with relatively lower 
expression. Furthermore, given the relatively lower expression of lncRNA in non-brain tissue types, the 
signal to noise ratios of 5hmC mapping over lncRNA regions on cfDNA are expected to be even lower in 
non-brain cancer patients included at least in theory. However, Zhou et al. did not provide any evaluation 
of the expression levels or tissue-specificity of these lncRNAs before proceeding to the marker discovery 
phase. As a result, the 5hmC profiles of lncRNAs in the current study could have been subjected to random 
noise due to low abundance. Last but not least, we observed synergistic effects between the 5hmC of 
lncRNAs and other genomic feature types (i.e., gene body, repetitive elements and histone marks) in our 
GBM study[3], it would be interesting if future studies could incorporate other genomic feature types and 
compare the performance by feature type, separately and integratively.

In conclusion, in our opinion, the 5hmC levels of lncRNAs could be a promising biomarker for cancer 
diagnosis and monitoring, though future large studies of individuals with more comprehensive clinical, 
pathological, and epidemiological information, as well as the application of more robust data analysis plans 
(e.g., consideration of hidden variables) will help improve data transparency and provide more insights into 
the translatability of these molecular targets.
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Abstract
Extracellular vesicles (EVs), as natural carriers, are regarded as a new star in nanomedicine due to their excellent 
biocompatibility, fascinating physicochemical properties, and unique biological regulatory functions. However, 
there are still some challenges to using natural EVs, including poor targeting ability and the clearance from 
circulation, which may limit their further development and clinical use. Nucleic acid has the functions of 
programmability, targeting, gene therapy, and immune regulation. Owing to the engineering design and 
modification by integrating functional nucleic acid, EVs offer excellent performances as a therapeutic system in 
vivo. This review briefly introduces the function and mechanism of nucleic acid in the diagnosis and treatment of 
diseases. Then, the strategies of nucleic acid-functionalized EVs are summarized and the latest progress of nucleic 
acid-functionalized EVs in nanomedicine is highlighted. Finally, the challenges and prospects of nucleic acid-
functionalized EVs as a promising diagnostic system are proposed.
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INTRODUCTION
Extracellular vesicles (EVs) are natural nano-carriers produced by living cells for intercellular 
communication[1-3]. EVs can be classified as exosomes, microvesicles, or apoptotic bodies according to their 
biogenesis type and particle size[4]. Exosomes and microvesicles are the most widely studied, thus “EV” is 
commonly used to refer to these two subgroups[5]. Exosomes, with particle sizes ranging from 30 to 150 nm, 
are formed when multivesicular bodies fuse with the cell membrane and release the vesicles inside[6]. 
Microvesicles, with particle sizes of 50-1000 nm, are formed by cell membrane bubbling[6]. Due to the 
limitation of the separation method, exosomes and microvesicles are difficult to separate in the range of 30-
200 nm, which are commonly referred to collectively as small EVs. The EVs summarized in this paper 
mainly refer to small EVs, including exosomes and microvesicles. Due to their good biocompatibility, low 
immunogenicity, excellent extensibility, and unique biological regulatory function, EVs have attracted wide 
attention in the field of nanomedicine and are considered as a new star in nanomedicine[7-9].

EVs have been developed as a delivery carrier of drugs or contrast agents, showing great application 
potential in the field of disease diagnosis and treatment[5,8,9]. However, native EVs have difficulty meeting the 
functional requirements of the complex physiological environment; therefore, necessary engineering design 
and modification can significantly improve the performance of EVs as a therapeutic system. As biological 
macromolecules, nucleic acid has unique biological functions and has been widely used in the field of 
nanomedicine[10-13]. RNA interference, antisense oligonucleotides, and cluster regularly spaced short 
palindromic repeats-associated protein 9 (CRISPR/Cas9) system can downregulate, enhance, or correct 
gene expression and have wide application potential in gene therapy research[14-19]. Nevertheless, these 
promising therapies are severely limited by inefficient biological distribution and sensitivity to degradation. 
The development of intracellular delivery carriers can effectively overcome the above limitations of nucleic 
acid therapy. EVs are natural carriers of information, matter, and energy exchange between cells, involving 
molecular transport between cells. Functional genetic components such as DNA, mRNA, and ncRNA 
loaded by EVs can be transported to target cells to perform the function of gene expression regulation. This 
suggests that EVs are a good nucleic acid delivery carrier. The combination of nucleic acid and EVs makes 
up for their shortcomings and is expected to provide a promising diagnosis and treatment system for 
nanomedicine. In addition, nucleic acids also have targeting (aptamer), programmability, drug loading, and 
immunomodulatory functions[20], which will greatly improve the application prospects of EVs.

This review briefly summarizes the function and mechanism of nucleic acid in diagnosis and treatment and 
preliminarily clarifies the necessity and advantages of nucleic acid-functionalized EVs. This review provides 
a basic understanding of this field by highlighting the engineering strategies and representative progress 
(Scheme 1). Finally, the challenges and future development of nucleic acid-functionalized EVs are proposed.

FUNCTION AND MECHANISM OF NUCLEIC ACID IN NANOMEDICINE
As biological macromolecules, nucleic acid has unique biological functions and has been widely used in the 
field of nanomedicine[21-23]. Among them, the most common functions are targeting, programming, gene 
expression regulation, and immune regulation. This section briefly introduces the functions and 
mechanisms of nucleic acid [Figure 1]. Related studies on the use of nucleic acid in the biomedical field can 
also be found in earlier literature[24,25].
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Scheme 1. Nucleic acid-functionalized EVs are promising therapeutic systems for nanomedicine. As a functional macromolecule, nucleic 
acid has the capabilities of targeting, self-assembly, drug loading, gene editing, and immune regulation. By combining nucleic acid with 
EVs, EVs acquire the functional properties of nucleic acid, thus showing unprecedented application potential in drug delivery, immune 
regulation, and gene therapy, which are expected to provide a promising therapeutic system. EVs: Extracellular vesicles.

Targeting ability
Aptamers are oligonucleotide sequences with specific affinity activity screened by the systematic evolution 
of ligands by exponential enrichment technique. The obtained oligonucleotide sequences with specific 
recognition and affinity for proteins, bacteria, cells, and other target molecules are also called chemical 
antibodies[26,27]. Aptamers can be used as drugs themselves or combined with drugs, siRNA, and 
nanoparticles to form targeted drug delivery systems, which can target specific tumor cells, reduce toxicity 
to normal cells, significantly reduce drug dosage, and improve efficacy[28-31]. Aptamers have become valuable 
affinity probes in biochemistry research, disease diagnosis, and treatment. Recently, Wang et al.[32] 
developed a DNA adapter with excellent targeting properties and unique functional versatility that can be 
used for biomarker detection, medical molecular imaging, and therapeutic targeted drug delivery. In 
another study, Liu et al.[33] developed a fluorescent probe based on DNA aptamer for specific molecular 
typing of mammary neoplasms. Aptamers for new targets are being screened, providing new options for 
targeted therapy.

The aptamer, as a specific recognition element, has the advantages of simple synthesis, easy modification, 
biodegradability, and low toxicity, and it has aroused wide attention in both basic and clinical research[28]. In 
particular, some aptamers for surface biomarkers of cancer have been screened out and used in the design 
of targeted delivery systems for cancer[34-36]. With the development of technology, aptamers can be modified 
by various functional groups, which will further expand the application prospects of aptamers.

Drug delivery carriers
Nucleic acids have the property of self-assembly, and they can be assembled into a double helix structure 
through complementary pairs of bases, or complex structures such as G-quadruplets can be constructed 
through complementary pairs of bases[37,38]. DNA origami technology uses the folding and self-assembly of 
nucleic acids such as DNA and RNA to form complex structures[39,40]. DNA origami technology can 
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Figure 1. Function and mechanism of nucleic acid in nanomedicine. Nucleic acid has the characteristics of targeting (aptamer), immune 
regulation (CpG OND), drug delivery (molecular beacon or DNA origami), and gene editing (CRISPR/Cas9). CRISPR/Cas9: Cluster 
regularly spaced short palindromic repeats-associated protein 9.

synthesize homogeneous nanostructures with sizes between 50 and 400 nm that can be used as drug delivery 
materials to enhance drug delivery and survival in malignant environments[40-43]. DNA origami technology 
can also design dynamic, multi-stimulus responsive nanostructures to achieve controlled release of 
drugs[44,45]. Jiang et al.[46] used DNA origami to deliver adriamycin into the body. They found that drug-
loaded DNA triangle origami showed a strong tumor treatment effect, and no systemic side effects were 
observed when treating human MDA-MB-231 breast tumor cells[47]. As an effective and biocompatible drug 
carrier, DNA origami has great potential in tumor therapy[41,48-53].

In addition to DNA origami, there are other types of nucleic acid drug carriers. Molecular beacons are 
fluorescently labeled stem-loop oligonucleotide chains capable of loading and transporting doxorubicin[54]. 
The advantage of molecular beacons as drug carriers is that drug release requires conditions to trigger the 
destruction of nucleic acid secondary structure, and the drug release process can be monitored in real time 
by fluorescence signal. For example, Ma et al.[55] reported a drug delivery system based on molecular beacon 
for detecting telomerase activity and telomerase triggered drug release in living cells. This provides a feasible 
strategy for conditionally controlled release and treatment monitoring. DNA hydrogel is a new kind of 
important DNA material, which is a three-dimensional polymer network constructed by DNA as a 
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structural element[56]. It has been used extensively to develop drug delivery systems (DDS) because of its 
advantages of high water content, large drug loading space, and good biocompatibility[57]. To sum up, the 
nucleic acid drug carrier has the advantage of being programmable, showing great application potential in 
the construction of DDS.

However, naked nucleic acid nanostructures have relatively high electrical charges, which may influence 
their behavior in blood circulation and scavenging. Additionally, the DNA nanostructure has a potential 
immune risk, being it easy to trigger the body’s inflammatory response. Polymer coating protects nucleic 
acid drug carriers from overexposure and has been shown to improve structural integrity and circulatory 
stability as well as to attenuate immune stimulation.

Gene therapy
Gene therapy, as an indispensable tool in biomedical research, has shown potential to treat a variety of 
diseases, including single-gene inherited diseases, cancer, cardiovascular disease, diabetes, infectious 
diseases, and inflammatory diseases, which has profoundly influenced the development of medicine. Gene 
therapy is the treatment of diseases by introducing genetic material into cells and editing genes that produce 
defective proteins or interfering with gene expression[58]. Nucleic acids are the main tools of gene therapy, 
such as DNA and mRNA molecules for gene overexpression and small RNA molecules such as siRNA, 
miRNA, and antisense oligonucleotides for gene knockdown[59]. For example, Kusano et al.[60] reported the 
potential therapeutic effect of intramuscular sonic hedgehog gene transfer on myocardial injury repair. In 
recent years, gene editing strategies based on the CRISPR/Cas9 system have been applied to the treatment of 
genetic diseases. The CRISPR/Cas9 system needs to guide nucleic acid sequence to control gene editing sites 
and is also a representative of nucleic acid participation in gene therapy[61]. The biggest limitation of gene 
therapy is the efficient delivery of gene regulatory systems to cells. Nucleic acid in its natural form is not 
easily absorbed by cells and is easily degraded and removed, so carriers are needed to deliver nucleic acid 
into cells. Although viral vectors such as adenoviruses, lentiviruses, and retrovirus show advantages in 
transfection rates and life-long expression, insertional mutations and other persistent side effects make 
clinical use difficult. EVs have nucleic acid and protein delivery functions and are potential gene therapy 
vectors.

Immune regulation
Nucleic acid has the potential for immune regulation. In the process of biological evolution, higher 
organisms have evolved the mechanism of recognizing microbial nucleic acid sequences through pattern 
recognition receptors, thus activating anti-infection immunity[62]. This provides the basis for the immune 
regulation of nucleic acids. CpG oligodeoxynucleotide (CpG ODN) is a commonly used immune adjuvant 
that can effectively trigger a mammalian immune response through toll-like receptor 9 (TLR9) signaling 
and has been used as an immune adjuvant against infection and tumor[63-70]. In addition, poly I: C, PolyA: U, 
etc. may enhance the activity of nucleotide kinases and participate in immune regulation[66,71].

In addition to the oligo nucleic acid chain, immune-gene therapy is another important way of nucleic acid 
immune regulation. It works by introducing genes that promote immune activation into the body’s cells. 
There are two cases. The first is the introduction and expression of cytokine genes to enhance the body’s 
immunity[72,73]. This method has broad spectrum and non-specificity. The other is a process that stimulates 
specific immunity by introducing specific epitope genes into the body. The method is also known as a 
nucleic acid vaccine (NAV). NAV aimes to introduce the gene sequence encoding specific antigen protein 
into animal somatic cells, synthesize antigen by using the protein expression system of animal itself, and 
induce the animal body to produce acquired immunity for the purpose of preventing and treating diseases. 
DNA vaccines are also known as naked vaccines, so named because they do not require any chemical 
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vectors[74]. After the DNA vaccine is introduced into the host, it is taken up by cells (tissue cells, dendritic 
cells, or other antigen-presenting cells), and the antigen protein is expressed by using the protein synthesis 
system of the cells, which stimulates the host to produce cellular and humoral immunity through a series of 
cascading processes[75,76]. Compared with traditional inactivated vaccine, DNA vaccine has the following 
advantages: (1) enhanced immune protection; (2) sequence design can be used to modify antigen 
determinants or prepare polyvalent vaccines; and (3) producing a safe and durable immune response that 
does not require multiple immunizations. However, DNA vaccines are potentially dangerous: (1) 
Continuous expression of foreign antigens may have adverse consequences. Long-term expression of 
exogenous antigen by plasmids may lead to immune tolerance or anesthesia. (2) After being injected into 
the body, foreign DNA may be integrated into the host genome to inactivate or activate the tumor 
suppressor genes of the host cells and transform the host cells into cancer cells, which may be the worthiest 
of in-depth study among many safety issues of the nucleic acid vaccine.

mRNA vaccines can trigger a specific immune response by introducing mRNA encoding specific antigens 
into the body and using the protein synthesis mechanism of the host cell to produce antigens. Compared 
with traditional vaccines, mRNA vaccines are simpler to produce, faster to develop, do not require cell 
culture, have lower cost[77], and are more immunogenic in expressing conformation stable proteins or 
exposing key antigen sites[78-82]. Even when compared with DNA vaccines, there are significant advantages. 
mRNA vaccines do not need to enter the nucleus, so they do not carry the risk of integration into the host 
genome[83]. However, two challenges must be overcome before mRNA vaccines work. The first challenge is 
the design and synthesis of mRNA. The high expression, specificity, and immunogenicity of kernel mRNA 
are important to the success of vaccines. In addition, mRNA also requires special design and modification 
to improve its stability. Another important challenge is the construction of a delivery carrier. A carrier with 
targeted properties can improve the enrichment of mRNA in the target cell, which is conducive to the 
efficient expression of the antigen. In this process, the lysosomal escape ability of the carrier is equally 
important for protecting mRNA from degradation. It is exciting that the approval of two coronavirus 
disease 2019 (COVID-19) mRNA vaccines (mRNA-1273 and BNT162b2) promote the development of 
mRNA vaccine technology. Clinical trials have shown that the two-dose regimen of BNT162b2 provides 
95% protection against COVID-19 in humans over 16 years of age. Median safety over two months was 
same as other vaccines[84]. However, mRNA vaccines also have some problems to be solved, such as poor 
stability of the mRNA itself, low cell entry efficiency, and low translation efficiency[85]. The development of 
intracellular delivery carriers with nucleic acid protection has become a research focus in this field[86-88].

