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Abstract
The current novel therapeutic approach suggests that multi-targeted compounds, with diverse biological activities 
but a single set of bioavailability and pharmacokinetics, will be significantly more advantageous in the treatment of 
the complex pathology of Parkinson’s diseases (PD) than traditional therapies. This review introduces a novel 
cholinesterase (ChE)-monoamine oxidase (MAO) inhibitor, namely MT-031, which was designed by amalgamating 
the propargyl moiety of the irreversible selective MAO-B inhibitor and neuroprotective/neurorestorative anti-
Parkinsonian drug, rasagiline, into the methylamino position of the ChE inhibitor anti-AD drug, rivastigmine. 
MT-031 possesses neuroprotective, cognition enhancing, anti-depressant, and anti-inflammatory properties both in 
vitro and in vivo. Altogether, these findings suggest that MT-031 may be a potential treatment for combating PD 
and associated dementia and depression.

https://creativecommons.org/licenses/by/4.0/
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INTRODUCTION
With aging and the increasing life span of the population, Parkinson’s disease (PD), an age-related 
neurodegenerative disorder, is receiving increased attention. It is estimated that the number of PD patients 
will reach more than 12 million by 2040, doubling the cases seen in 2016[1]. The motor deficits of PD are 
emphasized in both making the initial diagnosis and in tracking the progression of the disease[2]. As 
understanding of the symptoms and pathogenesis deepens, however, it has been suggested that the non-
motor features of PD, including cognitive impairment, i.e., dementia, should be more attended to[3,4]. A 
previous study indicated that approximately 25.8% of individuals with PD exhibit mild cognitive 
impairment[5], and longitudinal studies have documented that up to 70% of these patients will progress to 
dementia after ten years of symptoms[3]. In addition to cognitive impairment, other symptoms, e.g., 
depression, may emerge regularly throughout the development of PD[6-8], and this symptom may worsen the 
severity of dementia as the disease progresses. Since dementia in both Alzheimer’s disease (AD) and PD 
patients generally presents with similar features, present treatments for Parkinson’s disease dementia (PDD) 
are mostly derived from drugs utilized in AD, such as cholinesterase inhibitors (ChEIs) and memantine, 
which was initially developed for the treatment of AD. To date, rivastigmine is the only FDA-approved 
therapy that is currently licensed for PDD.

It is well known that neurodegenerative diseases, such as AD, PD, amyotrophic lateral sclerosis, and 
Huntington’s disease, are possibly triggered by a group of pathologies, characterized by separate etiologies 
with distinct morphological and pathophysiological features, including iron accumulation[9-11], generation of 
reactive oxygen[11] and nitrogen species[12], inflammation[13-15], mitochondrial (complex I) deficiency[16], 
ubiquitin-proteasome system dysfunction[17], and abnormal protein folding and aggregation[18,19]. This 
suggests that the “cocktail of drugs” strategy, i.e., mixing different targeted molecules as drug combinations, 
may offer theoretically feasible treatment for these diseases. Nonetheless, compared to using a single 
effective compound, the cocktail strategy increases the risk of side effects and ups the difficulty of managing 
drug-drug interactions, safe dosing, and metabolic shunt effects[20,21]. A single drug with multiple targets - 
one compound conjugating two or more diverse biological properties - thus has a pronounced advantage 
over single-target drugs or drug cocktails[22,23]. An attractive example of a multi-targeted drug is ladostigil 
(TV3326), a cholinesterase (ChE)-monoamine oxidase (MAO) inhibitor, indicated to target various 
pathogenic mechanisms of neurodegenerative diseases[24-27]. The underlying principle in the design of 
ladostigil was to join the carbamate ChE inhibitory moiety of the anti-AD drug, rivastigmine, to the 
irreversible selective MAO-B inhibitor, rasagiline[24]. Ladostigil has shown positive results in a phase II 
clinical trial evaluating its safety and efficacy in patients diagnosed with MCI[28].

Based on a similar rationale, a novel ChE-MAO inhibitor, namely MT-031 [Figure 1], was designed and 
synthesized for the treatment of AD. MT-031 amalgamates the propargyl moiety of the irreversible selective 
MAO-B inhibitor and neuroprotective/neurorestorative drug, rasagiline, into the methylamino position of 
the ChE inhibitor, rivastigmine[29]. Since AD and PD share similar pharmacological treatment demands, this 
review discusses the potential use of this novel multi-targeted drug, MT-031, for dementia and depression 
in PD.

INHIBITORY EFFECT OF MT-031 ON MAO
Rasagiline (Azilect®) is an anti-Parkinsonian MAO-B inhibitor drug, which presented neuroprotective and 
neurorescue activities in animal models and neuronal cell models of neurodegeneration[30] and exerted 
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Figure 1. The chemical structure of the novel ChE-MAO inhibitor, MT-031[(S)-3-(1-(Methyl(prop-2-yn-1-yl)amino)ethyl)phenyl 
ethyl(methyl)carbamate], designed by amalgamating the active propargyl moiety of the anti-Parkinsonian drug, rasagiline, a brain 
selective MAO-B inhibitor, into the “N-methyl” position of the anti-AD drug ChE inhibitor, rivastigmine. AD: Alzheimer’s disease; ChE: 
cholinesterase; MAO: monoamine oxidase; MAO-B: monoamine oxidase-B.

disease-modifying effects in PD patients[30-32]. The propargyl moiety of rasagiline has been proven to be an 
important active functional group for its MAO inhibitory activity[33,34] and neuroprotective/neurorestorative 
effects[35,36]. By retaining the active propargyl moiety, the inhibition of MAO in the brain is associated with 
neuroprotective effects in the neurodegenerative and age-related disturbances of homeostasis, and the 
products of the MAO-catalyzed reaction (e.g., aldehydes and hydrogen peroxide) are compelling inducers 
of lipid peroxidation and the generation of free radicals in the involution of the nervous system[37,38]. By 
retaining the propargyl moiety of rasagiline, MT-031 was found to be a selective MAO-A inhibitor 
(selectivity of MAO-A/B > 500-fold, Table 1); interestingly, this is different from its parent drug, rasagiline, 
which is a selective MAO-B inhibitor (selectivity of MAO-B/A = 100-fold, Table 1)[29]. In humans, MAO-A 
is found within the outer mitochondrial membrane of both neuronal and glial cells, where it participates in 
the inactivation of dopamine (DA) in the primate and human brain[39]. As dopamine depletion in the 
striatum causes the core motor manifestations of PD, a selective MAO-A inhibitor might provide an anti-
Parkinsonian benefit[40,41].

Additionally, depression has also been reported to be one of the most common symptoms of PD, occuring 
in around 40% of patients with PD, and it is often persistent[42]. The efficacy of MAO-A inhibitors has been 
proven effective in the treatment of atypical depression, high levels of anxiety, anergic bipolar depression, 
and treatment-resistant depression for decades[43-45]. MAO-A mainly metabolizes serotonin (5-HT) and 
norepinephrine (NE), and a reduction in the 5-HT major metabolite, 5-hydroxyindoleacetic acid, in the 
cerebrospinal fluid was reported to be associated with violent and impulsive behavior, including violent 
suicide attempts[46]. The antidepressant effects of MAOIs were hypothesized to be based on a deficiency in 
catecholamines, specifically NE and DA, as well as possibly the indolamine 5-HT[47]; the mechanisms of 
action of MAOIs as antidepressants were thus thought to be because they directly resulted in increased 
levels of neurotransmitter amines at nerve terminals[48,49]. Selective MAO-B inhibitors may not be effective as 
antidepressants because MAO-B has no direct effect on either 5-HT or NE metabolism. A dual MAO-A/B 
inhibitor may rapidly increase DA levels to heighten feelings of pleasure, but abnormal surges in DA are 
linked to serious side effects[50-53]. Therefore, a drug with selective MAO-A inhibition could potentially be a 
safer and more effective treatment for depression in PD patients.
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Table 1. The inhibitory effect (IC50) of MT-031 and its parent drugs, rasagiline and rivastigmine, on MAO and ChE in vitro

Compound Inhibition (IC50 μMa)
MAO-A MAO-B MAO selectivity (A/B) AChE BuChE ChE selectivity (AChE/BuChE)

MT-031 0.71 ± 0.04 > 1000 > 500 58.3 ± 6.3 34.6 ± 8.3 0.59

Rasagiline 0.41 0.0044 0.01 NA NA -

Rivastigmine NAb NA -c 2.07 0.37 0.18

aIC 50, micromolar (μM) concentration at which compound inhibits 50% of the enzyme activity; bNA, no activity; c-, not tested. MAO: Monoamine 
oxidase; MAO-A: monoamine oxidase-A; MAO-B: monoamine oxidase-B; ChE: cholinesterase; AChE: acetylcholinesterase; BuChE: 
butyrylcholinesterase.

Moreover, an important finding is that, following administration of MT-031, there is little inhibition of 
MAO-A in the liver and small intestine[29,54]. Irreversible, high degrees of MAO-A inhibition in peripheral 
tissues is associated with potentiation of tyramine-induced cardiovascular activity[55], namely the “cheese 
effect”[56,57]. These data indicate that MT-031 may produce only limited potentiation of blood pressure in 
response to oral tyramine, as previously described for rasagiline[57,58] and other propargyl containing drugs, 
such as ladostigil[59], M30[60], and VAR-10303[61].

INHIBITORY EFFECT OF MT-031 ON CHE
To date, acetylcholinesterase inhibitors (AChEIs) have been the mainstay of therapeutic approaches for AD. 
AChEIs are used to increase synaptic levels of acetylcholine (ACh) and block the breakdown of ACh by 
inhibiting AChE[62]. Some reports suggest that cortical cholinergic deficits are more pronounced in PDD and 
that they are strongly correlated with cognitive decline and neuropsychiatric disturbances in PD[63,64]. The 
efficacy of the only FDA approved dual AChE and butyrylcholinesterase (BuChE) inhibitor, rivastigmine 
[Figure 1 and Table 1], one of the parent drugs of MT-031, has been proved in various clinical trials in the 
treatment of PDD[65]. Rivastigmine exerts its therapeutic effects by increasing the levels of acetylcholine in 
the brain via reversible inhibition of its hydrolysis[66]. It has been proposed that the effects of rivastigmine 
might reflect an additional property of BuChE inhibition, which is implicated in symptom progression and 
thus can provide some patients supplementary benefits over AChE selectivity[67]. In humans, AChE 
predominates (80%) and BuChE is considered to play a minor role in regulating ACh levels in the healthy 
brain[68]. Especially, BuChE activity rises while AChE activity remains unchanged or declines in the AD 
brain[68-70], thereby supporting the key role of BuChE in regulating brain acetylcholine levels[71]. Therefore, 
both enzymes are likely to be involved in regulating ACh levels and represent legitimate therapeutic targets 
to ameliorate cholinergic deficits[72]. MT-031 was found to significantly inhibit both AChE and BuChE 
activities in vitro, although with a lower IC50 than that of its parent drug, rivastigmine [Table 1][29]. 
Accordingly, our previous study showed that MT-031 treatment prevented cognitive deficits induced by 
scopolamine and improved spatial learning and memory. These results may be attributed to MT-031 being 
able attenuate scopolamine-induced ChE disturbance by inhibition of ChE activity. In addition, after acute 
treatment in rats, MT-031 inhibited cortical and hippocampal AChE/BuChE by 50%-70% at doses ranging 
from 5 to 10 mg/kg[29]. The high inhibitory effect of ChE activity is very crucial, as the fact that the clinical 
study of ladostigil (clinicaltrials.gov/ct2/show/NCT01354691) in the treatment of AD did not achieve its 
primary outcome may be due to its low inhibitory ratio on AChE (ladostigil inhibited an average of 21.3% of 
AChE)[28,73]. Furthermore, 24 h after the last dose was given to mice in a chronic administration model, 
MT-031 still caused dose-dependent antagonism of the spatial memory deficits induced by scopolamine in 
mice[54]. These results may suggest that MT-031 is a reversible but long-term ChE inhibitor, and that it is 
able to increase brain ACh levels sufficiently to compete with scopolamine for the muscarinic receptors 
subserving memory[74].
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NEUROPROTECTIVE ACTIVITY OF MT-031
One aspect of the neuroprotective activity of MT-031 is that it directly scavenges free radicals over-
produced in hydrogen peroxide (H2O2)-treated SH-SY5Y cells[29]. H2O2 is a major source of free radicals; it is 
produced during the redox process and considered to be a messenger in intracellular signaling cascades, 
including cellular metabolism and proliferation[75,76]. The predominant sources of H2O2 in the brain are 
spontaneous superoxide dismutation catalyzed by the enzyme superoxide dismutase[77] and MAO 
activity[78]. MAO-A and -B, in particular, catalyze the oxidative deamination of DA, 5-HT, and NE[39] and 
yield metabolic products, aldehydes, and reactive oxygen species (ROS) such as H2O2. Therefore, the 
neuroprotective abilities of MAO inhibitors in the treatment of PD may be through reducing ROS 
production[39,79,80]. In addition, several lines of evidence suggest that AChE and BuChE activation may be 
involved in the apoptosis associated with H2O2

[81,82]. The link between cholinergic signaling and oxidative 
stress provides an additional therapeutic target for ChEIs in PD. Indeed, the ChEls, tacrine[81], huperzine 
A[83], and rivastigmine[84] were demonstrated to significantly protect cells against H2O2 insult. Moreover, 
MT-031 was found to enhance the mRNA expression levels of neurotrophins, anti-apoptotic molecules 
(Bcl-2 like 1 and Bcl-2), and an anti-oxidative enzyme (catalase) in the mouse striatum, further 
demonstrating the significant neuroprotective and anti-oxidative actions of this drug[54]. Multiple studies 
with various apoptotic paradigms have shown that Bcl-2 can protect cells against oxidative insults[85-88]. 
Measurements of ROS levels including H2O2 have shown that Bcl-2 expression is correlated with reduced 
levels of oxidative stress in cells exposed to oxidative damage. Additionally, increased synaptic ACh levels 
resulting from AChE inhibition may potentiate the effect of neurotrophins, neuronal growth factor and 
brain-derived neurotrophic factor, which was previously demonstrated to induce neuroprotection against 
free radical insults[89,90].

Increasing evidence suggests that neuroinflammation contributes to the cascade leading to progressive 
neuronal damage in PD[15,91]. The major pro-inflammatory cytokines, such as interleukin-1β (IL-1β), IL-2, 
IL-6, IL-17, tumor necrosis factor-alpha (TNF-α), and interferon-gamma (IFN-γ), lead to increased 
production of inducible oxidative stress, neuronal stress, and further neuronal dysfunction and death in the 
AD brain[92-95]. The anti-inflammatory effect of MT-031 was found to be associated with elevation of the 
levels of one of the major cytokines, IL-10, which limits inflammation by reducing the synthesis of pro-
inflammatory cytokines such as IL-1, IL-6, IFN-γ, and TNF-α[54]. The anti-inflammatory effect of MT-031 
was also demonstrated in proliferated splenocytes activated by anti-CD3, in which MT-031 did not affect 
the viability of the unstimulated splenocytes, indicating that the anti-proliferative effect was not associated 
with a protective effect against cytotoxicity[54]. In addition to proliferation, splenocytes and microglia cells 
can also be activated to produce cytokines, multi-functional soluble factors with pro- and anti-inflammatory 
activities[96,97]. MT-031 suppressed the elevation of IL-17 and INF-γ in anti-CD3-activated splenocytes, 
possibly by increasing the generation of IL-2, although the exact mechanism needs to be addressed by 
further study. Inconsistent with the anti-inflammatory effects seen in cell cultures, MT-031 upregulated the 
mRNA expression levels of the anti-inflammatory cytokine neurotrophic tyrosine kinase receptor and 
reduced levels of the pro-inflammatory cytokine IL-6 in a scopolamine mouse model[54].

EFFECTS OF MT-031 ON SCOPOLAMINE-INDUCED DEMENTIA
It has been shown that scopolamine exerts its effects through antagonizing muscarinic acetylcholine 
receptors[98,99]. A previous study confirmed that MT-031 treatment prevented cognitive deficits induced by 
scopolamine and improved spatial learning and memory, as examined in the Y maze task and Morris water 
maze test[54]. This effect may be attributed to an increase of amine contents, NE, 5-HT, and DA, as well as to 
the direct effect on scopolamine-induced ChE disturbance through inhibition of ChE activity. MT-031 
exerted a significant inhibitory effect on ChE in the hippocampus and frontal cortex of mice[54]. This is an 
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Figure 2. Suggestive schematic illustration for the mechanism of multifunctional brain permeable drug, MT-031, as a potential 
therapeutic approach of dementia and depression in PD. PD: Parkinson’s disease; AChE: acetylcholinesterase; BuChE: 
butyrylcholinesterase; MAO-A: monoamine oxidase-A; ROS: reactive oxygen species; IL: interleukin; TNF-α: tumor necrosis factor-alpha; 
IFN-γ: interferon-gamma; TNF-α: tumor necrosis factor-alpha; Ntrk: tyrosine kinase receptor; NGF: neuronal growth factor; BDNF: brain-
derived neurotrophic factor; GDNF: glial cell-derived neurotrophic factor; Bcl-2 like 1: B-cell lymphoma 2 like 1.

advantageous property of MT-031, as previous data show that, when ChE inhibitors are less effective in the 
hippocampus, other brain regions may produce insufficient amounts of ACh to displace scopolamine from 
receptors, which results in dysfunctional mediation of working memory[100]. Our data are in line with the 
reported protective effects of rivastigmine[101] and ladostigil[102] in a scopolamine mouse model, suggesting 
the importance of inhibiting both AChE and BuChE activities in ameliorating cognitive impairments[65,101]. 
There are more and more studies that support the idea that multi-targeted brain selective MAO and ChE 
inhibitors may exert better treatment effects than single ChE inhibitors in the treatment of dementia in 
neurodegenerative disorders such as AD and PD[22,26,80].

