Supplementary Table 2. Recent research publications using active targeting technology(s) in targeting brain metastases of breast cancer

Supplementary Table 2. Recent	-				X 7	D C
Title of paper	API	Delivery system	Targeting moiety	Mechanism of targeting	Year	Ref.
Improved treatment of MT-3	Oxaliplatin, a	Angiopep targeted fluid	Angiopep ligand that	When Angiopep binds to LRP,		
breast cancer and brain	platinum	membrane liposomes	specifically targets the LRP	this mediates transcytosis of the		
metastases in a mouse xenograft	chemotherapeutic	containing Oxaliplatin.	protein	Liposomal formulation across	2016	[1]
by LRP-targeted oxaliplatin	agent			BBB		
liposomes						
Uptake of ANG1005, A novel				Angiopep-2 peptide-paclitaxel		
paclitaxel derivative, through				conjugate designed to improve		
the blood-brain barrier into brain	Paclitaxel	Angiopep-2 paclitaxel	Angiopep-2	delivery of paclitaxel across the	2009	[2]
and experimental brain		conjugate		BBB through LRP receptor-		
metastases of breast cancer				mediated transcytosis		
Treatment of experimental brain		Ligand-targeted fluid	Angiopep-2 that binds	Angiopep-2 equipped liposomes		
metastasis with MTO-		membrane liposomes	specifically to a member of	were developed to target LRP		
liposomes: impact of fluidity		containing MTO	the low-density lipoprotein			
	Mitoxantrone	Containing WTO		that is expressed on the surface of	2012	[3]
and LRP-targeting on the	(MTO)		receptor-related protein	barrier-forming cells, which	2012	
therapeutic result			family (LRP)	enhances endocytosis of		
				liposomes containing		
				mitoxantrone across BBB		
Focused ultrasound delivers	Natural killer cells,	Transfected HER2-	Chimeric HER2 antigen	FUS caused BBBD resulting in		
targeted immune cells to	the cytotoxic	specific NK-92 cells	receptor	an increased HER2-targeted NK-	2013	[4]
metastatic brain tumors	lymphocytes	with superparamagnetic		92 cell accumulation in the	2013	
		iron oxide nanoparticles		sonicated tumor volume		
Paclitaxel-hyaluronic		An ultra-small		The ultra-small nanoconjugate		
nanoconjugates prolong overall		hyaluronic acid (HA)		crosses BTB and actively targets		
survival in a preclinical brain		paclitaxel nanoconjugate		the metastatic cancer cell by		
metastases of breast cancer				CD44 receptor-mediated		
model	Paclitaxel (PTX)		Hyaluronic acid	endocytosis	2013	[5]
				Hyaluronic acid bind specifically		
				to CD44 receptors that are		
				overexpressed in brain metastases		
				of breast cancer		
A multifunctional polymeric	Doxorubicin is the	A nanocarrier system		Polysorbate 80 leads to the		
nanotheranostic system delivers	therapeutic agent	based on poly				
		(methacrylic acid)		enhanced adsorption of		
doxorubicin and imaging agents	while gadolinium	,		apolipoprotein-E (Apo-E) to the		
across the blood brain barrier	(Gd) MR contrast	polysorbate 80-grafted-	D.1100	particle surface	2014	[6]
targeting brain metastases of	agent and Hoechst	starch	Polysorbate 80	The presence of Apo-E promotes	2014	[6]
breast cancer	33342 (NIR			nanoparticle internalization in the		
	fluorescence dye) are			brain capillary endothelial cells		
	used as diagnostic			via LDL receptor-mediated		
	agents			endocytosis		
ANG4043, a novel brain-	anti-HER 2	Angiopep-2 -anti-HER2	Angiopep-2 is a 19-amino	Angiopep-2-trastuzumab		
penetrant peptide-mAb	monoclonal antibody	mAb conjugate	acid peptide that specifically	conjugate efficiently penetrates		
conjugate, is efficacious against	(trastuzumab)		binds LRP 1 a member of the	the BBB through LRP1 receptor-	2015	[7]
HER2-positive intracranial			LDL receptor family)	mediated transcytosis, which is	2013	
tumors in mice				highly expressed on BBB		
				capillary endothelial cells		