ENGINEERING STRATEGIES FOR NUCLEIC ACID-FUNCTIONALIZED EXTRACELLULAR 
VESICLES
Nucleic acid has developed into an important functional subassembly for the modification and 
functionalization of drug delivery carriers due to its unique physiological and biochemical properties. EVs, a 
rising star in drug delivery, has also sparkled with nucleic acid subassembly. Therefore, it is important to 
know the strategy of nucleic acid functionalization of EVs. The current engineering strategies of EVs with 
nucleic acid can be divided into two types: membrane modification and encapsulation. Each type contains 
several fabrication approaches. Commonly used fabrication approaches and their merits and demerits are 
summarized in Table 1.

Membrane modification strategies
By modifying specific chemical groups, the coupling between nucleic acid and EVs can be efficiently 
realized [Figure 2A]. Hydrophobic molecules such as 1,2-distearoyl-sn-glycero-3-phosphorylethanolamine 
(DSPE) can be inserted into the phospholipid bilayer of EVs. Nucleic acid molecules can be anchored to the 
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Table 1. Comparison of different engineering strategies for nucleic acid-functionalized EVs

Approach Components Merits Demerits Ref.

Parental cell 
treatment

mRNA, SgRNA High loading efficiency, no 
damage to EVs

The operation is difficult and the process 
complex

[89-91]

Incubation siRNA Facile method and easy to 
operate

Low load efficiency [92]

Membrane 
modification

Aptamer, DNA hinge, CpG ODN, 
molecular beacon

Simple operation, high 
load efficiency

Nucleic acids are exposed to the surface 
and have no protective effect

[93-95]

Extrusion siRNA High load efficiency Complex preprocessing [96]

Electroporation CpG ODN, siRNA, molecular 
beacon

Simple operation, high 
load efficiency

The formation of pores in EVs may cause 
irreversible damage

[94,97,98]

Sonication miRNA, siRNA Simple operation Structural failure and low load efficiency for 
macromolecules

[99,100]

Streptolysin O DNA junction, molecular beacon Simple operation The integrity of EVs may be impaired [101,102]

Liposome Plasmid, small RNA Simple operation, high 
load efficiency

Particle size becomes larger, and EVs 
aggregates

[103,104]

EVs: Extracellular vesicles; CpG ODN: CpG oligodeoxynucleotides.

Figure 2. Engineering strategies for nucleic acid-functionalized extracellular vesicles: (A) membrane modification by using 1,2-
distearoyl-sn-glycero-3-phosphorylethanolamine insertion, click chemistry, and covalent modification; (B) ultrasonic oscillations 
mediate nucleic acid loading; (C) nucleic acid loading mediated by extrusion; (D) nucleic acid loading mediated by electroporation; and 
(E) nucleic acid loading mediated by an auxiliary reagent.

surface of the vesicles by nucleic acid coupling DSPE[93]. Our previous study found that fresh EVs are rich in 
sulfhydryl groups, and nucleic acid can be conjugated with EVs by modifying the maleimide group with 
nucleic acid[94]. This method is mild and specific and has a wide application prospect. In recent years, click 
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chemical modification based on glucose metabolism chemistry has been introduced into the engineering of 
EVs[105-107], which also provides a promising approach for nucleic acid modification. The membrane 
modification strategies can anchor nucleic acid to the surface of the vesicles, thus endowing the EVs with 
targeted recognition and other functions. However, these loading methods leave the nucleic acid exposed to 
the outside of the EVs and cannot obtain the protection of the EVs.

Encapsulation strategies
In addition to surface modifications, nucleic acid components can also be encased inside EVs [Figure 2B-E]. 
Parental cell treatment is an early method used to introduce nucleic acids into EVs. Although this method 
has high efficiency and simple follow-up operation, the preprocessing such as plasmid construction is still 
tedious and time-consuming. Electroporation is a transfection method that uses electrical pulses to create 
temporary holes in the plasma membrane to drive charged molecules in by establishing an electric potential 
in the membrane. Electroporation is an effective nucleic acid loading method and has been widely used in 
EVs for nucleic acid loading. In our previous work, molecular beacons were loaded into EVs through 
electroporation with a transfection efficiency at about 60%[94]. It has also been reported that incubation, 
extrusion, and sonication can induce nucleic acid to enter EVs. However, these methods are widely used in 
small molecule loading, but not widely used in nucleic acid loading due to their low efficiency for 
macromolecules. In recent years, the nucleic acid loading method using streptolysin O and liposome is a 
potential alternative to electroporation[101]. In contrast to membrane modification, encapsulation strategies 
can isolate nucleic acid from the external environment, avoiding premature exposure and degradation of 
nucleic acid.

APPLICATION OF NUCLEIC ACID FUNCTIONALIZED EXTRACELLULAR VESICLES IN 
BIOMEDICINE
Nucleic acid-functionalized EVs have attracted extensive attention in biomedicine for their outstanding 
advantages. This section briefly highlights the current representative progress of nucleic acid-functionalized 
EVs to provide a preliminary understanding for interested researchers. The specific contents are 
summarized in Table 2.

Nucleic acid-functionalized extracellular vesicles for targeted drug delivery
EVs have shown fascinating interest in the field of drug delivery and are regarded as promising for the next 
generation of nanomedicine. However, how to improve active targeting is an important problem for EVs. 
Aptamers can specifically recognize and bind to targets, showing great application potential in the 
construction of targeted drug delivery systems. Wan et al.[93] reported targeting exosomes with aptamers 
carrying paclitaxel, a common anticancer drug in clinical practice. They covalently linked the AS1411 
aptamer with cholesterol-PEG and subsequently grafted it onto mouse DC membranes. Then, modified 
DCs are mechanically extruded to create aptamer-guided nanovesicles. By using this extruding method, 
~3 × 1010 targeted nanovesicles were obtained from approximately 1 × 107 cells within 1 h. Chloe-PEG2000 
was selected because of its amphiphilic and relatively rigid properties, which could stabilize nanovesicles by 
hydrophobic effect on the lipid bilayer. Strategies for preparing DSPE-aptamers may be used to mass 
produce targeted exosomes secreted by immune cells for cancer treatment. The approach is considered safer 
than cell-based immunotherapies because the vesicles have lost their ability to expand[93].

Guo’s team reprogrammed exosomes using aptamer localization on the surface of exosomes to guide 
siRNA/miRNA cargo for targeted delivery and cancer treatment[115]. The authors designed a nanostructure 
with a three-way connection to make the ligands locate onto the interface of EVs. Placing membrane-
anchored cholesterol at the tail of the three-way connection causes RNA aptamers or folic acid to appear on 
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the outer surface of the EV
s. Instead, placing cholesterol at the three-w

ay arrow
 resulted in partial loading of RN

A
 nanoparticles into vesicles. A

s a result, RN
A

 
nanostructures are directionally attached to the lipid bilayer m

em
brane of EV

, and the target ligand decorates the outer surface of EV
s. This directionally 

engineered ligand show
ed that the engineered EV

s can deliver siRN
A

 to target cells specifically and realize effective blocking of tum
or grow

th
[115]. Recently, 

sgC
8, an aptam

er of m
em

brane-bound protein tyrosine kinase 7, has been coupled to diacyl-lipids via PEG
 ligands in therapy platform

s
[120]. The im

m
ature 

dendritic cell-derived EV
s are loaded w

ith doxorubicin through electroporation, and then the EV
s are functionalized by surface-targeting ligands through the 

hydrophobic effect [120]. This sgC
8-guided exosom

e exhibits selective and dose-dependent cytotoxicity to hum
an leukem

ia cells. In term
s of the m

echanism
 of 

cell internalization, studies have show
n that clathrin-m

ediated endocytosis plays a m
ajor role in sgC

8 aptam
er-m

ediated endocytosis of various endocytosis 
pathw

ays. These results suggest that targeted ligands them
selves m

ay influence exosom
e interactions w

ith target cells
[120]. N

evertheless, w
hether other ligand-

target pairs affect EV
 internalization by different cancer cells rem

ains to be determ
ined.

N
ucleic acid-functionalized extracellular vesicles for gene therapy

G
ene therapy is regarded as a possible cure to eradicate cancer and genetic diseases. The C

RISPR/C
as9 system

 is a new
 gene editing tool and designed to w

ork 
as a C

as9 nuclease single guide RN
A

 (sgRN
A

) com
plex w

hich has been w
idely used in life science. Recognizing the com

plem
entary 20-nucleotide genom

e 
sequence by sgRN

A
, C

as9 nuclease cleaves the double-stranded D
N

A
 and destroys three bases upstream

 of the adjacent m
otif of the target gene, leading to 

gene deletion, insertion, and m
utation through error-prone non-hom

ologous end linking or precise hom
ologous directed repair. A

lthough the C
RISPR/C

as9 
system

 is considered a prom
ising gene therapy strategy, one key hurdle rem

ains: the lack of a safe and effective w
ay to transport the C

RISPR/C
as9 system

 in 
the body. In recent years, EV

s have been w
idely studied as prom

ising drug delivery carriers, but their encapsulation efficiency of large nucleic acids is low
. 

Lin et al. [103] developed a hybrid m
ethod of exosom

es and liposom
es by sim

ple incubation m
ethod. The synthesized hybrid nanoparticles effectively encapsulate 

the C
RISPR-C

as9 plasm
id, sim

ilar to liposom
es. Further experim

ents show
ed that the synthesized hybrid nanoparticles could be incorporated into 

m
esenchym

al stem
 cells (M

SC
s) to express encapsulated genes that could not be transfected by liposom

es alone. In another study, K
im

 et al. [91] achieved 
tum

or-targeted gene editing using tum
or-derived EV

s loaded w
ith C

RISPR/C
as9 plasm

id by electroporation. These studies provide a new
 m

ethod for 
delivering the C

RISPR/C
as9 system

 in vivo, w
hich is expected to enable precise gene editing in vivo and be used in the treatm

ent of cancer and other genetic 
diseases.

In addition to gene editing system
s, gene therapy can also be achieved by regulating gene expression. Liu’s team

[95] used m
olecular beacons to silence the m

iR-
21 gene, thus enabling EV

-m
ediated gene therapy. In earlier studies, the K

alluri group
[98] achieved targeted gene therapy for pancreatic cancer by using 

exosom
es from

 norm
al fibroblast-like m

esenchym
al cells carrying interference sequences targeting oncogenic K

rasG
12D

. Recently, the study entered a phase I 
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clinical trial (ClinicalTrials.gov, Identifier: NCT03608631). Non-coding RNAs (ncRNAs) are natural tools 
for gene expression regulation and are also loaded into EVs for intracellular delivery and gene 
therapy[108,109,111,121]. Nucleic acid-functionalized EVs also show good application potential in tissue repair. 
Mathiyalagan et al.[121] reported that EVs derived from CD34+ stem cells can target recipient cells and 
transfer miRNA precursors to regulate gene expression. In another study, Guo et al.[122] used MSC-derived 
exosomes loaded with phosphatase and tensin siRNA for spinal injury repair. MSC-derived exosomes have 
been reported to have a protective effect in many diseases such as myocardial infarction[9,123], bone 
defects[124], and kidney diseases[125] and can play a synergistic role with siRNA in tissue repair. These studies 
confirmed that EVs, as small RNA delivery carriers, have good potential in gene therapy. EVs have also 
been used to deliver large RNA. Yang et al.[116] developed a technique for mass production of mRNA-
encapsulating EVs through a homemade electroporation device. A new study found that both nerve growth 
factor mRNA and protein delivered via EVs can effectively treat ischemic brain injury[90]. This will further 
promote the application of nucleic acid-functionalized EVs in the biomedical field.

Nucleic acid-functionalized extracellular vesicles used in immunotherapy
Immunotherapy has made remarkable achievements in clinical trials of malignant tumors, which brings 
new hope for tumor treatment. However, the suppressive state of the tumor immune microenvironment 
greatly limits the effect of immunotherapy. Therefore, regulating the immune state of the tumor 
microenvironment is of great significance to improve the effect of immunotherapy. CpG ODN can activate 
DCs and macrophages through TLR9, thus improving antigen presentation and immune activation effect. 
Yu et al.[97] prepared exosomes from different origins and compared their physicochemical properties and 
delivery efficiency to verify whether EVs can effectively deliver immune-stimulating molecules to lymph 
nodes. It was found that EV encapsulation greatly increased the amount of internalization of 
immunomodulatory molecules, which induced higher tumor necrosis factor α (TNF-α) and interleukin-6 
(IL-6) expression than free monophosphoryl lipid A (MPLA) and free CpG ODN. After subcutaneously 
loading CpG and MPLA exosomes, the expression of cytokines interferon-γ (IFN-γ) and TNF-α increased, 
and T cells were activated. This suggests that the delivery of immune adjuvants by extracellular vesicles is a 
potential immunotherapy strategy.