CONCLUSION AND PERSPECTIVE
Available treatments for PDD are limited in both number and quality, and they only provide symptomatic 
relief for cognitive impairment. The multi-factorial causes of the disease make the development of new 
drugs a difficult task. The rational design of incorporating two or more distinct functional pharmacophores 
into one molecule has been suggested to be feasible[22,103]. A single target molecule may have greater affinity 
towards a specific target than a molecule with multiple targets; however, a multi-target strategy creates 
compounds with a balanced affinity for treating the multifactorial causes of multiple neurodegenerative 
diseases. To date, none of the cholinesterase inhibitors in the clinic has been proved to possess 
neuroprotective activity or anti-depressant action. The design of the novel drug candidate, MT-031, was 
aimed at targeting multiple neurodegenerative processes. MT-031 is a brain selective MAO-A and 
AChE/BuChE inhibitor and has been found to exert a wide range of neuroprotective activities [Figure 2], 
including anti-oxidative activity, clearance of ROS accumulation, prevention of neuronal death, and 
increasing levels of neurotrophic factors. MT-031 also possesses anti-inflammatory capabilities including 
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preventing cellular proliferation, upregulating anti-inflammatory cytokines, and downregulating pro-
inflammatory cytokines[29,54]. There is evidence that MT-031 inherited the neuroprotective potency described 
for propargylamine derivatives in neurodegenerative animal models[29,54,104]. Similar to its other parent 
compound rivastigmine[101] at a dose that inhibited ChE in the cortex and hippocampus by approximately 
70%, MT-031 was effective in antagonizing the working and reference memory deficits induced by 
scopolamine[54]. These miscellaneous pharmacological properties of MT-031 [Figure 2], accompanied by its 
ability to improve cognitive deficits, make this compound valuable as a novel drug candidate for the 
treatment of dementia and depression in PD.
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Abstract
Elucidating the pathogenic mechanisms of Alzheimer’s disease (AD) to identify therapeutic targets has been the 
focus of many decades of research. While deposition of extracellular amyloid-beta plaques and intraneuronal 
neurofibrillary tangles of hyperphosphorylated tau have historically been the two characteristic hallmarks of AD 
pathology, therapeutic strategies targeting these proteinopathies have not been successful in the clinics. 
Neuroinflammation has been gaining more attention as a therapeutic target because increasing evidence 
implicates neuroinflammation as a key factor in the early onset of AD disease progression. The peripheral immune 
response has emerged as an important contributor to the chronic neuroinflammation associated with AD 
pathophysiology. In this context, the plasminogen activator system (PAS), also referred to as the vasculature’s 
fibrinolytic system, is emerging as a potential factor in AD pathogenesis. Evolving evidence suggests that the PAS 
plays a role in linking chronic peripheral inflammatory conditions to neuroinflammation in the brain. While the PAS 
is better known for its peripheral functions, components of the PAS are expressed in the brain and have been 
demonstrated to alter neuroinflammation and blood-brain barrier (BBB) permeation. Here, we review plasmin-
dependent and -independent mechanisms by which the PAS modulates the BBB in AD pathogenesis and discuss 
therapeutic implications of these observations.
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INTRODUCTION
Alzheimer’s disease (AD) is recognized as the most common cause of dementia in the elderly, and over 6 
million Americans are currently living with this disorder. In the United States, AD is the sixth leading single 
cause of death and the second most common contributing cause of death. The hallmark neuropathologic 
characteristic of AD is abnormal extracellular protein accumulation in the brain, notably the extracellular 
deposition of amyloid-β (Aβ) peptide generated from the improper cleavage of amyloid precursor protein 
(APP) that gives rise to Aβ monomers that aggregate into oligomeric Aβ fibrils and plaques, and 
intraneuronal neurofibrillary tangles (NF) comprised largely of hyperphosphorylated tau. These 
proteinopathies are associated with the loss of synapses and subsequent neuronal cell loss in the entorhinal 
cortex, hippocampus, and frontal cortex[1-3], and currently, the biomarkers most commonly used in human 
AD studies are beta-amyloid 42, tau, and phospho-tau proteins in the cerebrospinal fluid. More recently, 
blood p-tau181 has been reported as being a useful biomarker for distinguishing AD from other 
dementias[4]. Thus, it has been widely posited that Aβ plaques and/or abnormal hyperphosphorylated tau 
protein accumulation are causally linked to the behavioral and neurologic symptoms of AD. However, 
therapeutic strategies for decreasing Aβ plaque load[5,6], reducing Aβ production with BACE-1 inhibitors[7], 
or inhibiting hyperphosphorylated tau aggregation[8], have been largely unsuccessful in clinical trials over 
the past several years[3]. These failed clinical trials coupled with observations of age-related increases in Aβ 
deposition in cognitively intact individuals as well as evidence that Aβ plaque load does not closely 
correspond with cognitive decline in AD patients[1,9] and neurofibrillary tangles are associated with severe 
cognitive impairment characteristic of late stages of AD[10,11], have prompted research into alternative 
pathogenic mechanisms of AD.

It is now recognized that the extracellular deposition of Aβ and hyperphosphorylated tau triggers pro-
inflammatory responses in microglia and astrocytes[12-14]. The neuroinflammatory response in AD has been 
described in detail in several recent reviews[14,15], and it appears that neuroinflammation plays an important 
role in the early progression of AD[16,17]. Multiple investigators have shown that Aβ monofibrils, oligomers, 
and plaques activate gene expression of pro-inflammatory mediators in microglia and astrocytes[13,16,18,19]. 
While microglial phagocytosis of amyloid may be neuroprotective in the early stages of AD by promoting 
Aβ clearance[20,21], microglial activation in later stages may promote the progression of AD[1,16]. Network-
based integrative analysis of whole-genome gene-expression profiling and genotypic data obtained from 
late-onset AD and non-demented control brains identified the immune/microglia module as the molecular 
system most strongly associated with the pathophysiology of AD, and in particular, late-onset AD[22]. 
Microglial activation is thought to promote AD progression by (1) complement-mediated phagocytosis of 
synaptic structures to promote synapse loss; and/or (2) release of nitric oxide (NO) and proinflammatory 
cytokines, including TNF-α, IL-6, and IL-1β, that act as soluble synaptotoxic factors and induce “A1” 
neurotoxic astrocytes[23-26]. In support of these proposed mechanisms, microglial activation has been linked 
to increased synaptic loss and neurodegeneration in AD[2,24,27], and pharmacologic inhibition of microglial 
proliferation in the APP/PS1 mouse effectively shifted microglia to an anti-inflammatory phenotype that 
was associated with decreased synaptic degeneration and improved memory[28]. In Alzheimer mouse 
models, early synaptic loss is associated with C1q complement tightly bound to AB plaques surrounded by 
neuronal atrophy from microglial phagocytosis[29]. Mononuclear phagocytes enter the central nervous 
system (CNS) signaled by chemokines (CXCL1), while the innate immune system also appears to contribute 
to the neuroinflammatory response to activated microglia in AD models[30].
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While the initial focus on the role of the immune response in AD pathogenesis has been on the brain’s 
intrinsic neuroinflammatory response, attention is now being directed to multiple systemic inflammatory 
disorders that accelerate or in some instances may be the primary trigger for neuroinflammatory responses 
that initiate and/or promote AD and other dementias[31-34]. Some of the observations that have stimulated 
this shift in focus include reports that young children chronically exposed to high levels of air pollution 
were found to have neuropathological hallmarks of AD upon incidental autopsy[35,36], and evidence that type 
2 diabetes/ metabolic syndrome and inflammatory bowel disease are associated with increased risk of 
developing AD[15,37,38]. The causal factors linking peripheral inflammatory conditions to AD are likely multi-
factorial and have not yet been clearly delineated; however, several mechanisms are emerging. Peripheral 
inflammatory conditions have been shown to (1) generate inflammatory cytokines that facilitate access of 
peripheral inflammatory lymphocytes into the CNS, most notably TNFα, IL-1β, and IL-6; (2) cause 
dysfunction of the blood-brain barrier (BBB); and (3) activate the plasminogen activator system (PAS), 
which has direct effects on the CNS and further facilitates BBB dysfunction. The remainder of this review 
will investigate the role of the PAS in mediating inflammatory crosstalk between the periphery and the brain 
and its potential role in AD pathogenesis.

PLASMINOGEN ACTIVATOR SYSTEM
The plasminogen activator system (PAS) is comprised of a group of serine proteases, inhibitors, and binding 
proteins that control the activity of the serine protease plasmin [Figure 1][39]. Plasmin plays a key role in the 
fibrinolysis cascade, catalyzing the final degradation of fibrin and various extracellular matrix proteins[40,41]. 
The zymogen plasminogen (PlG) is converted to activated plasmin by plasmin activators, which include 
tissue-type plasminogen activator (tPA) and urokinase-type plasminogen activator (uPA). tPA is primarily 
involved in intravascular fibrinolysis, activating plasminogen that is bound to polymerized fibrin. In 
contrast, uPA is secreted as a pro-enzyme whose active form is primarily localized on cell surfaces where it 
binds to the uPA receptor (uPAR). Plasminogen conversion by tPA and uPA in both the periphery and the 
CNS is tightly regulated by serine protease inhibitors (serpins). Serpins represent a superfamily of proteins 
with similar structures. Most relevant to this discussion are plasminogen activator inhibitor type 1 (PAI-1) 
and neuroserpin (NSP). PAI-1 irreversibly inhibits uPA or tPA by undergoing a large conformational 
change upon binding uPA or tPA that disrupts the active site of the plasmin activator and of PAI-1. In 
contrast, NSP preferentially inhibits tPA by forming an unstable complex that can release active tPA[42]. 
Reflecting the need for stringent regulation of the plasminogen cascade, free forms of activated plasmin 
activators, PAI-1, and NSP exist at very low concentrations with half lives in the order of minutes[43,44].

PAS in the periphery
The peripheral PAS plays a central role in mediating fibrinolysis, extracellular migration, cell signaling, 
cellular migration, and tumor growth, which has been reviewed in detail elsewhere[45,46]. The PAS converts 
inactive plasminogen to plasmin, a trypsin-like serine protease, via the catalytic activity of PA[41]. 
Plasminogen is primarily present in platelets in the plasma and liver. However, in mice, plasminogen 
mRNA has been found in the adrenal, kidney, brain, testis, heart, lung, uterus, spleen, thymus, and gut[40,47]. 
In the periphery, PAI-1 serves as the main suppressor of plasma fibrinolytic activity[40]. In the bloodstream, 
PAI-1 exists on its own in an active form, or as part of a complex with tPA or vitronectin, a glycoprotein 
that can convert PAI-1 into its active form. Elevated levels of PAI-1 are associated with metabolic syndrome 
and associated with increased risk of atherothrombosis and stroke[48,49].

PAS in the CNS
In the CNS, plasminogen is expressed at low levels by neurons in the hippocampus, cortex, cerebellum, as 
well as neuroendocrine tissues, but it is primarily transported to the brain via systemic circulation[12,50,51]. 
Plasminogen has been localized to the extracellular space, while the plasmin activators, tPA and uPA, have 
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Figure 1. Schematic diagram of the molecular mechanisms of the plasminogen activator system. PAI-1: Plasminogen activator 
inhibitor-1; NSP: neuroserpin; uPA: urokinase-type plasminogen activator; tPA: tissue-type plasminogen activator; PLG: plasminogen; 
PLM: plasmin. Created with BioRender.com.

been localized to not only the extracellular space, but also to neurons and astrocytes. Both plasmin 
activators have been shown to modulate synaptic function when released into the synaptic cleft[52-54]. 
Membrane depolarization induces the rapid release of tPA from cerebral cortical neurons, which modulates 
neuronal plasticity, learning, stress-induced anxiety, and visual cortex plasticity[55]. tPA and uPA activities 
have been localized to well-defined areas of the brain[56-59] and shown to participate in intracellular signaling 
that is independent of plasminogen activation (see below). tPA is the principal plasmin activator in the CNS 
with PAI-1 regulating its activity primarily in the extracellular space. NSP is primarily localized in neurons 
in the developing brain with very low levels detected in the mature CNS[60], where it preferentially binds to 
and inhibits tPA[61]. Interestingly, mutations of NSP are associated with rare familial dementia characterized 
by neuronal inclusion bodies that are biochemically comprised of polymers of NSP[62].

Plasmin activity has been shown to be upregulated in axonal growth and synaptic pruning, suggesting a role 
in brain development and regeneration that is not yet well understood[50]. While both tPA and uPA can 
mediate plasminogen activation in the CNS, plasminogen activation is primarily controlled by the tight 
regulation between tPA and PAI-1[51]. uPA has a low baseline expression in specific neurons and astrocytes 
in the normal brain, but is upregulated in pathologically inflammatory environments, such as multiple 
sclerosis and epilepsy[50,51]. Endothelial cells of microvessels in the brain contribute to the production of tPA, 
but tPA can also be expressed by glial cells, neurons, and infiltrating leukocytes, implicating a broad 
spectrum of tPA involvement in the brain. While tPA in the mature brain is detected primarily in neurons, 
its enzymatic activity is primarily restricted to the hippocampus, amygdala and hypothalamus[63,64]. The 
discrepancy between the expression of tPA mRNA and its areas of enzymatic activity is consistent with its 
trafficking and transport to mossy fiber tracts[63,64].

The plasmin activators, tPA and uPA have been shown to play an important role in CNS function and 
dysfunction with some of their functions being independent of plasminogen[65,66]. Extracellular tPA 
participates in cerebellar motor learning[67], remodeling in various nonneural tissues[67], and neuronal 
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regeneration following ischemic injury[68]. tPA also participates in the regulation of BBB permeability[69,70]. 
Neuronal uPA is present in lower levels than tPA, participating in neurogenesis in the developing brain[71]. 
Its release in the mature central nervous system triggers astrocytic activation[53] and, like tPA, uPA promotes 
axonal and synaptic recovery following different forms of injury[72]. Both tPA and uPA are found in pre-
synaptic vesicles that are released by calcium-dependent mechanisms[52,54,55].

The PAS is altered in AD
There has been longstanding interest in the role of the PAS in AD beginning with early reports that active 
plasmin efficiently digests Aβ peptides[73-77] both in vitro and in rodent AD models[19,73,74,76-81]. In the AD brain, 
tPA is highly expressed in regions of AD plaques, and in AD models where tPA is genetically inactivated, 
there is an increased accumulation of Aβ, synaptic dysfunction and memory deficits[78]. However, the 
enzymatic ability of brain tPA and uPA to activate plasmin in vivo is thought to be prevented by irreversible 
binding to high levels of extracellular PAI-1 secreted by immune-activated microglia and astrocytes[18]. PAI-
1 is minimally expressed in the normal brain or cerebral vasculature, but does increase with senescence[82-84]. 
Brain levels of PAI-1 are also markedly increased in APP/PS1 mice[66] and the serum levels of PAI-1 are 
positively correlated with cognitive impairment in AD patients[85]. Consistent with the hypothesis that PAI-1 
promotes AD pathology, genetic knockdown or small molecule inhibitors of PAI-1 reduced plaque 
formation in AD rodent models, and the small molecule PAI-1 inhibitor, PAZ-417, was shown to 
significantly improve hippocampal LTP and cognitive function in AD mice[73,74,86,87]. This finding was 
confirmed recently in an APP/PS1 AD mouse model using another small molecule PAI-1 inhibitor[86].

Whether tPA primarily plays a beneficial or detrimental role in AD progression is debated. Several studies 
have demonstrated that tPA activation of plasmin enzymatically reduces Aβ accumulation[78]. Conversely, 
tPA has been shown to mediate excitotoxic neurodegeneration by activating plasmin and causing 
subsequent laminin degradation[66,78]. Independent of plasmin activation, tPA causes GSK3 activation, tau 
hyperphosphorylation, microtubule destabilization, and neurotoxicity in rodent hippocampal neurons[88]. It 
has also been shown to mediate amyloid-induced microglial activation[89]. Based on such observations, it has 
been proposed that tPA contributes to neurotoxicity, microglial activation, and tau hyperphosphorylation as 
part of a feed-forward inflammatory pathway[73,88,89].

PAI-1 expression has been reported to be increased in the plasma[85,90,91] and brain tissues of AD patients[76]. 
PAI-1 expression is not detected in normal healthy human brains but is sporadically present in aged 
brains[84,92], and possibly linked to cerebrovascular disease. PAI-1 is the primary regulator of tPA in the CNS 
extracellular space and is a proinflammatory biomarker. Cytokines upregulate PAI-1 expression in 
microglia and astrocytes in human and animal models of AD[18,93]. The PAI-1 promoter is activated by 
TNF-α via an NFκB 5' upstream element and directly activated by TGF-β1 via SMAD2/3 promoter binding 
sites[82,94,95]. When PAI-1 is complexed with low density lipoprotein receptor-related protein-1 (LRP-1), it 
signals changes in microglial morphology and motility that are consistent with microglial activation[96-98]. In 
patients with AD, plasminogen activator activity is reduced while PAI-1 and NSP are upregulated[99]. 
However, there are contradictory findings regarding measurements of PAI-1 and tPA in the CSF and serum 
of patients with AD[76,92,100].

Congophilic amyloid angiopathy (CAA) is a vascular complication of AD in which Aβ40 plaques 
accumulate within the brain endothelium of cerebral arteries, arterioles and capillaries[101]. CAA can result in 
intracranial hemorrhages, cognitive impairment, or subacute inflammatory encephalopathy. tPA activation 
of endothelial NMDA receptors has been shown to regulate neurovascular coupling via nitric oxide-
mediated regulation of cerebral blood flow. Elevated levels of brain PAI-1 impairs this tPA-dependent 
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neurovascular coupling in Tg2576 AD mice, and pharmacologic inhibition of PAI-1 was shown to improve 
cognition in this animal model by selectively restoring neurovascular function while not affecting cortical 
amyloid plaques[102].

PAS modulates BBB integrity in AD
There is increasing evidence identifying BBB leakage as an early sign of cognitive dysfunction, as well as 
evidence linking BBB dysfunction to AD pathogenesis[103,104] and its neuroinflammatory pathology[33,105]. 
However, the mechanisms underlying BBB dysfunction in AD are currently not well-elucidated. The BBB is 
part of the neurovascular unit (NVU) in the brain, which consists of endothelial cells (ECs), mural cells, 
including vascular smooth muscle cells and pericytes, basement membrane, glia cells including astrocytes 
and microglia, and neurons [Figure 2]. The ECs of the BBB are a distinct characteristic of the NVU due to 
their tight junctions and lack of fenestrae. This allows the ECs to regulate the selective transport and 
metabolism of substances from blood to brain and vice versa, thereby separating the microenvironment of 
the brain parenchyma from changes in circulating ion and metabolite concentrations in the systemic 
circulation[105].