Enhanced antitumor effects of	KLA, a proapoptotic	A targeting peptide	BRBP1, a linear	BRBP1 is the peptide that targets		
the BRBP1 compound peptide	peptide, that disrupts	composite system	dodecapeptide peptide binds	the composite system specifically		
BRBP1-TAT-KLA on human	mitochondrial	(BRBP1-TAT-KLA)	specifically to the brain	to the cancer cells		
brain metastatic breast cancer	membrane	comprised of KLA	metastatic breast cancer	TAT facilitates the penetration of		
		peptide as the drug, TAT		the system to deliver proapoptotic	2015	[8]
		as a cell penetrating		KLA within cells		
		peptide, and BRBP1 as a		KLA induces mitochondrial		
		targeting element		damage and triggers apoptosis		
Targeting breast to brain	TNF receptor	TRAIL-secreting	Tumor tropic Neural stem	TRAILs are capable of inducing		
metastatic tumors with death	superfamily member	engineered neural stem	cells, which can penetrate			
		cells	brain endothelium and	apoptosis in a number of cancer		
receptor ligand expressing	10A/10B apoptosis-	CC115		cells via the binding to their		
therapeutic stem cells	inducing ligand		migrate towards metastatic	cognate receptors and the	2017	ΓΩΊ
	(TRAIL) that is		foci in the brain	initiation of death receptor-	2015	[9]
	capable of inducing			mediated signaling		
	apoptosis through			TRAIL is a promising candidate		
	receptor-mediated			for cancer therapies due to its		
	mechanism			capability of specifically		

Title of paper	API	Delivery system	Targeting moiety	Mechanism of targeting	Year	Ref.
				targeting tumor cells while sparing normal cells		
Nanoparticles coated with the	iRGD peptide	Nanoparticles coated		iRGD peptide targets tumor by		
tumor-penetrating peptide iRGD	(Arginine-glycine-	with a tumor-penetrating		binding to av integrins, useful		
reduce experimental breast	aspartic acid	peptide (iRGD)		molecular targets that are		
cancer metastasis in the brain				overexpressed on many cancer		
				cells		
			iRGD peptide	Proteolytically processed iRGD	2015	[10]
				also exerts anti-metastatic activity		
				by binding to neuropilin-1 and		
				activating an endocytic bulk transport pathway through tumor		
				tissue		
Anti-cancer antibody		Trastuzumab	Melanotransferrin which is a	Human melanotransferrin-		
trastuzumab-melanotransferrin		melanotransferrin	unique blood-brain barrier	trastuzumab conjugate is actively		
conjugate (BT2111) for the Treatment of Metastatic HER2+	Trastuzumab	conjugate	transporter	transported across BBB through a	2016	[11]
breast cancer tumors in the	Trastuzumab			receptor-mediated transcytosis involving a member of the low-	2016	[11]
brain: an <i>in-vivo</i> study				density lipoprotein receptor-		
				related protein family (LRP)		
Blood-brain barrier-penetrating		A PS 80-based		Polysorbate 80 leads to the		
amphiphilic polymer		amphiphilic polymer		enhanced adsorption of		
nanoparticles deliver docetaxel		nanocarrier system		apolipoprotein-E (Apo-E) to the		
for the treatment of brain				particle surface	2017	[12]
metastases of triple negative breast cancer	Docetaxel		Polysorbate 80	The presence of Apo-E promotes nanoparticle internalization in the	2017	[12]
oreast cancer				brain capillary endothelial cells		
				via LDL receptor-mediated		
				endocytosis		
Regional delivery of chimeric	The HER2-targeted	Chimeric antigen	The HER2-targeted scFv	Following intracranial or		
antigen receptor-engineered T	scFv sequence was	receptor (CAR)-based T	sequence derived from	intracerebroventricular injection		
cells effectively targets HER2+	derived from the	cell immunotherapy	trastuzumab will target HER2	(i.c.v), HER2-CAR T-cells		
breast cancer metastasis to the	humanized		receptors	effectively targeted breast cancer		
orani	monoclonal antibody trastuzumab			brain metastasis	2018	[13]
	and cloned into the					
	antigen-binding					
