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Abstract
Endoscopic spine surgery (ESS) is an ultra-minimally invasive technique through which spinal pathology can be 
addressed via sub-centimeter incisions with negligible soft tissue disruption. However, concerns exist regarding the 
steep learning curve, operative time, and radiation exposure to the surgical team. The use of intraoperative 
navigation, mixed reality, and robotics in the setting of ESS is currently being explored, and the early evidence 
suggests that such technologies may help mitigate these issues. The application of these technologies in ESS as 
well as the associated literature is reviewed herein.
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INTRODUCTION
Minimally invasive spine surgery (MISS) aims to improve clinical outcomes while minimizing soft tissue 
damage, blood loss, recovery time, and pain. In recent years, there has been growing interest in and 
utilization of endoscopic spine surgery (ESS). Endoscopic techniques allow surgeons to approach the spine 
and neural elements via sub-centimeter incisions with negligible soft tissue disruption. Full ESS therefore 
offers several advantages over other MISS techniques, including tubular approaches[1]. Despite the potential 
advantages of ESS, concerns exist regarding surgical team radiation exposure, adequacy of decompression, 
and the associated learning curve[2-5].
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ESS, particularly transforaminal lumbar discectomy via Kambin’s triangle, requires highly accurate 
localization to afford access to the site of pathology and avoid iatrogenic neurological injury[6,7]. Traditional 
endoscopic localization techniques utilize biplanar fluoroscopy to navigate to the area of interest[8,9]. While 
fluoroscopy-based techniques have been widely adopted and utilized, authors have suggested that 
incorporating modern intraoperative image guidance systems could reduce the learning curve associated 
with ESS[4,6]. What follows is a review of the current state of intraoperative navigation, mixed reality, and 
robotics as applied to ESS.

THREE-DIMENSIONAL COMPUTED TOMOGRAPHY NAVIGATION
Three-dimensional (3D) computed tomography (CT) navigation allows for instrument tracking and 
localization and is frequently utilized in minimally invasive spine surgery. CT navigation allows for the 
accurate placement of percutaneous spinal instrumentation while decreasing radiation exposure to the 
surgeon and operating room staff compared to conventional fluoroscopic techniques[10,11]. It therefore stands 
to reason that combining this technology with ESS may be beneficial. For example, surgeons can use 
navigated instruments to guide them to the spine and to assess the extent of their decompression[4,12,13]. 
Furthermore, navigation may be of additional benefit in the revision setting where commonly used 
anatomic landmarks are distorted or absent. It is important to note that intraoperative CT navigation does 
increase radiation exposure to the patient compared to fluoroscopic techniques. Furthermore, movement of 
the fiducial or patient can compromise the accuracy of the CT navigation.

To date, the largest study evaluating CT navigation for lumbar ESS was published by Ao et al.[14] [Table 1] in 
2019. The authors sought to assess the safety and efficacy of transforaminal endoscopic lumbar discectomy 
assisted by O-arm-based navigation (Medtronic Inc., Minneapolis, MN, USA). A total of 118 patients with 
symptomatic lumbar disc herniations were included in this prospective cohort study with 58 patients 
undergoing navigation assisted ESS and 60 patients undergoing ESS with the traditional biplanar 
fluoroscopic method. The use of navigation required placement of a reference frame into the contralateral 
iliac crest, followed by an intraoperative O-arm scan, and registration of that scan to the spinal anatomy and 
surgical instruments. In their technique, navigation was utilized to plan the appropriate trajectory and 
enabled the surgeon to perform the foraminoplasty using navigated instruments. The remainder of the 
procedure was performed under direct endoscopic visualization. Navigation use was found to ease the 
learning curve (13 cases vs. 32 cases), decrease cannula placement time and total operative time, and reduce 
radiation exposure to the surgical staff. There were no significant differences in clinical outcomes and no 
complications associated with the use of navigation. The authors concluded that the use of navigation in 
conjunction with transforaminal endoscopic lumbar discectomy was safe, accurate and efficient.

Zhang et al.[15] retrospectively evaluated the use of O-arm navigation when performing endoscopic posterior 
cervical foraminotomy with or without discectomy in 42 patients. Authors utilized navigation to plan their 
trajectory to the laminofacet junction at the level of interest. The remainder of the procedure was performed 
using direct endoscopic visualization. There were no perioperative complications or conversions to open 
surgery. At a mean follow-up of 15 months, patient reported outcome measures (VAS arm, neck, NDI) were 
significantly improved in all patients.