In CNS injury, there are several potential mechanisms by which tPA is able to mediate changes in the 
permeability of the BBB [Figure 3], which in turn further exacerbates CNS injury by promoting 
neuroinflammation. AD is associated with BBB dysfunction in humans and animal models. Amyloid 
deposition activates gliosis that can alter the morphology of astrocytic endfeet, which are integral to the 
integrity of the neurovascular unit. As described previously with CAA, amyloid deposition can also injure 
the brain endothelium, which can additionally impair BBB integrity[106]. Finally, Aβ oligomers stimulate 
fibrin production that complexes with amyloid plaques, and fibrin has been shown to be increased in the 
parenchyma and vasculature of AD brains[107,108]. This fibrin-Aβ  complex promotes further 
neuroinflammation and neurodegeneration. tPA is conformationally activated by fibrin deposition, but its 
enzymatic activity is inhibited by the elevated levels of PAI-1 found in AD parenchyma. However, as 
summarized in Figure 3, activated tPA has multiple plasmin-independent mechanisms by which it can 
compromise BBB integrity.

tPA in the CNS directly alters BBB integrity
tPA has long been known to play a significant role in the NVU, mostly in the context of stroke[109-111]. tPA 
has been reported to directly alter the BBB integrity by triggering activation of LRP-1 on the surface of 
astrocytes[12]. LRP-1 is a multifunctional signaling receptor that functions in receptor-mediated endocytosis 
and cellular signaling. LRP-1 binds many ligands, including tPA and amyloid-beta[112], which thereby 
facilitates Aβ endocytosis across endothelial cells of the BBB[113]. Aβ oligomers may compromise BBB 
integrity via activation of matrix metalloproteinases (MMPs)[113]. Alternatively, tPA may cleave LRP-1 at its 
substrate binding ectodomain, activating NF-κB, which promotes the synthesis of matrix metalloproteinases 
MMP-3 and MMP-9, leading to matrix protein degradation and BBB leakage[12]. tPA-induced activation of 
LRP-1 shedding from astrocytic endfeet also promotes detachment of endfeet projections from tight 
junctions of the endothelial cells of the neurovascular unit, further compromising the BBB[12]. Additionally, 
tPA can directly alter BBB integrity via platelet-derived growth factor PDGF-CC[114]. Upregulated neuronal 
expression of tPA expression induced by CNS disease or injury results in the release of tPA into the 
extracellular matrix of the brain, where it cleaves complement subcomponents C1r/C1s, urchin EGF-like 
protein, and bone-morphogenic protein-1 (CUB) from PDGF-CC forming an active ligand that binds to 
PDGF receptor-α (PDGFR-α). PDGFR-α promotes BBB leakage that worsens cerebral edema, 
neuroinflammation and neuronal death[114]. One study found this tPA-mediated activation of PDGF-CC to 
be inefficient in an in vitro stroke model[115]. However, in vivo, the Mac-1 integrin expressed on microglia 
works cooperatively with the endocytic receptor LRP-1 to promote tPA-mediated activation of PDGF-
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Figure 2. Cross-section of the neurovascular unit (NVU) in a normal brain vs. an Alzheimer’s disease (AD) brain. The blood-brain 
barrier (BBB) consists of endothelial cells joined by tight junctions, basement membrane, mural cells (i.e., pericytes and vascular 
smooth muscle cells), enclosed by astrocytic endfeet. Neurons and microglia closely associate with the BBB. In the AD brain, the NVU 
undergoes morphological and structural changes due to AD pathology. Amyloid-beta plaques complexed to fibrin result in 
neuroinflammation and BBB disruption, including activated microglia, swollen astrocytic endfeet, and compromised tight junctions. 
Created with BioRender.com.

CC[115]. Multiple studies have also implicated tPA in binding amyloid-beta, thereby facilitating Aβ 
endocytosis across endothelial cells of the BBB[113].

Peripheral tPA alters BBB
In addition to its endogenous effects within the CNS, peripheral tPA can cross the intact BBB[116], 
phosphorylate claudin-5 and occludin, thereby weakening endothelial tight junctions and increasing BBB 
permeability by plasmin-independent mechanisms[117,118]. Chronic release of plasma tPA can induce a 
hyperfibrinolytic state that also directly increases vascular permeability of the BBB. Resultant plasmin 
activation by tPA also triggers bradykinin (BK) production[119,120]. BK is a peptide mediator generated from 
its circulating precursor, high molecular weight kininogen (HMWK), and is known for its ability to induce 
vascular permeability and cause vasodilation of arteries and veins[119]. It is a pro-inflammatory mediator, and 
its role as a neuromediator was identified in clinical conditions including AD[119]. While it is still debated as 
to how the PAS triggers BK generation, two primary pathways have been proposed [Figure 3]. A direct 
mechanism identified using an in vitro model involves tPA-mediated conversion of plasminogen to 
plasmin, which then cleaves HMWK into BK. BK acts through the bradykinin 2 receptor (B2R) on 
endothelial cells, triggering a signaling cascade that promotes intracellular calcium release and 
downregulation of claudin-5, a critical protein involved in maintaining EC tight junctions[120]. B2R 
activation can additionally induce tPA release from endothelial cells, further amplifying additional BK 
generation[121]. The PAS alternatively can indirectly trigger BK formation through a plasmin-dependent 
pathway where plasmin activated by tPA then converts Factor XII (FXII) into Factor XIIa (FXIIa), which 
then converts plasma pre-kallikrein into plasma kallikrein (PKal)[121]. PKal then serves to cleave HMWK, 
leading to BK formation and B2R signaling activation [Figure 3]. This indirect mechanism was 
demonstrated ex vivo and in vivo with the former using human plasma incubated with tPA, which resulted 
in the formation of active PKal; the latter demonstrating that intravenous injection of tPA in mice increased 
PKal activity[121,122].

https://BioRender.com
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Figure 3. Mechanisms by which tPA may disrupt the blood-brain barrier. (1) tissue-type plasminogen activator(tPA) released from 
neurons cleaves lipoprotein receptor-related protein-1 (LRP-1) to activate an NF-κB signaling cascade resulting in the production of 
MMP-9. tPA and LRP-1 can bind amyloid beta, which facilitates Aβ endocytosis across the blood-brain barrier (BBB). (2) Neuronal tPA 
degrades platelet-derived growth factor-CC (PDGF-CC) to release the active ligand for PDGF receptor-α (PDGFR-α) on astrocytic 
endfeet, causing them to retract from endothelial cells. (3) Plasma tPA activates plasmin to directly produce bradykinin that activates 
bradykinin 2 receptor (B2R) receptor on endothelial cells. (4) Plasma tPA cleaves plasminogen to generate plasmin that indirectly 
upregulates bradykinin expression through plasma kallikrein (PKal). Created with BioRender.com.

AD has been shown to produce BBB dysfunction in humans and animal models. Amyloid deposition 
activates gliosis that can alter the morphology of astrocytic endfeet, which are integral to the integrity of the 
neurovascular unit. As described previously with CAA, amyloid deposition can injure the brain 
endothelium, which can additionally impair BBB integrity[106]. Finally, Aβ oligomers stimulate fibrin 
production that complexes with amyloid plaques and has been shown to be increased in the parenchyma 
and vasculature of AD brains[107]. This fibrin-Aβ complex promotes further neuroinflammation and 
neurodegeneration. tPA is conformationally activated by fibrin deposition, but its enzymatic activity is 
inhibited by the elevated levels of PAI-1 found in AD parenchyma. However, as summarized in Figure 3, 
activated tPA has multiple plasmin-independent mechanisms by which it can compromise BBB integrity.

CONCLUSION
Over the past two decades following initial reports of histologic evidence of Aβ deposition in the brains of 
children chronically exposed to severe air pollution[123], it has become clear that chronic peripheral 
inflammatory conditions, including those that involve lung, gut, liver, and metabolic syndrome, exacerbate 
or initiate neuroinflammatory disorders. This has been supported by epidemiologic findings of a positive 
association between chronic peripheral inflammatory conditions and increased incidence of dementia, 
including AD. More recently, there has been increased interest in the contribution of the peripheral PAS to 
the neuroinflammatory component of AD. Recently, it has become recognized that the risk of blood clots, 

https://BioRender.com
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increased mortality, and persistent neuroinflammatory complications of COVID 19 viral infections are also 
associated with pre-existing systemic inflammatory disorders shown to chronically activate components of 
the PAS[124]. With respect to AD, the available evidence suggests that the peripheral PAS may modulate the 
neuroinflammatory response via multiple mechanisms[12,51]. Besides fostering the transcytosis of 
inflammatory cells across the BBB, components of the PAS have been shown to decrease BBB integrity and 
increase BBB permeability, consequences that have been independently linked to early cognitive 
dysfunction[125] including progressive stages of AD[126] perhaps in association with concomitant vascular 
disease[127]. Overall, the means by which the PAS modulates BBB integrity by tPA and plasmin-dependent 
mechanisms is complex and requires further validation and investigation. tPA in the CNS has been shown 
to alter BBB permeability by LRP-1 and PDGF-CC-dependent mechanisms, while tPA produced from 
peripheral inflammation can cross the BBB where it may work in tandem with the kinin system to directly 
generate BK via plasmin, or indirectly by increased PKal. It is likely that tPA works multifactorially and that 
these mechanisms are not mutually exclusive [Figure 2][118]. Based on what is currently known, further 
studies investigating the role of the PAS in AD and other dementias are certainly warranted.
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Abstract
Exemplified by the disproportionate cases of Alzheimer’s disease among women, many diseases show 
considerable sexual disparity in the aging process. Given that such a sex bias varies significantly in different 
neurological conditions, considering sex differences is necessary for the diagnosis as well as the treatment of 
neurological disorders. However, currently, relatively few studies have specifically focused on sex differences in 
brain aging or the general aging process, which has prevented the development of precision medicine for these sex-
different diseases. Here, we summarize age-related disparities relating to cognitive function and dysfunction for 
males and females from human cross-sectional and longitudinal studies. By discussing potential anatomical and 
physiological bases underlying such differences, we highlight the importance of sex for aging studies in this review, 
which may hopefully shed light on understanding the precise causes of different brain diseases.
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INTRODUCTION
According to figures from the World Health Organization (WHO), the number and proportion of people 
aged 60 and older are expanding and estimated to increase to 1.4 billion by 2030 and 2.1 billion by 2050, up 
from 1 billion in 2020[1]. The process of aging is associated with both normal and pathologic cognitive 
changes, which significantly affect older adults’ daily life and society. The most recent data suggest that the 
prevalence of dementia will double in Europe and triple worldwide by 2050. Economic costs for dementia 
reached 957.56 billion dollars and are set to increase to 2.54 trillion dollars worldwide[2]. Alzheimer’s disease 
(AD) is a main cause of dementia, the related total costs of which will reach 507.49 billion dollars by 2030 in 
China and 1.89 trillion by 2050[2]. Despite this, the clinical diagnosis of AD still faces many problems. There 
is a clear lack of precise gold standards for both diagnosis and treatment, and scientists have yet to develop 
multiple effective therapies for AD, especially for patients suffering in the later stages of the disease. Hence, 
it is clear that, for AD and other broader age-related conditions, research on aging and age-related diseases 
requires urgent attention.

During the human aging process, females show longer lifespans overall[3,4] but often also display more frailty 
than males[5]. For example, women aged 45-79 had a higher frailty index based on standards[6] including 28 
variables on function, cognition, co-morbidity, health attitudes and practices, and physical performance 
measures[7]. This is known as the “male-female health-survival paradox”[8], and the sex variable can make a 
difference for health risks in males and females. To date, sex factors have attracted wide attention in the 
studies of human aging. In the discoveries of brain aging, sex bias has been well-recognized in the 
prevalence of certain brain aging-related diseases. For example, females with AD or other dementias exhibit 
a two-fold incidence compared with males[9]. Conversely, the prevalence of another progressive and age-
related neurodegenerative disorder, Parkinson’s disease (PD), is 1.5 times more common in men than 
women[10]. In addition, sex and gender can affect the risk factors and disease progression of aging-related 
diseases such as AD[11]. Thus, it is important to understand the sex difference in changes of normal brain 
aging, which should provide specific clues for understanding the sex-related mechanisms for age-related 
diseases and, in turn, may facilitate improved and personalized care during aging.

Here, we focus on reviewing the current literature reporting the sex difference in the functional changes 
(cognitive decline and vulnerability to neurodegenerative diseases), structural changes, and cellular 
hallmark changes of normal brain aging. To address this, we used the terms “sex difference”, “brain aging”, 
“cognitive aging”, “brain structure”, and keywords for cellular hallmarks of brain aging (mitochondria, 
oxidative stress, glia, ubiquitin-proteasome system, autophagy, DNA repair, stem cell exhaustion, and 
aberrant neuronal network activity) to search the literature in databases such as PubMed.

We first briefly review human data relating to the sex difference in cognitive decline and vulnerability to 
neurodegenerative diseases in the process of normal brain aging. Next, we discuss sex difference in potential 
anatomical changes underlying functional changes of brain aging with human evidence. Finally, we 
summarize the discoveries on sex difference in cellular hallmarks such as oxidative stress of brain aging 
from animal experiments and human data, which may offer clues for better therapeutics to cognitive decline 
in aging and neurodegenerative diseases.
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SEXUAL DIFFERENCES IN VULNERABILITY OF MALES AND FEMALES TO COGNITIVE 
DECLINE IN AGING AND IN RELATED DISEASES
Sex difference of cognitive decline in normal brain aging
Cognitive function includes a variety of mental processes such as perception, attention, memory, decision 
making, and language comprehension. General sex differences in specific cognitive functions have been 
reported, with the most accepted findings being that men outperform women on spatial-based aspects, 
especially visual-spatial working memory tasks[12], while females excel in verbal memory and location 
memory tasks[13,14]. These differences seem to remain consistent from adolescents and young adults into 
older ages[15,16]. In line with previous reports, several studies have demonstrated that certain cognitive 
functions decline along with the normal process of the aging of the human brain[17,18]. Such studies monitor 
the trajectories of cognition change along with the process of aging in order to pick up any related changes 
of cognitive function that occur concurrently with stages of the aging process.

Longitudinal studies have been demonstrated as particularly useful and applicable in the study of both the 
difference of cognitive performance levels and the rates of cognitive change over time. In line with the 
results of the cross-sectional studies mentioned above, De Frias et al.[19] found that women performed better 
on episodic memory tasks and men had higher visuospatial ability, and this sex difference was stable across 
age groups (35-80 years) over a 10-year period. When detecting the cognition decline rate between females 
and males with aging, although a review published in 2013 which screened 13 longitudinal studies 
concluded that no sex differences were found in the rate of overall cognitive decline between the ages of 60-
80 years[20], there are many other investigations that have shown sex differences existed in some specific 
cognitive tasks or in much older age (> 80) [Table 1]. Finkel et al.[21], for example, found men had a faster 
linear decline than women on a card rotation test from middle age (50). Another study conducted by 
Casaletto et al.[22] detected the age-related cognitive decline of 314 normal adults (average 69.3) and found 
that men tended to develop a declining episodic memory trajectory. Meanwhile, in recent longitudinal 
studies, McCarrey et al.[23] administered a series of memory and other cognitive tests to participants from 
the Baltimore Longitudinal Study of Aging to detect the cognitive change of females and males with age. 
They found men showed steeper rates of decline on measures of mental status, perceptuomotor speed and 
integration, and visuospatial ability, but no significantly differing declines on other cognitive abilities tested 
compared to women[23]. However, when analyzing increased numbers of people of the older age brackets, 
and after adjusting for age, education, and vascular factors, one study demonstrated that women showed a 
steeper decline of cognition than men after 80 years old[24]. Finkel et al.[21]’s study also demonstrated that 
women had a faster decline in information tests than men at ages beyond 65, with a much steeper decline 
after 80. However, McDowell et al.[25] showed a trend for a steeper decline in men when compared with 
women after 80 years. Because of the complexity of human studies, it is still difficult to have a consistent 
conclusion, and further studies are still warranted. Nevertheless, these findings seem to indicate that women 
tend to show more cognitive decline at later old age than men (> 80), particularly for some for specific 
cognition functions, while men may have a faster cognitive decline in earlier old age (50-65).

Limitations and difficulties of human research techniques may contribute to these disparities. Firstly, the 
backgrounds of individuals may represent differences in aspects such as education[24,26], lifestyle[27], physical 
activities[28], and weight[29], and these factors not only affect the baseline of individual cognitive function but 
also affect the rate of cognitive decline. This makes the study on the effect of the single factor of sex on the 
rate of cognitive decline difficult to isolate. Moreover, in longitudinal studies, subjects are incorporated into 
such studies from many different age groups, in which case a limited number of subjects will be of the same 
age, despite a large sample of total subjects being involved. Different cohorts also show different aspects of 
cognitive aging[30,31]. All these factors may cause discrepancies in results. To distinguish the true effect of sex 
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Table 1. Longitudinal studies for sex difference in normal cognitive decline

Ref. Age (year) Type of cognitive task Decline rate

> 65 Information test F > MFinkel et al.[21]

50-65 Card rotation test M > F

Casaletto et al.[22] 47-99 The California verbal learning test M > F

McCarrey et al.[23] 64.9-69.7 MMSE, fluent language production, digital symbol, card rotation M > F

Proust-lima et al.[24] > 80 Digit symbol substitution task F > M

> 65 Modified mini-mental state (3MS) cognitive 
Screening test

F > M (institution)McDowell et al.[25]

> 80 Modified mini-mental state (3MS) cognitive 
Screening test

M > F

F: Female; M: male.

on cognitive decline with aging, larger sample sizes of confirmed similar backgrounds and the same ages 
should be involved, and the observation durations should be extended for these groups.

Sex differences in vulnerability to aging associated cognitive disorders
Brain aging is a natural process that results in a certain level of associated cognitive decline. However, as the 
brain ages, it is more susceptible to neurodegenerative diseases such as Alzheimer’s disease (AD), Lewy 
body dementia (LBD), frontotemporal dementia (FTD), or Parkinson’s disease (PD). These diseases usually 
occur in later life, worsening with subsequent aging. They often manifest with increasing age-related 
cognitive impairment, finally leading to dementia. Unlike the inconsistent results for the sex difference of 
cognition decline in normal brain aging, relatively consistent results have been demonstrated relating to 
females and males for some aspects of the vulnerabilities to these diseases [Table 2].

AD is the leading cause of dementia, which accounts for 60%-80% of dementia cases. Over the past 20 years, 
many studies have investigated sex differences in the risk, incidence, prevalence, or development of AD. For 
the analysis of risk, the Framingham Heart Study showed that, for a 65-year-old woman, the risk of AD over 
her remaining lifetime was 21.2%, while for a man, it was 11.6%. Correspondingly, the ratio of female to 
male risk for AD was noted as about 2:1[32]. For overall numbers, many epidemiological studies of varied 
global locations also highlighted a higher number of women than men with AD[33,34]. The prevailing 
explanation for such a difference is that women live longer than men on average, and that the incidences of 
AD correspond with increased age[32]. The argument could therefore be formulated that any apparent sex-
based difference for this disease is simply due to the increased average longevity for women. However, upon 
a more specific analysis of prevalence, results seem to conflict with the lifespan explanation. 
Plassman et al.[35]’s Aging, Demographics, and Memory Study (ADAMS), including subjects aged 71 years 
and older from all regions of the USA, showed a higher prevalence of AD in women than in men of 
corresponding ages. In the 2015 World Alzheimer Report, Prince et al.[36] showed that, in East Asia, South 
Asia, the Caribbean, Western Europe, and Latin America, the prevalence of dementia for men was lower 
than for women, although no significant difference was noted for other regions. In addition, their review in 
2016, summarizing several similar studies from Europe, indicates the same higher prevalence of AD in 
women[37]. As for the incidence of AD, the conclusion that there is no sex difference has been noted in some 
studies from the United States[38,39], while others have shown that women tended to have a higher incidence 
of AD[40]. These disparities may stem from regional and socioeconomic factors and/or cultural effects (such 
as diet and lifestyle). The 10/66 Dementia Research Group study of dementia in low- and middle-income 
countries found a higher incidence in women[41], and most studies on European[42,43] and Asian 
populations[44,45] have also observed a higher incidence in women at an older age. With regards to any sex 
differences related to the rate of cognitive decline beyond the diagnosis of AD, many studies show that the 
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Table 2. Sex difference of neurodegenerative diseases

Neurodegenerative diseases Factors Sex 
difference Ref.