	domain of the HER2-					
Two-step targeted hybrid	CAR	A nano-construct system		Deliverage of leads to the		
nanoconstructs increase brain		made by self-assembly		Polysorbate 80 leads to the enhanced adsorption of		
penetration and efficacy of the		of a polysorbate 80 (PS		apolipoprotein-E (Apo-E) to the		
therapeutic antibody		80)-containing		system surface allowing its		
trastuzumab against brain	Trastuzumab	terpolymer, a lipid, and	Dalva anhata 90	penetration across BBB by	2018	[14]
metastasis of HER2-positive	Trastuzumao	polymer-bound	Polysorbate 80	receptor-mediated transcytosis	2018	
breast cancer		trastuzumab		The gradual dissociation of the		
				particle allows trastuzumab to		
				efficiently target HER2+ cancer cells to exert its therapeutic effect		
Synergistic tumor		An acid-cleavable FA	Acid cleavable Folic acid	Folic acids bind with high affinity		
microenvironment targeting and		and dNP2 dual	was used as targeting ligand	to folate receptors that are		
blood-brain barrier penetration		modified liposome (cFd-	in addition to a BBB-	overexpressed on multiple tumor		
via a pH-responsive dual-ligand		Lip) was formulated as	permeable peptide dNP2	cells and BBB which enhances		
strategy for enhanced breast		the delivery system of	peptide	delivery of PTX loaded		
cancer and brain metastasis	PTX	PTX		liposomes to cancer cells	2018	[15]
therapy				Low pH of tumor		
				microenvironment cleaves folic acid moiety allowing deeper		
				penetration of liposomal		
				formulation within cancer cells		
				via dNP2 peptide		
Cell-penetrating peptide-	Doxorubicin	PEGylated gold	TAT, cell-penetrating peptide	TAT peptide facilitated	2016	[16]
modified gold nanoparticles for		nanoparticle conjugated	derived from HIV.	penetration of NPs across BBB		

Title of paper	API	Delivery system	Targeting moiety	Mechanism of targeting	Year	Ref.
the delivery of doxorubicin to		to HIV-derived TAT		by the help of its transmembrane		
brain metastatic breast cancer		peptide as well as		domain		
		doxorubicin		TAT peptide was shown to		
				destabilize a brain capillary		
				monolayer increasing its		
				permeability		
MRI virtual biopsy and						
treatment of brain metastatic	Smarifia m.D.N.A	poly(β-L-malic acid) delivery platform	MsTfR-mAb Trastuzumab to	Receptor-mediated transcytosis	2015	[17]
tumors with targeted	Specific mRNA suppressors (AONs)		bind to HER2 receptors			
nanobioconjugates: nanoclinic			Cetuximab to bind to EGFR			
in the brain						
Delivery of nanoparticles to			The authors had claimed that	Nanoparticles grafted with		
brain metastases of breast cancer	Gold Nanoshells	Monocytes/macrophages	monocytes/macrophages were	monocytes/macrophages were	2012	[18]
using a cellular Trojan horse			able to cross BBB and	recruited to metastatic lesions by		
			actively transport loaded	the effect of some chemo-		
			nanoparticles, but the exact	attractants		
			mechanism was unknown	The activated macrophages were		
				able to cross BBB and envelop		
				the metastatic cells delivering		
				loaded nanoparticles		
						1

REFERENCES

- 1. Orthmann A, Peiker L, Fichtner I, Hoffmann A, Hilger RA, et al. Improved treatment of MT-3 breast cancer and brain metastases in a mouse xenograft by LRP-targeted oxaliplatin liposomes. J Biomed Nanotechnol 2016;12:56-68.
- 2. Thomas FC, Taskar K, Rudraraju V, Goda S, Thorsheim HR, et al. Uptake of ANG1005, a novel paclitaxel derivative, through the blood-brain barrier into brain and experimental brain metastases of breast cancer. Pharm Res 2009;26:2486-94.
- 3. Orthmann A, Zeisig R, Suss R, Lorenz D, Lemm M, et al. Treatment of experimental brain metastasis with MTO-liposomes: impact of fluidity and LRP-targeting on the therapeutic result. Pharm Res 2012;29:1949-59.