ULTRASOUND AND ELECTROMAGNETIC NAVIGATION
While CT-based navigation is already relatively pervasive within the field of spine surgery, other means of 
navigation exist that may reduce radiation exposure to the patient as well as the surgical team. Ultrasound 
(US) is a real-time imaging tool that does not produce ionizing radiation. It has been used as an aid in a 
variety of spinal procedures, including lateral lumbar interbody fusion[16], thoracic discectomy[17], resection 
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Table 1. Available clinical studies

Ref. Design (n) Techniques (n) Surgery Outcomes

Ao et al.[14] Prospective 
cohort study (118)

CT Navigation (58) vs. 
biplanar fluoroscopy (60)

Transforaminal 
endoscopic lumbar 
discectomy

Decreased learning curve, cannula placement time, 
total operative time, radiation exposure to surgical 
staff with CT navigation; no difference in clinical 
outcomes

Zhang et al.[15] Retrospective 
cohort study (42)

CT navigation Endoscopic posterior 
cervical foraminotomy

No perioperative complications, significantly improved 
PROMS at last follow-up (mean 15 months)

Zhang et al.[20] RCT (60) Fluoroscopic guidance 
(30) vs. ultrasound 
guidance (30)

Transforaminal 
endoscopic lumbar 
discectomy

No differences in clinical outcomes, needle placement, 
cannulation, or operative times; significantly lower 
fluoroscopy shots and radiation with ultrasound 
technique

Lin et al.[21] Retrospective 
cohort study (17)

Electromagnetic 
navigation

Transforaminal 
endoscopic lumbar 
discectomy

No perioperative complications, significantly improved 
PROMS at last follow-up (mean 20.6 months)

Liu et al.[24] Matched cohort 
study (77)

Mixed reality (44) vs. 
matched controls (43)

Transforaminal 
endoscopic lumbar 
discectomy

No difference in clinical outcomes, significant 
reduction in operative time and radiation exposure to 
the surgeon with mixed reality; increased eye fatigue 
with mixed reality

Jin et al.[33] Matched cohort 
study (117)

Robotic assistance (39) 
vs. fluoroscopic assistance 
(78)

Transforaminal 
endoscopic lumbar 
discectomy

More precise puncture, reduced fluoroscopy use, 
reduced operative time with robot; no difference in 
outcomes, length of stay or complication rates

RCT: Randomized controlled trial; PROMs: patient reported outcome measures.

of intradural mass lesions[18], and transforaminal epidural steroid injections[19]. Given the relative similarities 
between performing a transforaminal injection and localizing for a transforaminal endoscopic procedure, it 
stands to reason that ultrasound might be applied to ESS.

Zhang et al.[20] recently published their early experience using ultrasound guidance in transforaminal 
endoscopic lumbar discectomy. In this prospective randomized controlled trial, 60 patients with lumbar 
disc herniations undergoing discectomy via a transforaminal endoscopic approach were randomly divided 
between conventional fluoroscopic guidance and ultrasound guidance groups. A standard ultrasound 
machine and probe were used in the study with a physician specializing in ultrasound holding the probe 
while a surgeon performed the procedure. Spinal level identification, trajectory planning, and needle 
placement into the foramen were all accomplished using ultrasound; fluoroscopy was only used to confirm 
needle and cannula placement in this group. The remainder of the procedure was identical between the two 
cohorts. The authors observed no significant differences in needle placement, cannulation, or total operative 
times; and clinical outcomes were similarly positive with no complications in either group. However, the 
use of ultrasound was associated with significantly fewer fluoroscopy shots (2.13 ± 0.35 shots vs. 7.57 ± 2.99 
shots, P < 0.001) and less radiation exposure (5.34 ± 0.63 mSV vs. 18.25 ± 10.52 mSV, P < 0.001) compared to 
traditional fluoroscopy alone.

Electromagnetic navigation can also provide real-time guidance without ionizing radiation. Such systems 
generate a magnetic field, which is used to receive and transmit electromagnetic signals to determine the 
position of a target in space. A retrospective pilot study of 17 patients undergoing electromagnetic 
navigation assisted transforaminal endoscopic foraminoplasty and discectomy demonstrated the feasibility 
and safety of this technique[21]. The described navigation system requires percutaneous placement of 
localizer into the spinous process of an adjacent vertebra, followed by anterior-posterior and lateral 
fluoroscopy shots for registration. No other X-rays are required after this point - the targeting needle, 
reamers, and endoscope can all be monitored via navigation alone.
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Ultrasound volume navigation (UVN) is a technique that fuses preoperative CT or magnetic resonance 
imaging (MRI) data to real-time ultrasound. It has been used in conjunction with an electromagnetic 
tracker in early feasibility studies to facilitate localization and docking for transforaminal endoscopic lumbar 
discectomies[22,23]. While ultrasound alone may require specialized training and experience to interpret, a 
potential benefit of UVN is that surgeons view a more intuitive reconstructed MRI or CT image.