Number F > M Chêne et al.[32] 
Hebert et al.[33] 
Alzheimer’s Association 2021[34]

F > M Plassman et al.[35] 
Prince et al.[36] 
Prince et al.[37]

Prevalence

No difference Prince et al.[36] 
Rocca[152]

F > M Fitzpatrick et al.[40] 
Prince et al.[41] 
Ruitenberg et al.[42] 
Rizzi et al.[43] 
Chen et al.[44] 
Yamada et al.[45]

Incidence

F = M (equal) Tom et al.[38] 
Zahodne et al.[39]

Alzheimer’s disease (AD) 
The leading cause of dementia, which accounts for 60%-80% of 
dementia cases

Cognitive decline 
rate

F > M Hebert et al.[33] 
Holland et al.[46] 
Tifratene et al.[47] 
Lin et al.[48] 
Laws et al.[49] 
Gamberger et al.[50]

Number M > F Nelson et al.[54]
Lewy body dementia (LBD) 
The second most prevalent cause of neurodegenerative dementia Incidence M > F Savica et al.[55] 

Goodman et al.[56]

M > F Goodman et al.[56] 
Mercy et al.[58]

F > M Bernardi et al.[59] 
Ikeda et al.[60]

Frontotemporal dementia (FTD) 
The third most prevalent form of neurodegenerative dementias

Prevalence

No difference Borroni et al.[61]

Parkinson’s disease (PD) 
A movement disorder that can also lead to dementia

Prevalence M > F Pringsheim et al.[63] (worldwide) 
Hirsch et al.[64] 
Abbas et al.[65] 
GBD 2016 Neurology 
Collaborators[66]

No difference Pringsheim et al.[63] (Asia) 
Taylor et al.[67]

Cognitive decline M > F Reekes et al.[71]

F: Female; M: male.

cognitive deterioration rate is faster in women than men in the progression of AD[33,46-50]. However, despite 
this faster progression of the disease in women, several studies have shown that men have an overall shorter 
lifespan beyond diagnosis with AD, as summarized by a recent review[51].

LBD is a neurodegenerative disease with abnormal α-synuclein accumulation (Lewy body proteins) in 
neurons, which can cause cognitive decline. LBD is the second most frequent form of neurodegenerative 
dementia. Reviews show the prevalence of LBD ranges 0.3%-24% in the general population and 3%-7% in 
the patients with dementia[52,53]. In accessing the registry autopsy series from the University of Kentucky 
Alzheimer’s Disease Center and the National Alzheimer’s Coordinating Center, researchers found that the 
number of male patients dying with Lewy body-associated pathologies was three times that of females[54]. 
Similarly, a study on the population of Olmsted County, Minnesota, showed that men had a higher 
incidence of LBD than women across the age spectrum[55]. A study on the prevalence of dementia subtypes 
in United States Medicare showed the same result[56]. FTD is considered the third most frequent form of 
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neurodegenerative dementia with more relatively young patients than other types of dementia (< 65)[57]. 
While many studies have demonstrated sex differences in the prevalence of this disorder, no clear consensus 
has been reached. Studies in the population of Cambridgeshire, UK, and a United States Medicare study 
both showed greater FTD prevalence in men than women[56,58]. However, many other studies failed to 
support these results[59-61]. The discrepancy here may be due to difficulties in the exact diagnosis of FTD, 
which presents with similar clinical symptoms to late onset psychiatric disorders and amyotrophic lateral 
sclerosis (ALS). Recently, Curtis’s meta-analysis focusing on the sex difference of the prevalence of genetic 
mutations in FTD and ALS indicated a higher prevalence of progranulin (GRN)-muted FTD in female 
patients but no sex differences in chromosome 9 open reading frame 72 (C9orf72)- and microtubule-
associated protein tau related FTD (MFTD), which should further help clarify the sex differences of 
prevalence of FTD[62]. Another neurogenerative disease is PD. PD is a movement disorder with 
bradykinesia, rigidity, tremor at rest, gait disturbance, and difficulty with speech. PD can also lead to 
dementia, and the proportion of patients with PD who are also diagnosed with Parkinson’s disease 
dementia ranges from 10% to 15%. Studies are fairly consistent in demonstrating that there is a higher 
prevalence of PD presented among men than women from worldwide epidemiological data[63-66], especially 
in Western and South American populations[10,67-69]. However, there are reports showing the prevalence rates 
were almost equal between men and women in Asian populations[63,67]. Thus, there appears to be a difference 
between Asian and Western populations, which may stem from sex different behaviors such as smoking, 
methodologies, genetics, and ethnicity[65,70]. For the cognitive decline in PD, Reekes et al.[71] indicated that 
males with PD have significantly greater executive and processing speed impairments compared to women.

As mentioned above, the aging brain undergoes cognitive functional change and becomes increasingly 
susceptible to a number of cognitive diseases. Although no results have consistently or conclusively shown 
differences in cognitive decline rate between females and males, apparent sex differences have been shown 
to be involved in the cognitive performance and disease susceptibility of the elderly. In addition, females 
have been demonstrated as more susceptible to AD, and males are more vulnerable to LBD and PD. The 
underlying mechanism for such sex-based differences in brain aging behaviors and related diseases is a key 
area for further study.

BRAIN STRUCTURE AS A BASIS FOR SEX DIFFERENCES IN BRAIN AGING
To explain how function changes with aging, the most widely investigated aspect is the structural changes of 
the aging brain. With the advantages of noninvasive imaging techniques, researchers were able to study the 
aging brain in healthy living individuals. As many healthy volunteers were incorporated into such studies, 
this provided the opportunity to analyze the sex differences of the human brain anatomy relating to aging. 
Using magnetic resonance imaging, many researchers found more profound age-related decline in cortical 
grey matter volume in males than females[72-74]. However, there are many investigations that do not support 
the hypothesis that the effect of aging is accelerated in men and have failed to find age-by-sex interactions in 
adult and elderly populations[75-77]. When considering the sex differences of subcortical gray matter structure 
in the aging brain, conclusions are no more consistent [Table 3]. The subcortical structures studied include 
the basal ganglia (caudate, nucleus accumbens, putamen, and pallidum), thalamus, hippocampus, and 
amygdala. Among these, the hippocampus is the most studied, and some hippocampus studies have 
reported that females have larger volumes in the aging brain[78-80] while others have opposing results[81]. In 
old age, for thalamus, some studies found the male had a larger volume[72,80], while others opposed this[82]. 
When correcting for brain volume, Li et al.[78] found no significant sex difference in the relative volume of 
thalamus. Similarly, for the caudate, some found females had larger volume[83,84], while others found males 
had larger volume[78,80]. More consistently, the amygdala[78,85], pallidum[78,80], and putamen[78,80] have been 
invariably found to be larger in males.
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Table 3. Sex difference of subcortical regions in the aging brain of cross-sectional studies

Subcortical 
regions Ref. Age 

(year)
Sex difference of volume in older 
age (> 45)

Sex difference of decline rate in older 
age (> 45)

Li et al.[78] 19-70 F > M (relative volume) M > F (relative volume)

Nemeth et al.[79] 21-58 F > M M > F

Wang et al.[80] 19-86 F > M (> 70) M > F

Hippocampus

Goto et al.[81] 41-77 M > F (absolute volume) F > M (absolute volume)

Sullivan et al.[72] 20-85 M > F Similar

Li et al.[78] 19-70 Similar (relative volume) Similar (relative volume)

Wang et al.[80] 19-86 M > F M > F

Thalamus

Takahashi et al.[82] 20 to ≥ 80 F > M M > F

Li et al.[78] 19-70 M > F (relative volume) F > M (relative volume)

Wang et al.[80] 19-86 M > F Similar

Good et al.[83] 18-79 F > M No test

Caudate nuclei

Luders et al.[84] 18-82 F > M No test

Li et al.[78] 19-70 M > F (relative volume) F > M (relative volume)Putamen

Wang et al.[80] 19-86 M > F M > F (right)

Li et al.[78] 19-70 M > F (relative volume) F > M (relative volume)Pallium

Wang et al.[80] 19-86 M > F M > F (right)

Accumbens Wang et al.[80] 19-86 Similar Similar

Li et al.[78] 19-70 M > F (relative volume) F > M (relative volume)Amygdala

Cheng et al.[85] 20-50 M > F No test

F: Female; M: male.

Differences in these findings may be due to differences in the age range of subjects evaluated and methods 
used for analysis. The previous findings of brain structure changes in the aged brain of females and males 
are mainly based on cross-sectional studies, which only show the status at one specific time or with different 
status at different specific times. Longitudinal studies may be better suited to address the conflicts in cross-
sectional studies. Over the last 15 years, increasing numbers of longitudinal studies have been performed to 
investigate the rate of brain change with aging. Among them, some studies have paid attention to the sex 
difference in aging[86-90]. Taki et al.[86]’s studies showed the annual percentage change in the grey matter ratio 
(APCGMR) in the older female group was substantially lower than in the older male group, using such a 
longitudinal design running over a period of over six years in 381 healthy community-dwelling individuals. 
Jiang et al.[88] chose individuals aged 70-90 years as subjects. After a two-year follow-up, they found that 
women had thicker cortical regions but greater rates of cortical atrophy[88]. For the structural changes of 
cortex subregions, Pfefferbaum et al.[87] focused on the change of regional brain volume with aging in 
longitudinal studies. They found a more rapid increase of lateral ventricle volume and Sylvian fissures and 
more rapid decline of the centrum semiovale, anterior cingulate, parietal and precentral cortices, and 
thalamus in older men than older women, especially in those beyond 60 years of age[87]. Narvacan et al.[89] 
scanned a cohort of 55 subjects approximately three years apart. While finding that overall males had larger 
volumes than females for all subcortical structures, no sex differences in trajectories of change were 
detected[89]. Such differences may stem from longitudinal studies which can be limited by the age range of 
participants, sex distribution of the samples, or scanning intervals. In a recent study, Vinke et al.[90] used the 
Rotterdam study[91] to understand the different aspects in brain aging of middle- and old-aged males and 
females based on a large prospective population-based cohort study. Their analysis showed that an earlier 
acceleration of decrease for normal-appearing white matter volume, gray matter volume, total brain 
volume, hippocampus volume, and pallidum volume and increased cerebrospinal fluid volume had 
occurred in men compared with women. Meanwhile, men tended to have a higher prevalence of focal 
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lesions (microbleeds, lacunes, and cortical infarcts) compared with women. Although shorter time intervals 
and less time for scanning posed some limitations for the reliable representation of the longitudinal effect of 
those of older ages, this study, with the largest sample used for aging-related research, provides good 
background information for understanding the different changes in the female and male brain due to aging.

As for other studies dealing with functional age-related change in the human brain, limitations exist in both 
cross-sectional and longitudinal studies for investigating how the brain’s structure changes with aging. 
Although no consistent results have been reached for such sex differences in brain structural changes, most 
studies have indicated that males have accelerated atrophy in the grey matter of the cortex. This may 
support some findings for the faster cognitive decline in males mentioned above. The noted differences in 
changes for different subcortical regions may help us to understand why females outperformed males in 
some specific tasks while males outperformed females in others. In their review, Nemeth et al.[79] 
demonstrated the possible functional consequences of sex difference of the subcortical grey matter, noting 
that their findings were relevant for dementia occurrence. However, the direct link among brain structures, 
cognition, and behavior is not currently clear and requires further investigation.

CELLULAR BASIS FOR SEX DIFFERENCES IN BRAIN AGING
Mattson and Arumugam[92] 2018 paper summarizes these findings well and organizes the main aspects of 
brain aging into nine hallmarks: (1) mitochondrial dysfunction; (2) oxidative damage; (3) impaired cellular 
“waste disposal” mechanisms (autophagy-lysosome and proteasome functionality); (4) impaired adaptive 
stress response signaling; (5) impaired DNA repair; (6) aberrant neuronal network activity; (7) dysregulated 
neuronal Ca2+ handling; (8) stem cell exhaustion; and (9) glia cell activation and inflammation. To date, 
several studies (mainly from animal experiments) have shown sex differences for these hallmarks, indicating 
possible cellular and molecular mechanisms for sex disparity of brain aging [Figure 1].

Sex difference in mitochondrial dysfunction and oxidative stress with brain aging
The mitochondrion is an important organelle in the cell, which plays crucial roles in ATP production, 
storage calcium ions, and the regulation of cellular proliferation[93]. Sex difference has been found in many 
aspects of brain mitochondrial function including morphology, pathways of biogenesis, autophagy, cell 
death, calcium, and redox homeostasis[94]. However, such results have been mainly based on investigations 
of the adult brain or injured brain. Investigations on sex differences of brain-based mitochondrial 
dysfunction related to the normal aging process are relatively sparse. However, sex factors of redox 
homeostasis have been directly studied relating to brain aging, where the mechanism of the balance of free 
radical production and antioxidants is required to maintain redox homeostasis.

Upon aging, brain neurons tend to suffer from oxidative damage by excessive generation of free radicals and 
reduced antioxidant defense. Animal studies showed that, in young adult rats, females exhibit lower release 
of cytochrome c and lower levels of mitochondrial hydrogen peroxide than males[95]. Moreover, in rats of 
similar ages, female brain mitochondria generated half the amount of peroxides and imposed dramatically 
less oxidative damage to mitochondrial DNA than those of males[96]. In contrast, Guevara et al.[97,98]’s studies 
on rat brains of different ages (6, 12, 18, and 24 months old) showed no significant sex-based differences for 
H2O2 production in any age class, despite H2O2 production being increased with age in both sexes.

For the antioxidant system, studies on rodents showed that young female brains have higher expression or 
activities of the antioxidant enzymes SOD and CAT[99-101]. However, upon brain aging, the factors of sex 
difference relating to oxidative stress become complicated. Although higher antioxidant defense occurred in 
young female rats, after ovariectomy, mitochondrial peroxide and glutathione (GSH) levels in females 
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Figure 1. Sex differences implicated in cellular hallmarks of the aging brain. Shown in colored sections and dashed boxes, sex differences 
may exist in some hallmarks of brain aging.

became similar to those of males[96], indicating decreased antioxidant ability in menopausal female rats. 
Accordingly, other non-human studies also showed higher CAT activity in the aging (18-20 months) male 
mouse brain and higher SOD1 protein levels in the brain of aged (28-month-old) males[102]. Similar results 
were found in Human studies. Viña and Borrás[103] proposed that young females have a better ability to fight 
against oxidative stress with higher antioxidant levels prior to menopause. Mandal et al.[104] also found that 
young females (± 26 years old) have higher GSH levels than young men in the frontal and parietal cortex. 
Interestingly, the GSH levels decrease in the brains of older women (56 years old) compared with the 
younger women[104], indicating that the antioxidant ability changes with aging in women. In line with this, 
Rekkas et al.[105] found that oxidative stress in the brain increased rapidly in perimenopausal women. 
Bilateral oophorectomy-induced menopause was associated with increases in the GSH/GSSG ratio (increase 
in GSH, decrease in GSSG) and reduction in SOD and glutathione peroxidase (Gpx) mRNA expression[106], 
suggesting that women had decreased antioxidant ability after menopause.

When detecting oxidative damage in the brain, several studies in rodents have demonstrated males may 
exhibit greater oxidative damage, expressed as higher DNA oxidation[107] or higher levels of lipid 
peroxidation[107-109], than age-matched females over relatively young ages. This may be caused by lower free 
radical production and higher antioxidant defense in young females. However, other studies show no such 
sex differences[110,111] or higher oxidative damage in females[100,112]. These differences may stem from the 
different brain regions under examination or the different times of detection. Guevara et al.[97,98]’s studies on 
rats of different ages (6, 12, 18, and 24 months old) showed lesser oxidative damaged proteins and lipids in 
female brains, even in old age, an observation which they attributed in part to higher Gpx activity. 
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Uzun et al.[113]’s study also found that protein damages were greater in male brains of 24-month-old rats. 
However, in the brain of 6-month-old ovariectomy mice, females showed increased levels of lipid 
peroxidation compared to the sham group[114], indicating increased oxidative damage in postmenopausal 
females.

Overall, these findings on the sex difference in oxidative stress in the aging brain suggest that young females 
have a better ability to defend against oxidative stress, but these advantages may be lost upon aging, 
especially beyond menopause. As reviewed in Grimm et al.[115]’s paper, the change of redox state with aging 
is associated with variation in sex steroid levels. This finding may aid in the understanding of sex differences 
in vulnerability to neurodegenerative disease[115].

Sex differences in glia cell activation upon brain aging 
Glial cells are distinguished from neurons in the brain and play important roles in brain function via 
facilitating crosstalk with neurons, maintaining the normal function of neurons, and defending against 
harmful stimuli. There are different types of glial cells in the brain, including astrocytes, microglia, and 
oligodendrocytes, each with distinct functions. Oligodendrocytes insulate axons and provide them with 
trophic support[116]; microglia are regarded as macrophages participating in local immunity[117]; and 
astrocytes provide biochemical support of neuronal activities by facilitating the appropriate glial 
surroundings in conjunction with microglia[117,118]. Various wide-ranging studies have demonstrated sex 
differences related to glial cells in physiological conditions or in response to pathological insults[119-121]. 
However, sex differences in aged glial cells remain relatively under-studied, and the discoveries mainly stem 
from animal experiments.

Sex differences in microglia are the most studied sex-related aspect in the process of brain aging, with 
previous studies quantifying changes of microglia in the aging brain[122,123]. Mouton et al.[123]’s study showed 
that, in both young and old mice, females had more astrocytes and microglia in DG and CA1 of the 
hippocampus than did age-matched male mice. In addition, with the development of sequencing 
technology, recent studies have paid increasing attention to the gene expression relationships for microglia 
in aging[124,125]. Mangold et al.[126] also detected the sex differences for microglial gene expression in the 
mouse hippocampus and cortex. They found that inflammatory genes were more highly expressed in 
microglia of older females than in corresponding older males[126]. Importantly, using single-cell RNA-
sequencing analysis, Sala Frigerio et al.[127] found that aging or progressive amyloid-β accumulation 
accelerated the two main activated microglia states and that female mice progressed faster in this than 
males, which also converged with the pathway of sex differences relating to aging and AD. In addition, 
Kang et al.[128] mentioned in their article that tauopathy, amyloidosis, and aging had been shown to share a 
common APOE-driven transcriptional signature in microglia, which indicates that the increased expression 
of many of these transcripts of microglia in older mouse brains may be related to increased susceptibility to 
Alzheimer’s disease in females. As regards to the functions of microglia in aging, one recent study on 
phagocytosis showed that aged female microglia had a greater ability for phagocytosis of neuronal debris, 
but they had lost their ability to adapt their phagocytic activity to inflammatory conditions[129]. Another 
study on microglial function, analyzing microglial Ca2+ signaling and process motility, suggested “faster 
aging” for microglia in female mice[130]. Taken together, the more active/faster aging microglia in older 
females may render them more vulnerable to some age-related neurodegenerative disease such as AD.