The nucleic acid vaccine is a new immunotherapy method. The intracellular delivery of nucleic acid and 
antigen expression can be effectively realized by loading the DNA or mRNA encoding antigen into EVs. In 
a preprint, Tsai et al.[126] used exosome-mediated mRNA delivery as a severe acute respiratory syndrome 
coronavirus (2SARS-CoV-2) vaccine. The results show that the vaccine triggered long-term antiviral 
immune responses include cellular and humoral immunity, suggesting that exosome-based mRNA 
formulations represent a previously untapped platform for combating coronavirus disease 2019 (COVID-
19). Recently, Allele Biotechnology and Pharmaceutical[75] announced that they have designed an induced 
pluripotent stem cell (iPSC) line carrying genes encoding multiple SARS-COV-2 antigen. This iPSC line can 
release large amounts of EVs that carry viral mRNA and proteins. Alleles indicated that the engineered cell 
line conquers two problems: (1) vaccines containing multiple antigens may have better performance than 
vaccines containing single mRNAs, such as Pfizer/biotech and Moderna vaccines; and (2) while the 
Pfizer/BioNTech vaccines need to be stored at -80 °C, iPSC-derived EVs prevent messenger RNA 
degradation, making RNA remain intact for several months at 4 °C.

CHALLENGES AND PROSPECTS
Nucleic acid-functionalized EVs show great application prospects in the biomedical field. It enables EVs to 
be a promising candidate in the hot areas of targeted drug delivery, gene therapy, and immunotherapy. 
However, some challenges to using nucleic acid-functionalized EVs remain. Firstly, the lack of research 
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methods on EVs has greatly hindered the development of nucleic acid-functionalized vesicles. The low 
natural production rate of EVs greatly affects mass production. At the same time, EVs are heterogeneous, 
and it is difficult to obtain high purity homogeneity subgroups by existing isolation techniques. Although 
purified EVs can be isolated from cell lines secreting EVs, these EVs have immunogenic and carcinogenic 
potential. This greatly impedes downstream modification, quality evaluation, and clinical application. 
Secondly, RNA-based nucleic acid functionalization is affected by the lack of stability of RNA, which is 
easily destroyed and leads to the failure of functionalization. In addition to the above outstanding problems, 
nucleic acid-functionalized EVs are also faced with the lack of modification methods, the dilemma of 
selection of EVs, and the difficulty of clinical transformation. Nevertheless, nucleic acid-functionalized EVs 
provide a new tool for biomedicine with great potential and application prospects.

Reviewing the latest research progress, we speculate that nucleic acid-functionalized EVs will become a hot 
research area in the future. We boldly forecast its future research direction. The multi-functional diagnosis 
and treatment platform based on the programmable characteristics of the nucleic acid will realize 
personalized and precise treatment. Nucleic acid has programmable performance and can achieve 
intelligence and multi-function through sequence design. Nucleic acid-functionalized EVs enable the EVs to 
acquire intelligent characteristics such as stimulus response, intelligent controlled release, and therapeutic 
feedback. It promises to provide new strategies for personalization and precision medicine. A gene-editing 
system based on EVs is expected to achieve precise and efficient gene therapy. CRISPR, a gene-editing 
system, has made significant progress at the cellular level, showing satisfactory gene editing efficiency. 
However, in vivo gene editing is still hampered by the lack of delivery vectors. EVs are natural delivery 
carriers of bioactive molecules and have the ability to allow bioactive molecules to escape from lysosomes. 
Recent studies have found that EVs have tissue targeting ability such as homologous targeting. A gene-
editing system developed by EVs is expected to achieve accurate and efficient gene editing in vivo.
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Abstract
Aim: Despite intensive research during the last decade, it remains challenging to prepare extracellular vesicles 
(EVs) of high purity, especially from primary body liquids or protein-rich conditioned media. For now, time-
consuming combinations of at least two orthogonal methods, e.g., density and size separation, are required to 
enrich EVs to high purity, often at the expense of processing time. Therefore, novel technologies are required that 
allow EV preparation in acceptable time intervals and to fair purities. Free-flow electrophoresis (FFE) constitutes a 
well-established semi-preparative method to separate and prepare analytes, e.g., by inherent differences in their 
electric charges. FFE combines a flow-driven longitudinal transport of sample material with vertical electrophoresis 
and allows the separation of sample components into up to 96 different fractions. It was our aim to evaluate the 
potential of FFE for the separation of EVs from other sample components of EV-containing protein-rich conditioned 
cell culture media.
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Methods: Exemplarily, conditioned media of mesenchymal stem/stromal cells raised in the presence of EV-
containing 10% human platelet lysate were processed. We analyzed the obtained fractions by different 
technologies, including imaging flow cytometry, western blot and nanoparticle tracking analysis.

Results: We demonstrate that FFE quickly and reproducibly separates EVs from a huge proportion of molecules 
included in the original sample.

Conclusion: Our results qualify FFE as a feasible, quick and reproducible technology for the preparation of bona fide 
EVs.

Keywords: Extracellular vesicles, exosomes, mesenchymal stem cells, mesenchymal stromal cells MSCs, MSC-
EVs, free-flow electrophoresis

INTRODUCTION
Virtually all cells release different types of membrane-surrounded nano- and micron-sized particles into 
their extracellular environment. Depending on their subcellular origin, these extracellular vesicles (EVs) are 
discriminated into different subtypes[1]. The most prominent EV types are exosomes (70-150 nm) arising 
from the endosomal system, microvesicles (100-1000 nm) budding from the plasma membrane, and 
apoptotic bodies, membrane-surrounded large fragments of dying cells (up to several micrometers)[2]. 
Apparently, EVs are assembled in cell type specific manners, and a proportion of them mediates complex 
interactions at local and distant sites in both healthy and pathological conditions[3]. To unravel their 
functions, it is a common strategy to prepare EVs and analyze their molecular content in larger detail, e.g., 
by proteome or RNA profiling. Traditionally, differential centrifugation-based methods are used for the 
enrichment of small (exosome-)sized EVs[4]. More recently, size exclusion technologies have become 
popular, originally introduced for EV preparation many years ago[5-7]. Lipoproteins and protein aggregates 
are difficult to remove with any of the given technologies, particularly when it comes to primary body 
liquids, serum- or human platelet lysate (hPL)-containing media. To obtain relatively pure EV samples, the 
method of density gradient centrifugation has been combined with size exclusion chromatography to 
separate EVs from most of the lipoproteins and protein aggregates[8,9]. Despite the high purity of the 
obtained EVs, the recovery is relatively low and the whole procedure is very time-consuming. Thus, the EV 
field urgently requires novel methods allowing preparation of EVs with improved purities and recoveries in 
a quick and reproducible manner.

Free-flow electrophoresis (FFE) is a matrix-free, well-established method for the separation of a wide variety 
of charged or chargeable analytes [Figure 1A]. It has been used successfully for the separation and 
preparation of cells; proteins in cell lysates and plasma; enzymes from extracts of bacteria, micro-organisms 
and mammalian cell line cells; and the preparation of cellular organelles such as peroxisomes[10-13]. The 
central unit of FFE is a separation chamber, mainly composed of a separation plate and a 0.2 mm distanced 
front plate including a longitudinally arranged anode and cathode [Figure 1B]. Following assembly, buffers 
with defined pH values are loaded into the vertically arranged separation buffer inlets at the lower edge of 
the separation chamber. The buffers are continuously transported along the longitudinal axis of the 
separation chamber by a constant laminar flow, forming concrete longitudinal buffer lanes. Likewise, the 
sample to be separated is applied at a concrete vertical position at the front end of the horizontal lane and 
transported by the laminar flow together with the respective buffer along the longitudinal axis [Figure 1]. 
Typically, buffer application schemes are designed such that the buffer with the lowest pH is closest to the 
anode and that pH values of the buffers gradually increase towards the cathode. Driven by a vertical electric 
field and depending on their electric charge, sample components migrate vertically through different buffer 
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Figure 1. Free flow electrophoresis (FEE) and its principle. (A) Image of the FFE device developed by FFE Service. (B) Principle of the FFE 
device, as described in detail in the text: analytes loaded into the sample inlet are transported by a longitudinal flow and separated in a 
vertical electric field (see orange line as an example for one analyte). The migration speed of given analytes within the electric field is 
related to their isoelectric points and depends on the pH values of separation buffers within the separation area. To avoid analytes 
getting into contact with either electrode, specific stabilization buffers that regularly feature higher pH values protect the electrodes. At 
the end of the separation chamber driven by a counterflow, separated analytes are collected in 96 different pores connected with hoses 
to a fraction collector loading samples into 96-well plates. By spectral analyses at different wave lengths, pherograms of the fractioned 
samples are recorded.

zones. The migration speed and distance of each sample component depend on its charge density and/or 
isoelectric point (pI). Components with higher negative charge densities or lower pIs migrate more quickly 
towards the anode than those with lower charge densities and higher pIs. Thus, the higher is the charge 
density or the lower is the pI, the quicker the analytes approach the anode. Still being transported by the 
horizontal laminar flow, separated sample components continuously migrate towards the top of the 
separation chamber where they are collected by a collector unit in up to 96 different vertically arranged 
fractions. For the initial analysis, obtained fractions are usually analyzed in a microtiter plate reader for their 
light absorption and emission capabilities at different wavelengths. Absorption at 280 nm reflects the 
protein contents of the fraction, emission at 350 nm the autofluorescence of ingredients illuminated at 
280 nm, and absorption at 515 nm the turbidity caused by solid ingredients such as protein aggregates, EVs, 
and other particles and solid compounds.

Aiming to assess the feasibility and reproducibility of FFE for the preparation of EVs from complex fluids, 
we decided to use 48 h conditioned media (CM) from human bone marrow-derived MSCs grown in 10% 
hPL supplemented, non-EV-depleted media. Coupled with our interest in translating MSC-EVs into the 
clinics[14,15], we routinely characterize obtained EV preparations by applying standard EV characterization 
technologies as recommended by the minimal information for studies of extracellular vesicles 2018 
(MISEV2018) guidelines[16]. Furthermore, we previously optimized imaging flow cytometry (IFCM) 
protocols for the characterization of EVs at the single-EV level and have started to analyze EV contents in 
different biofluids including EV preparations obtained with different protocols by IFCM in addition[17-21].

Here, using as an example one of our standard MSC-EV preparations[14,22] and MSC-CMs, we developed and 
optimized an FFE protocol with separation buffers of different pH values for the reproducible preparation 
of respective EVs.
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METHODS
Preparation of MSC-CMs
MSCs were raised from samples of healthy bone marrow donors following informed consent according to 
the Declaration of Helsinki, exactly as described before[14,23]. Their usage was approved by the ethics 
committee of the University of Duisburg-Essen (12-5295-BO). Briefly, obtained MSCs were expanded in 
DMEM low glucose (PAN Biotech, Aidenbach, Germany) supplemented with 10% hPL[24,25], 100 U/mL 
penicillin-streptomycin-glutamine (Thermo Fisher Scientific, Darmstadt, Germany), and 5 IU/mL heparin 
(Ratiopharm, Ulm, Germany) at 37 °C in a humidified 5% CO2 atmosphere. Upon reaching 50% confluency, 
CMs were exchanged every 48 h until MSCs reached a density of 80%-90% confluency. After harvesting, 
CMs were spun at 2000 g for 15 min in a 5810R centrifuge (rotor A-4-81, Eppendorf, Hamburg, Germany) 
to remove residual cells and larger particles. Thereafter, CMs were stored at -20 °C until usage. MSC 
characteristics and absence of mycoplasma infections were documented in regular intervals, exactly as 
described before[14,23]. The MSC-CMs used in this study were obtained from approximately 6 × 106 cells. For 
one of the MSCs, we used 24 h medium exchange intervals for all other 48 h intervals.

Preparation of MSC-EVs
The MSC-EV preparation used in this study (MSC-EVs 31.2) was comprehensively characterized before, 
and it has been tested for its therapeutic activity in an ischemic stroke model[26]. Briefly, MSC-EVs 31.2 were 
prepared from 48 h CM of 4.3 × 108 cells (4.5 L MSC-CM) applying our reported PEG/UC procedure[14,22]. 
The EV preparation was characterized by nanoparticle tracking analysis (NTA) and Western blot. The 
average particle sizes were 108.2 nm; the particle concentration was 2.8 × 1011 particles per mL; and the 
protein concentration was 7.7 mg protein/mL. The following administration into ischemic stroke mice, 
samples of this MSC-EV preparation mediated neuroprotective effects[26].

Free flow electrophoresis
FFE experiments were performed on FFE NextGen systems (FFE Service GmbH, Feldkirchen, Germany), 
equipped with nine inlets for the loading of the separation buffers at the front and three inlets for the 
counterflow buffers at the end of the separation chamber. All separations were performed at 10 °C, and 
500 mm × 100 mm separation chambers were used with 0.2 mm gap width, covered with transparent plastic 
film.