- 4. Alkins R, Burgess A, Ganguly M, Francia G, Kerbel R, et al. Focused ultrasound delivers targeted immune cells to metastatic brain tumors. Cancer Res 2013;73:1892-9.
- 5. Mittapalli RK, Liu X, Adkins CE, Nounou MI, Bohn KA, et al. Paclitaxel-hyaluronic nanoconjugates prolong overall survival in a preclinical brain metastases of breast cancer model. Mol Cancer Ther 2013;12:2389-99.
- 6. Li J, Cai P, Shalviri A, Henderson JT, He C, et al. A multifunctional polymeric nanotheranostic system delivers doxorubicin and imaging agents across the blood-brain barrier targeting brain metastases of breast cancer. ACS Nano 2014;8:9925-40.
- 7. Regina A, Demeule M, Tripathy S, Lord-Dufour S, Currie JC, et al. ANG4043, a novel brain-penetrant peptide-mAb conjugate, is efficacious against HER2-positive intracranial tumors in mice. Mol Cancer Ther 2015;14:129-40.
- 8. Fu B, Long W, Zhang Y, Zhang A, Miao F, et al. Enhanced antitumor effects of the BRBP1 compound peptide BRBP1-TAT-KLA on human brain metastatic breast cancer. Scientific reports 2015;5:8029-.
- 9. Bagci-Onder T, Du W, Figueiredo JL, Martinez-Quintanilla J, Shah K. Targeting breast to brain metastatic tumours with death receptor ligand expressing therapeutic stem cells. Brain 2015;138:1710-21.
- 10. Hamilton AM, Aidoudi-Ahmed S, Sharma S, Kotamraju VR, Foster PJ, et al. Nanoparticles coated with the tumor-penetrating peptide iRGD reduce experimental breast cancer metastasis in the brain. J Mol Med (Berl) 2015;93:991-1001.
- 11. ELAmrawy F, Othman AA, Adkins C, Helmy A, Nounou MI. Tailored nanocarriers and bioconjugates for combating glioblastoma and other brain tumors. J Cancer Metastasis Treat 2016;2:112-22.
- 12. He C, Cai P, Li J, Zhang T, Lin L, et al. Blood-brain barrier-penetrating amphiphilic polymer nanoparticles deliver docetaxel for the treatment of brain metastases of triple negative breast cancer. J Control Release 2017;246:98-109.
- 13. Priceman SJ, Tilakawardane D, Jeang B, Aguilar B, Murad JP, et al. Regional delivery of chimeric antigen receptor-engineered T cells effectively targets HER2(+) breast cancer metastasis to the brain. Clin Cancer Res 2018;24:95-105.
 14. He C, Li J, Cai P, Ahmed T, Henderson JT, et al. Two-step targeted hybrid nanoconstructs increase brain penetration and efficacy of the therapeutic antibody trastuzumab against
- brain metastasis of HER2-positive breast cancer. Advanced Functional Materials 2018;28:1705668.

 Li M, Shi K, Tang X, Wei J, Cun X, et al. Synergistic tumor microenvironment targeting and blood-brain barrier penetration via a pH-responsive dual-ligand strategy for enhanced
- breast cancer and brain metastasis therapy. Nanomedicine 2018;14:1833-43.
- 16. Morshed RA, Muroski ME, Dai Q, Wegscheid ML, Auffinger B, et al. Cell-penetrating peptide-modified gold nanoparticles for the delivery of doxorubicin to brain metastatic breast cancer. Mol Pharm 2016;13:1843-54.
- 17. Patil R, Ljubimov AV, Gangalum PR, Ding H, Portilla-Arias J, et al. MRI virtual biopsy and treatment of brain metastatic tumors with targeted nanobioconjugates: nanoclinic in the brain. ACS Nano 2015;9:5594-608.
- 18. Choi M-R, Bardhan R, Stanton-Maxey KJ, Badve S, Nakshatri H, et al. Delivery of nanoparticles to brain metastases of breast cancer using a cellular Trojan horse. Cancer nanotechnol 2012;3:47-54.