Relatively few studies have focused on astrocytes and oligodendrocytes in aging. Research on astrocytes has 
mainly been conducted in vitro via the detection of differences in the changes between the sexes under 
specific stimuli or in response to various pathological insults[131]. No specific analysis of the sex differences 



Page 11 of Yang et al. Ageing Neur Dis 2022;2:3 https://dx.doi.org/10.20517/and.2022.03 18

relating to the aging process seems to have been conducted relating to astrocytes. For oligodendrocytes, 
Cerghet et al.[132,133] examined the sex difference of oligodendrocytes in the rat and mouse brain and found 
that the density of oligodendrocytes in the corpus callosum, fornix, and myelin proteins and myelin gene 
expression were all greater in males, and shorter life of oligodendrocytes was noted in females, a finding 
which did not simply represent younger mice and rats, but also held true for old mice. These differences for 
oligodendrocytes and myelin may be associated with the sex difference in the white matter volume in the 
adult and aging brain, which is discussed in “BRAIN STRUCTURE AS A BASIS FOR SEX DIFFERENCES 
IN BRAIN AGING”. Oligodendrocyte precursor cells can generate new mature oligodendrocytes to defend 
against myelin impairment in the adult brain. Transcriptomic analyses have identified sex differences in 
oligodendrocyte precursor cells in the expression of genes encoding for proteins involved in the cell cycle, 
proliferation, maturation, and myelination, among other functions[134,135]. This difference renders older (12-
month-old) female rats with greater abilities of remyelination than males after demyelination lesions[136].

Sex differences in proteasome degradation and autophagy upon brain aging
In most organisms, a balance in the protein system, which forms the basis for gene expression and protein 
synthesis and degradation, is important for the normal function of cells. Aging often shifts this balance with 
the subsequently altered gene expressions and protein synthesis and disrupted protein degradation, 
resulting in some notable pathological features[137]. In recent studies, many molecules have been 
demonstrated to be associated with brain aging including SFRS11[138], CD22[139], REST[140], and BAZ-2 and 
SET-6[141], the expressions of which change along with the aging process. However, no particular sex 
differences have been noted for these. Whether this is due to there not being any notable sex differences, or 
that this is an aspect yet to be properly examined, remains to be clarified.

Another important part of the protein system is protein degradation, which has been verified to be 
disrupted with brain aging[142]. In cells, two main protein degradation systems exist, namely the ubiquitin-
proteasome system (UPS) and autophagy[143,144]. A few non-human data demonstrate that sex differences 
exist in these protein degradation systems of the aged brain. Ding and Keller[145]’s study showed that 
proteasome inhibition occurs with aging in the central nervous system, while Zeng et al.[146]’s study 
demonstrated that, in older (15-month-old) female mice and rats, catalytic activities of the proteasome are 
decreased in the cortex, striatum, cerebellum, globus pallidus, and substantia nigra with aging. In 
Jenkin et al.[147]’s study, investigators compared the activity of the proteasome in nine tissues of young (3-5-
month-old) and middle-aged (10-15-month-old) female and male mice. They found young females showed 
no significant differences in their proteasome activity in the brain as compared to young males. However, 
from middle age onwards, males showed significant decreases in proteasome activity with subsequent aging, 
while no such change was noted for females[147]. One study on older fruit flies showed that basal activities of 
20S proteasome had decreased in both female and male fruit-fly heads. However, in young female flies, the 
proteolytic capacity of the 20S proteasome could be increased via the induction of H2O2, but with this effect 
diminishing for older female flies. However, male flies showed no such age-related adaptation of the 20S 
proteasome[148]. This indicated the potential for an age-related sex difference for proteasome activity in its 
primed adaption from external stimuli. In another recent study, old (22-month-old) male rats showed 
impaired fear memory with impaired UPS activity (reduced phosphorylation of the Rpt6 proteasome 
subunit and accumulated K48 polyubiquitinated proteins) in the basolateral amygdala (BLA), while no 
behavioral change was noted for old females. In this study, such changes in the activity-driven markers of 
UPS activity occurred within the medial prefrontal cortex but not in the BLA of old females[149]. Such an 
observation of the sex differences of UPS activity in different brain regions of the aged brain aid in the 
understanding of sex differences related to cognitive decline with aging.
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As for autophagy, while no direct articles have reported sex differences in the normal aging brain, multiple 
studies have demonstrated its role in AD[150]. Many investigations on other tissues (not brain tissue) have 
shown that females appear to have overall lower levels of autophagy, and ovariectomized animals show 
increased basal levels of autophagy in several cell types[151]. This highlights the changes in the nature and 
extent of autophagy after menopause in women. Although more research is needed, considering the results 
of Jenkin et al.[147]’s study, younger females show an overall higher proteostasis capacity, where there may be 
a particularly well-established balance in the two types of protein degradation systems, but these could then 
become disrupted upon aging, rendering elderly women more vulnerable to a number of associated 
diseases.

For the many other hallmarks of brain aging, few studies have paid attention to any potential sex 
differences. Although many of the above-noted differences in the cellular changes between the female and 
male aging brains are not fully understood, these discoveries will likely attract increasing numbers of 
researchers to consider the sex factor and to further illuminate the related cellular mechanisms. These will 
help link the hormonal effects with those that relate to cognition and behavior, in the process of aging.

CONCLUSION
Sex differences in the brain, as they function in developmental and adult stages, have been widely 
investigated. However, studies on the sex factors related to the aging brain are lagging behind and deserve 
increasing attention, particularly under the current situation of a rapidly aging global population. Although 
there are no consistent general conclusions related to sex differences on cognitive decline with aging, the 
differences of some aspects of cognitive performance in older adults and the increased vulnerability of 
females and males to various aspects of dementia are becoming fairly well established, especially for AD and 
PD where sex is regarded as a primary risk factor for these neurodegenerative diseases. Specifically, many 
studies have demonstrated that women have a higher prevalence of AD than age-matched men and exhibit 
faster cognitive decline beyond AD diagnosis. Conversely, almost all recent studies have demonstrated that 
men have a higher prevalence of PD. However, for treatment, the current interventions for dementia often 
fail to consider the sex factor. One possible reason may be that the underlying mechanisms of sex difference 
for the functional changes that occur during the process of brain aging are not yet fully clear and that 
present techniques and other socioeconomic factors render such factors difficult to examine in detail. 
However, it is clear that age-related cohorts need to be established and traced to provide information about 
how human aging-related phenotypes and molecular changes upon aging relate to sex, in order to guide 
future health improvements. Beyond human-based studies, to unpack the possible structural and cellular 
mechanisms for sex differences of the aging brain, the use of animal models should be increasingly 
established, with experiments designed that can incorporate the benefits of the model animal’s simple 
genetic background. With a better understanding of the biological mechanism for the sex differences in 
brain aging, we can better understand the overall functional changes in the brain, elucidate how sex creates 
differences in disease risk, lay a stronger foundation for dealing with the newly emerging aspects of 
neurodegenerative disease, explore more directly the biomarkers for brain aging, and further promote 
personalized medicine that incorporates the factor of sex for improved and more individualized disease 
treatment.
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Abstract
Abnormal accumulation of disease proteins in the central nervous system is a neuropathological feature in 
neurodegenerative disorders. Recently, a growing body of evidence has supported a role of disruption of the sleep-
wake cycle in disease development, pathological changes and abnormal protein accumulation in neurodegenerative 
diseases, especially in Alzheimer’s disease and Parkinson’s disease. Sleep deprivation promotes abnormal 
accumulation of disease proteins. Interestingly, amyloid-β (Aβ) has daily oscillations in human cerebral spinal fluid 
(CSF) and is cleared more in sleep. Both circadian genes and circadian hormones are associated with disease 
protein deposition. Recently, the glymphatic pathway and meningeal lymphatics have been shown to play a critical 
role in Aβ clearance, which is mediated by the aquaporin (AQP-4) water channel on astrocytes. The rate of the 
clearance of Aβ by the glymphatic pathway is different during the sleep/wake cycle. Most importantly, circadian 
rhythms facilitate glymphatic clearance of solutes and Aβ in the CSF and interstitial fluid in an AQP-4-dependent 
manner, which further provides evidence for the involvement of circadian rhythms in disease protein clearance.
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INTRODUCTION
The sleep-wake cycle is controlled by circadian rhythms. Circadian rhythms are biological processes that 
follow a daily cycle and respond to light and darkness in an organism’s environment. Circadian rhythms are 
endogenously synchronized to the day/night cycle to form oscillations of 24 h[1]. The central pacemaker in 
mammals is the suprachiasmatic nucleus (SCN), which receives light signals from the retina through the 
retinohypothalamic pathway[2]. Ablation of the SCN in animals, aneurysms near the SCN, or pituitary 
tumors in patients disrupts daily rhythms[3-5]. Moreover, intrahypothalamic grafts of neonatal SCN tissue to 
SCN-ablated animals restore rest-activity rhythms[3]. Thus, the SCN plays a principal role in circadian 
rhythms.

The SCN clock entrains the peripheral clock, nearly all of the cells in the body, through autonomic 
innervation, body temperature, humoral signals, and feeding-related cues[6]. The rhythms of the cells from 
different organs are affected not only by the oscillation of hormones, the nervous system and temperature 
but also by local circadian oscillators[1]. Increasing lines of evidence demonstrate that dysfunction of 
circadian rhythms is associated with diseases in many systems and organs, including neurodegenerative 
diseases[7,8], cancer[9], hypertension[10], diabetes[11], and autoimmune diseases[12]. The circadian rhythms in 
mammals are generated internally but synchronized to the external environment (light and dark cycles by 
the Earth’s 24 h rotation[13]. Sleep/wake cycles have a typical 24 h pattern, which is linked to circadian 
rhythms[13]. Sleep loss is a representative symptom of circadian rhythm disruption.

Aberrant accumulation of abnormal disease proteins is a common pathological feature of 
neurodegenerative diseases. The aggregation of proteins associated with neurodegenerative disease is 
present in patient brains in both familial and sporadic cases, such as the formation of extracellular plaques 
by β-amyloid (Aβ) and intracellular neurofibrillary tangles by tau in Alzheimer’s disease (AD), intracellular 
Lewy bodies by α-synuclein (α-syn) in Parkinson’s disease (PD), TDP-43 inclusions in amyotrophic lateral 
sclerosis and nuclear inclusions in Huntington disease[14-16]. Circadian rhythm abnormalities are frequently 
present in patients with neurodegenerative diseases, in which patients obviously show abnormalities in the 
sleep-wake cycle. Patients, especially with AD or PD, often decrease activities during the daytime and 
increase activities at night, showing changes in rest-activity patterns[7,8]. Increasing evidence suggests that 
circadian rhythms are associated with protein homeostasis, which functions in the clearance of abnormal 
proteins[17,18]. Disruption of circadian rhythms increases the accumulation of disease proteins, which 
promotes pathological changes in neurodegenerative diseases.

In this review, we discuss the associations of circadian rhythm disruption and protein homeostasis 
dysfunction in neurodegenerative diseases. We focused on the influence of protein aggregation and 
pathological changes by circadian rhythm abnormalities. We summarized the studies on circadian rhythm 
disruption in AD and PD and the protein homeostasis regulated by circadian rhythms. We also described 
the pathological significance of circadian rhythm disruption and the underlying mechanisms in 
neurodegenerative diseases.



Page 3 of Wang et al. Ageing Neur Dis 2022;2:4 https://dx.doi.org/10.20517/and.2021.10 16

CLINICAL ASSOCIATIONS BETWEEN SLEEP DISRUPTION AND NEURODEGENERATIVE 
DISEASES
Alterations in circadian rhythms can be presented by behavioral and physiological changes, including sleep-
wake rhythms, body temperature, blood pressure and hormone levels. The sleep-wake cycle is often 
disrupted in patients with neurodegenerative diseases. The degeneration of neurons in neurodegenerative 
diseases is associated with or leads to circadian dysfunction and sleep disturbance, and it was previously 
believed that the disruption of circadian rhythms is a consequence of neurodegeneration. However, 
increasing evidence suggests that circadian dysfunction contributes to the formation of pathological 
changes, such as the accumulation of abnormal proteins and the progression of neurodegenerative diseases 
[Figure 1]. Importantly, sleep disorders are presented in many neurodegenerative diseases, including early 
AD, PD, dementia with Lewy bodies, frontotemporal dementia (FTD) and multiple system atrophy (MSA) 
patients[8,19-23], further suggesting that they play a role in disease development.

Alzheimer’s disease
Sleep disturbance can occur at all stages in AD patients. AD patients lose a normal resting-activity pattern, 
showing an increase in daytime sleepiness. It has been reported that sleep fragmentation can increase the 
risk of AD and the rate of cognitive decline[24]. In a Swedish cohort, 214 Swedish adults aged 75 and over 
participated in a longitudinal study with 9 years of follow-up. All participants were dementia-free at baseline 
and the first follow-up (3 years later). After a total of 9 years of follow-up, participants with moderate or 
severe sleep problems showed an increased risk for developing dementia, particularly AD[25]. After adjusting 
for age, education and gender, moderate/severe sleep disruption causes a 2.5 times greater risk of all-cause 
dementia and a more than 3 times greater risk of AD[25]. In a prospective study, women without dementia 
were subjected to overnight polysomnography measurements to determine sleep status. After a 5-year 
follow-up, their cognitive status was evaluated. Women with sleep-disordered breathing have a high 
incidence of developing mild cognitive impairment or dementia, suggesting that sleep problems are 
associated with the development of dementia[26]. Shift workers are subjected to sleep deprivation, which 
causes circadian disruption. By analysis of a Danish nurse cohort (28,731 female nurses), shift work 
increased AD risk[27]. Moreover, sleep disorder is believed to occur at the preclinical stage of AD[28]. Using a 
tailored light treatment that maximally regulates the circadian system, AD patients show significant 
improvements in sleep, mood and behavior, further suggesting that there is an association between 
circadian system disruption and the symptoms in AD patients and that an entrainment of circadian 
rhythms benefits AD patients[29].

Parkinson’s disease
It is estimated that nearly half of dopamine neurons in the substantia nigra are lost when patients start 
motor symptoms. Before motor symptoms, PD patients often demonstrate nonmotor symptoms, including 
mood disorders, pain, gastrointestinal dysfunction and sleep disorders. Sleep disturbance, including 
insomnia, excessive daytime somnolence (EDS), fragmented sleep and rapid eye movement sleep behavior 
disorder (RBD), is the most common nonmotor symptom, which appears in up to 90% of PD patients[30-32]. 
The changes in temporal sleep patterns, including insomnia, EDS and fragmented sleep, that are controlled 
by circadian rhythms suggest a disruption of the circadian system in PD. Characterized by 
polysomnography signals, sleep is divided into two states: rapid eye movement (REM) and nonrapid eye 
movement. Patients with PD at an early stage show increased sleep latency and decreased REM sleep as well 
as sleep efficiency[7]. In a study involving 3078 men free of PD and dementia, the risk of developing PD 
within 10 years was threefold higher in men with EDS than in those without EDS[33], suggesting that EDS 
increases the risk of PD and is a prodromal stage of PD. In a population-based prevalence study, RBD was 
identified as a symptom in the early phase of PD, which occurs in nearly 30% of newly diagnosed PD 
patients[34]. The prevalence of RBD in PD patients is estimated to be near 40%, showing that the risk for the 
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Figure 1. Interactions between sleep disturbance and neurodegenerative diseases. Sleep disturbance plays roles in neurodegenerative 
disease. It promotes the pathogenesis of Alzheimer’s disease (AD) and Parkinson’s disease (PD). Sleep disturbance is tightly 
associated with Aβ and tau deposition in AD and α-syn accumulation in PD. It also promotes the transmission of disease proteins, such 
as tau in AD and α-syn in PD. Furthermore, sleep disturbance is positively related to dementia in AD and excessive daytime somnolence 
(EDS) and rapid eye movement sleep behavior disorder (RBD) in PD. However, there are bidirectional relationships between sleep 
disturbance and neurodegenerative diseases. Neurodegeneration and pathogenesis in neurodegenerative diseases induce sleep 
disturbance, further leading to deterioration of the disease. Aβ: Amyloid-β; α-syn: α-synuclein.

conversion from idiopathic RBD to PD is extremely high. RBD is associated not only with the development 
of PD but also with a risk for dementia[20]. Importantly, among the sleep disorders in PD, RBD is mostly 
associated with the development of PD pathology. In an observational cohort study, patients with idiopathic 
RBD were followed up for 7 years and examined with dopamine transport imaging, transcranial sonography 
and olfactory testing[35]. With this cohort, 82% of patients with idiopathic RBD show neurodegenerative 
syndrome with an increased risk for developing PD and Lewy body dementia. In three patients with 
antemortem diagnosis of PD and Lewy body dementia, there were widespread Lewy bodies in the brains 
and α-syn aggregates in the peripheral autonomic nervous system, suggesting an association between RBD 
and synucleinopathy[35]. Interestingly, these three patients show Lewy pathology as well as a loss of neurons 
in the brainstem nuclei that regulate REM sleep atonia[35], which may also reflect a connection between 
synucleinopathy and REM sleep without atonia in PD.

Frontotemporal dementia
FTD includes a group of heterogeneous dementias with the frontal and temporal lobe atrophy in patients. 
Behavioral variant FTD (bvFTD) is a common form of FTD syndromes. In comparison to AD patients, 
FTD patients have more severe daytime somnolence and sleep disturbance[36]. The sleep disturbance appears 
earlier in FTD than in AD patients. Moreover, FTD patients have longer sleep onset and less total sleep time 
than AD patients[37]. In the prodromal symptoms, sleep disturbance occurs more frequent in bvFTD patients 
(40%) than in AD patients (12%)[38].