MIXED REALITY
Mixed reality technology merges the real and virtual worlds to produce new environments and 
visualizations in which the digital and physical objects coexist and can interact in real time. Such systems 
typically involve the use of head-mounted optical see-through displays through which images can be 
selectively projected over the viewer’s normal vision. In contrast to other means of navigation, mixed reality 
allows surgeons to keep their gaze fixed on the surgical field rather than looking up at a monitor while 
navigating instruments and implants. The first spine surgery carried out in the United States using mixed 
reality was performed in 2020 using the xvision Spine System (Augmedics, Chicago, IL).

While pedicle screw placement has been an early focus of mixed reality technology, it could provide benefits 
in other realms of spinal surgery, including ESS. Liu et al.[24] evaluated the use of mixed reality for marking, 
needle insertion, foraminoplasty, and working cannula insertion during transforaminal endoscopic lumbar 
discectomy. Mixed reality was used in 44 such cases, and results were compared to 43 matched patients in 
whom conventional techniques were used. There were no differences in clinical outcomes, but the use of 
mixed reality was associated with significant reductions in operative time (18.48 ± 6.38 min vs. 23.87 ± 9.64 
min, P = 0.003) and radiation exposure to the surgeon (13.59 ± 4.56 mGy vs. 18.62 ± 7.07 mGy, P < 0.001). 
The incidence of eye fatigue, as measured by a subjective questionnaire, was higher when mixed reality was 
used with visual discomfort, headache and blurred vision being noted.

ROBOTICS
In 2004, the Mazor Spine Assist (Medtronic, Minneapolis, MN) became the first robotic spine surgery 
platform to receive Food and Drug Administration approval[25-27]. Since that time, there has been a steady 
refinement of the technology. Presently available robotic systems incorporate CT-based navigation, which 
allows for instrument tracking. The rationale for incorporating robotics to ESS is similar to CT navigation - 
improved accuracy, reduced learning curve, and limited radiation exposure to the surgeon and staff. 
However, robotics may advance ESS even further given opportunities to standardize the workflow and 
enhance surgeon control[6,28-30].

Recent publications have asserted that robot-guided ESS is in its “earliest infancy” with limited supporting 
literature[6]. Liounakos and Wang[31] published their technique for endoscopic transforaminal lumbar 
interbody fusion using robotic guidance and an expandable interbody. The authors utilized the Mazor X 
robot (Medtronic, Minneapolis, MN) to cannulate pedicles and place percutaneous pedicle screws in the 
standard fashion. However, they also utilized the robotic software to plan trajectories through Kambin’s 
triangle for endoscopic discectomy, endplate preparation and interbody delivery. The authors highlight the 
ability to quickly plan and move between different trajectories to the disc space. Their ideal trajectory was 
chosen based on triggered electromyography responses. A prior publication by Kolcun and Wang[32] 
detailed their experience using robotic guidance for disc space targeting in a case of thoracic discitis treated 
with endoscopic irrigation and debridement.
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Table 2. Advantages and disadvantages of advanced technology in endoscopic spine surgery

Technology Advantages Disadvantages

CT navigation Reduced learning curve, cannula placement time, total operative time, 
radiation exposure to the surgical team[14]

Requires placement of reference frame 
Increased radiation to patient 
Capital cost of navigation equipment 
Potential for reliance on technology to 
perform procedure

Ultrasound guidance Reduced radiation exposure to patient and surgical team[20] 
Low cost

Requires advanced ultrasound training 
Potential for reliance on technology to 
perform procedure

Electromagnetic 
navigation 

Reduced radiation to patient and surgical team Requires placement of localizer on adjacent 
level spinous process 
Potential for reliance on technology to 
perform procedure 
Capital cost of equipment

Ultrasound volume 
navigation

Reduced radiation to patient and surgical team 
Can utilize preoperative MRI 
Does not require ultrasound-trained physician

Potential for reliance on technology to 
perform procedure 
Lack of clinical studies  
Capital cost of equipment

Mixed reality Reduced operative time and radiation exposure to the surgical team[24] Requires placement of reference frame 
Increased radiation to patient 
Capital cost of equipment 
Increased surgeon eye fatigue 
Potential for reliance on technology to 
perform procedure

Robotics More precise single-shot puncture, reduced fluoroscopy, total operative 
time[33]

Requires placement of reference frame 
Increased radiation to patient 
Capital cost of equipment 
Potential for reliance on technology to 
perform procedure

MRI: Magnetic resonance imaging.