The following FFE workflow was used [Supplementary Figure 1]. Before loading the separation chambers 
with the different buffers air bubble-free, the appropriate assembly of the FFE device was confirmed by 
running a routine program checking for the tightness of the device and the homogeneity of the laminar 
fluid stream within the whole chamber. To this end, a so-called stripe test was performed, in which the nine 
inlets at the front of the separation chamber were fed alternating with clear and pink colored water. Without 
applying an electric field, it was proven visually and by spectral analysis that, under laminar flow, aqueous 
lanes remain straight without intermingling with their neighbor lanes [Supplementary Figure 2A]. Next, the 
separation chamber was loaded with the separation buffers of choice flanked by the anode and cathode 
stabilization buffers as provided below. Depending on the detailed separation protocol, variable areas of the 
separation chamber were chosen for the sample fractioning, i.e., by selecting the numbers of buffer inlets to 
be filled with separation buffers at the front of the separation chamber. To control the electrophoretic 
separation performance, a mixture of different colored dyes with different pIs (range of pI 4-8) was 
administered into the loading inlet, applying a laminar flow of 201 mL/h and an electric voltage of 1000 V 
regularly, resulting in a current of approximately 190 mA [Supplementary Figure 2B]. The accuracy of the 
electrophoresis-driven separation process was controlled visually. Following appropriate separation of the 
colored dye mix, the EV-containing samples were loaded into specific sample inlets with a flow of 7.5 mL/h. 
Simultaneously, the laminar flow samples were separated by electrophoresis (1000 V, ~190 mA). Upon 

https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202203/4702-SupplementaryMaterials.pdf
https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202203/4702-SupplementaryMaterials.pdf
https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202203/4702-SupplementaryMaterials.pdf
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applying a counterflow at the end of the separation chamber, typically with a flow rate of 195 mL/h, sample 
fractions were collected via a collection unit installed at the end of the separation chamber allowing the 
collection of up to 96 different fractions in 96-well microtiter plates, typically as 150 μL aliquots per well. 
Depending on the protocol and continuous sample loading, separation time and the corresponding volume 
of each obtained fraction can be increased. Within 27 min, up to approximately 1.8 mL per sample fraction 
can be obtained, which in our experimental series were collected in 96-well polypropylene deep-well plates 
with loading capacities of 2 mL per well (polypropylene, Protein LoBind, Eppendorf, Hamburg, Germany). 
Typically, if larger (scaled) sample fractions are collected in deep-well plates, conventional microtiter plates 
are filled with 150 μL aliquots per sample fraction immediately before (pre-scaled sampling) and after 
loading of the deep well plates (post-scaled sampling). Analyses of the fractions collected in the microtiter 
plates before and following the scaled sampling retrospectively allow evaluation of the stability of the 
separation process.

Spectroscopic analyses of the collected sample fractions, typically in microtiter plates, for each of the 
fractioned samples were performed in a microplate reader (Tecan M200, Tecan, Männedorf, Switzerland) 
equipped with UV-Vis and fluorescence spectroscopy detectors and I-control 1.8 software (Tecan). Briefly, 
the protein content of the sample fractions was analyzed by absorption of UV light at 280 nm excitation, the 
autofluorescence of 280 nm illuminated fractions at 350 nm emission, and their turbidity by absorption at 
515 nm extinction; 10 nm bandwidth and a photomultiplier gain setting of 80 were used. The light 
absorbance values of the different sample fractions were plotted in pherograms across all sample fractions. 
Deep-well plates loaded with up to 96 different sample fractions were stored at -80 °C until further 
processing. pH analyses of the collected samples were performed in an automatized manner with a Tecan 
MSP9259 microplate robotic system (Tecan) equipped with a WTW inoLab pH730 pH-meter (Weilheim, 
Germany) and “gemini for miniPrep” software.

For the initial experiments, we used an MSC-EV preparation that had been comprehensively characterized 
before[26]. For the fractioning of this sample, an interval zone electrophoresis protocol was used (longitudinal 
transport occurs before and after but not during electrophoresis), and the FFE separation chamber was 
loaded via five inlets with five separation buffers (10 mM Tris-acetate) of different pH values (pH 4.8, 5.4, 
6.4, 7.4, and 8.4). The electrode stabilization buffer, 150 mM Tris-acetate pH 8.3, was loaded into two inlets 
in juxtaposition of the anode and one inlet to the cathode [Figure 2A]. The counterflow buffer was a 
250 mM mannitol solution. The sample fractioning time was adjusted to 6 min with constant 
electrophoresis.

For the separation of the MSC-CMs a continuous zone electrophoresis process was used (longitudinal 
transport and electrophoresis occur simultaneously). Here, three separation buffers were loaded via three 
separate loading inlets. Buffer 1 was 15 mM Tris-HCl adjusted with e-aminocaproic acid (EACA) to pH 4.5; 
Buffer 2 was 5 mM Tris, titrated with acetic acid to pH 4.5, and Buffer 3 was 15 mM Tris, titrated with acetic 
acid to pH 6.0. The separation buffers were flanked by the anode and cathode stabilization buffers (170 mM 
Tris, 130 mM acetic acid, pH 7.3) [Figure 3A]. In addition, 300 mM bisamino-trismethan (BisTRIS) was 
used as a counterflow buffer applied via the three counterflow buffer inlets at the top end of the separation 
chamber.

Dot blot
Optitran Whatman BA-S83/0.45 μm nitrocellulose membranes (Whatman GmbH, Dassel, Germany) were 
cut and placed into the Dot blot chamber (96-well Bio-Dot®, BioRad, Feldkirchen, Germany). Then, 200 μL 
of each FFE separated fraction were transferred to 1 of the 96 wells of the Dot blot chamber. Next, 15 μg of 
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Figure 2. Free flow electrophoresis (FEE) effectively separates components of MSC-EV preparations. (A) A five-step pH-profile (pH 
4.8, 5.4, 6.4, 7.4, and 8.4) was used for the fractioning of a 133 μL sample of a well-characterized MSC-EV preparation that was applied 
at the vertical position corresponding to that of the collected Fraction 78. An interval zone electrophoresis was performed at 1000 V for 
6 min in a 6 cm broad separation area. (B) A pherogram of the protein content within the different fractions. (C) The results of dot blot 
analysis of all 96 obtained fractions using a mixture of anti-CD9 (VJ1) and anti-Syntenin (EPR8102) antibodies. As a control, at Position 
96, 15 μg of a PEG precipitated MSC-EV sample were applied. Fractions delivering positive dot blot signals (Fractions 35-37) are labeled 
by arrows and the black line in (C).



Page 37Staubach et al. Extracell Vesicles Circ Nucleic Acids 2022;3:31-48 https://dx.doi.org/10.20517/evcna.2021.26

Figure 3. Imaging flow cytometry (IFCM) recovers CD9+ objects mainly in one free flow electrophoresis (FEE) fraction. (A) Following 
optimization, a three-step pH profile (pH 4.5, 4.5, and 7.1) was set up for the fractioning of 3.125 mL of a given MSC-CM. The sample 
was applied at the vertical position corresponding to that of the collected Fraction 35. The FFE process of continuous zone 
electrophoresis was performed at 1000 V for 3.5 min in a 3 cm broad separation area. (B) A pherogram of the protein content within 
the different fractions. (C) The results of IFCM analyses of 25 μL aliquots of obtained fractions that had been stained with anti-CD9 
antibodies. The fraction containing detectable CD9+ objects (Fraction 9) is labeled by arrows and the black line in (B).
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an unfractioned PEG/UC MSC-EV preparation were diluted to final volumes of 200 μL and applied as 
positive control. Applying a water jet vacuum pump, liquid phases of the loaded samples were sucked 
through the membrane. Thereafter, the blot aperture was disassembled and the membrane air-dried for 
1-2 min. Subsequently, the membrane was blocked under low agitation in 5% skim milk powder solution 
(TBST, Sigma Aldrich, Taufkirchen, Germany) for 30 min at room temperature. To label exosomal 
antigens, mouse anti-CD9 antibodies (VJ1, 1:1000, kindly provided by Francisco Sánchez-Madrid) and 
rabbit anti-Syntenin antibodies (EPR8102, 1:1000, 1 h, RT, Abcam, Cambridge, United Kingdom, ab133267) 
were applied in TBS-0.1% Tween-20 (TBS-T) containing 5% (w/v) skim milk powder (Sigma-Aldrich) for 
1 h at room temperature. Following incubation, membranes were rinsed and washed three times for 5 min 
and once for 10 min in TBS-T. For the detection, membranes were incubated with peroxidase AffiniPure 
F(ab')2 fragment donkey anti-mouse IgG (1:10,000, polyclonal 715-036-150; Jackson ImmunoResearch 
Laboratories, West Grove, PA, USA) or peroxidase-AffiniPure F(ab')2 fragment donkey anti-rabbit IgG 
(1:10,000, polyclonal 711-036-152; Jackson ImmunoResearch Laboratories) for 1 h and rinsed three times 
for 5 s and once for 10 min in TBS-T. SuperSignal® West Femto Maximum Sensitivity Substrate (Thermo 
Fisher Scientific, Darmstadt, Germany) was used as a chemiluminescent detection substrate. Obtained 
signals were documented with the Fusion FX7 detection system (Vilber Lourmat, Eberhardzell, Germany).

Imaging flow cytometry
IFCM analyses were performed on the AMNIS ImageStreamX Mark II Flow Cytometer (AMNIS/Luminex, 
Seattle, WA, USA), as described previously[19-21]. For staining, samples were incubated with CD9-PE (1:50, 
MEM61, Exbio) for 1 h at room temperature. All controls recommended by the MIFlowCyt-EV guidelines 
for flow cytometric EV analysis[27] were performed, exactly as described previously[20]. After dilution with 
PBS, samples were measured using the integrated auto-sampler for 96-well U-bottom plates. Acquisition 
time was 5 min per well. Data were acquired at 60× magnification, low flow rate (0.3795 ± 0.0003 μL/min), 
and with removed beads option deactivated. Analysis was performed as described previously using IDEAS 
software version 6.2[19].

Nanoparticle tracking analysis
Samples were analyzed for particle size and concentration on a ZetaView™ PMX-120 BASIC platform 
(ParticleMetrix, Meerbusch, Germany). The machine was calibrated using a polystyrene bead standard 
(100 nm, Thermo Fisher Scientific). Samples were loaded and recorded at all 11 positions, with 5 
repetitions. Further settings included: sensitivity 75, shutter 75, minimum brightness 20, minimum size 5, 
and maximum size 200. Each sample was measured three times. The videos were analyzed with the 
ZetaView Analyze program (Version 8.03.08.02); the median value (X50) for size was used for data analysis.

Protein concentration analysis
The protein content of selected samples was determined using the bicinchoninic acid (BCA) protein assay 
kit (Pierce, Rockford, IL, USA). Protein analysis was performed in 96-well plates according to the 
recommendations of the manufacturer.

Chloroform-methanol precipitation
The FFE fractions were too diluted for direct application to Western blots. Consequently, samples were 
concentrated by chloroform-methanol precipitation. Briefly, 800 μL methanol was added per 200 μL sample 
volume. After mixing, 200 μL chloroform and 600 μL ddH20 were added. After repeated mixing, samples 
were centrifuged for 3 min at 14,000 g. Following protein concentration in the interphase, the upper 
aqueous phase was removed, and 800 μL methanol was added. Precipitated proteins were sedimented by 
centrifuging the samples for 5 min at 14,000 g. Supernatants were removed and pellets were air-dried for 
approximately 5 min. Dried pellets were resuspended in 40 μL non-reducing Laemmli buffer.
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Western blot
Western blot was performed as described previously[22]. Briefly, samples were separated on SDS-PAGE gels 
(12% tris-glycine/bis-acrylamide). Separated proteins were transferred to a polyvinylidene fluoride 
membrane (PVDF; Millipore, Darmstadt, Germany) by Wet Blot (Mini Trans-Blot® Cell, BioRad, 
Feldkirchen). TBS-T containing 5% (w/v) skim milk powder (Sigma) was used to block the PVDF 
membranes. The following antibodies were used to detect defined proteins: mouse anti-human CD9 
antibody (TEA3, 1:1,000, 4 °C overnight, kindly provided by Francisco Sánchez-Madrid) and rabbit anti-
human Syntenin antibody (1:1000, EPR8102, Abcam). All antibodies were diluted in TBS-T containing 5% 
(w/v) skim milk powder. Subsequently, membranes were washed four times (3× 10 s, 1× 10 min) in TBS-T 
and counterstained for 1 h at room temperature with Peroxidase-AffiniPure F(ab')2 Fragment donkey anti-
mouse IgG (1:10,000; Jackson ImmunoResearch Laboratories) and peroxidase-AffiniPure F(ab')2 Fragment 
donkey anti-rabbit IgG (1:10,000; Jackson ImmunoResearch Laboratories). SuperSignal® West Femto 
Maximum Sensitivity Substrate (Thermo Fisher Scientific) was used as a chemiluminescent detection 
substrate.

Transmission electron microscopy sample preparation
Transmission electron microscopy (TEM) was performed as described previously[26]. Briefly, 10 μL droplets 
of EV-containing samples were placed onto 200 mesh copper grids covered with carbon-coated formvar 
films (Plano GmbH, Wetzlar, Germany) for 5 min to allow the EVs to adhere to film surfaces. All following 
steps, contrasting, and fixation with 2% uranyl acetate were performed by placing the grids on droplets of 
different solutions. The incubations were conducted at room temperature.

Images were acquired using a JEOL JEM 1400Plus (JEOL Ltd., Tokyo, Japan), operating at 120 kV and 
equipped with a 4096 × 4096 pixels CMOS camera (TemCam-F416, TVIPS, Gauting, Germany). Image 
acquisition software EMMENU (Version 4.09.83) was used for taking 16-bit images. Image post-processing 
was carried out using ImageJ (Version 1.52b).