The hexanucleotide (G4C2) repeat expansion in the chromosome 9 open reading frame 72 (C9orf72) gene 
causes both FTD and amyotrophic lateral sclerosis (ALS)[39,40]. In a screen for C9orf72 repeat expansion in 
344 RBD patients, two of them have G4C2 expansion, suggesting a possible linkage between RBD and 
C9orf72 mutation[41]. It is well known that dipeptide repeat proteins (DPRs) that are encoded by the 
expansion of C9orf72 by non-ATG translation form inclusions in c9FTD/ALS. Interestingly, the abundant 
DPR inclusions are presented in pineal grand, as well as the supraoptic nucleus and paraventricular nucleus 
(PVN) that are related to the SCN, implying an association of sleep disruption and c9FTD/ALS[42].

Multiple system atrophy
The sleep disturbance occurs highly in MSA patients. RBD is a very common symptom in MSA patients. In 
a meta-analysis, the prevalence of RBD in MSA ranks from 25% to 100%[43]. In a cross-sectional study in 
which 165 MSA patients are engaged, sleep disorders are observed in most patients[44]. RBD occurs in 49.7% 
of patients, and the frequency of EDS is 27.3%[44]. Importantly, there is a positive correlation between sleep 
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disturbances and the severity of MSA[44]. Another study also shows that there is an association of RBD and 
MSA, with a frequency of RBD as high as 70.4% in MSA patients[45]. A cross-sectional study shows that the 
MSA patients with EDS have a higher score of Non-Motor Symptoms Scale and a higher apnea-hypopnea 
index as compared the MSA patients without EDS, suggesting that EDS in MSA patients is more associated 
with sleep-related breathing disorder and other the non-motor symptoms[46].

PATHOLOGICAL ACCUMULATION OF DISEASE PROTEINS IN ASSOCIATION WITH 
SLEEP DISRUPTION
The pathological hallmark is the presence of abnormal protein deposition in diseased brains in patients with 
neurodegenerative diseases. The formation of amyloid plaques by Aβ and intracellular neurofibrillary 
tangles by tau in AD or the formation of Lewy bodies by α-syn is a typical pathological process in AD or PD 
brains[47]. Soluble Aβ, tau or α-syn can form oligomers, protofibrils and fibrils, which accumulate and 
deposit in diseased brains (Soto and Pritzkow[48], 2018) [Figure 1].

Aβ
The homeostasis of Aβ, either accumulation or clearance, is important for AD pathology. Aβ is a small 
peptide that is released from amyloid precursor protein (APP) after APP is cleaved by β-secretase and 
subsequently cleaved by γ-secretase[49,50]. Mutations in APP or presenilin (catalytic subunit of γ-secretase) 
that cause early-onset familial AD increase the processing of APP, which promotes the generation of Aβ 
peptides[51,52]. The deposition of Aβ in AD brains and in APP transgenic mice is a typical pathological 
feature.

It has been reported that Aβ has daily oscillations[53]. The levels of soluble Aβ in brain interstitial fluid (ISF) 
in the hippocampus in wild-type or human APP transgenic mice have a pronounced diurnal rhythm[53]. 
Moreover, the fluctuation of Aβ also occurs in the cerebral spinal fluid (CSF) in humans[53]. In sleep-
deprived mice, Aβ is increased in the ISF in the hippocampus in both wild-type and APP transgenic mice; 
however, Aβ is decreased in the ISF in the hippocampus in animals with more sleep[53]. In APPswe/PS1δE9 
mice, diurnal fluctuation of Aβ in the ISF and the hippocampus but not in the striatum was attenuated at 6 
months of age. Diurnal fluctuation of Aβ in ISF in the striatum is decreased at 9 months of age when Aβ 
plaques appear in the striatum and more often in the hippocampus[54]. Animals also have significant 
disturbances in the sleep-wake cycle at 6 months of age[54]. Thus, the decrease in diurnal fluctuation of Aβ in 
the ISF occurs earlier in the hippocampus than in the striatum, and Aβ plaques appear earlier in the 
hippocampus than in the striatum, suggesting a link between Aβ pathological progression and daily 
oscillations. In addition, active immunolization with Aβ, which decreases Aβ deposition in APPswe/PS1δE9 
mice, restores the diurnal fluctuation of Aβ in the ISF and normal sleep-wake cycle[54], suggesting that Aβ 
deposition disrupts Aβ oscillations and the sleep-wake cycle.

In humans, the daily oscillation of Aβ in the CSF shows that Aβ increases during the day, reaches a peak in 
the evening, and then decreases overnight[53]. Loss of diurnal fluctuation of the CSF Aβ occurs in patients 
with presenilin mutation when Aβ deposition is detected by amyloid imaging with Pittsburgh Compound 
B[54]. An attenuation of diurnal fluctuation of the CSF Aβ also occurs in patients with presenilin mutation[54]. 
Most interestingly, using a radiotracer 18F-florbetaben that binds to Aβ, images from healthy individuals 
scanned by positron emission tomography show that even one night of sleep deprivation can increase Aβ in 
the hippocampus and thalamus, the regions vulnerable to damage in AD[55]. This study demonstrates the 
first evidence, in living humans, that sleep disturbance is directly associated with Aβ accumulation[55].
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In animal models, APPswe/PS1δE9 transgenic mice show changed sleep architecture compared with control 
mice. Moreover, sleep disturbance occurs at 4 months of age, but plaque deposition and tau 
phosphorylation typically occur at 6 months of age[56], suggesting that sleep changes occur earlier than AD 
pathology. APP transgenic mice also develop more Aβ plaques in the hippocampus after exposure to sleep 
deprivation[53,57]. Chronic sleep deprivation of 8 h per day for 2 months or chronic sleep deprivation of 20 h 
per day for 21 days increases Aβ plaques in the hippocampus in APP transgenic mice[53,57]. Sleep deprivation 
increases Aβ levels in the CSF in humans[53] and amyloid plaques in the hippocampus in APP transgenic 
mice[53,57], suggesting an impact of sleep disorders on Aβ accumulation. However, Aβ has a role in circadian 
rhythms in multiple transgenic mouse models with Aβ pathology. In 5×FAD mice that model AD, the 
circadian rhythms are changed, evidenced by alterations in home cage activity and body temperature[58]. 
Thus, there is a bidirectional relationship between Aβ accumulation and sleep disorders[59].

The association of the accumulation of Aβ with sleep disturbance has been further verified in patients who 
accept sleep intervention or in animal models that are treated with drugs to improve sleep. In patients with 
obstructive sleep apnea, the Aβ levels in blood[60] and the Aβ deposition in brain[61] are increased. In AD 
patients with sleep-disordered breathing, a 6-month sleep intervention with a constitutive positive airway 
pressure ventilation decreases blood Aβ42/40 ratio in patients who are complete recovered from sleep 
disturbance[62]. Interestingly, there are no changes in blood Aβ42/40 ratio in those patients who have no 
improvement in sleep[62], suggesting an involvement of sleep in the regulation of Aβ levels. In animal, an 
administration of nobiletin, a natural compound that is able to enhance the amplitude of clock gene 
oscillation[63], improves clock gene expressions and decreases Aβ deposition in APP/PS1 mouse brains[64].

Tau
Tau is another important protein in association with AD. In the AD brain, tau is hyperphosphrylated and 
forms intracellular neurofibrillary tangles, a pathological hallmark of Aβ plaques. Tau pathology occurs in 
the early AD. Aggregates of tau first appear in the brainstem locus coeruleus (LC) and then spread to the 
transentorhinal and entorhinal regions and subsequently to the hippocampus[65]. The LC is strongly linked 
to wakefulness and sends norepinephrine-containing projections to the cortex, amygdala, hippocampus, 
cerebellum and spinal cord. In tau P301S transgenic mice expressing the human P301S tau mutation that is 
associated with parkinsonism linked to chromosome 17, chronic short sleep at the age of 2-3 months 
induces deterioration in behaviors and increases in tau oligomers with sustained increases in 
phosphorylated tau and neuronal loss in the LC and the amygdala[66]. The brain ISF tau in mice and the CSF 
tau in humans are also regulated by the sleep-wake cycle, although tau is known as an intracellular 
protein[18]. Tau in brain ISF in the hippocampus has diurnal oscillations similar to Aβ. In sleep-deprived 
mice, tau levels are 2-fold increased in brain ISF[18]. Interestingly, the increase in tau in brain ISF induced by 
sleep deprivation can be blocked by terodotoxin, a toxin that blocks voltage-dependent sodium channels, 
suggesting that neuronal activity is related to tau levels in brain ISF. In addition, sleep deprivation in 
humans increases CSF Aβ by 30%, while it increases CSF tau by over 50% in the same participants[18]. With 
chronic sleep deprivation, the administration of recombinant P301S human tau fibrils does not change tau 
seeding in the hippocampus; however, it increases tau spreading to the LC, a nucleus associated with 
wakefulness[18], suggesting that sleep disorders may induce tau spreading to other brain regions that are 
associated with the wake-sleep cycle, producing feedback effects on sleep.

α-syn
It has been reported that the severity of hypothalamic Lewy pathology is correlated with Braak stages[67]. 
Moreover, Lewy pathology is presented in the SCN with mild or moderate severity in most cases of PD, 
much fewer in pineal gland[67]. In multiple system atrophy, no Lewy pathology is present in the SCN or 
pineal gland[68], suggesting a tight association between circadian dysfunction and PD pathology. According 
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to the Braak hypothesis, α-syn pathology can spread from the peripheral autonomic nerve endings of the 
gastrointestinal tract to the brain[69]. In a study involving 602 patients with clinical assessment for RBD and 
neuropathological examination for Lewy-type α-synucleinopathy, Lewy-type α-synucleinopathy occurred in 
79.2% of patients with RBD but only 39.5% of those without RBD[70]. In addition to the brain, α-syn 
pathology occurs in many organs, including the vagus nerve, gastrointestinal tract, adrenal gland and heart, 
in PD patients[71]. The presence of pathological α-syn in the gastrointestinal tract is identified in prodromal 
PD patients up to 20 years prior to diagnosis[72]. Moreover, the transmission of α-syn inclusions has been 
well identified in recent studies that show the development of α-syn pathology in the brain after injecting α-
syn preformed fibrils into the duodenum[73,74]. Thus, peripheral tissues with α-syn pathology may reflect, at 
least partially, central pathology. In a study using biopsy samples of labial minor salivary glands, α-syn 
pathology occurred in labial minor salivary glands in 50% of patients with idiopathic RBD and 54% of 
patients with PD but only 3% of controls[75]. Moreover, the deposits of α-syn in the parotid gland in 
idiopathic RBD patients occur at the prodromal stage of PD[76]. Thus, studies suggest an association of α-syn 
deposition and RBD.

TDP-43
TDP-43 that is encoded by TARDBP is a major pathogenic protein in FTD and ALS[77]. Although the 
mutations in TARDBP only cover about 5% familial ALS cases and even less in FTD patients[78]. The TDP-43 
pathology is presented in about 97% of ALS patients and 45 % FTD patients[79]. In ALS patients, the volume 
of the hypothalamus is decreased[80]. Moreover, the volume of the PVN in the hypothalamus is also 
decreased. Furthermore, TDP-43-positive inclusions are observed in the PVN, lateral hypothalamus and 
fornix[80]. TDP-43 inclusions are also presented in the reticular formation in the brainstem, which has an 
important role in the rhythmical cycle of sleep and wakefulness[81]. The presence of TDP-43 pathology in 
sleep-related brain regions and nuclei suggests a linkage between the abnormal accumulation of TDP-43 
and the symptoms of sleep disorders in ALS and FTD patients.

FACTORS INVOLVED IN CIRCADIAN RHYTHM DISRUPTION IN NEURODEGENERATIVE 
DISEASES
Clock gene
The molecular basis of circadian rhythms is the oscillation of 24 h clock gene expression in the SCN[1]. The 
core clock gene products circadian locomoter output cycles kaput (CLOCK) and brain and muscle arnt-like 
1 (BMAL1) form heterodimers that bind to E-boxes and drive the expression of peroid (PERs) and 
cryptochrome (CRYs). The expression of PERs and CRYs in turn represses CLOCK-BMAL1 activity, thus 
inhibiting their own expression, which forms a feedback loop that takes 24 h[1]. Thus, the molecules involved 
in the molecular clock are important for the maintenance of circadian rhythms.

It has been reported that the alteration of DNA methylation of BMAL1 in early AD patients causes changes 
in BMAL1 expression patterns in both amplitude and phase[82]. Knockout of Bmal1 disrupts Aβ oscillation 
in brain ISF in the hippocampus. Moreover, in tamoxifen-inducible global Bmal1 knockout mice with an 
APP transgenic background, Bmal1 knockout significantly increases hippocampal Aβ plaques 4 months 
after tamoxifen induction[17]. In AD patients, there is a disruption of circadian rhythms, typically showing 
sleep problems. Sleep deprivation also affects clock gene expression and the DNA binding patterns of 
BMAL1 and CLOCK heterodimers, which disturbs clock function. Three different polymorphisms of the 
CLOCK gene are associated with AD in the Chinese population[83,84]. Moreover, changes in expression 
patterns and decreases in expression levels of Bmal1 and Clock in senescent cells and aged rodent brains 
suggest a role of circadian genes in aging[84]. In 5×FAD mice, the amplitude of BMAL1 and PER2 in a 24 h 
oscillation is greatly decreased[58]. Moreover, Aβ is able to induce BMAL1 degradation in vitro[58]. In 
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APP/PS1 mice, there is also a modest alteration of PER2 in the SCN, which is consistent with the findings in 
5×FAD mice[58,85]. In addition, at circadian time 4 (CT4, 4 h after the onset of activity of diurnal organisms, 
based on the free-running period of a rhythm), when microglia express higher levels of BMAL1 than at 
CT12, the clearance ability for fibrillary Aβ by microglia at CT4 is also higher than that at CT12 in 5×FAD 
mice[86]. Pharmacological inhibition of REV-ERBs that is transactivated by BMAL1 and negative feedback 
on BMAL1 activity promote a microglial M2-like phenotype. Moreover, a constitutive deletion of Rev-erbα 
in 5×FAD mice can repress amyloid plaque formation[86], further suggesting a role of the clock gene in 
protein homeostasis.

It has been reported that BMAL1 oscillation amplitude is decreased in PD patients and that BMAL1 mRNA 
levels are decreased in leukocytes in PD patients, suggesting that dysfunction of the clock gene Bmal1 may 
be associated with PD.

Melatonin
In the brain, circadian information in the SCN can be sent to different areas. Through multisynaptic 
projections, the SCN circadian information is integrated and sent to the superior cervical ganglia (SCG). 
The noradrenergic neurons in the SCG send projections to the pineal gland[87]. The pineal gland produces 
melatonin, the hormone that synchronizes and stabilizes circadian rhythms, which is important for the 
maintenance of the biological clock of the brain in the SCN. Melatonin is synthesized in the dark and shows 
oscillation at its level, which is controlled by the SCN [Figure 2]. The secretion of melatonin starts at early 
night and usually reaches a peak level at 3:00 to 4:00 am. With aging or neurodegenerative diseases, the 
circadian amplitude is decreased with desynchronization of physiological rhythms, leading to a decrease in 
melatonin levels[88]. Melatonin binds to melatonin receptor 1 (MT1) and MT2, which are G-protein coupled 
receptors and are highly expressed in neurons in the SCN, hippocampus, thalamus, vestibular nuclei and 
cerebral and cerebellar cortex[89]. In addition to the maintenance of circadian rhythms, melatonin has 
multiple functions, including antioxidative stress and regulating metabolism[88].

AD patients have lower melatonin levels than normal controls. The melatonin level is decreased in the CSF 
in early AD patients before clinical symptoms[90]. Meanwhile, the loss of neurons in the SCN further shows a 
correlation between AD and circadian rhythm dysfunction[91]. In patients with AD at the early stage, the 
initial evening secretion of melatonin is delayed and mildly decreased, suggesting that a circadian phase 
shift occurs in early AD patients[92]. Moreover, the risk variant rs12506228, which is located downstream of 
MTNR1A (MT1A-encoding gene), is associated with AD[93]. The rs12506228 variant leads to a decrease in 
MT1A expression and is associated with both clinical and pathological changes in AD patients[93], further 
suggesting a role of melatonin in AD.

It has been reported that melatonin has effects on Aβ deposits in AD. In APP/PS1 mice, long-term 
melatonin treatment at ages starting from 2-2.5 months decreases Aβ deposits in the hippocampus and the 
entorhinal cortex when the animals are examined at the age of 7.5 months[94]. Meanwhile, there was a 
decrease in inflammatory cytokines in the hippocampus in APP/PS1 mice treated with melatonin, 
suggesting a role of melatonin in anti-inflammation and decreasing Aβ accumulation[94]. It has also been 
reported that melatonin can induce lymphatic clearance of Aβ in Tg2576 mice[95].

Using real-time PCR analysis, it has been identified that MT1 and MT2 are decreased in both the substantia 
nigra and the amygdala in PD patients compared to controls[96]. In PD patients, circulating melatonin is 
decreased in early PD patients compared with controls[7]. Moreover, plasma melatonin, both the amplitude 
of daily oscillation and the levels, is lower in PD patients than in controls[97]. In PD patients who accept 
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Figure 2. Impact of circadian genes and hormones on neurodegeneration and the glymphatic system. The secretion of the circadian 
hormone melatonin is controlled by circadian rhythm. In addition to functioning in circadian rhythm, melatonin has protective effects on 
neurons. In neurodegenerative diseases, the levels of melatonin are decreased.

melatonin treatment at a dose of 5 mg or a high dose of 50 mg 30 min before bedtime over 14 days, the 
nocturnal sleep that is evaluated with actigraphy is significantly improved in PD patients during melatonin 
treatment at both doses[98]. Interestingly, the treatment of PD patients with levodopa increases melatonin 
levels[99].