In March 2021, Jin et al.[33] published a match-paired study comparing robotic-assisted to fluoroscopy-
assisted transforaminal endoscopic lumbar discectomy. The 39 patients in the robotic group and 78 patients 
in the fluoroscopy group were chosen on the basis of sex, age, surgical level, and herniated disc location. 
The authors utilized the TiRobot Orthopaedic Robotic System (TINAVI Medical Technologies Co. Ltd., 
Beijing, China) with an arm-mounted flat panel imaging system (Cios Spin, Siemens Healthineers AG, 
Erlangen, Germany) for intraoperative CT imaging. The robot was used to position a needle guide in the 
planned optimal trajectory, and the procedure was then carried out in the standard fashion. The authors 
found that a single-shot puncture in the robotic group was significantly more precise compared with 4.12 ± 
1.71 trials in the fluoroscopy group (P < 0.001). There was an overall reduction of fluoroscopy use, time 
from first puncture to final working channel placement (13.34 ± 3.03 min vs. 15.03 ± 4.5 min, P = 0.038), and 
total operative time (57.46 ± 7.49 min vs. 69.40 ± 12.59 min, P < 0.001) using the robot compared to 
conventional fluoroscopy. However, there were no significant differences in patient-reported outcomes, 
length of stay, or complication rate between the two groups (P > 0.05).

While the aforementioned technologies present numerous advantages for performing ESS, a number of 
concerns exist regarding their widespread adoption [Table 2]. Some of the potential disadvantages exist with 
the incorporation of all advanced technology to ESS, while others are unique to specific techniques.  For 
example, surgeons can potentially become reliant on each technology to perform ESS and therefore may be 
unable to complete the case if the technology becomes unavailable. This is obviously concerning as surgeons 
are now routinely performing ESS without them. CT navigation, robotics, and mixed reality reduce surgeon 
radiation exposure but require a preoperative CT scan, thereby increasing radiation exposure to the patient. 
These techniques also require the placement of a reference marker which increases the surgical morbidity of 
ESS. Ultrasound guidance does not increase radiation exposure to the patient, but current techniques 



Page 6 of Derman et al. Mini-invasive Surg 2022;6:8 https://dx.doi.org/10.20517/2574-1225.2021.1118

require a specialized physician to operate the ultrasound. Finally, all these techniques increase the cost of the 
procedure to varying degrees. While reduced operative time may offset some of these costs, many are not 
insignificant. The actual cost of each technology varies significantly based on region and healthcare setting. 
Nevertheless, capital costs for robotic navigation platforms can exceed $1 million USD and also require the 
purchase of disposables for each case[34]. More studies are needed to further analyze the advantages and 
disadvantages of advanced technology for ESS. Hopefully, as these technologies become more available, the 
costs will decrease and reduce the financial barriers to their adoption.

CONCLUSION
ESS is an ultra-minimally invasive technique with many advantages, but it has yet to achieve widespread 
adoption. The incorporation of navigation, mixed reality, and robotics could address some surgeons’ 
hesitations about performing ESS by flattening the learning curve, increasing surgical efficiency, and 
limiting the use of fluoroscopy. However, the substantial capital costs of these auxiliary technologies in 
addition to that of the endoscopic equipment itself may prove prohibitive in certain settings (e.g., 
ambulatory surgery centers). Changes in reimbursement and/or pricing would reduce these financial 
constraints and likely help drive more pervasive use.

The evidence regarding the use of navigation, mixed reality, and robotics in ESS is currently limited and 
primarily focused on lumbar discectomies. Additional benefit may be realized should such technologies be 
applied to more advanced endoscopic applications such as endoscopic-assisted interbody fusions, where 
they can also facilitate disc space preparation and the placement of pedicle screws and interbody devices. 
Additional prospective, randomized studies are needed to fully delineate the impact that these technologies 
could have on the field of ESS.
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