RESULTS
FFE allows separation of protein and EV contents from PEG prepared MSC-EV samples
Aiming to test the suitability of FFE for the fractioning of complex EV-containing samples, we started our 
experimental series with MSC-EV samples routinely prepared in our lab using a combined PEG/UC 
preparation method[14,22]. First, 133 μL of a well-characterized MSC-EV preparation (MSC-EV 31.2) that had 
been administered to ischemic stroke mice[26] were fractioned within 6 min with a free-flow interval zone 
electrophoresis protocol using five different pH zones (pH 4.8, 5.4, 6.4, 7.4, and 8.4) flanked by anode and 
cathode stabilization buffers (pH 8.3) [Figure 2A]. In total, 96 different fractions (1230 μL each) were 
collected from the separation area, including the regions with the anode and cathode stabilization buffers. 
Analyses of the protein content (UV280 nm) of different fractions revealed that most of the protein was 
recovered in Fractions 44-80 (absorbance at 280 nm > 1500) [Figure 2B]. To identify the EV-containing 
fractions, a dot plot immunostaining was performed. Coupled with the usage of hPL supplemented media, 
the most abundant EV population in our MSC-EV samples is the CD9+CD81- EV population[21], expectedly 
also being positive for the EV marker Syntenin[17]. Consequently, we decided to focus on anti-CD9 and anti-
Syntenin analyses. Accordingly, 200 μL of each obtained FFE fraction was applied and probed with a 
mixture of anti-CD9 and anti-Syntenin antibodies. Positive signals were detected in Fractions 35-37, which 
were derived from the pH 4.8 zone, adjacent to the anode stabilization buffer [Figure 2C]. Since these 
fractions had a rather low protein content, we concluded that fractioning by FFE separates protein 
impurities in EV preparations from their EV content.
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FFE allows separation of CD9+ objects and protein contents from MSC-CMs
Intending to use FFE for the preparation of EVs from CMs, we decided to next prepare EVs from MSC-
CMs. An MSC-CM (CM1) was used for this experiment that had been cleared from cells and larger particles 
and had a protein concentration of 4.39 mg/mL, according to NTA average particle sizes of 116.2 ± 8.1 nm 
and a particle concentration of 2.50 × 1010 particles/mL. According to IFMC, the content of CD9+ objects 
was 3.14 × 108 objects/mL MSC-CM, resulting in purity indexes of 5.69 × 109 particles/mg protein and 
7.14 × 107 CD9+ objects/mg protein, respectively [Table 1].

To decrease the processing time, the separation protocol was optimized and simplified. Instead of five 
buffers with different pH values, three different buffers were chosen for the separation area: a high 
conductivity buffer with pH 4.5, a low conductivity buffer of pH 4.5, and a buffer with pH 7.1. These buffers 
were flanked by anode and cathode stabilization buffers with pH 7.3; the separation area was reduced to half 
of the separation chamber [Figure 3A]. Applying the optimized protocol, 3.125 mL of MSC-CM were 
processed in 25 min. In total, 48 different fractions were collected, each with a volume of 1.8 mL. In 
addition, for the spectroscopic evaluation of the stability of the separation process, 150 mL aliquots of all 
fractions were collected before and after the scaled sampling process. The obtained pherograms revealed 
that most of the protein content was recovered in Fractions 7-8 and 23-27 [Figure 3B]. Upon testing 200 μL 
of each of the obtained samples in the dot plot procedure, expectedly, we failed to detect any EV proteins 
due to the much lower EV concentration within the starting material. Since, according to our experience, 
IFCM is more sensitive than Western or Dot blot, we decided to analyze relevant fractions by IFCM. 
Preliminary IFCM analyses performed during the FFE protocol establishment period qualified anti-CD9 
labeling as a robust and sufficiently sensitive method for the identification of EV-containing samples. These 
analyses demonstrated that CD9+ objects, assumedly CD9+ EVs, were exclusively recovered in up to three 
fractions, all within the range of Fractions 7-10. Consequently, following the processing of MSC-CM with 
the optimized protocol, we focused our anti-CD9 IFCM analyses on Fractions 6-11. In our proof-of-
principle run, Fractions 6-8, 10, and 11 hardly contained any CD9+ objects. In contrast, Fraction 9 contained 
more than 3.12 × 107 CD9+ objects per mL [Figure 3C, Supplementary Figure 3, Table 2]. As before, the 
fraction containing most CD9+ objects had a relatively low protein content, resulting in a purity of 9.24 × 107 
objects/mg protein [Table 2]. These results imply that FFE might also be a suitable method for preparing 
EVs from MSC-CMs to fair purities.

FFE allows preparation of bona fide EVs 
Although our previous results qualified IFCM as a second-generation EV analysis method for the detection 
and characterization of EVs including small EVs at the single-EV level[17,19-21], we also characterized Fractions 
7-10 by NTA and Western blot (WB) and determined their protein content in addition to the spectral 
analysis by BCA [Tables 1 and 2]. Consistent with the number of CD9+ objects, the highest particle counts, 
1.5 × 1010 particles per mL as determined by NTA, were found in Fraction 9, which as a consequence thereof 
was also analyzed by TEM. Fractions 7, 8, and 10 contained clearly fewer particles [Table 2]. The average 
sizes of the recorded particles were 127.3 ± 7.9 (Fraction 7), 146.6 ± 13.9 (Fraction 8), 131.4 ± 6.2 (Fraction 
9), and 134.8 ± 8.3 nm (Fraction 10) [Figure 4A]. Due to the low protein concentration of the obtained FFE 
fractions, the protein content was concentrated by chloroform-methanol precipitation (200 μL aliquots 
each) and analyzed by WB. Signals for CD9 were obtained within the lanes of Fractions 8-10, with the 
strongest band in the lane of Fraction 9 [Figure 4B]. Unfortunately, most likely due to the low protein 
concentration of the prepared samples, other EV specific proteins were not successfully detected in Western 
blots (data not shown). TEM analyses revealed objects with a vesicular appearance in Fraction 9 
[Figure 4C]. Altogether, these data imply that FFE Fraction 9 contains bona fide EVs. Thus, FFE can also 
quickly prepare EVs from cell culture supernatants.

https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202203/4702-SupplementaryMaterials.pdf
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Table 1. Protein, IFCM and NTA data of MSC-CM

Prot 
conc

CD9+ obj 
conc

Obj purity 
index

Total CD9+ 
obj

Particle 
size

Particle 
conc

Part purity 
index

Total 
particles

Method BCA IFCM IFCM/BCA IFCM × Vol NTA NTA NTA/BCA NTA × Vol

[mg/ml] [obj/mL] [obj/mg] [obj/3.125 mL] [nm] [particle/mL] [particle/mg] [part/3.125 mL]

CM1 4.39 3.14E+08 7.14E+07 9.81E+08 115.1 2.50E+10 5.69E+09 7.81E+10

CM2 4.76 1.85E+08 3.87E+07 5.77E+08 113.0 2.20E+10 4.62E+09 6.88E+10

CM3 4.64 2.84E+08 6.12E+07 8.88E+08 118.0 3.10E+10 6.68E+09 9.69E+10

CM4 4.57 2.36E+08 5.17E+07 7.39E+08 115.1 2.20E+10 4.81E+09 6.88E+10

CM5 4.80 2.46E+08 5.13E+07 7.70E+08 117.3 2.60E+10 5.41E+09 8.13E+10

IFCM: Imaging flow cytometry; NTA: nanoparticle tracking analysis; BCA: bicinchoninic acid.

FFE-is highly reproducible and robust for protein fractioning
After gaining evidence that FFE allows the preparation of bona fide EVs from MSC-CM, we explored the 
reproducibility of the method. To this end, in addition to the previous MSC-CM (CM1), we included CMs 
from four additional MSC stocks (CM2-5). All MSC-CMs revealed protein concentrations between 4.3 and 
4.8 mg/mL, their average particle concentration varied between 2.2 and 3.1 × 1010 particles/mL, and their 
number of CD9+ objects between 1.85 and 3.14 × 108 per mL [Table 1]. The purity indexes varied between 
4.64 and 6.68 × 109 particle/mg protein and between 3.87 and 7.14 × 107 CD9+ objects/mg protein [Table 1].

Applying the former FFE protocol, fractioned aliquots of the five different MSC-CMs were fractioned on 
three different days, with two independent runs per MSC-CMs and day. As an initial analysis, the protein 
content of all 48 obtained fractions of each individual run was determined spectroscopically, measuring the 
light absorption of each individual fraction at 280 nm. Upon comparing the obtained pherograms, we 
observed a high degree of reproducibility of the method. All pherograms obtained from MSC-CMs that had 
been fractioned on the same day were almost identical [Figure 5A], indicating extreme robustness and 
reproducibility of the process, at least for intra-day performances. Pherograms obtained from identical 
MSC-CMs that were fractioned on different days were very similar to each other as well, but they showed 
some minor differences [Figure 5B]. According to our experience, these slight differences in the day-to-day 
performance are due to minor, unavoidable variations in setting up the FFE aperture. Overall, however, in 
terms of protein fractioning, our results demonstrate FFE is highly reproducible and robust.

FFE reproducible allows preparation of EVs from MSC-CM
After learning FFE reproducibly fractions different MSC-CMs regarding their protein concentration, we 
next investigated Fractions 7-10 for their CD9+ object and particle content by IFCM and NTA, respectively. 
Furthermore, samples of these fractions were investigated by anti-CD9 Western blots. The IFCM data reveal 
that consistently the majorities of CD9+ objects were recovered in Fraction 9 in all cases, with the exception 
of MSC-CM4, where minor proportions of CD9+ objects were also recovered in Fraction 10 but never in 
Fraction 7 or 8 [Figure 6A, Table 2]. In good agreement, NTA also detected the highest particle content in 
all Fraction 9 samples (between 7.9 × 109 and 1.2 × 1010 particle/mL and 1.19 and 3.12 × 107 CD9+ 
objects/mL) followed by Fraction 10 in all cases [Figure 6B, Table 2]. According to the purity indices 
expressed as particles per mg protein, Fraction 9 contained between 4.54 and 7.82 times more particles per 
mg protein than the original CMs. The average sizes of the recorded particles in Fraction 9 were between 
110.1 and 133.1 nm [Table 2]. Following chloroform-methanol precipitation of the samples, the data were 
further substantiated by results of Western blots, which also showed the highest anti-CD9 signal intensities 
in all Fraction 9 samples [Figure 6C]. Despite the fact that, assumedly due to issues in chloroform-methanol 
precipitation, the CD9 band intensity of the Fraction 9 of MSC-CM5 is somehow weaker than that of the 
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Figure 4. Free flow electrophoresis (FEE) allows preparation of bona fide extracellular vesicles (EVs). FFE fractions considered to contain 
the majority of EVs were analyzed by nanoparticle tracking analysis (NTA), Western blot (WB), and Transmission electron microscopy 
(TEM). (A) The results of NTA analyses depicted as particles per mL and mean particle size (131.4 nm) of Fractions 7-10 of the FFE 
fractioned MSC-CM (for details, see CM1 in Table 1). (B) Anti-CD9 Western blot of the same fractions depicted in (A). (C) TEM images 
of detectable Fraction 9 components following uranylacetate fixation: (top) 10,000× (1.189 nm/px) magnification (120 kV); and 
(bottom) 50,000× (0.240 nm/px) magnification.

DISCUSSION
Small EVs, especially exosomes, were discovered almost 40 years ago, and the first report on their functional 
impacts was reported in 1996[28-30]. However, EV preparation remains challenging, and, to our best 
knowledge, no technologies have been described allowing the preparation of reasonably pure EVs in short 
time intervals. Here, we evaluated the suitability of FFE for the fractioning of EVs from a preclinically tested 
MSC-EV sample and the preparation from MSC-CMs. We demonstrated that CD9+ EVs from given EV 
preparations or MSC-CMs are very reproducibly recovered in discrete fractions, specifically in 3 out of 96 or 
48 fractions, respectively, while most of the protein is recovered in other fractions. Thus, FFE allows quick 
and reproducible separation of EVs from a huge proportion of other molecules and compounds included in 
the original EV-containing samples. Depending on the EV starting concentration and the experimental 
needs, a continuous separation procedure can be performed, as demonstrated here by preparing EVs from 
more than 3 mL of MSC-CMs within 25 min. Since the application zone is much broader than that of each 
collected fraction and electrophoresis results in isoelectric focusing, analytes can be slightly concentrated 
compared to the starting samples. However, even though FFE can be used for EV preparation, the 
preparation remains low scale and is not necessarily quantitative. For example, after the application of 
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Figure 5. Free flow electrophoresis (FEE) fractioning is highly reproducible and robust. (A) Pherograms of obtained fractions of five 
different MSC-CMs (CM1-5) all of which were processed two independent times on the same day (a, b). (B) Pherograms of fractions 
obtained of MSC-CM1 that were fractioned on three different days. FFE conditions were applied as indicated in Figure 3.

samples, the performance of the separation process should be stabilized before beginning with the collection 
of the different fractions. Comparably, the collection period should be finished before the last sample 
components reach the collector unit, resulting in the additional loss of sample material. However, FFE 
provides several new and beneficial options for EV research. The pherograms of the obtained fractions, for 
example, reveal information about the complexity of the initially applied EV samples. As long as proteins 
are recovered in other non-EV FFE fractions, they can be considered as byproducts or impurities. In terms 
of EV-based therapeutics, it is important to understand that byproducts may contribute to the therapeutic 
effect of the EV product and can be tolerated as long as they neither negatively affect the product’s function 
nor cause any side effects and as long as the product assembly is reproducible in independent batches of the 
same EV-product type[31]. To demonstrate the reproducibility of the molecular composition of obtained EV 
samples, we previously discussed the need for a fingerprinting method for such products, especially when 
their clinical application is considered[32]. Due to its high reproducibility, we understand FFE as a very 
potent method for generating reliable and reproducible fingerprints of obtained EV products and envision 
its huge potential for quality control of EV-based therapeutics.

Furthermore, combined with imaging flow cytometry, which can be performed in an automatized manner 
in the 96-well format and which we optimized for single EV analyses[19-21], EV-containing fractions can 
quickly be identified and used for different down-stream analyses, as exemplarily shown for NTA, Western 
blot, and TEM.

As exemplified in this manuscript, different separation profiles can be applied for the separation of EVs 
from proteins and other sample components. We may not have established the perfect EV preparation 
protocol for MSC-EV or MSC-CM samples here. Indeed, proteomic profiling of obtained EV-containing 
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Figure 6. Free flow electrophoresis (FEE) is reproducible, allowing preparation of extracellular vesicles (EVs) from MSC-CMs. Five 
MSC-CMs were fractioned on the same day by FFE applying the protocol indicated in Figure 4. To evaluate the reproducibility of the EV 
preparation, obtained Fractions 7-10 were analyzed: (A) following anti-CD9 labeling by imaging flow cytometry; (B) by nanoparticle 
tracking analysis; and (C) following chloroform-methanol precipitation by anti-CD9 Western blot (exposure time 270 s).
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fractions still recovered impurities in our CD9+ EV fractions (data not shown). However, by using different 
separation buffers, the separation capabilities can be significantly influenced and possibly improved much 
further, such that FFE will finally also allow separation of different EV subtypes. Indeed, in ongoing 
projects, in which we are investigating the usefulness of FFE for the preparative separation of EVs from 
other plasma sample components, we can recover different EV subtypes in different FFE fractions and are 
currently unraveling this EV heterogeneity in more detail (data not shown). This series of preliminary 
results implies that different EV types differ regarding their ionic strengths or pIs, respectively, likely 
providing another level of complexity to the EV field.