In a rotenone PD animal model[100] or in a 6-hydroxydopamine with or without pinealectomy animal 
model[101], melatonin protects DA neurons. Melatonin also improves rotenone-induced defects in behaviors, 
including grip strength and performance on rotarods[102]. In MPTP mice, melatonin protects DA neurons 
against MPTP-induced neurotoxicity, which may be mediated by antioxidant effects and neuroprotective 
effects of melatonin[103-105]. In MPTP mice that receive both melatonin and levodopa treatments, melatonin 
increases the therapeutic effects of levodopa in the improvement of MPTP-induced akinesia and 
catalepsy[105]. In a lentivirus-infected animal model that expresses A30P pathogenic α-syn, melatonin 
administration protects DA neurons against A30P elsyn-induced TH neuronal loss[106]. In amphetamine-
treated 4-day-old postnatal rats, melatonin decreases amphetamine-induced α-syn accumulation in the 
substantia nigra, dorsal striatum, nucleus accumbens, and prefrontal cortex[107]. Thus, melatonin has 
multiple effects on circadian rhythm regulation, neuroprotection and protein clearance, which can be 
associated with the pathogenesis of neurodegenerative diseases [Figure 2]

GLYMPHATIC PATHWAY
Although the central nervous system is thought to anatomically lack lymphatic vessels for the removal of 
interstitial metabolic waste products, it has been recently discovered that glymphatic (glial-lymphatic)[108] 
and meningeal lymphatic vessels[109,110] execute functions to transport and drain brain wastes, such as the 
peripheral lymphatic system. The glymphatic system is a glial-dependent perivascular network that has 
lymphatic functions[111]. The CSF produced by the choroid plexuses flows into the brain along periarterial 
spaces surrounding cerebral arteries and arterioles, running in the same direction as blood flow, which is 
driven by arterial pulsation[112]. The CSF enters the brain parenchyma and mixes with ISF, which is 
facilitated by the aquaporin (AQP-4) water channel on the perivascular end-foot processes of astrocytes[113]. 
Mixtures of CSF and ISF with interstitial solutes outflow along the perivenous space and drain out of the 
brain via meningeal lymphatic vessels or along cranial and spinal nerves[113] [Figure 3]. The meningeal 



Page 10 of Wang et al. Ageing Neur Dis 2022;2:4 https://dx.doi.org/10.20517/and.2021.1016

Figure 3. The glymphatic system in association with the clearance of neurodegenerative disease proteins. The glymphatic system is a 
perivascular network that has lymphatic functions. Driven by arterial pulsation, the CSF flows into the brain along periarterial spaces 
surrounding cerebral arteries and arterioles, running in the same direction as blood flow. The CSF enters the brain parenchyma 
mediated by the aquaporin (AQP-4) water channel on the perivascular end-foot processes of astrocytes. Mixtures of CSF and ISF with 
interstitial solutes outflow along the perivenous space and drain out of the brain, which can clear Aβ in the ISF. The glymphatic system 
depends on AQP-4 on astrocytes. Sleep enhances glymphatic system function to promote the clearance of Aβ and other disease 
proteins in the brain. CSF: Cerebral spinal fluid; ISF: interstitial fluid; Aβ: amyloid-β.

lymphatic vessels are located in the dura matter[109,110]. The metabolites in the CSF are cleared from the brain 
by fluid flow and finally drained to extracranial deep cervical lymph nodes[114]. Dysfunction of the 
glymphatic system may be a final common pathway to dementia[115]. Using gadobutrol as the CSF tracer 
with intrathecal administration, the glymphatic system assessed with magnetic resonance imaging 
demonstrates delayed glymphatic clearance of gadobutrol from the subarachnoid space, with an 
enhancement of the signal in the brain parenchyma, in idiopathic normal hydrocephalus, which is the first 
study in humans showing glymphatic clearance of a CSF tracer (solute)[116].

The glymphatic system is tightly associated with the clearance of neurodegenerative disease proteins, such 
as Aβ[108,113]. In PD patients, the glymphatic system is impaired, and in animals, blockage of meningeal 
lymphatic vessels increases α-syn preformed fibril-induced α-syn pathology[117]. Interestingly, the activity of 
the brain glymphatic system is controlled by circadian rhythms[118], which are related to the clearance of 
neurodegenerative disease proteins[119]. Glymphatic clearance is facilitated by AQP-4, which influences CSF 
influx into the brain parenchyma where it mixes with ISF[108]. In Aqp4 (AQP-4 encoding gene) knockout 
mice, CSF tracer influx into the brain parenchyma is markedly reduced; however, the periarterial movement 
of the tracer is not significantly decreased[108]. Moreover, in Aqp4 knockout mice, a 55% reduction in the 
clearance of Aβ occurs compared with wild-type mice when 125I-Aβ42 is infused into the striatum[108]. The 
interstitial space in sleeping mice is larger than that in awake mice[119], which increases the convective ISF 
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bulk flow in the brain parenchyma to increase glymphatic clearance of Aβ[119] [Figure 3]. In APP/PS1 mice, 
Aβ also shows an impact on the glymphatic pathway, leading to dysfunction of the glymphatic pathway[120]. 
The inflow of Aβ40 into the brain and the clearance of Aβ40 by the glymphatic pathway in the brain are 
decreased in APP/PS1 mice (Peng et al.[120], 2016). Disruption of meningeal lymphatic vessels in 5×FAD mice 
also aggravates Aβ deposition in the meninges and Aβ accumulation in the brain parenchyma[121]. Most 
recently, it has been reported that there is a circadian rhythm in glymphatic influx, and loss of AQP-4 
eliminates circadian CSF distribution, further suggesting a linkage between circadian rhythms and 
glymphatic clearance[118]. Interestingly, the localization of AQP-4 to the endfeet of astrocytes surrounding 
the vasculature has diurnal variation, showing an increase in AQP-4 polarization surrounding the 
vasculature during the day[118]. Correspondingly, glymphatic influx and the clearance of solutes are increased 
during the day. In addition, the influx that is indicated by a CSF tracer shows an increase during the rest 
phase compared with the active phase of animal behavior, further suggesting a role of circadian rhythms in 
glymphatic influx[118]. There are also some controversial studies. In Aqp4 knockout mice and rats, no 
significant difference in tracer (Alexa 647-labeled ovalbumin) penetration into the striatal parenchyma from 
the paravascular space was observed[122]. The mechanisms for the clearance of waste by the glymphatic 
pathway are still largely unknown. Furthermore, the linkage between circadian rhythms and the glymphatic 
pathway is still being identified.

CONCLUSION
It is clear that there is a link between circadian disruption and neurodegenerative diseases. Sleep problems 
often start at the early stage in patients with neurodegenerative diseases. Clinical studies and animal models 
have revealed an association between the pathological progression of neurodegenerative diseases and 
circadian disruption. It has been well documented that sleep deprivation aggravates the deposition of 
neurodegenerative disease proteins in animal models. It is also known that sleep increases the glymphatic 
clearance of Aβ and tau in the CSF. However, our understanding of the role of circadian rhythms in protein 
homeostasis and disease development is very limited. There are still some key questions that need to be 
addressed: (1) whether circadian rhythms influence protein quality control systems, such as the ubiquitin-
proteasomal pathway or autophagic pathway, facilitating disease protein degradation; (2) why RBD, within 
different sleep disturbances, is the highest risk factor associated with synucleinopathy, PD and dementia; (3) 
how the phenotypes of AQP-4 deficiency can be linked to the phenotypes of neurodegenerative diseases in 
animal models; and (4) whether there are different or the same mechanisms accounting for the interactions 
between abnormal accumulation of disease proteins and the dysfunction of circadian rhythms in patients 
with different neurodegenerative diseases. Further studies should address how circadian rhythm affects the 
clearance or accumulation of disease proteins and by which mechanism the abnormal proteins lead to 
dysfunction of circadian, which may guide the development of novel strategies for clinical treatment and 
drug targets for neurodegenerative diseases.
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Manuscript 
Type Definition Abstract Keywords Main Text Structure

Original 
Article

An Original Article describes detailed results 
from novel research. All findings are extensively 
discussed.

Structured abstract 
including Aim, Methods, 
Results and Conclusion. 
No more than 250 words.

3-8 keywords The main content should 
include four sections: 
Introduction, Methods, 
Results and Discussion.

Review A Review paper summarizes the literature on 
previous studies. It usually does not present any 
new information on a subject.

Unstructured abstract. 
No more than 250 words.

3-8 keywords The main text may 
consist of several 
sections with unfixed 
section titles. We 
suggest that the 
author includes an 
"Introduction" section at 
the beginning, several 
sections with unfixed 
titles in the middle part, 
and a "Conclusion" 
section in the end.

Case Report A Case Report details symptoms, signs, diagnosis, 
treatment, and follows up an individual patient. 
The goal of a Case Report is to make other 
researchers aware of the possibility that a specific 
phenomenon might occur. 

Unstructured abstract. 
No more than 150 words.

3-8 keywords The main text consists 
of three sections with 
fixed section titles: 
Introduction, Case 
Report, and Discussion.

Meta-
Analysis

A Meta-Analysis is a statistical analysis combining 
the results of multiple scientific studies. It is often 
an overview of clinical trials.

Structured abstract 
including Aim, Methods, 
Results and Conclusion. 
No more than 250 words.

3-8 keywords The main content should 
include four sections: 
Introduction, Methods, 
Results and Discussion.

Systematic 
Review

A Systematic Review collects and critically 
analyzes multiple research studies, using methods 
selected before one or more research questions 
are formulated, and then finding and analyzing 
related studies and answering those questions in a 
structured methodology.

Structured abstract 
including Aim, Methods, 
Results and Conclusion. 
No more than 250 words.

3-8 keywords The main content should 
include four sections: 
Introduction, Methods, 
Results and Discussion.

Technical 
Note

A Technical Note is a short article giving a brief 
description of a specific development, technique 
or procedure, or it may describe a modification of 
an existing technique, procedure or device applied 
in research.

Unstructured abstract. 
No more than 250 words.

3-8 keywords /

Commentary A Commentary is to provide comments on a newly 
published article or an alternative viewpoint on a 
certain topic.

Unstructured abstract. 
No more than 250 words.

3-8 keywords /

Editorial An Editorial is a short article describing news 
about the journal or opinions of senior editors or 
the publisher.

None required None 
required

/

Letter to 
Editor

A Letter to Editor is usually an open post-
publication review of a paper from its readers, 
often critical of some aspect of a published paper. 
Controversial papers often attract numerous 
Letters to Editor

Unstructured abstract 
(optional). No more than 
250 words.

3-8 keywords 
(optional)

/

Opinion An Opinion usually presents personal thoughts, 
beliefs, or feelings on a topic.

Unstructured abstract 
(optional). No more than 
250 words.

3-8 keywords /

Perspective A Perspective provides personal points of view on 
the state-of-the-art of a specific area of knowledge 
and its future prospects. Links to areas of intense 
current research focus can also be made. The 
emphasis should be on a personal assessment 
rather than a comprehensive, critical review. 
However, comments should be put into the context 
of existing literature. Perspectives are usually 
invited by the Editors.

Unstructured abstract. 
No more than 150 words.

3-8 keywords /
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Clinical 
Observation

Clinical observation refers to records of the effects 
of treatment on hospitalized patients. It details 
symptoms, diagnosis and treatment of the disease 
to be reported. The characteristics of clinical 
reports include new or rare, complex adverse 
reactions, confusing symptoms or signs, examples 
of new theories, etc.

Unstructured abstract. 
No more than 250 words.

3-8 keywords The main content should 
include four sections: 
Introduction, Methods, 
Results and Discussion.

2.3 Manuscript Structure
2.3.1 Front Matter
2.3.1.1 Title
The title of the manuscript should be concise, specific and relevant, with no more than 16 words if possible. When gene or 
protein names are included, the abbreviated name rather than full name should be used.

2.3.1.2 Authors and Affiliations
Authors’ full names should be listed. The initials of middle names can be provided. Institutional addresses and email 
addresses for all authors should be listed. At least one author should be designated as corresponding author. In addition, 
corresponding authors are suggested to provide their Open Researcher and Contributor ID upon submission. Please note 
that any change to authorship is not allowed after manuscript acceptance.

2.3.1.3 Abstract
The abstract should be a single paragraph with word limitation and specific structure requirements (for more details please 
refer to Types of Manuscripts). It usually describes the main objective(s) of the study, explains how the study was done, 
including any model organisms used, without methodological detail, and summarizes the most important results and their 
significance. The abstract must be an objective representation of the study: it is not allowed to contain results which are not 
presented and substantiated in the manuscript or exaggerate the main conclusions. Citations should not be included in the 
abstract.

2.3.1.4 Keywords
Three to eight keywords should be provided, which are specific to the article, yet reasonably common within the subject 
discipline.

2.3.2 Main Text
Manuscripts of different types are structured with different sections of content. Please refer to Types of Manuscripts to 
make sure which sections should be included in the manuscripts.

2.3.2.1 Introduction
The introduction should contain background that puts the manuscript into context, allow readers to understand why the 
study is important, include a brief review of key literature, and conclude with a brief statement of the overall aim of the 
work and a comment about whether the aim was achieved. Relevant controversies or disagreements in the field should be 
introduced as well.

2.3.2.2 Methods
Methods should contain sufficient details to allow others to fully replicate the study. New methods and protocols should be 
described in detail while well-established methods can be briefly described or appropriately cited. Experimental participants 
selected, the drugs and chemicals used, the statistical methods taken, and the computer software used should be identified 
precisely. Statistical terms, abbreviations, and all symbols used should be defined clearly. Protocol documents for clinical 
trials, observational studies, and other non-laboratory investigations may be uploaded as supplementary materials.

2.3.2.3 Results
This section contains the findings of the study. Results of statistical analysis should also be included either as text or as 
tables or figures if appropriate. Authors should emphasize and summarize only the most important observations. Data on 
all primary and secondary outcomes identified in the section Methods should also be provided. Extra or supplementary 
materials and technical details can be placed in supplementary documents.

2.3.2.4 Discussion
This section should discuss the implications of the findings in context of existing research and highlight limitations of the 
study. Future research directions may also be mentioned.

2.3.2.5 Conclusion
It should state clearly the main conclusions and include the explanation of their relevance or importance to the field.
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2.3.3 Back Matter
2.3.3.1 Acknowledgments
Anyone who contributed towards the article but does not meet the criteria for authorship, including those who provided 
professional writing services or materials, should be acknowledged. Authors should obtain permission to acknowledge 
from all those mentioned in the Acknowledgments section. This section is not added if the author does not have anyone to 
acknowledge.

2.3.3.2 Authors’ Contributions
Each author is expected to have made substantial contributions to the conception or design of the work, or the acquisition, 
analysis, or interpretation of data, or the creation of new software used in the work, or have drafted the work or substantively 
revised it. 
Please use Surname and Initial of Forename to refer to an author’s contribution. For example: made substantial contributions 
to conception and design of the study and performed data analysis and interpretation: Salas H, Castaneda WV; performed 
data acquisition, as well as provided administrative, technical, and material support: Castillo N, Young V. 
If an article is single-authored, please include “The author contributed solely to the article.” in this section.

2.3.3.3 Availability of Data and Materials
In order to maintain the integrity, transparency and reproducibility of research records, authors should include this section 
in their manuscripts, detailing where the data supporting their findings can be found. Data can be deposited into data 
repositories or published as supplementary information in the journal. Authors who cannot share their data should state 
that the data will not be shared and explain it. If a manuscript does not involve such issue, please state “Not applicable.” in 
this section.

2.3.3.4 Financial Support and Sponsorship
All sources of funding for the study reported should be declared. The role of the funding body in the experiment design, 
collection, analysis and interpretation of data, and writing of the manuscript should be declared. Any relevant grant numbers 
and the link of funder’s website should be provided if any. If the study is not involved with this issue, state “None.” in this 
section.

2.3.3.5 Conflicts of Interest
Authors must declare any potential conflicts of interest that may be perceived as inappropriately influencing the 
representation or interpretation of reported research results. If there are no conflicts of interest, please state “All authors 
declared that there are no conflicts of interest.” in this section. Some authors may be bound by confidentiality agreements. 
In such cases, in place of itemized disclosures, we will require authors to state “All authors declare that they are bound by 
confidentiality agreements that prevent them from disclosing their conflicts of interest in this work.”. If authors are unsure 
whether conflicts of interest exist, please refer to the “Conflicts of Interest” of AND Editorial Policies for a full explanation.

2.3.3.6 Ethical Approval and Consent to Participate
Research involving human subjects, human material or human data must be performed in accordance with the Declaration 
of Helsinki and approved by an appropriate ethics committee. An informed consent to participate in the study should also 
be obtained from participants, or their parents or legal guardians for children under 16. A statement detailing the name of 
the ethics committee (including the reference number where appropriate) and the informed consent obtained must appear 
in the manuscripts reporting such research. 
Studies involving animals and cell lines must include a statement on ethical approval. More information is available at 
Editorial Policies. 
If the manuscript does not involve such issue, please state “Not applicable.” in this section.

2.3.3.7 Consent for Publication
Manuscripts containing individual details, images or videos, must obtain consent for publication from that person, or in 
the case of children, their parents or legal guardians. If the person has died, consent for publication must be obtained from 
the next of kin of the participant. Manuscripts must include a statement that a written informed consent for publication was 
obtained. Authors do not have to submit such content accompanying the manuscript. However, these documents must be 
available if requested. If the manuscript does not involve this issue, state “Not applicable.” in this section.

2.3.3.8 Copyright
Authors retain copyright of their works through a Creative Commons Attribution 4.0 International License that clearly 
states how readers can copy, distribute, and use their attributed research, free of charge. A declaration “© The Author(s) 
2022.” will be added to each article. Authors are required to sign License to Publish before formal publication.

2.3.3.9 References
References should be numbered in order of appearance at the end of manuscripts. In the text, reference numbers should be 
placed in square brackets and the corresponding references are cited thereafter. If the number of authors is less than or equal 
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to six, we require to list all authors’ names. If the number of authors is more than six, only the first three authors’ names are 
required to be listed in the references, other authors’ names should be omitted and replaced with “et al.”. Abbreviations of 
the journals should be provided on the basis of Index Medicus. Information from manuscripts accepted but not published 
should be cited in the text as “Unpublished material” with written permission from the source.
References should be described as follows, depending on the types of works:
Types Examples
Journal articles by 
individual authors

Weaver DL, Ashikaga T, Krag DN, et al. Effect of occult metastases on survival in node-negative 
breast cancer. N Engl J Med 2011;364:412-21. [PMID: 21247310 DOI: 10.1056/NEJMoa1008108]

Organization as author Diabetes Prevention Program Research Group. Hypertension, insulin, and proinsulin in participants 
with impaired glucose tolerance. Hypertension 2002;40:679-86. [PMID: 12411462]

Both personal authors and 
organization as author

Vallancien G, Emberton M, Harving N, van Moorselaar RJ; Alf-One Study Group. Sexual dysfunction 
in 1,274 European men suffering from lower urinary tract symptoms. J Urol 2003;169:2257-61. [PMID: 
12771764 DOI: 10.1097/01.ju.0000067940.76090.73]

Journal articles not in 
English

Zhang X, Xiong H, Ji TY, Zhang YH, Wang Y. Case report of anti-N-methyl-D-aspartate receptor 
encephalitis in child. J Appl Clin Pediatr 2012;27:1903-7. (in Chinese)

Journal articles ahead of 
print

Odibo AO. Falling stillbirth and neonatal mortality rates in twin gestation: not a reason for 
complacency. BJOG 2018; Epub ahead of print [PMID: 30461178 DOI: 10.1111/1471-0528.15541]

Books Sherlock S, Dooley J. Diseases of the liver and billiary system. 9th ed. Oxford: Blackwell Sci Pub; 
1993. pp. 258-96.

Book chapters Meltzer PS, Kallioniemi A, Trent JM. Chromosome alterations in human solid tumors. In: Vogelstein 
B, Kinzler KW, editors. The genetic basis of human cancer. New York: McGraw-Hill; 2002. pp. 93-
113.