In summary, we demonstrated that FFE is a fast and efficient method to separate EVs from a huge 
proportion of other sample components included in different EV-containing liquids. Our results reflect the 
high reproducibility of the FFE-based sample separation and qualify FFE as an ideal device for the 
molecular fingerprinting of obtained EV products.
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Abstract
Aim: Diabetic nephropathy (DN) has become the most common cause of end-stage renal disease in most 
countries for patients with type 2 diabetes (T2D). Elucidating novel epigenetic contributors to DN can not only 
enhance our understanding of this complex disorder but also lay the foundation for developing more effective 
monitoring tools and preventive interventions in the future, thus contributing to our ultimate goal of improving 
patient care.

Methods: 5-hydroxymethylcytosines (5hmC)-Seal, a highly selective chemical labeling technique, was used to 
profile genome-wide 5hmC, a stable cytosine modification type marking gene activation, in circulating cell-free 
DNA (cfDNA) samples from a cohort of patients recruited at Zhongnan Hospital, including T2D patients with 
nephropathy (DN, n = 12), T2D patients with non-DN vascular complications (non-DN, n = 29), and T2D patients 
without any complication (controls, n = 14). Differential analysis was performed to find DN-associated 5hmC 
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features, followed by the exploration of biomarker potential of 5hmC in cfDNA for DN using a machine learning 
approach.

Results: Genome-wide analyses of 5hmC in cfDNA detected 427 and 336 differential 5hmC modifications 
associated with DN, compared with non-DN individuals and controls, and suggested relevant pathways such as 
NOD-like receptor signaling pathway and tyrosine metabolism. Our exploration using a machine learning approach 
revealed an exploratory model comprised of ten 5hmC genes showing the possibility to distinguish DN from non-
DN individuals or controls.

Conclusion: Genome-wide analysis suggests the possibility of exploiting novel 5hmC in patient-derived cfDNA as a 
non-invasive tool for monitoring DN in high-risk T2D patients in the future.

Keywords: Type 2 diabetes, nephropathy, epigenetics, 5-hydroxymethylcytosine, cfDNA

INTRODUCTION
Diabetic nephropathy (DN) is one of the most common complications of type 2 diabetes (T2D) and a 
leading cause of end-stage renal disease globally[1]. Approximately 20-40% of T2D patients will ultimately 
develop nephropathic diseases, thus posing a significant risk for T2D patients[2]. Early detection and 
preventive intervention of DN has been limited due largely to the lack of a comprehensive understanding of 
its complex pathogenesis and effective biomarkers. Notably, conventional clinical markers to evaluate renal 
functions of DN, including serum creatinine, estimated glomerular filtration rate (eGFR), and urinary 
albumin, can be influenced by many factors[3]. Pathologically, the “gold standard” to diagnose DN has been 
percutaneous renal biopsy. However, various complications can be caused by the procedure, such as 
bleeding, pain, and infection[4]. Therefore, investigation of novel molecular contributors implicated in DN 
would not only enhance our understanding of this disease but also provide opportunities to develop more 
effective diagnostic and preventive approaches. Of particular interest to us are novel epigenetic 
modifications revealed in circulating cell-free DNA (cfDNA), a clinically convenient liquid biopsy, which 
may reflect systematic changes in the body during pathogenesis[5].

Particularly, epigenetic modifications are gene regulatory elements that sit between phenotypes and 
genotypes[3]. The most-investigated epigenetic modification is DNA methylation, i.e., 5-methylcytosine 
(5mC), which has been implicated in normal physiological processes and pathogenesis. The regulation of 
DNA methylation in vivo is a dynamic process. The ten-eleven translocation enzymes can oxidize 5mC into 
5-hydroxymethylcytosine (5hmC), 5-formylcytosine, and 5-carboxylcytosine under an active demethylation 
process[6]. Unlike other demethylated products of 5mC, 5hmC is relatively abundant and biochemically 
stable in the human genome. Previous studies have confirmed that the 5hmC modifications show a distinct 
genomic distribution and gene regulatory role from 5mC[7] and have been implicated in a variety of diseases. 
Notably, recent studies have begun to demonstrate an association of altered 5hmC with diabetes-related 
conditions such as hyperglycemia[8].

Technically, the widely used bisulfite conversion-based epigenomic profiling techniques, although offering 
opportunities of profiling genome-wide cytosine modifications, cannot distinguish 5hmC from 5mC[9]. 
Therefore, to investigate whether the 5hmC modifications are implicated in DN, we utilized the 5hmC-Seal 
technique[10], a highly sensitive chemical labeling technique for genome-wide profiling of 5hmC, and next-
generation sequencing (NGS), in cfDNA samples derived from a cohort of T2D patients with and without 
nephropathy. The 5hmC-Seal technique has been systematically validated using spike-in controls and serial 
DNA inputs by our team and other groups as a reliable approach for biomarker discovery[9,11-15] using limited 
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clinical biospecimens, e.g., as low as a few nanograms of cfDNA that can be conveniently isolated from 1-2 
mL of plasma[11]. Therefore, the 5hmC-Seal technique has a technical advantage, especially suitable for 
future clinical implementation of cfDNA-based non-invasive tools for disease diagnosis, prognosis, and 
surveillance. Furthermore, our previous genome-wide analyses of 5hmC in cfDNA suggested a link between 
altered 5hmC and T2D-associated vascular complications in general[16]. For example, the 5hmC-based 
signatures in cfDNA were shown to have the potential to distinguish T2D patients with multiple vascular 
complications from those with single vascular complications[16], as well as between T2D patients who 
developed diabetic retinopathy and those who did not[17]. However, whether there are specific 5hmC 
changes implicated in DN has not been investigated yet.

Specifically, in the current study [Figure 1], we profiled genome-wide 5hmC in cfDNA samples derived 
from a cohort of 55 patients with T2D using the 5hmC-Seal technique and NGS. Differential analysis was 
performed to identify DN-associated modified genes as well as involved pathways. To investigate the 
feasibility of future biomarker studies targeting 5hmC for DN, we also explored the distinguishing capacity 
of 5hmC for DN by summarizing the genome-wide 5hmC profiles through feature selection using a 
machine-learning approach. Findings from this study enhance our understanding of DN-associated 
epigenetic changes and involved pathways, and provide the foundation for developing more effective and 
non-invasive tools for DN monitoring and preventive intervention in the future.

METHODS
Study populations
In total, 55 patients with T2D, including 12 patients with DN, 29 patients with non-DN complications (i.e., 
macrovascular complications, neuropathy, and retinopathy), and 14 sex- and age-matched T2D controls 
without complications, were recruited at Zhongnan Hospital of Wuhan University, China. Patients were 
diagnosed according to the 2017 Standards of Medical Care in Diabetes of the American Diabetes 
Association[18]. All study participants were excluded for other kidney diseases. Clinical variables were 
collected from the medical records following a standard protocol. Fasting plasma samples (~ 2 mL/patient) 
were collected the next morning after hospital admission. This study was approved by the Medical Ethics 
Committee of Zhongnan Hospital of Wuhan University (2019069). Informed consent was obtained from 
each participant.

Laboratory measurements
Laboratory measurements were performed at Zhongnan Hospital for the current study. Kidney function 
parameters (creatinine, urea nitrogen, uric acid, and eGFR)[19] and serum glucose were examined by the 
AU5800 Chemistry Analyzer (Beckman). The HA-8160 Glycohemoglobin Analyzer was used to measure 
blood glycated hemoglobin (HbA1c). Serum insulin was assayed by the i4000SR Immunology Analyzer 
(Abbott Laboratories).

Preparation of cfDNA samples, 5hmC-Seal assay, and data processing
Details about the preparation of circulating cfDNA samples, 5hmC-Seal library construction, sequencing, 
and data processing are described in our previous publications[10,11,20]. Briefly, plasma samples were separated 
and stored at - 80 °C after centrifuging twice at 1350 × g for 12 min and 13,500 × g for 5 min. cfDNA was 
extracted from the plasma using the Circulating Nucleic Acid Kit (Qiagen) and the concentration of cfDNA 
was examined using the Qubit High Sensitivity dsDNA Assay (Invitrogen) according to the manufacturers’ 
instructions. The 5hmC-Seal library construction and NGS were performed at the Innovation Center for 
Genomics, Peking University (Beijing, China). Briefly, each cfDNA sample was first prepared and ligated 
with adaptors. Next, the T4 bacteriophage enzyme β-glucosyltransferase was used to transfer an engineered 
glucose moiety containing an azide-group to 5hmC in duplex DNA. A biotin tag was then installed onto the 
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Figure 1. Study design. In total, 55 patients with type 2 diabetes (T2D), including 12 patients with diabetic nephropathy (DN), 29 patients 
with non-DN complications (Non-DN), and 14 controls (CTRL), were profiled for genome-wide 5-hydroxymethylcytosines (5hmC) using 
the 5hmC-Seal technique and next-generation sequencing, followed by differential analysis, gene set enrichment analysis (GSEA), 
protein-protein interaction network analysis, feature selection, and modeling to inform biological insights and evaluate biomarker 
potential.

azide group using Click chemistry, followed by capturing of 5hmC-containing DNA fragments using avidin 
beads. The 5hmC-Seal library for each cfDNA sample was then constructed through PCR amplification, 
followed by paired-end sequencing (PE39) with the Illumina NextSeq 500 platform. On average, ~ 23 
million unique reads per cfDNA sample were obtained from NGS. According to our previous 
studies[11-13,16,17], 5hmC profiles are more abundant in gene bodies and exonic regions relative to their 
flanking regions and depleted at the transcription start sites. Therefore, well-annotated gene bodies 
provided by GENCODE (hg19)[21] were our primary targets to summarize the 5hmC-Seal data by counting 
the sequencing reads using feature Counts[22]. The principal components analysis (PCA) was conducted to 
explore the potential confounding factors in global 5hmC data. The kidney-derived histone modification 
marks for enhancers, i.e., H3K4me3 and H3K27ac, were obtained from the Roadmap Epigenomics 
Project[23] to help provide biological insights.

Identifying DN-associated 5hmC signature in cfDNA
Multivariable logistic regression models were used to identify gene bodies containing differential 5hmC 
levels (i.e., normalized read counts) between DN patients and T2D controls, as well as between DN and 
non-DN patients. Although not the focus of the current study, we also performed differential analysis 
between T2D controls and patients with non-DN complications for comparison. Adjusted covariates 
included age and sex. To evaluate potential protein–protein interaction (PPI) networks, those genes 
showing a trend of differential modifications (Wald test P < 0.01 and fold change > 10%) between diagnosis 
classes, e.g., DN vs. controls, were supplied to the stringApp from Cytoscape[24,25] with the default parameters 
based on the STRING database (confidence score > 0.8 and maximum additional interactor = 50) with 
linker genes allowed[26]. Hubs of the PPI networks were estimated based on the measurement of betweenness 
centrality, which represents the magnitude of influence a component gene has over the flow of information 
in a gene network[24]. Moreover, because of the limited sample size, instead of evaluating pathways among 
individual genes, Gene Set Enrichment Analysis (GSEA)[27] was used to explore the functional relevance of 
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canonical pathways in the whole-genome 5hmC data between diagnosis classes, e.g., DN vs. controls, using 
the clusterProfiler tool(v4.0)[28]. Specifically, over-/under-represented pathways maintained in the Kyoto 
Encyclopedia of Genes and Genomes (KEGG)[29] database (≥ 15 genes and false discovery rate < 5%) and 
normalized enrichment score were obtained from GSEA.

Summarization of a 5hmC-based epigenetic score for DN
To evaluate whether a cfDNA-based score with potential diagnostic value could be summarized from the 
genome-wide 5hmC data, those genes that showed a trend of differential 5hmC between DN and controls 
or DN and non-DN complications, but not between non-DN complications and controls, were further 
selected to explore a signature panel by applying the elastic net regularization[30] on the multivariable logistic 
regression models. To improve modeling efficiency, we filtered out most uninformative gene bodies (i.e., P 
> 0.05) before feature selection. Component genes of the exploratory model were selected if they were 
consistently present (100%) in 100 iterations using repeated two-fold cross-validation to differentiate 
between DN and controls. A weighted score to summarize the genome-wide 5hmC for each individual was 
computed as follows:

where Gi represents the normalized read counts of the ith gene body and βi represents its regression 
coefficient, following our previous publications[11,12,16,17]. The area under the receiver operator characteristic 
curve (AUROC) was used to demonstrate model performance. The optimal score cutoffs for the AUROCs 
were determined by the score that maximized the Youden index, and the corresponding sensitivity and 
specificity were estimated.

Comparison between the 5hmC-based score for DN with conventional clinical variables or risk 
factors
To compare the performance of the 5hmC-based scores for DN relative to various clinical variables, 
univariable logistic regression models for available clinical variables were examined as follows:

where Yi represents binary diagnosis classes (i.e., DN vs. non-DN/controls or DN vs. non-DN). Xi 
represents age, sex, or each of the clinical variables body mass index (BMI), smoking history, drinking 
history, glucose, HbA1c, insulin, creatinine, uric acid, urea nitrogen and eGFR. The predicted probabilities 
of the univariable logistic regression models were used for assessing classification performance, i.e., DN vs. 
non-DN/controls or DN vs. non-DN, via the AUROC. Sensitivity and specificity at the cutoff that 
maximized the Youden index were estimated for each variable.

RESULTS
Clinical and demographic characteristics of the study participants
Table 1 shows the clinical and demographic characteristics of the 55 study participants. Overall, there were 
no significant differences regarding major demographic and clinical variables between patient groups. There 
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Table 1. Demographical and clinical characteristics of the study participants

Clinical variable T2D control (n = 14) DN (n = 12) Non-DN (n = 29) pA pB pC

Age (year) 47.1 ± 9.7 56.8 ± 14.5 57.7 ± 8.1 0.08a 0a 0.71a

Sex (male/female) 10/4 9/3 13/16 0.52b 0.14b 0.25b

BMI (kg/m2) 24.9 ± 3.7 25.4 ± 2.3 25.7 ± 4.1 0.49a 0.62a 0.99a

Smoking (Yes/No) 6/8 7/5 5/24 0.69b 0.15b 0.02b

Drinking (Yes/No) 2/12 4/8 4/25 0.5b 1b 0.32b

T2D duration (year) 3.7 ± 3.9 4.5 ± 6.4 6.9 ± 6.3 0.7a 0.14a 0.08a

SBP (mmHg) 123.6 ± 9.4 135.4 ± 20.2 133.9 ± 19.2 0.17a 0.09a 0.82a

DBP (mmHg) 78.3 ± 7.9 82.1 ± 10.6 77.8 ± 10.6 0.28a 0.47a 0.13a

Glucose (mmol/L) 11.5 ± 3.3 9.5 ± 3.5 8.5 ± 3.1 0.13a 0.01a 0.46a

HbA1c (%) 9.1 ± 1.8 7.9 ± 2.2 8.4 ± 1.9 0.17a 0.33a 0.42a

Insulin (μU/mL) 10.3 ± 6.0 7.4 ± 7.1 9.5 ± 7.0 0.28a 0.66a 0.28a

Kidney Function:

Urea nitrogen (mmol/L) 5.8 ± 1.3 5.7 ± 1.8 5.9 ± 1.7 0.78a 0.83a 0.69a

Creatinine (μmol/L) 60.3 ± 13.9 78.8 ± 31 63.1 ± 18.2 0.15a 0.86a 0.14a

Uric acid (μmol/L) 283.6 ± 51.9 319.7 ± 99.1 291.1 ± 81.9 0.4a 0.93a 0.51a

eGFR (mL/min/1.73 m2) 111.6 ± 12.2 89.2 ± 28.4 98.5 ± 13.4 0.02a 0.01a 0.24a

Medication (Yes/No)

Insulin treatment 6/8 3/9 15/13 0.59b 0.74b 0.19b

Oral glucose-lowering medicine 6/8 6/6 15/13 1b 0.74b 1b

AComparison between T2D control (CTRL) and Nephropathy (DN); Bcomparison between T2D control (CTRL) and patients with non-
nephropathy complications (Non-DN); Ccomparison between DN and Non-DN; a Wilcoxon test; bchi-square test. DN: diabetic nephropathy; BMI: 
body mass index; T2D: Type 2 diabetes; SBP: systolic blood pressure; DBP: diastolic blood pressure; HbA1c: glycated hemoglobin; eGFR: estimated 
glomerular filtration rate.

were comparable distributions of potential confounders for epigenetic modifications between patient 
groups, such as baseline BMI and sex (P > 0.05). Notably, differences in age at the time of blood collection 
were observed between T2D controls and DN patients. Therefore, age was used as a covariate in 
downstream differential analysis when comparing between diagnosis groups (e.g., DN vs. controls). 
Moreover, in total, 24 patients used insulin treatment and 27 patients used oral glucose-lowering 
medications, showing no significant disparity regarding medication treatment between different diagnosis 
groups (P > 0.05).

Overview of the genome-wide 5hmC profiles in cfDNA
Consistent with our observations in the cfDNA samples from other studies[13,15], the distribution of genome-
wide 5hmC was also more abundant in gene bodies and exonic regions relative to their flanking regions and 
the transcription start sites [Supplementary Figure 1A], supporting our focus on gene bodies in this proof-
of-concept study. Moreover, PCA demonstrated no significant correlations between 5hmC and potential 
confounders, including sex and age [Supplementary Figure 1B and C]. In addition, we observed a trend of 
increased genome-wide 5hmC modification levels on kidney-derived enhancer marks: H3K4me1, across 
controls, patients with non-DN complications, and patients with DN (P-trend = 0.049).

Differentially modified genes associated with DN and the PPI network analysis
In total, 336 genes were detected to show a trend of differential modification between T2D controls and 
patients with DN (Wald test P < 0.05), among which 271 genes had a fold change of at least 10% (
Supplementary Table 1 and Supplementary Figure 1D). In comparison, 427 genes were found to be 
differentially modified between patients with DN and patients with non-DN complications (Wald test P < 
0.05), among which 250 genes had a fold change of at least 10%, indicating the presence of 5hmC signatures 

https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202203/4718-SupplementaryMaterials.pdf
https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202203/4718-SupplementaryMaterials.pdf
https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202203/4718-SupplementaryMaterials.pdf
https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202203/4718-SupplementaryMaterials.pdf
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specific to DN complications [Figure 2A, Supplementary Table 1, and Supplementary Figure 1E]. Genes 
with a more stringent cutoff (Wald test P < 0.01 and fold change > 10%) were further evaluated for PPI 
networks to explore potential biological connections with relevant functions. Notably, the PPI network 
analysis implicated those genes showing differential modifications between DN and T2D controls in hub 
genes relevant to kidney diseases [Supplementary Figure 2]. For example, SMARCA5, a member of the 
SWI/SNF-related matrix-associated action-dependent regulator of chromatin subfamily A as well as a 
differentially modified gene, was found to be connected with biomarkers for diabetic kidney disease[31]. 
RUVBL1, which encodes RuvB like AAA ATPase 1, is connected with certain differential genes (e.g., 
COMMD2 and GPS1), and its deletion could lead to acute kidney injury in mice[32]. In contrast, the PPI 
network analysis based on a list of genes showing differential 5hmC between DN and non-DN patients also 
identified connections with hub genes implicated in DN [Supplementary Figure 3]. For example, signal 
transducer and activator of transcription 1 (STAT1) are connected with certain differential genes (e.g., 
MX1, IFI44L, and IFIH1), and its activation was shown to cause cell apoptosis and renal fibrosis, thus being 
implicated in DN[33].

GSEA implicating pathways differentially modified in patients with DN
The GSEA results reveal over- or under-representation of certain canonical pathways in patients with DN 
relative to controls, such as the NOD-like receptor signaling pathway, neuroactive ligand-receptor 
interaction, platelet activation, tyrosine metabolism, and necroptosis [Figure 2B and Supplementary Table 2
]. Several core genes that contributed to the over- or under-representation of these pathways were also 
differentially modified between DN and T2D controls, including CXCL1 and PKN2 in the NOD-like 
receptor signaling pathway; PYY, GRM, EDN2, GCGR, and MLN in neuroactive ligand-receptor interaction; 
and IL1B in necroptosis [Supplementary Table 2]. In addition, the GSEA results between DN patients and 
patients with non-DN complications indicate significant over- or under-representation of KEGG pathways 
such as tyrosine metabolism, olfactory transduction, and signaling pathways regulating pluripotency of stem 
cells [Figure 2B and Supplementary Table 2], although they are not differentially modified at the single-gene 
level, likely due to the small sample size. Interestingly, several over-represented pathways between DN and 
controls/non-DN patients are known to be associated with DN or kidney-related diseases, such as the 
NOD-like receptor signaling pathway and tyrosine metabolism[34, 35].

Summarization of 5hmC-based epigenetic score for DN
An exploratory model comprised of ten genes (i.e., UQCRFS1, VARS2, WWOX, CSPG4, TMCO4, 
SLC38A3, RPL36, CTD.2116N17.1, MATN4, and CABP7) was identified using the elastic net regularization 
and multivariable logistic regression models for distinguishing DN from T2D controls [Figure 2C]. Of note, 
the 5hmC scores were significantly different between patients with DN and controls, as well as between 
patients with DN and those with non-DN complications [Figure 2D] (t-test, P < 0.01). When using the 
5hmC score as the only predictor, the AUROC results show 100% sensitivity and 97% specificity to classify 
DN and non-DN complications, in addition to the performance of distinguishing patients with DN from 
controls [Table 2].

We compared the sensitivity and specificity of various clinical variables in our cohort for distinguishing DN 
from T2D controls or patients with non-DN complications [Table 2]. Notably, logistic regression results 
indicate that the 5hmC scores in general outperformed age, sex, and various conventional clinical variables, 
including clinical variables of kidney functions, featuring greater AUROCs and higher sensitivity/specificity 
[Table 2]. For example, the 5hmC scores significantly outperformed the eGFR in differentiating between 
patients with DN and controls (AUROC, 100% vs. 78%) as well as between DN and non-DN complications 
(AUROC, 98% vs. 62%).

https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202203/4718-SupplementaryMaterials.pdf
https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202203/4718-SupplementaryMaterials.pdf
https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202203/4718-SupplementaryMaterials.pdf
https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202203/4718-SupplementaryMaterials.pdf
https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202203/4718-SupplementaryMaterials.pdf
https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202203/4718-SupplementaryMaterials.pdf
https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202203/4718-SupplementaryMaterials.pdf
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Table 2. Biomarker potential of the 5hmC model and comparisons with clinical variables

T2D control vs. DN Non-DN vs. DN

Clinical variable/model Sensitivity Specificity AUROC Sensitivity Specificity AUROC

Age (year) 0.83 0.50 0.70 0.42 0.83 0.54

Sex (male/female) 0.75 0.29 0.52 0.75 0.55 0.65

BMI (kg/m2) 1.00 0.36 0.58 1.00 0.24 0.50

Smoking (yes/no) 0.58 0.57 0.58 0.58 0.83 0.71

Drinking (yes/no) 0.33 0.86 0.60 0.33 0.86 0.60

Glucose (mmol/L) 0.73 0.64 0.68 0.55 0.68 0.58

HbA1c (%) 0.55 0.86 0.67 0.55 0.85 0.59

Insulin (μU/mL) 0.83 0.62 0.69 0.67 0.71 0.66

Creatinine (μmol/L) 0.36 1.00 0.68 0.36 0.93 0.65

Uric acid (μmol/L) 0.64 0.71 0.60 0.73 0.48 0.57

Urea nitrogen (mmol/L) 0.45 0.86 0.54 0.45 0.72 0.54

eGFR (mL/min/1.73 m2) 0.64 1.00 0.78 0.64 0.79 0.62

5hmC model 1.00 1.00 1.00 1.00 0.97 0.98

T2D: Type 2 diabetes; DN: diabetic nephropathy; AUROC: the area under the receiver operator characteristic curve. BMI: body mass index; 
HbA1c: glycated hemoglobin; eGFR: estimated glomerular filtration rate.

DISCUSSION
Enhancing our understanding of the molecular contributors to DN pathogenesis would provide 
opportunities for developing more effective clinical tools to prevent and manage this complication. 
Equipped with the highly sensitive 5hmC-Seal technique, we sought to investigate DN-associated 5hmC in 
patient-derived cfDNA using a cohort of T2D patients with and without DN. Genome-wide analysis of 
5hmC indicated there existed differential 5hmC modifications and over-/under-represented pathways in 
cfDNA that provided links between 5hmC signatures for DN and relevant pathways/genes. Besides 
previously implicated pathways and genes in DN or kidney disease, such as the NOD-like receptor signaling 
pathway and CXCL1 of the inflammasome family[34,36], interestingly, our identified DN-associated 5hmC 
signatures were also shown to be connected with PPI hubs relevant to kidney disease and the pathogenesis 
of DN[32,33], thus reflecting the DN relevance of the 5hmC profiles in patient-derived cfDNA. Additionally, 
certain significant pathways such as Fc gamma R-mediated phagocytosis and natural killer cell-mediated 
cytotoxicity were found to be enriched in those genes dysregulated in DN from a meta-analysis of mouse 
microarray data[37], lending further support for the existence of biological links between the 5hmC landscape 
reflected in DN patient-derived cfDNA and the underlying pathogenesis.

One important question about the cfDNA-based methods is whether the patient-derived cfDNA samples 
reflect the target tissue. Our genome-wide scan examining co-localization of the 5hmC-Seal reads and 
kidney-derived enhancer markers demonstrated a trend of increased modification levels between T2D 
controls and DN patients, suggesting the contribution of the target tissue (i.e., kidney) to the 5hmC profiles 
in DN patients. The current tissue-derived histone modifications, however, included only two individuals 
from the Roadmap Epigenomics Project; with the availability of more reference epigenomes in the future, a 
more comprehensive evaluation would provide more insights into the relative proportions of cfDNA 
sources in patients with DN.

Considering that cfDNA could reflect the systematic and dynamic physiological condition of the patient, 
our findings targeting novel epigenetic information in cfDNA could provide the foundation for developing 
a convenient clinical tool for the care of T2D patients. Therefore, besides differential analysis, we also 
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Figure 2. Novel 5hmC modifications implicated in diabetic nephropathy. Genome-wide analysis of the 5hmC-Seal data in patient-derived 
cfDNA reflected novel epigenetic modifications implicated in diabetic nephropathy (DN). (A)The Venn diagram shows differentially 
modified gene bodies specific to DN. (B)KEGG pathways significantly over-/under-represented in DN patients relative to either controls 
(CTRL) or non-DN patients (Non-DN) were identified from the GSEA. (C) The exploratory model comprised of ten component genes 
could distinguish DN from CTRL, as well as DN from Non-DN. (D) The 5hmC scores computed with the ten-gene exploratory model for 
DN were significantly different between DN and CRTL/Non-DN. Statistical significance (t-test): ns, P > 0.05; ** P ≤ 0.01; **** P ≤ 
0.0001. KEGG: Kyoto Encyclopedia of Genes and Genomes; GSEA: Gene set enrichment analysis; NES: Normalized enrichment score.

sought to evaluate the possibility of summarizing the genome-wide 5hmC profiles in cfDNA into an 
epigenetic score with biomarker potential. Particularly, findings from the feature selection based on 
machine learning and modeling in the current study provided promising results for the future development 
of cfDNA-based diagnostic or monitoring tools for DN. In particular, although limited by the sample size, 
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the 5hmC-based exploratory model for DN showed a consistent trend of outperformance over various 
conventional clinical indices for diabetic complications, especially those related to kidney functions, thus 
supporting the potential advantage of utilizing the 5hmC features in cfDNA as a novel biomarker for DN. 
Moreover, because the 5hmC-Seal technique can provide the genome-wide distribution of 5hmC in a single 
test, it is possible to integrate the DN-associated model with models for other diabetic complications to 
develop a comprehensive tool for routine care of patients with T2D in the future.