Online resource FDA News Release. FDA approval brings first gene therapy to the United States. Available from: 
https://www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/ucm574058.htm. [Last accessed 
on 30 Oct 2017]

Conference proceedings Harnden P, Joffe JK, Jones WG, editors. Germ cell tumours V. Proceedings of the 5th Germ Cell 
Tumour Conference; 2001 Sep 13-15; Leeds, UK. New York: Springer; 2002.

Conference paper Christensen S, Oppacher F. An analysis of Koza's computational effort statistic for genetic 
programming. In: Foster JA, Lutton E, Miller J, Ryan C, Tettamanzi AG, editors. Genetic 
programming. EuroGP 2002: Proceedings of the 5th European Conference on Genetic Programming; 
2002 Apr 3-5; Kinsdale, Ireland. Berlin: Springer; 2002. pp. 182-91.

Unpublished material Tian D, Araki H, Stahl E, Bergelson J, Kreitman M. Signature of balancing selection in Arabidopsis. 
Proc Natl Acad Sci U S A. Forthcoming 2002.

For other types of references, please refer to U.S. National Library of Medicine. 
The journal also recommends that authors prepare references with a bibliography software package, such as EndNote to 
avoid typing mistakes and duplicated references.

2.3.3.10 Supplementary Materials
Additional data and information can be uploaded as Supplementary Materials to accompany the manuscripts. The 
supplementary materials will also be available to the referees as part of the peer-review process. Any file format is 
acceptable, such as data sheet (word, excel, csv, cdx, fasta, pdf or zip files), presentation (powerpoint, pdf or zip files), image 
(cdx, eps, jpeg, pdf, png or tiff), table (word, excel, csv or pdf), audio (mp3, wav or wma) or video (avi, divx, flv, mov, mp4, 
mpeg, mpg or wmv). All information should be clearly presented. Supplementary materials should be cited in the main text 
in numeric order (e.g., Supplementary Figure 1, Supplementary Figure 2, Supplementary Table 1, Supplementary Table 2, 
etc.). The style of supplementary figures or tables complies with the same requirements on figures or tables in main text. 
Videos and audios should be prepared in English and limited to a size of 500 MB.

2.4 Manuscript Format
2.4.1 File Format
Manuscript files can be in DOC and DOCX formats and should not be locked or protected.

2.4.2 Length
There are no restrictions on paper length, number of figures, or amount of supporting documents. Authors are encouraged 
to present and discuss their findings concisely.

2.4.3 Language
Manuscripts must be written in English.

2.4.4 Multimedia Files
The journal supports manuscripts with multimedia files. The requirements are listed as follows:
Videos or audio files are only acceptable in English. The presentation and introduction should be easy to understand. The 
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frames should be clear, and the speech speed should be moderate.
A brief overview of the video or audio files should be given in the manuscript text.
The video or audio files should be limited to a size of up to 500 MB.
Please use professional software to produce high-quality video files, to facilitate acceptance and publication along with the 
submitted article. Upload the videos in mp4, wmv, or rm format (preferably mp4) and audio files in mp3 or wav format.

2.4.5 Figures
Figures should be cited in numeric order (e.g., Figure 1, Figure 2) and placed after the paragraph where it is first cited;
Figures can be submitted in format of tiff, psd, AI or jpeg, with resolution of 300-600 dpi;
Figure caption is placed under the Figure; 
Diagrams with describing words (including, flow chart, coordinate diagram, bar chart, line chart, and scatter diagram, etc.) 
should be editable in word, excel or powerpoint format. Non-English information should be avoided;
Labels, numbers, letters, arrows, and symbols in figure should be clear, of uniform size, and contrast with the background;
Symbols, arrows, numbers, or letters used to identify parts of the illustrations must be identified and explained in the 
legend; 
Internal scale (magnification) should be explained and the staining method in photomicrographs should be identified; 
All non-standard abbreviations should be explained in the legend;
Permission for use of copyrighted materials from other sources, including re-published, adapted, modified, or partial 
figures and images from the internet, must be obtained. It is authors’ responsibility to acquire the licenses, to follow any 
citation instruction requested by third-party rights holders, and cover any supplementary charges.

2.4.6 Tables
Tables should be cited in numeric order and placed after the paragraph where it is first cited;
The table caption should be placed above the table and labeled sequentially (e.g., Table 1, Table 2);
Tables should be provided in editable form like DOC or DOCX format (picture is not allowed);
Abbreviations and symbols used in table should be explained in footnote;
Explanatory matter should also be placed in footnotes;
Permission for use of copyrighted materials from other sources, including re-published, adapted, modified, or partial tables 
from the internet, must be obtained. It is authors’ responsibility to acquire the licenses, to follow any citation instruction 
requested by third-party rights holders, and cover any supplementary charges.

2.4.7 Abbreviations
Abbreviations should be defined upon first appearance in the abstract, main text, and in figure or table captions and used 
consistently thereafter. Non-standard abbreviations are not allowed unless they appear at least three times in the text. 
Commonly-used abbreviations, such as DNA, RNA, ATP, etc., can be used directly without definition. Abbreviations in 
titles and keywords should be avoided, except for the ones which are widely used.

2.4.8 Italics
General italic words like vs., et al., etc., in vivo, in vitro; t test, F test, U test; related coefficient as r, sample number as n, 
and probability as P; names of genes; names of bacteria and biology species in Latin.

2.4.9 Units
SI Units should be used. Imperial, US customary and other units should be converted to SI units whenever possible. There 
is a space between the number and the unit (i.e., 23 mL). Hour, minute, second should be written as h, min, s.

2.4.10 Numbers
Numbers appearing at the beginning of sentences should be expressed in English. When there are two or more numbers 
in a paragraph, they should be expressed as Arabic numerals; when there is only one number in a paragraph, number < 10 
should be expressed in English and number > 10 should be expressed as Arabic numerals. 12345678 should be written as 
12,345,678.

2.4.11 Equations
Equations should be editable and not appear in a picture format. Authors are advised to use either the Microsoft Equation 
Editor or the MathType for display and inline equations.

2.5 Submission Link 
Submit an article via https://oaemesas.com/login?JournalId=and.

3. Research and Publication Ethics
3.1 Research Involving Human Subjects
All studies involving human subjects must be in accordance with the Helsinki Declaration and seek approval to conduct the 
study from an independent local, regional, or national review body (e.g., ethics committee, institutional review board, etc.).
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Such approval, including the names of the ethics committee, institutional review board, etc., must be listed in a declaration 
statement of Ethical Approval and Consent to Participate in the manuscript. If the study is judged exempt from ethics 
approval, related information (e.g., name of the ethics committee granting the exemption and the reason for the exemption) 
must be listed. Further documentation on ethics should also be prepared, as Editors may request more detailed information. 
Manuscripts with suspected ethical problems will be investigated according to COPE Guidelines.

3.1.1 Consent to Participate
For all studies involving human subjects, informed consent to participate in the studies must be obtained from participants, 
or their parents or legal guardians for children under 16. Statements regarding consent to participate should be included in a 
declaration statement of Ethical Approval and Consent to Participate in the manuscript. If informed consent is not required, 
the name of the ethics committee granting the exemption and the reason for the exemption must be listed. If any ethical 
violation is found at any stage of publication, the issue will be investigated seriously based on COPE Guidelines.

3.1.2 Consent for Publication
All articles published by AND are freely available on the Internet. All manuscripts that include individual participants’ 
data in any form (i.e., details, images, videos, etc.) will not be published without Consent for Publication obtained from that 
person(s), or for children, their parents or legal guardians. If the person has died, Consent for Publication must be obtained 
from the next of kin. Authors must add a declaration statement of Consent for Publication in the manuscript, specifying 
written informed consent for publication has been obtained.

3.1.3 Trial Registration
AND requires all authors to register all relevant clinical trials that are reported in manuscripts submitted. AND follows the 
World Health Organization (WHO)’s definition of clinical trials: “A clinical trial is any research study that prospectively 
assigns human participants or groups of humans to one or more health-related interventions to evaluate the effects on 
health outcomes. Interventions include but are not restricted to drugs, cells, other biological products, surgical procedures, 
radiologic procedures, devices, behavioral treatments, process-of-care changes, preventive care, etc.”.

In line with International Committee of Medical Journal Editors (ICMJE) recommendation, AND requires the registration 
of clinical trials in a public trial registry at or before the time of first patient enrollment. AND accepts publicly accessible 
registration in any registry that is a primary register of the WHO International Clinical Trials Registry Platform or in 
ClinicalTrials.gov. The trial registration number should be listed at the end of the Abstract section.

Secondary data analyses of primary (parent) clinical trials should not be registered as a new clinical trial, but rather 
reference the trial registration number of the primary trial.

Editors of AND will consider carefully whether studies failed to register or had an incomplete trial registration. Because 
of the importance of prospective trial registration, if there is an exception to this policy, trials must be registered and the 
authors should indicate in the publication when registration was completed and why it was delayed. Editors will publish 
a statement indicating why an exception was allowed. Please note such exceptions should be rare, and authors failing to 
prospectively register a trial risk its inadmissibility to AND.

Authors who are not sure whether they need trial registration may refer to ICMJE FAQs for further information.

3.2 Research Involving Animals
Experimental research on animals should be approved by an appropriate ethics committee and must comply with 
institutional, national, or international guidelines. AND encourages authors to comply with the AALAS Guidelines, 
the ARRIVE Guidelines, and/or the ICLAS Guidelines, and obtain prior approval from the relevant ethics committee. 
Manuscripts must include a statement indicating that the study has been approved by the relevant ethical committee and the 
whole research process complies with ethical guidelines. If a study is granted an exemption from requiring ethics approval, 
the name of the ethics committee granting the exemption and the reason(s) for the exemption should be detailed. Editors 
will take account of animal welfare issues and reserve the right to reject a manuscript, especially if the research involves 
protocols that are inconsistent with commonly accepted norms of animal research.

3.3 Research Involving Cell Lines
Authors must describe what cell lines are used and their origin so that the research can be reproduced. For established cell 
lines, the provenance should be stated and references must also be given to either a published paper or to a commercial 
source. For de novo cell lines derived from human tissue, appropriate approval from an institutional review board or 
equivalent ethical committee, and consent from the donor or next of kin, should be obtained. Such statements should be 
listed on the Declaration section of Ethical Approval and Consent to Participate in the manuscript.

Further information is available from the International Cell Line Authentication Committee (ICLAC). AND recommends 
that authors check the NCBI database for misidentification and contamination of human cell lines.
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3.4 Research Involving Plants
Experimental research on plants (either cultivated or wild), including collection of plant material, must comply with 
institutional, national, or international guidelines. Field studies should be conducted in accordance with local legislation, 
and the manuscript should include a statement specifying the appropriate permissions and/or licenses. AND recommends 
that authors comply with the IUCN Policy Statement on Research Involving Species at Risk of Extinction and the Convention 
on the Trade in Endangered Species of Wild Fauna and Flora.

For each submitted manuscript, supporting genetic information and origin must be provided for plants that were utilized. For 
research manuscripts involving rare and non-model plants (other than, e.g., Arabidopsis thaliana, Nicotiana benthamiana, 
Oriza sativa, or many other typical model plants), voucher specimens must be deposited in a public herbarium or other 
public collections providing access to deposited materials.

3.5 Publication Ethics Statement
OAE is a member of the Committee on Publication Ethics (COPE). We fully adhere to its Code of Conduct and to its Best 
Practice Guidelines.

The Editors of AND enforce a rigorous peer-review process together with strict ethical policies and standards to guarantee to 
add high-quality scientific works to the field of scholarly publication. Unfortunately, cases of plagiarism, data falsification, 
image manipulation, inappropriate authorship credit, and the like, do arise. The Editors of AND take such publishing ethics 
issues very seriously and are trained to proceed in such cases with zero tolerance policy.

Authors wishing to publish their papers in AND must abide to the following:
The author(s) must disclose any possibility of a conflict of interest in the paper prior to submission.
The authors should declare that there is no academic misconduct in their manuscript in the cover letter.
Authors should accurately present their research findings and include an objective discussion of the significance of their 
findings.
Data and methods used in the research need to be presented in sufficient detail in the manuscript so that other researchers 
can replicate the work.
Authors should provide raw data if referees and the Editors of the journal request.
Simultaneous submission of manuscripts to more than one journal is not tolerated.
Republishing content that is not novel is not tolerated (for example, an English translation of a paper that is already published 
in another language will not be accepted).
The manuscript should not contain any information that has already been published. If you include already published 
figures or images, please get the necessary permission from the copyright holder to publish under the CC-BY license.
Plagiarism, data fabrication and image manipulation are not tolerated.
Plagiarism is not acceptable in AND.
Plagiarism involves the inclusion of large sections of unaltered or minimally altered text from an existing source without 
appropriate and unambiguous attribution, and/or an attempt to misattribute original authorship regarding ideas or results, 
and copying text, images, or data from another source, even from your own publications, without giving credit to the source.

As to reusing the text that is copied from another source, it must be between quotation marks and the source must be cited. 
If a study’s design or the manuscript’s structure or language has been inspired by previous studies, these studies must be 
cited explicitly.

If plagiarism is detected during the peer-review process, the manuscript may be rejected. If plagiarism is detected after 
publication, we may publish a Correction or retract the paper.

Falsification is manipulating research materials, equipment, or processes, or changing or omitting data or results so that the 
findings are not accurately represented in the research record.

Image files must not be manipulated or adjusted in any way that could lead to misinterpretation of the information provided 
by the original image.

Irregular manipulation includes introduction, enhancement, moving, or removing features from the original image; 
grouping of images that should be presented separately, or modifying the contrast, brightness, or color balance to obscure, 
eliminate, or enhance some information.

If irregular image manipulation is identified and confirmed during the peer-review process, we will reject the manuscript. If 
irregular image manipulation is identified and confirmed after publication, we may publish a Retraction or retract the paper.

AND reserves the right to contact the authors’ institution(s) to investigate possible publication misconduct if the Editors find 
conclusive evidence of misconduct before or after publication. OAE has a partnership with iThenticate, which is the most 
trusted similarity checker. It is used to analyze received manuscripts to avoid plagiarism to the greatest extent possible.
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When plagiarism becomes evident after publication, we will retract the original publication or require modifications, 
depending on the degree of plagiarism, context within the published article, and its impact on the overall integrity of the 
published study. Journal Editors will act under the relevant COPE Guidelines.

4. Authorship
Authorship credit of AND should be solely based on substantial contributions to a published study, as specified in the 
following four criteria:
1. Substantial contributions to the conception or design of the work, or the acquisition, analysis, or interpretation of data 
for the work;
2. Drafting the work or revising it critically for important intellectual content;
3. Final approval of the version to be published;
4. Agreement to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of 
any part of the work are appropriately investigated and resolved.

All those who meet these criteria should be identified as authors. Authors must specify their contributions in the section 
Authors’ Contributions of their manuscripts. Contributors who do not meet all the four criteria (like only involved in 
acquisition of funding, general supervision of a research group, general administrative support, writing assistance, technical 
editing, language editing, proofreading, etc.) should be acknowledged in the section of Acknowledgement in the manuscript 
rather than being listed as authors.

If a large multiple-author group has conducted the work, the group ideally should decide who will be authors before the 
work starts and confirm authors before submission. All authors of the group named as authors must meet all the four criteria 
for authorship.

5. Reviewers Exclusions
You are welcome to exclude a limited number of researchers as potential Editors or reviewers of your manuscript. To ensure 
a fair and rigorous peer review process, we ask that you keep your exclusions to a maximum of three people. If you wish 
to exclude additional referees, please explain or justify your concerns—this information will be helpful for Editors when 
deciding whether to honor your request.

6. Editors and Journal Staff as Authors
Editorial independence is extremely important and AND does not interfere with editorial decisions. Editorial staff or 
Editors shall not be involved in the processing their own academic work. Submissions authored by editorial staff/Editors 
will be assigned to at least two independent outside reviewers. Decisions will be made by other Editorial Board members 
who do not have conflict of interests with the author. Journal staffs are not involved in the processing of their own work 
submitted to any OAE journals.

7. Conflict of Interests
AND require authors to declare any possible financial and/or non-financial conflicts of interest at the end of their manuscript 
and in the cover letter, as well as confirm this point when submitting their manuscript in the submission system. If no 
conflicts of interest exist, authors need to state “The authors declare no conflicts of interest”. We also recognize that some 
authors may be bound by confidentiality agreements, in which cases authors need to sate “The authors declare that they are 
bound by confidentiality agreements that prevent them from disclosing their competing interests in this work”.

8. Editorial Process
8.1 Initial check
8.1.1 Initial manuscript check
New submissions are initially checked by the Managing Editor from the perspectives of originality, suitability, structure 
and formatting, conflicts of interest, background of authors, etc. Poorly-prepared manuscripts may be rejected at this stage. 
If your manuscript does not meet one or more of these requirements, we will return it for further revisions.

8.1.2 Publishing ethics
All manuscripts submitted to AND are screened using iThenticate powered by CrossCheck to identify any plagiarized 
content. Your study must also meet all ethical requirements as outlined in our Editorial Policies. If the manuscript does not 
pass any of these checks, we may return it to you for further revisions or decline to consider your study for publication.

8.2 Editorial assessment
Once your manuscript has passed the initial manuscript check, it will be assigned to an Assistant Editor, and then the 
Editor-in-Chief, or an Associate Editor in the case of a conflict of interest, will be notified of the submission and invited to 
review. Regarding Special Issue paper, after passing the initial check, the manuscript will be successively assigned to an
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Assistant Editor, Guest Editor, and then to the Editor-in-Chief, or an Associate Editor in the case of conflict of interest for 
the Editor-in-Chief to review. The Editor-in-Chief, or the Associate Editor may reject manuscripts that they deem highly 
unlikely to pass peer review without further consultation. Once your manuscript has passed the editorial assessment, the 
Assistant Editor will start to organize peer-review.

8.3 Process
AND operates a single-blind review process. The technical quality of the research described in the manuscript is assessed 
by a minimum of two independent expert reviewers. The Editor-in-Chief is responsible for the final decision regarding 
acceptance or rejection of the manuscript. For controversial manuscripts, the Editor-in-Chief is responsible for making the 
final decision.

8.4 Decisions
Your research will be judged on technical soundness only, not on its perceived impact as judged by Editors or referees. 
There are three possible decisions: Accept (your study satisfies all publication criteria), Invitation to Revise (more work is 
required to satisfy all criteria), and Reject (your study fails to satisfy key criteria and it is highly unlikely that further work 
can address its shortcomings).

9. Contact Us
Journal Contact
Ageing and Neurodegenerative Diseases Editorial Office
Suite 1504, Plaza A, Xi’an National Digital Publishing Base, No. 996 Tiangu 7th Road, Gaoxin District, Xi’an 710077, 
Shaanxi, China.
Tel: +86 (0)29 8954 0089

Monica Wang
Managing Editor
editorialoffice@ageneudisjournal.com
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