We are aware of several limitations in the current study. Firstly, the sample size is relatively small. Although 
our primary goal was to demonstrate the relevance of 5hmC to DN and the feasibility of using novel 
epigenetics and non-invasive liquid biopsy to develop management tools for DN in the future, future larger 
scale investigations studies will be necessary to provide a more comprehensive picture of the epigenetic 
landscape of DN or DN-associated pathways. Secondly, also limited by the current sample size, our 
modeling of 5hmC for their biomarker value was preliminary using a single cohort. Although testing using 
patients with and without DN helped us evaluate the biological relevance of the identified 5hmC features, 
future investigations involving more independent samples for both training and independent validation will 
be necessary to develop a clinically useful model based on 5hmC in cfDNA. Thirdly, the current study only 
focused on the 5hmC modification over genic regions; because the functional relevance of genic regions was 
better annotated and established, it would be interesting to extend the 5hmC analysis to other genomic 
regions, such as long non-coding RNA[38] and enhancer markers as well as co-regulation analysis between 
5hmC and gene expression in the future. Finally, future studies that expand to other populations and ethnic 
backgrounds will provide insights into any population-specific epigenetic modifications associated with 
DN, because of the long-appreciated baseline differences in epigenetic modifications across human 
populations[39].

In conclusion, novel 5hmC modifications detected in patient-derived cfDNA samples were found to be 
implicated in DN. The 5hmC-Seal technique implemented with cfDNA holds promise for the future 
development of a non-invasive, clinically convenient tool for early detection of DN in high-risk T2D 
patients, thus contributing to the ultimate goal of improving clinical outcomes through personalized 
preventive intervention and/or treatment.
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With deep sadness, we announce that our Editorial Board member Johng Sik Rhim passed away peacefully 
on March 5, 2022, in Bethesda, MD, USA.

Dr. Rhim is a pioneer in human cell transformation whose career has been suffused with six decades of 
contributions to the field of oncology and cancer research. His interest in medicine developed after a 
grueling six-year battle with septic arthritis, beginning when he was just three years old, and he earned a 
Doctor of Medicine from Seoul National University College of Medicine in 1957. Dr. Rhim completed a 
medical internship at Seoul National University Hospital through the beginning of 1958, and relocated to 
the United States to accept a two-year research fellowship at Dr. Albert B. Sabin’s laboratory at the 
Children’s Hospital Research Foundation later that year.

Throughout the early 1960s, Dr. Rhim would pursue research fellowships and associate positions with 
Baylor University College of Medicine, the Graduate School of Public Health at the University of Pittsburgh, 
and Louisiana State University School of Medicine. In 1964, he joined the National Institute of Allergy and 
Infectious Diseases at the National Institutes of Health as a visiting scientist. Dr. Rhim subsequently 
departed in 1966 to become the project director for Cancer Research at Microbiological Associates of 
Bethesda, Maryland.
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In 1978, Dr. Rhim was named as a senior investigator at the National Cancer Institute, a part of the National 
Institutes of Health. He would remain active with the National Cancer Institute until 1998, whereupon he 
accepted his current role as the Associate Director, Center for Prostate Disease Research, Research Professor 
Emeritus, Department of Surgery, at the Uniformed Services University of the Health Sciences. Dr. Rhim’s 
research has focused on the development of human cell culture systems for use in cancer studies, which 
have allowed for new in-depth analysis of the mechanisms of action of therapies and carcinogens. He holds 
many patents for processes related to cell transformation, and looks forward to furthering advances in 
patient-derived cell models based on his early models. As a pioneer in human cell modeling and cultures, 
Dr. Rhim has contributed more than 300 articles and maintained involvement with numerous professional 
societies, including the American Medical Association, the American Association for the Advancement of 
Science, the Society of Experimental Biology and Medicine, and the International Association of Leukemia 
Research[1].

Johng Sik Rhim was Editorial Board member of Extracellular Vesicles and Circulating Nucleic Acids. He 
supported the peer-review for EVCNA, and we highly appreciate his support to EVCNA at its early stage.
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professional writing services or materials, should be acknowledged. Authors should obtain permission to acknowledge 
from all those mentioned in the Acknowledgments section. This section is not added if the author does not have anyone to 
acknowledge.
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be obtained from participants, or their parents or legal guardians for children under 16. A statement detailing the name of 
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states how readers can copy, distribute, and use their attributed research, free of charge. A declaration “© The Author(s) 
2022.” will be added to each article. Authors are required to sign License to Publish before formal publication.

2.3.3.9 References
Preferably original research articles that directly support the statements should be cited. Review articles could be cited 
when they specifically address the statement made in the manuscript. An abstract should not be used as a reference. Non-
specific citations should be avoided.
References should be numbered in order of appearance at the end of manuscripts. In the text, reference numbers should be 
placed in square brackets and the corresponding references are cited thereafter. If the number of authors is less than or equal 
to six, we require to list all authors’ names. If the number of authors is more than six, only the first three authors’ names are 
required to be listed in the references, other authors’ names should be omitted and replaced with “et al.”. Abbreviations of 
the journals should be provided on the basis of Index Medicus. Information from manuscripts accepted but not published 
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should be cited in the text as “Unpublished material” with written permission from the source.
Types Examples
Journal articles by 
individual authors

Weaver DL, Ashikaga T, Krag DN, et al. Effect of occult metastases on survival in node-negative 
breast cancer. N Engl J Med 2011;364:412-21. [PMID: 21247310 DOI: 10.1056/NEJMoa1008108]

Organization as author Diabetes Prevention Program Research Group. Hypertension, insulin, and proinsulin in participants 
with impaired glucose tolerance. Hypertension 2002;40:679-86. [PMID: 12411462]

Both personal authors and 
organization as author

Vallancien G, Emberton M, Harving N, van Moorselaar RJ; Alf-One Study Group. Sexual dysfunction 
in 1,274 European men suffering from lower urinary tract symptoms. J Urol 2003;169:2257-61. [PMID: 
12771764 DOI: 10.1097/01.ju.0000067940.76090.73]

Journal articles not in 
English

Zhang X, Xiong H, Ji TY, Zhang YH, Wang Y. Case report of anti-N-methyl-D-aspartate receptor 
encephalitis in child. J Appl Clin Pediatr 2012;27:1903-7. (in Chinese)

Journal articles ahead of 
print

Odibo AO. Falling stillbirth and neonatal mortality rates in twin gestation: not a reason for 
complacency. BJOG 2018; Epub ahead of print [PMID: 30461178 DOI: 10.1111/1471-0528.15541]

Books Sherlock S, Dooley J. Diseases of the liver and billiary system. 9th ed. Oxford: Blackwell Sci Pub; 
1993. pp. 258-96.

Book chapters Meltzer PS, Kallioniemi A, Trent JM. Chromosome alterations in human solid tumors. In: Vogelstein 
B, Kinzler KW, editors. The genetic basis of human cancer. New York: McGraw-Hill; 2002. pp. 93-
113.

Online resource FDA News Release. FDA approval brings first gene therapy to the United States. Available from: 
https://www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/ucm574058.htm. [Last accessed 
on 30 Oct 2017]

Conference proceedings Harnden P, Joffe JK, Jones WG, editors. Germ cell tumours V. Proceedings of the 5th Germ Cell 
Tumour Conference; 2001 Sep 13-15; Leeds, UK. New York: Springer; 2002.

Conference paper Christensen S, Oppacher F. An analysis of Koza's computational effort statistic for genetic 
programming. In: Foster JA, Lutton E, Miller J, Ryan C, Tettamanzi AG, editors. Genetic 
programming. EuroGP 2002: Proceedings of the 5th European Conference on Genetic Programming; 
2002 Apr 3-5; Kinsdale, Ireland. Berlin: Springer; 2002. pp. 182-91.

Unpublished material Tian D, Araki H, Stahl E, Bergelson J, Kreitman M. Signature of balancing selection in Arabidopsis. 
Proc Natl Acad Sci U S A. Forthcoming 2002.

For other types of references, please refer to U.S. National Library of Medicine. 
The journal also recommends that authors prepare references with a bibliography software package, such as EndNote to 
avoid typing mistakes and duplicated references.

2.3.3.10 Supplementary Materials
Additional data and information can be uploaded as Supplementary Materials to accompany the manuscripts. The 
supplementary materials will also be available to the referees as part of the peer-review process. Any file format is 
acceptable, such as data sheet (word, excel, csv, cdx, fasta, pdf or zip files), presentation (powerpoint, pdf or zip files), image 
(cdx, eps, jpeg, pdf, png or tiff), table (word, excel, csv or pdf), audio (mp3, wav or wma) or video (avi, divx, flv, mov, mp4, 
mpeg, mpg or wmv). All information should be clearly presented. Supplementary materials should be cited in the main text 
in numeric order (e.g., Supplementary Figure 1, Supplementary Figure 2, Supplementary Table 1, Supplementary Table 2, 
etc.). The style of supplementary figures or tables complies with the same requirements on figures or tables in main text. 
Videos and audios should be prepared in English and limited to a size of 500 MB.

2.4 Manuscript Format
2.4.1 File Format
Manuscript files can be in DOC and DOCX formats and should not be locked or protected.

2.4.2 Length
There are no restrictions on paper length, number of figures, or amount of supporting documents. Authors are encouraged 
to present and discuss their findings concisely.

2.4.3 Language
Manuscripts must be written in English.

2.4.4 Multimedia Files
The journal supports manuscripts with multimedia files. The requirements are listed as follows:
Videos or audio files are only acceptable in English. The presentation and introduction should be easy to understand. The 
frames should be clear, and the speech speed should be moderate.
A brief overview of the video or audio files should be given in the manuscript text.
The video or audio files should be limited to a size of up to 500 MB.
Please use professional software to produce high-quality video files, to facilitate acceptance and publication along with the 
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submitted article. Upload the videos in mp4, wmv, or rm format (preferably mp4) and audio files in mp3 or wav format.

2.4.5 Figures
Figures should be cited in numeric order (e.g., Figure 1, Figure 2) and placed after the paragraph where it is first cited;
Figures can be submitted in format of tiff, psd, AI or jpeg, with resolution of 300-600 dpi;
Figure caption is placed under the Figure; 
Diagrams with describing words (including, flow chart, coordinate diagram, bar chart, line chart, and scatter diagram, etc.) 
should be editable in word, excel or powerpoint format. Non-English information should be avoided;
Labels, numbers, letters, arrows, and symbols in figure should be clear, of uniform size, and contrast with the background;
Symbols, arrows, numbers, or letters used to identify parts of the illustrations must be identified and explained in the 
legend; 
Internal scale (magnification) should be explained and the staining method in photomicrographs should be identified; 
All non-standard abbreviations should be explained in the legend;
Permission for use of copyrighted materials from other sources, including re-published, adapted, modified, or partial 
figures and images from the internet, must be obtained. It is authors’ responsibility to acquire the licenses, to follow any 
citation instruction requested by third-party rights holders, and cover any supplementary charges.

2.4.6 Tables
Tables should be cited in numeric order and placed after the paragraph where it is first cited;
The table caption should be placed above the table and labeled sequentially (e.g., Table 1, Table 2);
Tables should be provided in editable form like DOC or DOCX format (picture is not allowed);
Abbreviations and symbols used in table should be explained in footnote;
Explanatory matter should also be placed in footnotes;
Permission for use of copyrighted materials from other sources, including re-published, adapted, modified, or partial tables 
from the internet, must be obtained. It is authors’ responsibility to acquire the licenses, to follow any citation instruction 
requested by third-party rights holders, and cover any supplementary charges.

2.4.7 Abbreviations
Abbreviations should be defined upon first appearance in the abstract, main text, and in figure or table captions and used 
consistently thereafter. Non-standard abbreviations are not allowed unless they appear at least three times in the text. 
Commonly-used abbreviations, such as DNA, RNA, ATP, etc., can be used directly without definition. Abbreviations in 
titles and keywords should be avoided, except for the ones which are widely used.

2.4.8 Italics
General italic words like vs., et al., etc., in vivo, in vitro; t test, F test, U test; related coefficient as r, sample number as n, 
and probability as P; names of genes; names of bacteria and biology species in Latin.

2.4.9 Units
SI Units should be used. Imperial, US customary and other units should be converted to SI units whenever possible. There 
is a space between the number and the unit (i.e., 23 mL). Hour, minute, second should be written as h, min, s.

2.4.10 Numbers
Numbers appearing at the beginning of sentences should be expressed in English. When there are two or more numbers 
in a paragraph, they should be expressed as Arabic numerals; when there is only one number in a paragraph, number < 10 
should be expressed in English and number > 10 should be expressed as Arabic numerals. 12345678 should be written as 
12,345,678.

2.4.11 Equations
Equations should be editable and not appear in a picture format. Authors are advised to use either the Microsoft Equation 
Editor or the MathType for display and inline equations.

2.5 Submission Link 
Submit an article via https://oaemesas.com/login?JournalId=evcna.



www.oaepublish.com

Extracellular Vesicles and Circulating Nucleic Acids
(EVCNA)

Los Angeles Office
245 E Main Street ste122, Alhambra, 

CA 91801, USA
E-mail: editorial@evcna.com
Website: https://evcna.com


	EVCNAv3i1
	EVCNAv3i1
	cover
	EVCNA-2021-3-1
	EVCNA-2021-3-1
	7 articles
	1-2
	3-9
	10-3
	14-30
	31-48
	49-60
	61-2

	EVCNA-2021-3-1
	backcover




